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Abstract—Several works have explored music generation us-
ing machine learning techniques that are typically used for
classification or regression tasks. Nonetheless, past work is
characterized by the imposition of many restrictions to the
music composition process in order to favor the creation of
“interesting” outputs. Furthermore, none of the past attempts has
focused on developing objective measures to evaluate the music
composed, which would allow to evaluate the pieces composed
against a predetermined standard as well as permitting to fine-
tune models for better “performance” and music composition
goals. In this work, we apply a truly generative model based
on Variational Autoencoders for investigate its use for music
composition. Furthermore, in order to avoid the subjectivity
inherent to the evaluation of the automatic music composition,
we also introduce and evaluate a new metric for an objective
assessment of the quality of the generated pieces. With this
measure, we demonstrate that our model generates music pieces
that follow general stylistic characteristics of a given composer or
musical genre. Additionally, we use this measure to investigate
the impact of various parameters and model architectures on
the compositional process and output. Finally, we will propose
various extensions to the present work.

I. INTRODUCTION

Machine learning (ML) has endowed computers with the ca-
pacity to learn from data without being explicitly programmed
to do so (Arthur Samuel, 1959). Historically, this capacity
has been used mainly to deal with two kinds of tasks –
classification and regression problems. These two classes of
problems were, and still are, particularly useful in a myriad of
data science areas and applied in various contexts to answer
financial, industrial, marketing or strategical questions. The
recent competitions from the website Kaggle1, which hosts
online challenges of data science, confirm this trend: at the
time of writing, Bosch is trying to predict internal failures on
its production lines2, Chinese company TalkingData is look-
ing for predicting users’ demographic characteristics3 while
another competition aims at recognizing species of leaves
in pictures4. All these problems involve a classification or

1https://www.kaggle.com/
2https://www.kaggle.com/c/bosch-production-line-performance
3https://www.kaggle.com/c/talkingdata-mobile-user-demographics
4https://www.kaggle.com/c/leaf-classification

regression task. More recently however, new techniques, often
involving Deep Learning (DL), breached beyond the scope
of these two problems – nowadays ML is also interested in
generating new data. Striking examples are the creation of fake
Wikipedia articles and hand-written sentences [1], upscaling
images to recover lost information [2], creating images based
on a sentence [3], voice synthesis [4] or even beating a world-
champion of Go [5].

In this paper, we follow this trend and focus on generating
new music. In particular, we aim to infer the underlying rules
characterizing the composition process of a set of musical
pieces (musical grammar [6]; see also [7]), and generate new
music pieces in the style or compositional principles of the
pieces used as training data. To this end, we will rely on a
class of models called Variational Autoencoders (VAEs) [8],
[9]. VAEs have become popular lately due to their generative
capabilities and their strong theoretical base. The goal of
these models is to model the underlying and complex joint
distribution of their input data. By learning this distribution,
VAEs are able to sample from it and therefore to generate
coherent new examples. A strong advantage of VAEs is that the
input data can be of any kind (e.g., images, sound, video, text).
For example, a VAE could be able to learn the distribution of
pictures of sunflowers. Sampling from this distribution would
lead to a picture whose content fundamentally follows all the
“rules” that make a sunflower what it is: its color, its shape, its
background, etc. In our case, we want to learn the distribution
of musical pieces from a given style. Therefore, we assume
that, by modeling this distribution, the VAE will capture all the
relevant musical rules that unlerlie the composition process.

Given the largely subjective task that we address in this
paper, another core focus of the work presented here is the
development and application of an objective measure that can
allow to understand how different models, architecture and
parameters lead to different musical outcomes, and their mean-
ingfulness in a specific musical context. This is a fundamental
aspect of generating new data that has been largely ignored
in previous research, and constitutes a crucial step forward in
the direction of an objective evaluation of generative musical
models in machine learning.
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The remaining of this paper is structured as follows. In
Section 2, we review past works on automatic music genera-
tion using ML. In section 3, we introduce a new performance
measure developed to objectively compare the music generated
by different models. In section 4, we describe our experimental
setup, and in Section 5 we describe and analyze the results
obtained with the model and its various architectures. Our
conclusions, and thoughts for further work are presented in
Section 6.

II. RELATED WORK

Only a few works have focused on music generation with
ML techniques. Nonetheless, all faced similar challenges: how
to represent the data (i.e., music), which examples to learn
from, which types of models to use, and (albeit generally
ignored) how to assess the quality of the generated music. In
this section, we briefly sketch the approaches that have been
used to address each of these problems.

In [10], the authors employed a Simple Recurrent Network
(SRN) [11]. The SRN was trained using genetic algorithms to
“maximize the chance of generating good melodies” ( [10])
one measure at a time. The music data was discretized in pitch
– ranging from C2 to C5 – and time – whole notes, half notes,
quarter notes, eighth notes and sixteenth notes were allowed
within a measure. The results were evaluated using musical
rules considerations such as pitch diversity, rhythmic diversity,
measure diversity or the capability of the network to stay
coherent regarding one or several pitch scales. This evaluation,
however, is designed specifically for melodies whereas we
would like to assess the quality of a an automatic composer
as a whole. Results were promising but the authors admit the
resulting pieces lack of overall structure. Besides, the model is
particularly constrained in its generation capabilities, in terms
of pitch and duration ranges. A model that has successfully
learned the structure of music would not need to be guided
this way. We will therefore tend to withdraw this kind of
constraints as much as possible.

The popular Long-Short Term Memory (LSTM) RNNs were
used for the first time in music composition by Eck and
Schmidhuber [12]. A LSTM-RNN is similar to traditional
feed-forward neural networks except that the non linear hidden
units are replaced by a special kind of units — the LSTM
memory blocks. These blocks consist of special memory cells
that permit the RNN accessing a long-range temporal context
and predict the outputs based on such information, a charac-
teristic that is particularly interesting for music composition,
given the fact that music is at is mots basic level a set of
relationships between music elements at different temporal
scales (e.g., phrases, melody, sections, movements). In [12],
chords and melodies were theoretically split. While both were
generated using LSTM-RNNs, the learning process was not
identical for both. Chords were learned by the network by
seeing sequences of predefined chords in random order. On
the other hand, melodies were learned by seeing a random
sequence of notes sampled from a jazz scale, along with
a chord at each bar. The network was provided with 13

notes it was allowed to play on to produce both chords and
melodies. The architecture was designed such that the melody
was conditioned by the chord progression rules, and only
contained one note at a time. No performance measure was
used. Nevertheless, subjectively speaking, it is hard not to be
impressed by the results achieved by this method. However,
the approach is limited in that it imposes very restrictive
pre-defined musical rules such as a reasonable scale to play
on. For instance, the chord progression was very similar at
each iteration, and no original chords were played apart from
those appearing in the training set. Ideally, one would like to
minimize preprocessing and restrictions imposed on the model
and still achieve satisfactory results.

In order to model the high variety of simultaneous note pat-
terns (harmonies) characteristic of polyphonic music, [13] used
a model called RNN - Restricted Boltzmann Machine (RRN-
RBM). Since RBM models are trained by fitting their (so-
called) hidden units to the underlying distribution of the input
data, they show some theoretical resemblance to VAEs. Whilst
some parameters were tuned using an RNN and gradient
descent, some others were tuned using Gibbs Sampling [14].
No priors were imposed on the range of playable notes, and
time was discretised to the quarter of a beat. The authors used
a database comprising three datasets of classical piano and
another dataset of folk music, amounting to a total of 67 hours
of music. The performance of the model was assessed on these
4 different datasets of varying complexity. In a preprocessing
stage, music pieces were transposed to a common tonality
(C major for major pieces and C minor for minor pieces.
This helped reducing the variance of the training set). Some
generated music pieces were provided as examples, but no
performance measures were used in order to assess their
quality.

Liu and colleagues [15] revisited and extended the LSTM-
RNN architecture introduced by [12]. They used a sequence of
two LSTM layers without preprocessing or specific encoding
(in that sense, the problem setting is similar to [13]). The
learning material consisted of a database of Bach’s chorales
(the same used in [13]). Their innovation consisted of using
resilient propagation as optimization algorithm and square
mean distance as error function instead of the log likelihood.
No clear results are presented regarding music generation, and
the paper emphasizes the lack of a proper evaluation metric.

Huang and colleagues [16] used a very similar approach
with a two-layer LSTM-RNN, a quarter-note discretization of
time, and a larger dataset of 2000 classical music pieces (417
of them being from Bach’s repertoire and the remaining being
from various artists and obtained via web crawling). In this
work an interesting comparison was conducted between the
music generated by this model, and those generated in [13].
Twenty-six volunteers were asked to rate the quality of pieces
generated by both of these works. Results were surprisingly
good with the majority of the subjects giving a mark of 7+
out of 10 (where 1 stands for “random” and 10 stands for
“composed by a novice composer”). The proposed LSTM-
RNN did obtain higher ratings than the RNN-RBM model,



but the sample size was not large enough to draw statistically
significant decisions. Also, the assessment method is dubious.

III. METHODS

In all the works reviewed in the previous section, none
tackled the problem of an evaluation metric for the generated
music pieces. In this section, we will address this issue and
propose a new, objective measure that enables to assess the
musical similarity between music pieces.

A. Performance measure: the Malahanobis distance

Since we usually train models on a corpus of music pieces
and we are interested in reproducing styles rather specific
pieces, we decided to use a metric that permits comparing a set
of pieces (e.g., the training corpus) against a single piece (e.g.,
a newly generated one). Therefore, the aim of this metric is to
quantify the musical similarity between a specific music piece
and a given distribution of pieces. The first step was to develop
a quantity that characterizes a given music piece. We did so
by using high-level, symbolic musical descriptors. Each of
these descriptors is gathered in a vector that we call the piece
signature vector. This signature vector must be descriptive
enough so that it becomes unlikely for two different music
pieces to have the same signature vector. Naturally, the most
accurate signature vector should use a detailed set of music
theoretical parameters, but previous works indicate that even
using very simple metrics it is possible to describe complex
musical characteristics, such as music styles [17]. We base our
signature vector on this work, which consists of 17 high-level
features:
Number of notes Number of notes in the piece divided by

the length of the piece. A note is counted when we ob-
serve a succession of timesteps for which a specific pitch
is always played. The scaling is necessary given that, for
instance, a 10-second-long musical piece composed of
only five notes will sound normal, whereas a 1-hour-long
piece composed of the same number of notes will sound
empty.

Occupation rate The ratio between the number of non-null
values in the piano roll representation and the length of
the piece. The piano roll representation is described in
Figure 3.

Polyphonic rate The number of time steps where two or
more notes were played simultaneously, divided by the
total number of notes in the piece.

Pitch range descriptors The maximum, minimum, mean
and standard deviation of the non-null pitches in the
piece. As pitch values in MIDI format are encoded
between 0 (minimum; C-2) and 127 (maximum; G8), all
values were divided by 127 in order to force these de-
scriptors to be bounded between 0 and 1 (for simplicity).

Pitch interval range An interval is a difference in pitch
between two consecutive notes (with or without being
separated by a period of silence) . All intervals were
scaled between 0 and 1 (i.e., divided by 127) and the

maximum, minimum, mean and standard deviation were
computed.

Duration range The duration is the number of time steps
during which a note is held. As before, the maximum,
minimum, mean and standard deviation of all durations
in the piece were computed (no scaling was performed).

As described, some descriptors had to be scaled in order to
allow the creation of an adequate comparison between pieces.
In order to compute the similarity (or distance) between a
musical piece x and a given corpus D = {T1, T2, . . . , Tn}
characterized by their mean signature vector µ and covariance
matrix ⌃ (which would represent a particular musical gram-
mar), we use the Mahalanobis distance [18]. Formally,

D (x, D) =

q
(x� µ)

T
⌃

�1
(x� µ).

It should be noted that, in practice, the various features
are not scaled to the same range. This could have been
a problem if we have used the euclidean distance and a
one-versus-one piece comparison, since we would have large
difference in amplitudes for some features and small difference
in amplitudes for some others (leading to an unbalanced
weighting between the different descriptors). Nonetheless, the
use of the the covariance matrix and the Mahalanobis distance
alleviates this problem.

As a preliminary evaluation of the adequateness of our
measure, we chose a reference distribution D of Beethoven
pieces and compared it to a set of individual music pieces.
Note that the Beethoven distribution D is also the dataset we
used for training our models (more details in Section III-C).
A subset of pieces from the same Beethoven distribution was
used to build the reference distribution D. Then, we created
another distribution composed of 62 jazz pieces from different
artists (e.g., Nat King Cole, Bill Evans; we will later refer to
this distribution as the Jazz distribution. Finally, we obtained
samples from two random distributions. Both are constructed
to have a sensible number of notes in the musical piece (450
non-null values for a piece of 300 time steps long). However,
whilst the first one uses the full spectrum of pitch (ranging
from 1 to 128), the second one, that we called “sensible
random distribution” uses a spectrum of pitch ranging from 20
to 100, which is more common in modern music. This second
random distribution will therefore give us a better insight as
to what is a reasonable score, and what is just random.

The plot in Figure 1 follows our expectations. The
Beethoven samples are closer from D than pieces from the
Jazz distribution. Yet, if the difference is noticeable, the two
distributions are not separated by a wide gap. We can therefore
infer that a distance of 6 and lower indicates a coherent piece
of music. A distance of 3 to 4 could indicate something that
generally comprises musical material that generally resembles
the Beethoven corpus used. Our expectations are also met
regarding the random distributions. The fully random distri-
bution is farther from the Beethoven distribution, compared to
the sensible random distribution. We therefore conclude that a



Fig. 1. Distribution of distances using the Mahalanobis distance. The
distribution of reference (from which we obtained µ and ⌃) was built using
100 samples from the Beethoven corpus. Each sample was 300 time steps
long. The shown distributions were obtained by sampling 1000 samples from,
in order, the Beethoven corpus, the Jazz corpus and a random corpus. Each
of these samples were also 300 time steps long. The random corpus was
created by using binomial sampling with p = 0.012. p was chosen to have
roughly 450 notes per sample. The sensible random distribution is created as
the random one, except that the possible active pitches range from 20 up to
100, which corresponds to the distribution of most real music pieces.

distance of approximately 10 or higher approximated a random
piece and, as a result, should be discarded.

B. VAE – a generative model
As we have suggested in Section II, LSTM-RNN have

offered the best performance so far in terms of generation
quality from a subjective point of view. However, this model
is not generative by nature and still needs to be provided with
a few time steps of music to start improvising. On the contrary,
we would like to build upon a truly generative model, capable
of generating music without any priors. Besides, witnessing
the recent successes of VAEs [19], [20], we decided to evaluate
their music generation capabilities.

We first present a brief summary of the theory behind VAEs.
A VAE is a non-trivial model M (f✓, g�, Q!) that takes an
input x and tries to output x with as little distortion and loss
as possible. f✓ is a function whose parameters are ✓, similarly
g� is a function whose parameters are � and Q is a probability
distribution over the latent space that we describe just below.
Q is parametrized by !. The output of a VAE is computed as
follows:

1) Compute ! = g� (x).
2) Sample z ⇠ Q! . z is said to be a latent vector and has

been sampled from the latent space.
3) Compute x̃ = f✓ (z). x̃ is supposed to be a close

approximation of x.
In order to train a VAE, one has to decide on the shape of

the probability distribution Q, the shape of the functions f and
g and tune the parameters ✓ and �. In general, we want f and
g to be extremely flexible functions such as neural networks.
Besides, if we set Q to be a Gaussian distribution, then we
can use the reparameterization trick mentioned in [21] which

makes it possible to use gradient descent to tune the model in
an end-to-end fashion. In that case, ! becomes the traditional
parameters (µ, ⌃) of a normal distribution.

To train the model, two loss functions are used:
1) During encoding, we want to ensure that the relevant

latent vectors are mostly located within a ball centered
at 0 and of radius 1, so we spatially concentrate all the
encoding information in the ball. We use the Kullback-
Leibler divergence for this purpose:

Lz
=

@KL [Q (z|g�(X)) ||N (0, I)]

@�

,

where Lz is called the latent loss and X is the input
distribution.

2) During decoding, we want to ensure that the retrieved
vector x̃ is close to x. This loss is more intuitive since
we can take the log-likelihood between x and x̃. This is
particularly suitable since the values of x are constrained
between 0 and 1:

Lr
= �

X

i

xi log (x̃i),

where Lr is called the reconstruction loss.
The final loss is taken to be the sum of the latent loss and

of the reconstruction loss.

L = Lz
+ Lr

.

Different varieties of VAEs can therefore be created by
appropriately choosing the functions f , g and the distribution
Q. In this paper, we use a specific kind of VAE called
Deep Recurrent Attentive Writer (DRAW) [20]. This model
demonstrated promising capabilities for image generation by
defining f and g functions to be single-layer LSTM-RNN
(traditional VAEs use standard feed-forward neural networks
instead). The use of an LSTM-RNN allows to introduce
temporal information in the VAE. As a result, the final output
of DRAW is computed sequentially, time step after time step,
by updating a so-called “canvas”. Figure 2 presents a graphical
view of this model. Theoretically, this endows the model the
ability to refine its output, by adding local details to it or
withdrawing some along the different time steps 5.

Once the model has been trained, we can use it for music
generation. To do so, we bypass the role of g� and simply
sample a z from N (0, I) and decode it using f✓. This makes
sense since the training forced the relevant latent vectors to be
packed in the ball centered at 0 and of radius 1 in the latent
space. Since the output of the model is not computed exactly
the same way during training and generation, we will hereafter
distinguish between the “training phase” and the “generation
phase”. We refer the reader to [20] for more information
about the implementation of this model. Note that we did not
use the attention mechanism mentioned in this paper since it
surprisingly yield very poor results in preliminary experiments.
More work should be done to investigate this.

5We could for instance imagine, that the first time steps would be dedicated
to creating a bass line while the remaining steps are dedicated to creating a
melody.



Fig. 2. Graphical view of the DRAW model as presented in [20]. In our
explanations, the “encoding LSTM” is the f✓ function, the “decoding LSTM”
is the g� function and the distribution Q is parameterized by ! = (µ, ⌃).
The red arrows represent the usual recurrent connection of LSTM-RNN whilst
the black arrows represent recurrent connections created by design.

C. Music corpus and representation
We used a corpus a 37 free-of-rights MIDI files of

Beethoven’s piano pieces obtained by crawling the web. As
a result, the corpus gathers a lot of various unrelated works.
Nevertheless, we chose the pieces that only contained one
playing piano. This is motivated so that our training set
includes all the variety of a full musical composition (bass
line, chords, melody, etc.) with a single instrument (to avoid
the complexities arising from multiple instruments playing
together at this stage).

We followed the raw encoding explored in previous works,
because it provides an intuitive and flexible music representa-
tion. Besides, it needs no preprocessing and does not require
any type of normalization. In order to represent the time
dimension, we split time in eights of a beat and record what
happens within each time step in a binary vector of length
128. As we mentioned earlier, the reason behind this length
is related to the encoding of a MIDI file itself where each
“signal” is encoded using an 8-bit signed integer. A MIDI
signal can be as diverse as “beginning of piece”, “end of
piece”, “note C5 is played” etc. Besides, most pianos only
feature 88 keys, thus they all can be encoded using a vector
of length 128 (the full range of MIDI notes). A value of 1
indicates that a note is played at this time step, and 0 indicates
that the note is absent (consecutive cells with values 1 indicate
a sustained note). A graphical representation of this encoding
(a.k.a. piano roll) is shown in Figure 3.

An important requirement of the DRAW model, along with
other known VAEs, is that they can only process fixed-size
inputs. In particular, we cannot feed the model time step by
time step as it is done with the LSTM-RNN architecture.
We are therefore forced to use sections of music pieces as
inputs, and train the model to output similarly sized chunks.
Therefore, the pieces used for training had to be split. We

Fig. 3. The correspondence between a real sheet music and the encoding
used in this paper (”piano roll” representation). Note that a bar is filled with
8 binary vectors. In this figure, a blank square indicates a value 0 and a filled
square indicates a value 1.

TABLE I
SEARCH SPACE USED WHEN EXPLORING DRAW ARCHITECTURES. 136

RANDOM ARCHITECTURES WERE ASSESSED TO PICK A BASELINE
ARCHITECTURE. FOR MORE INFORMATION REGARDING THE MEANING OF

THESE PARAMETERS, REFER TO III-B AND [20].

Parameter Min. Max. Sampling
value value method

Chunk size (L) 64 160 uniform
(multiples of 8)

Dimensionality of the 5 1000 uniformlatent space (#z)
Number of sequential updates 3 75 uniformbefore outputting (T )

Number of units in 128 1024 uniformthe LSTM layers

did this by creating non-overlapping chunks of 13 beats (i.e.,
104 time steps). This number was determined experimentally
since, as we show later, it offers a good compromise between
duration and quality of the generated music. Notice that we
could increase the amount of training data by considering
smaller and/or overlapping chunks (this is an aspect that we
intend to investigate in future work).

D. Optimization of the model parameters

In our work, we use a modified version of the DRAW
model [20] that is able to handle rectangular patches, instead
of square patches in the original work (this was necessary
so that pitch representation was independent of the music
segments size). Additionally, so as to work with a reasonably
good performing DRAW architecture, we performed several
experiments where we varied the parameters of the DRAW
model and assessed the performance on music generation of
each resulting architecture using our performance measure.
In total, 136 architectures were randomly generated using
uniform sampling from the search space described in Table I.

Out of these experiments, we selected the architecture for
detailed analysis that, according to our measure, yielded the
best and most stable results. Such model had a latent space
#z dimension of 22, 167 LSTM units in both the encoding
function g� and decoding function f✓, and the number of steps



T required to perform the sequential autoencoding (which
corresponds to the memory length of g� and f✓) was 23. Note
that the memory of the LSTM units in g� and f✓ were reset
after each minibatch. This enforced the autoencoding of inde-
pendent chunks of music, yet each patch being well-sounding
by itself. We briefly discuss in Section V ideas to alleviate
this problem. We used batches of size 37, corresponding to
the number of music pieces in the data set. This choice was
motivated by the way TensorFlow handles LSTM units, even
though this is not strictly required since we reset the LSTM
units at each iteration.

The output of the model, during training phase or generation
phase, is a matrix of dimension 104⇥128 (104 time steps with
vectors of length 128 associated to each time step), whereby
each value is in [0, 1]. In other terms, these are probabilities
that the notes should be played. To properly generate a piece,
we first normalized the matrix so that the maximum equals 1
and the minimum equals 0, and then applied a binary threshold
↵. The appropriate value of ↵ is discussed in the next Section.

8i 2 J1, 104K, 8j 2 J1, 128K, xij  
(
1 if xij > ↵

0 otherwise.

As for the optimizer algorithm, we used the Adam algorithm
with a learning rate l = 0.001, and parameters �1 = 0.9 and
�2 = 0.999, which are common parameters in the literature.
The training was stopped after running for 24 hours on a
low-end graphic card (NVIDIA GT750M). Note that when we
tested the 136 different architectures, the training was stopped
after only 30 minutes in order to perform many tests in a
restricted time span.

IV. RESULTS AND ANALYSIS
The model with the parameters optimized as described in

the previous section leads to general musical pieces having
a mean Mahalanobis distance to the Beethoven distribution
of 3.47 ± 1.47, which is a very good score if we com-
pare to the graph presented in Figure 1. To complete this
comparison, we performed a t-test between the generated
distribution (corresponding to the blue curve in Figure 4)
and the Beethoven reference distribution (corresponding to the
blue curve in Figure 1). Results (t = 0.81, p = .42) show
that these two distributions are not significantly different. To
obtain these results, we generated 100 musical pieces from
our trained model and computed the Mahalanobis distance
for each of these to the Beethoven dataset. In addition to the
only DRAW architecture we presented, we show in Figure 4
additional results obtained during the optimisation stage of the
DRAW architecture and parameters (as detailed in Table I).
We took the 3 architectures that performed the best out of
these experiments, and plotted the distribution of Mahalanobis
distances obtained by comparing 100 generated pieces from
each architecture to the Beethoven reference distribution.

In order to evaluate of the importance of each optimized
parameter for music generation, we gathered the results we
obtained when testing the 136 different architectures (see the

Fig. 4. Distribution of Mahalanobis distances between generated musical
pieces and the Beethoven dataset. For each of the 3 best architecture we
obtained when performing random search, we generated 100 pieces, computed
their Mahalanobis distance to the Beethoven dataset for each of them, and
reported the results in this plot. Note that the Mahalanobis distances are
centered around 3 which is a strong score, even using different architectures.
However, the mode of the distribution does not correspond to its mean since
a fat tail and a few failed generations – of score 10 and higher – tend to
increase the value of the mean. This is the reason why the blue distribution
is actually the best, it yields the most stable results.

TABLE II
CATEGORIZATION USED TO IDENTIFY MORE EASILY THE PERFORMANCE

OF EACH DRAW ARCHITECTURE. THESE VALUES ARE TAKEN IN
ACCORDANCE TO FIGURE 1.

Category Range of valid values
Like Beethoven metric-wise 0  x < 4.5

Coherent music 4.5  x < 7
Sensible random 7  x < 10

Random or worse 10  x < 1

beginning of this section) and used a decision tree to visualize
the impact of each parameters on the distance measure. Instead
of using a regression tree to regress the Mahalanobis score
directly, we assigned a category to each score (and therefore
to each model) to shift to a classification problem. The cate-
gorization is described in Table II. We enforced a maximum
depth of 3 and 10 examples at least were required to perform
a split.

The analysis of the decision tree has provided some insights
regarding what makes a relevant DRAW architecture for
generating music. The number of LSTM units used to encode
and decode the data appears to be the most determining factor.
If it is too high (i.e greater than 300), only a latent space with
lots of dimensions (i.e greater than 550) can lead to coherent
pieces. However, as the tree shows, better results were obtained
using lower number of LSTM units. Therefore, it seems
pointless to use an architecture with that many LSTM units
and number of dimensions since the training becomes harder
and the training time is considerably increased. Interestingly
enough, the tree tells us that with less than 300 LSTM units,
is it better to have a latent space with few dimensions (i.e less
than 65). We interpret this observation in terms of degrees



Fig. 5. Different Mahalanobis distances between generated musical pieces
and the Beethoven dataset. We generated 30 outputs from our baseline DRAW
architecture and varied the binary threshold ↵ 200 times uniformly between
0 and 1, leading to 6, 000 measurements, i.e. 6, 000 points in this plot. The
solid line shows the median of the distances and the dotted line is 1.96 times
the standard deviation. Notice that, for low values of ↵, few notes are actually
played resulting in empty pieces and therefore a poor score (e.g. above 4).
On the contrary, at higher values of ↵, all notes with non-null probabilities
have been played, resulting in these characteristic horizontal lines.

of liberties. Since the latent space contains all the encodings
of musical pieces, if we increase the dimension of the latent
space, we will dilute the relevant encodings (that decode into
coherent pieces) with non-relevant encodings (that decode into
random pieces). It is likely that, with more training data
and therefore more relevant encodings, a higher dimension
of the latent space becomes necessary. Further works should
investigate this. At last, the number T of steps required to
generate an output should be, according to the tree, limited to
at most 35. It is likely that, above this value, the model just
keeps adding notes leading to over-dense pieces, however this
should be confirmed experimentally.

We further investigated the ideal binary thresholding ↵. We
generated 30 outputs from our baseline architecture, from each
output, we used 200 different thresholds uniformly distributed
between 0 and 1, eventually creating 30⇥200 = 6, 000 music
pieces. We computed the Mahalanobis distance between each
one of them and the Beethoven distribution. The results are
presented in Figure 5. If we only look at the median results, a
value of ↵ = 0.25 yields the best performance with a median
Mahalanobis distance of about 3. However, if we take into
account the variability of the results (via the dotted lines of
standard deviation), then a value of ↵ = 0.45 provides the
most stable results with a slightly worse median Mahalanobis
distance of about 3.5.

We also evaluated the influence of the parameter T on the
quality of the generation. More specifically, we assessed the
quality of the pieces at each step of their generation (from
the first step, up to the last one, i.e., the 23rd). Following
the methodology we used when determining the ideal ↵,
we gathered 50 outputs from the baseline architecture, and
generated a piece at each step of the generation, leading to
50 ⇥ 23 = 1, 150 music pieces. We computed the evaluation

Fig. 6. Different Mahalanobis distances between generated musical pieces
and the Beethoven dataset. We generated 50 outputs from our baseline DRAW
architecture and, instead of keeping on the very last iteration, we evaluated
every one of them, from the first to the last. The x�axis uses a normalized
scale between 0 and 1 but we remind that the baseline architecture uses T =
23. This lead to a total of 1, 150 measurements, i.e. 1, 150 points in this plot.
The solid line shows the mean of the distances and the dotted line is 1.96
times the standard deviation. Note that we limited the range of the y�axis
of this plot. As a result, some points with distances higher than 10 are not
shown, especially for normalized T values close to 1.

score for each of them. The resulting plot is shown in Figure 6.
As we expected, the higher the generation step, the lower
the Mahalanobis distance. This shows the expected behavior
of the DRAW model: as the number t 2 [1, T ] of output
iteration increases, the model adds more and more relevant
information to the output its currently generating, leading to
an overall decrease of the Mahalanobis distance. However, we
would expect this to be the case up the last generation step, but
it rather seems that the quality of generated pieces becomes
a bit more volatile for the very last steps. Results were the
best and the stablest for normalized T value of around 0.75
which, in the case of our baseline, corresponds to the 17th step.
Additional research should be done to determine whether the
same architecture with T = 17 would yield similar results or
if every DRAW architecture tend to generate an optimal output
at an intermediate stage of the generation.

V. CONCLUSIONS AND OUTLOOK

In this work, we applied Variational Autoencoders to music
generation, and proposed a new measure for assessing the
quality of generated music pieces. In relation to the metric,
we exemplified the use of this new metric in two scenarios.
First, we used it to to automatically and systematically fine-
tune the generative models’ parameters and architectures for
optimizing the musical outputs in terms of proximity to a
specific musical musical style/context (in this paper a set of
piece by Ludwig van Beethoven). Second, we used the metric
to select the most interesting output generated by the model,
i.e., those that resembled the most the original corpus in terms
of the musical characteristics measured.

Thanks to our metric, and the generative power of Varia-
tional Autoencoders, we have shown that it is possible to create



new musical pieces that are objectively close in musical terms
to the original corpus. Furthermore, given the non general and
abstract rules used in this first explorations it was possible to
create a wide variety of original music segments and listening
sensations (fast and slow, monophonic and polyphonic pieces,
using high and low registers, etc.). Although we would not ar-
gue that the generated pieces sound exactly like a Beethoven’s
work, we demonstrated that our metric is good enough for
distinguishing structured music from noise and other styles6.
Further work is necessary to investigate the use of other music
descriptors so as to measure relevant properties of a given
musical style. Our metric is simple and quick to compute
since and can be applied to a variety of descriptors that can
incorporate music and non-musical knowledge. Future work
will also focus on perceptual evaluation of our metric, both
in terms of the quality of the outputs generated as well as the
similarity to a given style.

The major and most obvious drawback of the model we
used is that it cannot generate longer sequences than what it
has been trained for. One way of addressing this problem in
future work would be to train the model to output short pieces,
conditioned to the previous outputted short pieces. More
concretely, a second distribution over the latent space could
be used where the parameters of this distribution would be
determined by a recurrent model over the previous generated
short-pieces. By merging the distribution Q we mentioned in
this paper and this new distribution, the model could be able
to output pieces, that, when concatenated, form a coherent
musical piece.

Finally, on a more general note, automatic music composi-
tion is a field still in its infancy, and it faces many challenges.
Indeed, and unlike other perceptual domains (e.g., vision)
people are extremely sensitive to static and temporal sound
patterns, and possess complex innate and acquired mental
schemas that rule the perception and appreciation of music.
Future research needs to understand how such complex mu-
sical knowledge can be incorporated into generative models.
Possible ways are to explore recently developed methods for
automatic feature and knowledge extraction (e.g., [22]) and
the automatic analysis of the emotional impact of generated
musical pieces given that this is one of the main reason why
people choose to listen to music and closely tied to music
structure (e.g., [23]).
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