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Phytoplankton are the foundation of aquatic food webs. Through photosynthesis, phy-
toplankton draw down CO2 at magnitudes equivalent to forests and other terrestrial
plants and convert it to organic material that is then consumed by other organisms of
phytoplankton in higher trophic levels. Mechanisms that affect local concentrations and
velocities are of primary significance to many encounter-based processes in the plankton
including prey-predator interactions, fertilization and aggregate formation. We report
results from simulations of sinking phytoplankton, considered as elongated spheroids,
in homogenous isotropic turbulence to answer the question of whether trajectories and
velocities of sinking phytoplankton are altered by turbulence. We show in particular that
settling spheroids with physical characteristics similar to those of diatoms weakly cluster
and preferentially sample regions of down-welling flow, corresponding to an increase of the
mean settling speed with respect to the mean settling speed in quiescent fluid. We explain
how different parameters can affect the settling speed and what underlying mechanisms
might be involved. Interestingly, we observe that the increase in the aspect ratio of the
prolate spheroids can affect the clustering and the average settling speed of particles by
two mechanisms: first is the effect of aspect ratio on the rotation rate of the particles,
which saturates faster than the second mechanism of increasing drag anisotropy.

Key words: Phytoplankton, prolate spheroids, tracers, settling particles, aspect ratio,
homogenous isotropic turbulence

1. Introduction

The behavior of suspended particles in turbulent flows is of considerable interest to
a variety of processes (Guazzelli & Morris 2011) including dispersion of aerosols and
collisions of water droplets in the atmosphere, dispersions of oil spills treated with
dispersants, sediment transport and plankton ecology. The latter is perhaps the least
familiar to fluid dynamicists but is of great importance because of the key roles plankton
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play in oceanic food webs, sustaining all the world’s commercially important fisheries,
and in global biogeochemical cycles, particularly the carbon cycle. At the basis of
all planktonic ecosystems are microscopic photosynthetic organisms, collectively called
phytoplankton. These unicellular organisms reside in the upper layer of the ocean (and
lakes), where both light and turbulence prevail, and are responsible for nearly 40% of
the global annual net primary productivity. They convert CO2 into organic material that
is consumed by other planktonic organisms and transferred to higher trophic levels. A
fraction of the organic material produced at the surface is transported to the deep ocean,
via sinking particles, where it can become sequestered and remain there for thousands of
years. Such sequestration is a critical piece in the global carbon budget. Phytoplankton
cells are generally denser than seawater and tend to sink (Eppley et al. 1967). Non-motile
species of phytoplankton cannot control their vertical position in the water column and
settling therefore determines vertical distributions and residence time of cells in the
illuminated, upper layer of the ocean, ultimately affecting rates of photosynthesis and
primary production. On much smaller scales, relative motion between the fluid and a
sinking cell is sufficient to erode diffusive boundary layers and enhance fluxes of solutes
to and from the cell (Lazier & Mann 1989; Karp-Boss & Jumars 1998). Thus, mechanisms
that affect sinking of phytoplankton hold significant implications to a variety of processes
that govern carbon, nitrogen and energy flows in aquatic systems.

To understand dynamics and residence time of phytoplankton in the upper mixed
layer of oceans (and lakes) it is necessary to consider mechanisms that influence motions,
trajectories and dispersion of individual cells. The mixed layer is defined as the layer
between the ocean’s surface and depth, typically ranging between 10 to 200 m, where
turbulence, caused by wind stress, acts to mix physical and chemical properties. Superim-
posed on ambient turbulence are motions of phytoplankton due to swimming and sinking.
Recent studies have advanced understanding of the effects of shear and turbulent flows
on swimming behavior of phytoplankton (Durham et al. 2011, 2013; Zhan et al. 2014;
Barry et al. 2015; Gustavsson et al. 2016), but interactions of turbulence with sinking
cells remain largely unexplored.

Early observations that large phytoplankton cells, such as diatoms, thrive in turbulent
waters and that stirring is required to maintain cells in suspension in culture flasks
have led to the notion that turbulence increases residence time of phytoplankton in
the mixed layer. This view, which became a paradigm in biological oceanography, is
based on intuition rather than rigorous analysis. Careful laboratory studies suggest the
contrary- turbulence enhances sinking velocities of at least some species of phytoplankton,
relative to their still-water velocities (Ruiz et al. 2004) but mechanisms, magnitudes and
consequences have not been fully characterized. Of particular interest, and the focus
of this paper, is the manner in which turbulence biases particle trajectories, leading to
altered sinking velocities. We particularly explain how different parameters can affect the
settling speed and what underlying mechanisms might be involved.

Whether dissipation-scale oceanic turbulence can alter trajectories and lead to clus-
tering of weakly inertial particles such as phytoplankton is still an open question.
Nielsen (1993) compiled data from experimental studies that examined a wide variety of
suspensions, with both negatively and positively buoyant inclusions, showing the complex
nature of turbulence-sinking (or rising) interactions. For weak to moderate turbulence,
where ratios between vertical velocities of the flow and mean sinking or rising velocities
in still water range between 0.3 to 3, both sinking of positively buoyant and rising of
negatively buoyant particles are slowed by turbulence, presumably due to vortex trapping
(Tooby et al. 1977; Nielsen 2007). In strong turbulence, effects on heavy and light particles
differ. While the sinking of heavy particles is accelerated, rising of light particles is further
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Figure 1. A mosaic of images of diatoms taken with a light microscope (D & E) or an Imaging
Flow cytomter (A, B, C, F & G). A. Ditylum brightwellii B. Navicula sp. C. Chaetoceros sp.
(a chain forming diatom), D. Lauderia annulata (a chain forming diatom), E. Lithodesmium
undulatum (a chain forming diatom), F. Chorethron sp., and G. Cylindrotheca sp.

delayed by turbulence. The critical particle density separating delay from acceleration
is not when the density of the particle matches that of the fluid (Nielsen 2007). The
observed increase in sinking velocities of heavy particles in strong turbulence has been
attributed to the mechanism of fast tracking, where particles with sufficient inertia are
preferentially swept out of vortices into regions of high strain and low vorticity and
their trajectories tend to follow down-welling regions of the flow (Murray 1970; Maxey
1987; Wang & Maxey 1993; Nielsen 2007). Thus interactions of settling particles with
turbulence can result in both preferential sampling of regions of specific velocity and
clustering of particles. Mechanisms that affect local concentrations and velocities are of
primary significance to many encounter-based processes in the plankton including prey-
predator interactions, fertilization and aggregate formation (Denny 1993; Kiørboe 2008).

Particle inertia is most commonly predicted by the Stokes number St which defines the
relative timescale it takes a particle to respond to a change in the flow compared to the
timescale at which the flow itself changes. The bulk of the literature is for 1 6 St 6 10,
while St values for phytoplankton are 3 to 4 orders of magnitude smaller. St by itself,
however, may not be a good predictor of particle behavior (Lucci et al. 2011; Fornari
et al. 2016). In addition to St, settling velocities, can play an important role, describing
the particle behavior in turbulence flows.

Conclusions from literature on cloud drops, oil droplets and aerosol do not transfer well
to phytoplankton-like particles because of the difference in velocities, densities and size
ratios (Wang & Maxey 1993; Toschi & Bodenschatz 2009; Gustavsson et al. 2014; Bec
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et al. 2014), therefore there is a clear need to extend modelling efforts to the parameter
space at which phytoplankton operate. A parameter space for modelling phytoplankton
is given in more detail in appendix A.

Another motivation for this study is to investigate the effect of shape on the dynamics
of phytoplankton-like particles. So far only few studies have considered non-spherical
particles in turbulent flows (Ni et al. 2015; Byron et al. 2015; Parsa & Voth 2014).
Phytoplankton exhibits a striking diversity of cell shapes and characteristics, which may
influence their kinematics in important ways. For example, Durham et al. (2011) showed
that spherical phytoplankton cells that are bottom-heavy and swim upwards (gyrotactic
swimmers) tend to get trapped and cluster at regions with high shear gradients in a
vortical flow field and are more likely to be found in down-welling regions of turbulent
flows (Durham et al. 2013). This tendency to cluster, however, appears to be sensitive to
the shape of cells (Zhan et al. 2014; Gustavsson et al. 2016). We are not aware of similar
studies on the effect of the cell shape for settling, non-motile phytoplankton.

Here we use analytical and direct numerical simulations to examine the behavior of
chain-forming diatoms in a turbulent flow. We focus on diatoms because this group is
both ecologically important and promises diverse kinematics due to their relatively large
size and diverse morphologies (e.g. Figure 1). Regarding their ecological importance,
diatoms often dominate primary production in seasonal blooms and are considered key
players in the biological pump that removes carbon from the surface layer that is in
contact with the atmosphere to the deep ocean. Regarding their size and morphology,
although unicellular, many species form colonies in the form of long chains that can reach
up to a few mm in size. Furthermore, diatoms have biomineralized siliceous cell walls that
contribute a significant, and variable, excess density of cells. The behavior of these cells
in a simple, steady shear flow has been studied in the lab (Karp-Boss & Jumars 1998).
While diatoms morphologies are complex and may include spines and other projections,
as shown in figure 1, Nguyen et al. (2011) showed that in a simple shear flow the motion
of a diatom with spines or projections could be well predicted from theory of the motion
of spheroids in a simple shear flow, providing that the cell is described by the smallest
inscribing spheroid that encompasses both the cell and its spines. We therefore model
diatom chains as prolate spheroids.

We begin by introducing the kinematic and dynamic models, used in this study to
describe the particle motion in §2. We compare the models and validate our numerical
code in §3. Next, we examine whether turbulence affects sinking velocities and clustering
of weakly inertial prolate spheroids and how it may vary as a function of different particle
parameters (§4). Alteration of sinking velocities is explained further in this section,
considering a simple shear flow. The main conclusions and final remarks are drawn in §5.

2. Governing equations and numerical method

2.1. Fluid phase

The incompressible turbulent velocity field, u, obeys the Navier-Stokes and continuity
equations:

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u + f , (2.1)

∇ · u = 0 . (2.2)

Here t denotes the time, p the pressure, Re the Reynolds number and f the random forcing
field necessary to maintain the turbulent velocity in a statistically steady state. The
equations are discretized in a cubic domain with periodic conditions at the boundaries.
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We employ Direct Numerical Simulation (DNS) to solve all the relevant flow scales
without any artificial model at the smallest scales. Since we evolve the equations in
a three-periodic domain, it is natural to do so in Fourier space with a pseudo-spectral
method. In this numerical scheme the nonlinear terms are evaluated in physical space
using the classic 2/3 rule to minimize aliasing error. Time integration is performed with a
third-order low-storage Runge-Kutta method where the diffusive terms are analytically
calculated while an Adam-Bashforth-like approximation is employed for the nonlinear
terms (Rogallo 1981). The stochastic forcing is evaluated in Fourier space and acts
isotropically on the first shell of wave vectors. The forcing amplitude is constant in
time and the field is delta-correlated in time and uniformly distributed in phase and
directions (Vincent & Meneguzzi 1994). We employed a resolution of 1283 grid points with
a Taylor Reynolds number Reλ = 100 and 643 grid points with a Taylor Reynolds number
Reλ = 60. The turbulence is characterized by the Taylor Reynolds number Reλ ≡ u′λ/ν,
where u′ is the root-mean-square of velocity fluctuations, ν is the kinematic viscosity and
λ is the Taylor microscale, λ ≡

√
ε/15νu′ 2, with ε the kinetic energy dissipation rate. The

resolution was chosen so that the velocity gradients are well resolved since they drive the
the equation of motion of the particles. Particle statistics are computed from independent
samples separated by 1.6 turbulent Kolmogorov time scales, τf ≡

√
ν/ε, corresponding

to about 300 configurations per particle. The numerical code has been already employed
to study gyrotactic micro-organisms in homogeneous turbulence (Zhan et al. 2014) and
rain droplet evaporation in clouds (Sardina et al. 2015).

2.2. Solution of the particle motion

Two different approaches are adopted to evaluate the dynamics of sedimenting
spheroids in a Lagrangian framework. Diatoms are typically smaller than the
characteristic Kolmogorov scale in the upper mixed layer of the ocean (see appendix A)
and so are the particles in our model. The flow properties at the particle position are
evaluated via linear interpolation from the neighbouring grid points.

2.2.1. Method I - Kinematic model

Given the parameters relevant to plankton dynamics, the first approach assumes that
the cells behave like passive tracers with a correction given by their Stokes settling
velocity. The particle translational motion obeys

dx

dt
= u|x + vs (p) , (2.3)

vs (p) = vmins êg +
(
vmaxs − vmins

)
(êg · p) p , (2.4)

with x denoting spheroid position, u|x the fluid velocity at spheroid position, p the
spheroid orientation vector, vs the Stokes settling velocity and êg a unit vector in the
direction of gravity. vmins and vmaxs are the minimum and maximum settling speeds in
quiescent flow, corresponding to the particles falling with their broad side perpendicular
or parallel to the gravity direction. These velocities can be written as

vmaxs =
(ρp − ρf ) gl2

µf
γ0 (AR) ; vmins =

(ρp − ρf ) gl2

µf
γ1 (AR) , (2.5)

with g the gravitational acceleration, l the length of the spheroid’s major axis, µf the
dynamic viscosity of the fluid, and ρp and ρf the densities of the particle and the fluid
respectively. γ0 and γ1 are functions of the aspect ratio AR, whose full expression can be
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found in Dahlkild (2011) among others. AR is defined as the ratio of polar over equatorial
radii of the spheroid.

The spheroid rotation follows the inertialess Jeffery equation

dp

dt
=

1

2
ωωω|x × p + α [I− pp] ·E|x · p , (2.6)

with ωωω|x the flow vorticity at the particle’s position, I the second order identity tensor,
E|x the symmetric part of the velocity deformation tensor and α a function of the spheroid
aspect ratio AR, defined as

α =
AR2 − 1

AR2 + 1
. (2.7)

The same Runge-Kutta scheme used for the carrier phase is used to perform the time
integration for equation 2.6. This is evaluated via a formulation based on quaternions.
We evolve a total of 200000 spheroids for each simulation.

2.2.2. Method II - Dynamic model

In the second approach, the spheroids are assumed to be inertial. They are assumed
to obey the classic Maxey-Riley equation with an orientation correction for the Stokes
drag (Gallily & Cohen 1979; Brenner 1964; Marchioli et al. 2014), without the Basset
contribution:

dv

dt
= AtK′A

u− v

τp
+
ρf
ρp

Du

Dt
+

1

2

ρf
ρp

[
Du

Dt
− dv

dt

]
+

(
1− ρf

ρp

)
g , (2.8)

dx

dt
= v , (2.9)

where the terms on the right-hand-side of equation 2.8 represent from left to right: the
Stokes drag, the pressure gradient, added mass and lastly gravity (also accounting for
the buoyancy force). The Basset history term is neglected in the present work due to its
small contribution to the particle acceleration in the range of Stokes number and density
ratio studied here (table 1) (see Olivieri 2013; Olivieri et al. 2014; Daitche 2015). In the
expression above, v is the particle velocity, A is the transformation tensor between the
fixed and the local spheroid reference frames, ∗t denotes the transpose operator, and τp
the relaxation time for prolate spheroids, defined by

τp =
2ρpa

2

9µf

AR ln(AR+
√
AR2 − 1)√

AR2 − 1
, (2.10)

with a the semi-minor axis of the prolate spheroid. D∗/Dt is the fluid material derivative,
g the gravity vector. K′ is the resistance second order tensor in the spheroid reference
frame; it is a diagonal tensor of components, in which z denotes the polar axis.

K ′xx = K ′yy =
(16/6)(AR2 − 1) ln(AR+

√
AR2 − 1)

(2AR2 − 3) ln(AR+
√
AR2 − 1) +AR

√
AR2 − 1

, (2.11)

K ′zz =
(8/6)(AR2 − 1) ln(AR+

√
AR2 − 1)

(2AR2 − 1) ln(AR+
√
AR2 − 1)−AR

√
AR2 − 1

. (2.12)

The modified Maxey-Riley equation (2.8) is re-written in terms of relative velocity
w = v− u for a more accurate numerical solution,
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(
1 +

1

2

ρf
ρp

)
dw

dt
= −AtK′A

w

τp
+

(
ρf
ρp
− 1

)
du

dt
− 3

2

ρf
ρp

w · ∇u +

(
1− ρf

ρp

)
g , (2.13)

and is advanced in time with an implicit predictor-corrector scheme to avoid numerical
instabilities associated with the small values of the spheroid relaxation time.

The spheroid rotation is governed by the following equation

d
(
I′ ·ωωω′

)
dt

+ ωωω′ ×
(
I′ ·ωωω′

)
= N′ , (2.14)

with I′ the spheroid moment of inertia tensor, ωωω′ the spheroid angular velocity and N′

the rotation torque, where the superscript ∗′ denotes quantities in the spheroid reference
frame. N′ is given by

N ′x = Cx
[(

1−AR2
)
E′yz +

(
1 +AR2

)
(Ω′x − ω′x)

]
; Cx =

16πµfa
3AR

3
(
β0 +AR2γ0

) ,(2.15)

N ′y = Cy
[(

1−AR2
)
E′xz +

(
1 +AR2

) (
Ω′y − ω′y

)]
; Cy =

16πµfa
3AR

3
(
β0 +AR2γ0

) ,(2.16)

N ′z = Cz (Ω′z − ω′z) ; Cz =
32πµfa

3AR
3 (α0 + β0)

, (2.17)

with Ω′ is the fluid rate of rotation tensor, and α0, β0 and γ0 are coefficient functions of
the aspect ratio whose expression can be found in Jeffery (1922).

3. Validation and comparison between the two models

We first compare the two models to assess whether the simpler, inertialess model can
be used for simulations aiming to study the settling of plankton in turbulent flow (see
table 2). For each method, we perform two simulations at Reλ around 60 and spheroid
aspect ratio of AR = 5 . The two cases differ in the choice of density ratio (1.3 in figure 2
and 1.05 in figure 3) and average settling velocity (2.3uη in figure 2 and 1.1uη in figure 3).

We consider both particle trajectories and statistical properties: the two different
methods provide the same result for both the single spheroid trajectories (panels (a)
of figures 2 and 3) and the global spheroid two-point distribution function (panels (b)
of figures 2 and 3). As seen in these figures, in the limit of small density ratio and
relaxation time the two models provide the same dynamics. Therefore, we have used the
non-inertial tracer (kinematic) model for the simulations at higher Reynolds number that
will be described in the next sections.

4. Results

We first investigate the settling of prolate spheroidal particles of constant volume,
focusing on the effect of the particle aspect ratio. The parameters used are Reλ = 100,
ρp
ρf

= 1.05 and Deq = η/6 where Deq is the diameter of a sphere having the same volume

as the prolate spheroid. Fixing the volume, the settling speed varies with the aspect ratio.
It should be noted that for the higher aspect ratio cases (AR > 15), examined here, the
larger diameter of the spheroid exceeds Kolmogorov length scale η (≈ 1.24 for AR = 24).
This barely affects the results since rods act as tracers when their length is less than 5η
and deviations from tracer behavior are very small until about 15η (Parsa & Voth 2014).
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Figure 2. Comparison between kinematic (non-inertial; black line) and dynamic (inertial; red
line) models: (a) Example trajectories of the two particles, using the two models from t = 0 to
t = 40τη and (b) radial distribution function (r.d.f) of particle position. Reλ = 60 ; AR = 5 ;
ρp/ρf = 1.3 ; visos ≈ 2.3uη. visos is the average settling speed for spheroids in a quiescent flow and
the r.d.f measures the probability to find a particle pair at a given radial distance, normalized
by the values of a uniform distribution. (see § 4 for the formulation of r.d.f. and visos ).
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Figure 3. Comparison between kinematic (non-inertial; black line) and dynamic (inertial; red
line) models: (a) Example trajectories of the two particles, using the two models from t = 0 to
t = 40τη and (b) radial distribution function (r.d.f) of particle position. Reλ = 60 ; AR = 5
; ρp/ρf = 1.05 ; visos ≈ 1.1uη. visos is the average settling speed for spheroids in a quiescent
flow and the r.d.f measures the probability to find a particle pair at a given radial distance,
normalized by the values of a uniform distribution. (see § 4 for the formulation of r.d.f. and
visos ).

AR 1 2 3 5 10 20

vmaxs 3.03 3.17 3.11 2.90 2.46 1.97
vmins 3.03 2.77 2.53 2.18 1.71 1.29
vmaxs /vmins 1 1.14 1.23 1.33 1.44 1.53
visos 3.03 2.90 2.72 2.42 1.96 1.52

Table 1. Maximum, minimum and average of settling velocities in quiescent flow, scaled with
the Kolmogorov velocity for the investigated cases with different aspect ratios. ρp/ρf = 1.05
and Deq = η/6.
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Figure 4. (a) Radial distribution function of particle positions; the inset in this panel reports
the fractal dimension of the clustering, estimated by fitting r.d.f. with a power-law in the range
r/η = [0.2 : 2], (b) average of fluid vertical velocity at the particle position and (c) increase in
the settling velocity (difference in the settling rate with respect to the quiescent settling average
visos , normalized by visos ).

For the simulations presented here, the average settling speed of an uniformly distributed
suspension, visos , varies in the range 1.5−3uη. Table 1 shows the settling velocities for the
investigated cases. The reported values are all normalized by the Kolmogorov velocity.
Note that the average settling speed visos for spheroids in a quiescent flow is calculated
as:

visos =

(
vmaxs + 2vmins

)
3

, (4.1)

based on the assumption that the orientation of spheroids (cosine of the angle between
spheroid’s symmetric axis and the gravity direction) are uniformly distributed.

The results are shown in figure 4. The main observation is that within the parameter
space relevant to diatom chains, settling spheroids weakly cluster (figure 4 panel a) and
preferentially sample regions of down-welling flow, leading to downward velocity biases
of up to 10% of the Kolmogorov velocity uη (figure 4 panel b). This corresponds to an
increase of the mean settling speed of about 5% compared to the mean settling speed
in quiescent fluid (panel c in figure 4). These effects increase with the aspect ratio, AR,
and saturate for AR > 10.

To quantify patchiness (clustering) in fully three-dimensional isotropic turbulent flows,
we use the radial pair distribution function (RDF), sometimes also called the correlation
function. The RDF measures the probability of finding a particle pair separated by a
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Figure 5. p.d.f of orientation of particles with different aspect ratios with respect to the
three eigenvectors of the deformation tensor (a− c) and (d) the local vorticity vector.

given radial distance, normalized by the value expected from a uniform distribution.
This is defined as

g (r) =
1

4πr2
dNr
dr

1

n0
, (4.2)

where, n0 = 0.5Np (Np − 1) /V0 is the density of pairs in the whole volume V0. Np is the
total number of particles in the domain and Nr is the number of pairs at distance r. The
small volume fraction, used here, removes the exclusion effects, and thus an RDF for a
random distribution results in a flat value of 1. The radial distribution function (RDF)
is reported in figure 4(a). In the inset of the same figure, we report the scaling exponent
of RDF at small separations, also often used as an indicator of patchiness (Durham et al.
2013). This exponent denotes the fractal dimension of the set where particles are found.
Patchiness is seen to increase with the particle aspect ratio and saturate at the largest
values considered.

In figure 5, we study the relation between particle orientation and the underlying flow
field when varying the particle shape. In figure 5(a), (b) and (c), we show the orientation
of the particle with respect to the three eigendirections of the strain tensor, defined
such that λ1 > λ2 > λ3 so that the first eigendirection is extensional and the third
eigendirection is compressional. The angles between the eigendirections and the spheroid
orientation are denoted as θ1, θ2 and θ3. In figure 5d, we show ψ, the angle between the
orientation and the local vorticity vector. While spherical particles, AR = 1, are isotropic
in nature, elongated spheroids tend to align with the local flow strain, more frequently
with the second eigendirection, and with the local flow vorticity. Indeed, the pdfs peak
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Figure 6. (a) Radial distribution function of particle positions and (b) increase in the settling
velocity for AR = 5 and the indicated values of visos .

when prolate particles are parallel to the eigendirections associated with λ2 and λ1. An
increasing probability of parallel alignment with the first two eigendirections of the strain
is seen with increased aspect ratio. The spheroid is most likely to be normal to the third
eigendirection of the strain as shown in figure 5(c). The strongest tendency to align with
the local vorticity vector is consistent with previous observations for neutrally buoyant
spheroids (Chevillard & Meneveau 2013; Ni et al. 2015). The alignment with the vorticity
vector increases with the aspect ratio AR.

4.1. Numerical experiments

To understand how the observed increase of settling speed and preferential sampling
depends on the different governing parameters, we perform a series of numerical exper-
iments in order to investigate the effect of the aspect ratio, AR, the amplitude of the
sedimenting velocity visos and the ratio between the maximum (spheroid aligned with
the gravity direction) and minimum (normal to gravity) settling speed vmaxs /vmins . In
each series of simulations we fix all the parameters except for one to focus on a single
parameter effect. While varying only one parameter can result in unrealistic conditions
occasionally, it sheds light on the isolated effect of the parameter of interest on particles’
collective behavior. As mentioned above, the non-inertial (kinematic) model is used in
these simulations.

4.1.1. Effect of sedimenting velocity magnitude

First we examine how particle clustering varies with the amplitude of the settling
speed. To this end, we keep the aspect ratio AR = 5, corresponding to a ratio between
maximum and minimum settling speed, vmaxs /vmins = 1.33, and change visos from 0.1 to
about 2.5 Kolmogorov velocities (this may correspond to a change in the particle size
with respect to the turbulence Kolmogorov scale or a change in particle density). Results
in figure 6(a) show that patchiness increases with the average settling speed, as measured
by the RDF or by the fractal dimension (inset in figure 6(a)). The increased clustering,
however, does not correspond to an increase of the relative average settling speed when
visos is greater than the Kolmogorov velocity.

4.1.2. Effect of aspect ratio

To elucidate the role of the particle rotation rate on the observed preferential sampling,
we vary AR, while artificially keeping the settling speed fixed, both the components
parallel and normal to gravity, fixed at values corresponding to AR = 5 in table 1. The
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Figure 7. (a) Radial distribution function of particle positions and (b) increase in the settling
velocity for the different aspect ratios indicated, while keeping the same maximum and minimum
settling speed.

solution of Jeffery’s equation (2.6) reveals that the time spent aligned with the local shear
increases with increasing aspect ratio. The results, displayed in figure 7, show that the
RDF and the relative increase of sedimenting velocity saturate for AR > 5. Interestingly,
rotation rates of oblate and prolate particles are seen to saturate for AR > 5 and for
AR < 1/5 in the study of Byron et al. (2015). We have also observed, not shown here,
that the alignment with the local vorticity increases with the aspect ratio and saturates
when AR > 5 unlike the cases in figure 5, where it continues to increase; this suggests
that the alignment with vorticity is influenced by the difference between settling parallel
and normal to gravity, which is fixed here.

4.1.3. Effect of local alignment

To show the isolated effect of particle alignment with the local vorticity vector we
performed a simulation, forcing the elongated spheroid to be always aligned with the
local vorticity (figure 8): we observe that clustering decreases in this case, relative to
the case of in which the particle was free to rotate, and therefore clustering cannot be
explained by the alignment with the local flow vorticity.

4.1.4. Effect of drag anisotropy

One important feature of non-spherical particles in inertialess flows is their drag
anisotropy, which can also be exploited by micro-organisms for locomotion. In the case
of settling prolate spheroids, this anisotropy is seen in the oblique settling of inclined
particles and in the difference between settling speed when oriented parallel or normal
to gravity. For the results presented so far we followed the analytical expression for
the settling speed derived for prolate spheroids. Shapes in nature are, however, more
complicated. Flexibility and non-uniformly distributed mass are likely to cause deviation
from the idealized case. To understand more the relevance of drag anisotropy we perform
simulations of spheroids with aspect ratio AR = 5 and fixed average settling speed
visos = 2.42, while varying the ratio between settling speed in the direction normal and
parallel to gravity, vmaxs /vmins . As seen in figure 9(a) clustering increases significantly with
drag anisotropy, or vmaxs /vmins . More interestingly, the relative settling speed increases by
up to about 20% when vmaxs /vmins = 3.3. The value 3.3 is chosen to artificially emphasize
the drag anisotropy effect; however, note that the ratio between maximum and minimum
settling speed of spheroidal particles increases with the aspect ratio and saturates at
about 1.75 (figure 10).
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Figure 9. (a) Radial distribution function of particle positions and (b) increase in the settling
velocity for settling spheroids with aspect ratio AR = 5, fixed average settling speed visos = 2.42
and different ratios between settling speed in the direction normal and parallel to gravity,
vmaxs /vmins , as indicated in the legend.

4.2. Mechanism for increased settling speed

To understand why ellipsoidal particles preferentially locate in regions of down-welling
flow and thus have an enhanced settling speed, we consider vertical linear shear, u =
−γxêg with motion constrained to the x−z plane. We define θ to be the angle the particle
symmetry axis makes with the vertical, so that in x−z co-ordinates the orientation vector
is given by p = (sin θ, cos θ)T .

From Jeffery’s equation (2.6) the time evolution of particle orientation is given by

θ̇ =
γ

2
(−1 + α cos 2θ) . (4.3)

Note that the particle rotates most slowly when θ = 0 or π, and thus spends more time
in these states, i.e. aligned with the local shear. From equation (2.4), the vertical velocity
of a particle is given by

vz = γx− vmins −
(
vmaxs − vmins

)
cos2 θ.
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Sedimentation of prolate spheroids in homogenous isotropic turbulence 15

The time-averaged vertical velocity over a Jeffery orbit (of duration T = 4π/γ
√

1− α2)
is given by

vz =
1

T

∫ T

0

(γx− vmins −
(
vmaxs − vmins

)
cos2 θ)dt

= γx− vmins −
(
vmaxs − vmins

)√
1− α2

2π

∫ 2π

0

cos2 θ

−1 + α cos 2θ
dθ,

where x is the time-averaged horizontal position. The effect of the shear strength, γ,
only appears through the term γx, and so the effect of the shear on the total vertical
velocity of particles can be determined if we know the time-averaged horizontal position.
In particular, the only way cells are predicted to exhibit enhanced settling is if they spend
more time in down-welling regions.

To demonstrate how the time-averaged horizontal position is biased towards down-
welling regions, yielding enhanced settling, we numerically compute particle trajectories
for a complete Jeffery orbit for an example set of parameters taken from table 1: γ = 1,
AR = 20 (α = 0.995), vmins = 1.29 and vmaxs = 1.97 (see figure 11). Particles are initially
located at the origin, and the initial orientation is taken as θ = 0 or θ = π/2. Particles
initially horizontal (θ = π/2, figure 11a) have a negative horizontal component due
to shear-induced lift, causing them to translate into down-welling flow. As the particle
rotates, it reaches a minimum horizontal position at the point when θ = 0 and then
reverses its horizontal component of motion back towards x = 0 which is attained when
θ = 3π/2. The particle has a slowest rotation rate when θ = 0 or π corresponding to the
minimum horizontal position, and thus the time-averaged horizontal position is less than
the midpoint of the horizontal limits of the trajectory. This bias represents a tendency
to cluster in down-welling flow. Particles initially vertical (θ = 0, figure 11b) sediment
with a positive horizontal component into upwelling flow. As the particle rotates, it
reaches a maximum horizontal position at the point when θ = 3π/2 and then reverses its
horizontal component of motion back towards x = 0 which is attained when θ = π. Again,
the particle has a slowest rotation rate at the minimum horizontal position, and thus the
time-averaged horizontal position is less than the midpoint of the horizontal limits of
the trajectory. This simple example shows how shear, rotation, lift, and drag-anistropy
couple to bias particle trajectories towards downward flow.

5. Final remarks

We report results from simulations of elongated, rigid particles (prolate spheroids) with
different aspect ratios sinking in homogenous, isotropic turbulence. Parameters used in
this study represent marine or freshwater diatoms that are characterized by very small
relaxation times compared to that of the fluid but with high settling velocities on the
order of Kolmogorov velocities. Given the small size of diatoms relative to the Kolmogorov
length-scale and their short relaxation time, cells are assumed to behave like passive
tracers with a correction given by their Stokes’ settling velocity. This assumption is
confirmed by comparing with a dynamic model where Stokes’ drag, gradient pressure and
added mass are taken into account. Results from these models show the same dynamics
in the range of Stokes numbers and density ratios relevant to diatoms. We therefore
use the kinematic (non-inertial tracer) model, which allows simpler control over different
parameters, allowing us to study how and why turbulence affects sinking velocities and
clustering of diatoms.
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Ruiz et al. (2004) showed that turbulence increases the average sinking velocity of
the diatom Coscinodiscus sp. in a laboratory set-up. They attributed their observa-
tions to preferential sampling of down-welling regions of the flow, a mechanism that
was previously investigated for highly inertial particles with Stokes numbers that are
several orders of magnitude larger than those of phytoplankton, and hypothesized that
preferential sampling will also result in local clustering. Here we show numerically that
preferential sampling occurs within the parameter space relevant to diatoms but only
for non-spherical particles. Preferential sampling of down-welling flow results in local
clustering of particles and a relative increase in settling velocity, but the effect on the
latter is smaller (6 5%), compared to the one shown in the lab (Ruiz et al. 2004). We
provide further insight on the mechanism involved by showing that elongated spheroids
tend to align with the local flow strain (more frequently with the second eigendirection)
and with the local flow vorticity (this is in agreement with previous studies on neutrally
buoyant spheroids in homogenous isotropic turbulence, Ni et al. 2015). To understand
why ellipsoidal particles preferentially locate in regions of down-welling flow and thus
have an enhanced settling speed, we consider a simple case of one particle sedimenting
in linear shear flow. We demonstrate how the time-averaged (over a complete Jeffery
orbit) horizontal position comes to be biased towards down-welling regions due to the
interaction of orientation, shear, drag, and lift.

Cell shape is an important morphological trait affecting many aspects in the ecology of
phytoplankton (Smayda 1970; Lewis 1976; Sournia 1982; Reynolds 1989; Reynolds & Irish
1997; Karp-Boss & Boss 2016) and results from our numerical model further highlight the
complex interactions of cell shape with ambient flows. Interestingly, the observed increase
in settling speeds does not increase indefinitely, and saturates for AR > 10. Increasing
the aspect ratio, while keeping the particle volume and density ratio constant, varies other
characteristics of the particle simultaneously. For example, the mean settling speed in
quiescent flow decreases as the ratio between maximum (when particle is oriented parallel
to the gravity direction) and minimum (when particle is oriented normal to the gravity
direction) settling speed increases. We therefore perform a series of numerical experiments
to isolate the effect of the aspect ratio AR, the magnitude of settling velocity visos and
the ratio between the maximum and minimum settling speed vmaxs /vmins in quiescent
flow. When visos and vmaxs /vmins are held constant, the increase in clustering and settling
speed begins to saturates at AR = 5. This indicates that the relative enhancement
that we observe for ellipsoids with aspect ratios larger than 5 is not due to a direct
enhancement by the aspect ratio effect but due to an increase in the ratio between the
maximum and minimum settling speed (vmaxs /vmins ) that is associated with a change in
particle shape (AR, while volume remains constant). Interestingly, an analysis of typical
aspect ratios among phytoplankton shows a peak in distribution at AR ∼ 5 (Clavano
et al. 2007; Karp-Boss & Boss 2016), but this may be a coincidence because in nature
multiple processes (grazing, diffusion, mechanical breakage by shear) act simultaneously
as selective pressures on shape and size in phytoplankton (Karp-Boss & Boss 2016).

Spheroids with higher average Stokes settling speeds (visos ) show greater tendency to
cluster (Figure 6). However, when visos is greater than Kolmogorov velocity, the increase in
clustering does not correspond to an increase in relative average settling speed. Clustering
increases significantly with drag anisotropy (i.e., the ratio vmaxs /vmins ) in a way that
does not appear to saturate. Drag anisotropy increases with increasing AR and forces
the particles to sample regions of down-welling flow to a further extent, even when the
isolated effect of aspect ratio is saturated.
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Parameter Values

Kinetic energy dissipation rate (ε) 10−10 - 10−4m2s−3

Taylor Reynolds number (Reλ) 50− 200

Sinking velocity of diatoms (visos ) 2µms−1 - 1mms−1

Velocity ratio (visos /uη) 0.02 - 11
Size ratio (L/η) 0.003 - 2
Density ratio (ρp/ρf ) 1 - 1.3

Relaxation time of a cell (τp) ∼ 10−4 s
Relaxation time of fluid (τf ) ∼ 1 s

Stokes number (τp/τf ) ∼ 10−4

Table 2. A summary of the parameter values relevant to marine diatoms. The value of ε is
considered 10−6 m2s−3 for calculating τf and Reλ.
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Appendix A. Parameter space for phytoplankton

Dissipation rates of turbulent kinetic energy ε in the ocean vary greatly in space and
time. In the open ocean, typical values range from 10−10 to 10−7m2s−3, while coastal
regions, especially those influenced by tidal fronts, experience higher dissipation rates, on
the order of 10−7 to 10−4m2s−3 (Smyth & Moum 2000; Barton et al. 2014). Within the
water column, turbulence kinetic energy dissipation rate are higher at the surface and
decrease with depth (Smyth & Moum 2000). Given the kinematic viscosity of seawater
ν ∼ 10−6m2s−1, characteristic Kolmogorov length scale η in the ocean ranges from
∼ 300µm to a few mm. Generally speaking, diatoms are smaller than characteristic
Kolmogorov length scales in the ocean, and range in size from a few µm for small solitary
cells to 100s of µm in length for chain forming species (Karp-Boss & Jumars 1998). This
size ratio may become order 1 for very long chains in strong turbulence but this would
represent an extreme case. Sinking velocities of diatoms have been measured in quiescent
water by measuring the temporal change in concentration of diatoms at the top and
bottom of a water column with a known height and calculating average (community)
settling velocities. Using this approach, settling velocities (visos ) were found to range
between 2µms−1 to ∼ 1mms−1 (reviewed in Smayda 1970).

Characteristic velocities at dissipation scale in the ocean (uη = (νε)1/4) are in the
order of 0.01 - 0.1 mms−1, resulting in velocity ratio visos /uη ≈ 1 - 4 (assuming maximum
visos of 1mms−1). Densities of marine diatoms ρp have not been measured directly but
estimated from Stokes equation for settling spheres, based on measured sinking velocities.
Densities were found to be in the range of 1.03 - 1.15 g cm−3 for actively growing cells
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with higher values for cells in senescence (1.059-1.33 g cm−3; Eppley et al. 1967). Average
density of surface seawater ρf is 1.025 g cm−3 and thus the density ratio relevant to the
parameter space of phytoplankton is in the range of 1 - 1.3. Table 2 summarizes the
parameter values relevant to marine diatoms.

REFERENCES

Barry, M. T., Rusconi, R., Guasto, J. S. & Stocker, R. 2015 Shear-induced orientational
dynamics and spatial heterogeneity in suspensions of motile phytoplankton. Journal of
The Royal Society Interface 12 (112), 20150791.

Barton, A. D., Ward, B. A., Williams, R. G. & Follows, M. J. 2014 The impact of fine-
scale turbulence on phytoplankton community structure. Limnology and Oceanography:
Fluids and Environments 4 (1), 34–49.

Bec, J., Homann, H. & Ray, S. S. 2014 Gravity-driven enhancement of heavy particle
clustering in turbulent flow. Physical review letters 112 (18), 184501.

Brenner, H. 1964 The stokes resistance of an arbitrary particleiv arbitrary fields of flow.
Chemical Engineering Science 19 (10), 703–727.

Byron, M., Einarsson, J., Gustavsson, K., Voth, G., Mehlig, B. & Variano, E. 2015
Shape-dependence of particle rotation in isotropic turbulence. Physics of Fluids (1994-
present) 27 (3), 035101.

Chevillard, L. & Meneveau, C. 2013 Orientation dynamics of small, triaxial–ellipsoidal
particles in isotropic turbulence. Journal of Fluid Mechanics 737, 571–596.

Clavano, W. R., Boss, E. & Karp-Boss, L. 2007 Inherent optical properties of non-spherical
marine-like particles from theory to observation. Oceanogr Mar Biol, Annu Rev 45, 1–38.

Dahlkild, A. A. 2011 Finite wavelength selection for the linear instability of a suspension of
settling spheroids. Journal of Fluid Mechanics 689, 183–202.

Daitche, A. 2015 On the role of the history force for inertial particles in turbulence. Journal
of Fluid Mechanics 782, 567–593.

Denny, M. W. 1993 Air and water: the biology and physics of life’s media. Princeton University
Press.

Durham, W. M., Climent, E., Barry, M., De Lillo, F., Boffetta, G., Cencini, M. &
Stocker, R. 2013 Turbulence drives microscale patches of motile phytoplankton. Nature
communications 4.

Durham, W. M., Climent, E. & Stocker, R. 2011 Gyrotaxis in a steady vortical flow.
Physical Review Letters 106 (23), 238102.

Eppley, R. W., Holmes, R. W. & Strickland, J. D. H. 1967 Sinking rates of marine
phytoplankton measured with a fluorometer. Journal of Experimental Marine Biology
and Ecology 1 (2), 191–208.

Fornari, W., Picano, F. & Brandt, L. 2016 Sedimentation of finite-size spheres in quiescent
and turbulent environments. Journal of Fluid Mechanics 788, 640–669.

Gallily, I. & Cohen, A. H. 1979 On the orderly nature of the motion of nonspherical aerosol
particles. ii. inertial collision between a spherical large droplet and an axially symmetrical
elongated particle. Journal of Colloid and Interface Science 68 (2), 338–356.

Guazzelli, E. & Morris, J. F. 2011 A physical introduction to suspension dynamics, , vol. 45.
Cambridge University Press.

Gustavsson, K., Berglund, F., Jonsson, P. R. & Mehlig, B. 2016 Preferential sampling
and small-scale clustering of gyrotactic microswimmers in turbulence. Physical review
letters 116 (10), 108104.

Gustavsson, K., Vajedi, S. & Mehlig, B. 2014 Clustering of particles falling in a turbulent
flow. Physical Review Letters 112 (21), 214501.

Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. In
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, , vol. 102, pp. 161–179. The Royal Society.

Karp-Boss, L. & Boss, E. 2016 The elongated, the squat and the spherical: Selective pressures
for phytoplankton shape. In Aquatic Microbial Ecology and Biogeochemistry: A Dual
Perspective, pp. 25–34. Springer.



Sedimentation of prolate spheroids in homogenous isotropic turbulence 19

Karp-Boss, L. & Jumars, P. A. 1998 Motion of diatom chains in steady shear flow.
OCEANOGRAPHY 43 (8).

Kiørboe, T. 2008 A mechanistic approach to plankton ecology . Princeton University Press.
Lazier, J. R. N. & Mann, K. H. 1989 Turbulence and the diffusive layers around small

organisms. Deep Sea Research Part A. Oceanographic Research Papers 36 (11), 1721–
1733.

Lewis, W. M. 1976 Surface/volume ratio: implications for phytoplankton morphology. Science
192 (4242), 885–887.

Lucci, F., Ferrante, A. & Elghobashi, S. 2011 Is stokes number an appropriate indicator
for turbulence modulation by particles of taylor-length-scale size? Physics of Fluids (1994-
present) 23 (2), 025101.

Marchioli, C., Zhao, L. & Andersson, H. I. 2014 On the relative rotational motion between
rigid fibers and fluid in turbulent channel flow. Physics of Fluids (1994-present) 28 (1),
013301.

Maxey, M. R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence
and random flow fields. Journal of Fluid Mechanics 174, 441–465.

Murray, S. P. 1970 Settling velocities and vertical diffusion of particles in turbulent water.
Journal of geophysical research 75 (9), 1647–1654.

Nguyen, H., Karp-Boss, L., Jumars, P. A & Fauci, L. 2011 Hydrodynamic effects of spines:
A different spin. Limnology and Oceanography: Fluids and Environments 1 (1), 110–119.

Ni, R., Kramel, S., Ouellette, N. T & Voth, G. A. 2015 Measurements of the coupling
between the tumbling of rods and the velocity gradient tensor in turbulence. Journal of
Fluid Mechanics 766, 202–225.

Nielsen, P. 1993 Turbulence effects on the settling of suspended particles. Journal of
Sedimentary Research 63 (5).

Nielsen, P. 2007 Mean and variance of the velocity of solid particles in turbulence. In Particle-
Laden Flow , pp. 385–391. Springer.

Olivieri, S. 2013 Analysis of the forces acting on particles in homogeneous isotropic turbulence.
Olivieri, S., Picano, F., Sardina, G., Ludicone, D. & Brandt, L. 2014 The effect of

the basset history force on particle clustering in homogeneous and isotropic turbulence.
Physics of Fluids (1994-present) 26 (4), 041704.

Parsa, S. & Voth, G. A. 2014 Inertial range scaling in rotations of long rods in turbulence.
Physical review letters 112 (2), 024501.

Reynolds, C. S. 1989 Physical determinants of phytoplankton succession. In Plankton ecology ,
pp. 9–56. Springer.

Reynolds, C. S. & Irish, A. E. 1997 Modelling phytoplankton dynamics in lakes and
reservoirs: the problem of in-situ growth rates. Hydrobiologia 349 (1-3), 5–17.

Rogallo, R. S. 1981 Numerical experiments in homogeneous turbulence. NASA STI/Recon
Technical Report N 81, 31508.

Ruiz, J., Maćıas, D. & Peters, F. 2004 Turbulence increases the average settling velocity of
phytoplankton cells. Proceedings of the National academy of Sciences of the United States
of America 101 (51), 17720–17724.

Sardina, G., Picano, F., Brandt, L. & Caballero, R. 2015 Continuous growth of droplet
size variance due to condensation in turbulent clouds. Physical review letters 115 (18),
184501.

Smayda, T. J. 1970 The suspension and sinking of phytoplankton in the sea .
Smyth, W. D. & Moum, J. N. 2000 Ocean turbulence. Tech. Rep.. Technical report, College

of Oceanic and Atmospheric Sciences, Oregon State University.
Sournia, A. 1982 Form and function in marine phytoplankton. Biological Reviews 57 (3),

347–394.
Tooby, P. F., Wick, G. L. & Isaacs, J. D. 1977 The motion of a small sphere in a rotating

velocity field: a possible mechanism for suspending particles in turbulence. Journal of
Geophysical Research 82 (15), 2096–2100.

Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annual
Review of Fluid Mechanics 41, 375–404.

Vincent, A. & Meneguzzi, M. 1994 The dynamics of vorticity tubes in homogeneous
turbulence. Journal of Fluid Mechanics 258, 245–254.



20 Niazi Ardekani, Sardina, Brandt, Karp-Boss, Bearon and Variano

Wang, L. P. & Maxey, M. R. 1993 Settling velocity and concentration distribution of heavy
particles in homogeneous isotropic turbulence. Journal of Fluid Mechanics 256, 27–68.

Zhan, C., Sardina, G., Lushi, E. & Brandt, L. 2014 Accumulation of motile elongated
micro-organisms in turbulence. Journal of Fluid Mechanics 739, 22–36.


	1. Introduction
	2. Governing equations and numerical method
	2.1. Fluid phase
	2.2. Solution of the particle motion

	3. Validation and comparison between the two models
	4. Results
	4.1. Numerical experiments
	4.2. Mechanism for increased settling speed

	5. Final remarks
	Appendix A

