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Abstract 31 

Objectives: Indigenous Latin American populations have used extracts from Calophyllum 32 

brasiliense, a native hardwood, to treat gastrointestinal symptoms for generations. The hexane 33 

extract of Calophyllum brasiliense stem bark (HECb) protects against ethanol-mediated gastric 34 

ulceration in Swiss-Webster mice. We investigated whether HECb inhibits the development of 35 

gastric epithelial pathology following Helicobacter felis infection of INS-Gas mice. 36 

 37 

Methods: Groups of 5 male, 6-week-old INS-Gas mice were colonised with H. felis by gavage. 38 

From 2 weeks after colonisation their drinking water was supplemented with 2% Tween20 39 

(vehicle), low dose HECb (33 mg/L, lHECb) or high dose HECb (133 mg/L, hHECb). 40 

Equivalent uninfected groups were studied. Animals were culled 6 weeks after H. felis 41 

colonisation. Preneoplastic pathology was quantified using established histological criteria. 42 

Gastric epithelial cell turnover was quantified by immunohistochemistry for Ki67 and active-43 

caspase 3. Cytokines were quantified using an electrochemiluminescence assay. 44 

 45 

Results: Vehicle-treated H. felis infected mice exhibited higher gastric atrophy scores than 46 

similarly treated uninfected mice (mean atrophy score 5.6 ± 0.87 SEM vs 2.2 ± 0.58, p<.01). 47 

The same pattern was observed following lHECb. Following hHECb treatment, H. felis status 48 

did not significantly alter atrophy scores. Gastric epithelial apoptosis was not altered by H. felis 49 

or HECb administration. Amongst vehicle-treated mice, gastric epithelial cell proliferation was 50 

increased 2.8 fold in infected compared to uninfected animals (p<.01). Administration of either 51 

lHECb or hHECb reduced proliferation in infected mice to levels similar to uninfected mice. 52 

A Th17 polarised response to H. felis infection was observed in all infected groups. hHECb 53 

attenuated IFN-γ, IL-6 and TNF production following H.felis infection (70% (p<.01), 67% 54 

(p<.01) and 41 % (p<.05) reduction vs vehicle respectively). 55 

 56 

Conclusions: HECb modulates gastric epithelial pathology following H. felis infection of INS-57 

Gas mice. Further studies are indicated to confirm the mechanisms underlying these 58 

observations. 59 

 60 

Keywords: Helicobacter, preneoplasia, chromanones, chemoprevention 61 

 62 

  63 
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Introduction 64 

 65 

Gastric cancer is the third commonest cause of cancer death worldwide (Ferlay J, 2013). Over 66 

80% of patients with primary gastric adenocarcinoma have evidence of prior exposure to 67 

Helicobacter pylori. Curative treatment for gastric cancer relies on surgical or endoscopic 68 

resection of lesions, however many patients present late in the disease process and hence cannot 69 

be offered curative therapy. 70 

 71 

Established chemotherapeutic agents are available for patients with gastric cancer, but their 72 

efficacy is limited (Bauer et al., 2015). Another strategy that could be employed to reduce the 73 

burden of gastric cancer would be to develop chemopreventative strategies that retard the 74 

development of gastric cancer in at risk populations. Currently the only effective treatment 75 

strategy to achieve this is to eradicate H. pylori, but this strategy is becoming more challenging 76 

due to the emergence of antibiotic resistant organisms (Shiota et al., 2015), and is relatively 77 

ineffective in people who have established preneoplastic pathology (Ford et al., 2014), 78 

therefore novel therapeutic agents are needed. As 70% of novel chemotherapeutic agents are 79 

derived from plant materials (Newman and Cragg, 2012), the extraction and characterisation 80 

of novel, naturally occurring compounds is an important strategy for the identification of 81 

potentially important new drugs. 82 

 83 

Calophyllum brasiliense Cambessédes is a tropical hardwood tree of the Calophyllaceae family 84 

native to Latin America’s rainforests (Mesia-Vela et al., 2001; The Angiosperm Phylogeny, 85 

2016). Many parts of this tree, including the latex that exudes from its bark, have been used in 86 

folk medicine to treat a variety of symptoms, including those associated with the 87 

gastrointestinal tract (Corrêa, 1978; Reyes-Chilpa et al., 2006; Neto, 2012). The hexane extract 88 

of C. brasiliense stem bark (HECb) has been shown to protect against models of acute gastric 89 

ulceration in Swiss-Webster mice and Wistar rats. The majority of this extract is composed of 90 

two chromanones, Brasiliensic acid and Isobrasiliensic acid, these agents have been shown to 91 

contribute at least part of the gastroprotective activity of HECb (Lemos et al., 2012). 92 

 93 

As HECb and its chromanone fractions influence the development of gastric ulceration, we 94 

hypothesised that these agents may also influence the outcome of chronic Helicobacter 95 

infection, and may modulate the development of gastric cancer. To determine whether this is 96 

the case we adopted the established INS-Gas mouse / H. felis induced gastric pre-neoplasia 97 
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model. In this model, constitutively hypergastrinaemic INS-Gas mice are colonised with H. 98 

felis for six weeks. Animals develop marked gastritis with atrophy and early pre-neoplastic 99 

lesions identifiable in the gastric corpus of infected mice (Wang et al., 2000; Thomson et al., 100 

2012; Burkitt et al., 2017). We have used this model to characterise how HECb administration 101 

influences gastric pre-malignancy and gastric cell turnover. 102 

 103 

Materials and Methods 104 

Botanical material 105 

The stem bark of C. brasiliense Cambess. was collected in June 2010 by LMSL (authorization 106 

number 22698-1 Ministério do Meio Ambiente, Brazil), at the source of the Coxipó River 107 

(S15◦38’40.8’’, W056◦03’05.6’’), Cuiabá, MT, Brazil. A voucher specimen (# 37993) was 108 

deposited at the Herbarium of Federal University of Mato Grosso (UFMT), Brazil, and was 109 

identified by Harri Lorenzi MSc, Instituto Plantarum de Estudos da Flora, Nova Odessa, SP, 110 

Brazil. The preparation of HECb, as well as brasiliensic (Bras. acid) and isobrasiliensic acid 111 

(Isobras. acid) isolation process, were as previous described (Lemos et al., 2016). 112 

 113 

Animals 114 

All animal procedures were performed at the University of Liverpool with UK Home Office 115 

approval. In-vivo experiments were performed in male INS-Gas mice on the FVB/N (Wang et 116 

al., 1993) background bred and maintained at the University of Liverpool Biomedical Services 117 

Unit. Primary gastric gland cultures were generated from male C57BL/6 mice acquired from 118 

Charles River, Margate, UK. 119 

 120 

Helicobacter felis colonisation experiments 121 

H. felis (ATCC 49179) was cultured for 72-96 h at 37C on Columbia chocolate agar plates in 122 

a microaerophilic environment generated by Campygen atmosphere generating packs in an 123 

anaerobic jar (all Oxoid, Basingstoke, UK). For colonization of mice, the organism was 124 

harvested into tryptone soy broth and bacterial density was estimated by optical density at 125 

600nm. An estimated bacterial density in excess of >108 CFU/mL was required to progress to 126 

gavage. 127 

 128 

Groups of at least 5 male INS-Gas aged six weeks were administered 0.5ml H. felis suspension 129 

by oro-gastric gavage on three occasions over one week. Successful H. felis colonisation was 130 
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confirmed 2 weeks after the final gavage procedure by quantitative PCR for FlaA in fecal DNA 131 

(Duckworth et al., 2015b). At this time drinking water was supplemented with 2% Tween 20, 132 

HECb 33 mg/L (lHECb, approximately 10 mg/kg/day) or HECb 133 mg/L (hHECb, 133 

approximately 40 mg/kg/day) and made available ad-libitum. Equivalent uninfected control 134 

groups were also studied. Animals were culled by cervical dislocation 6 weeks after H. felis 135 

colonisation. Corpus and antrum mucosal samples were taken for histopathology and 136 

immunohistochemistry studies. The remainder of gastric tissue was homogenised in PBS with 137 

protease inhibitor for quantification of cytokines by electrochemiluminescent assay. 138 

 139 

Histological procedures 140 

Gastric tissues were fixed in 4% formalin in PBS for a minimum of 12h, processed into paraffin 141 

wax embedded blocks by standard methods and sectioned at 4μm thickness for all staining 142 

techniques. Corpus and antrum were stained with hematoxylin and eosin (HE) for 143 

histopathological evaluations. Immunohistochemical analysis of corpus was also performed. 144 

 145 

Immunohistochemistry 146 

Gastric corpus mucosa was labeled by immunohistochemistry for proliferation (Ki67 primary 147 

antibody, AbCam, Cambridge, UK), apoptosis (cleaved caspase 3, AF835, R and D Systems, 148 

Minneapolis, MN), and tyrosine 204 phosphorylation state specific ERK (sc-7383, SantaCruz 149 

Biotechnology, Dallas, TX) by immunohistochemistry. All primary antibodies were raised in 150 

rabbit and were visualised using the Impress HRP system (Vector laboratories, Peterborough, 151 

UK). 152 

 153 

Quantitative histological methods 154 

Histological tissue sections were scored by an investigator blinded to sample identity, using a 155 

modified visual analogue scale(Rogers, 2012). To quantify cell numbers in the gastric corpus 156 

mucosa, 10 areas per mouse, with well oriented gastric glands, forming a well visualized 157 

epithelial monolayer were chosen. Ki67 scoring was performed using a 10x10 mm eyepiece 158 

graticule divided into 1 mm squares which was overlapped along the chosen area using a x40 159 

objective. Number of positive cells per square were recorded as previously described (Burkitt 160 

et al., 2013). Apoptotic and ERK phosphorylation events were scored by examining the number 161 

of positively stained cells in 10 high powered fields per section, using a x63 objective. All 162 

results were expressed as mean ± SEM.  163 

 164 
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Electrochemiluminescence immunoassay analysis 165 

Twelve cytokines were measured in the same samples of gastric homogenate of mice infected 166 

or not with H. felis by multiplexed electrochemiluminescence cytokine immunoassays (Meso 167 

Scale Discovery, Gaithersburg, USA). Specifically these were a Th1/Th2 standard 10-plex 168 

panel consisting of IFN-ϒ, IL-1β, IL-2, IL-4, IL-5, KC-GRO, IL-10, IL-12 p70, IL-13, and 169 

TNF. In addition, simplex IL-17 and IL-23 assays were performed in parallel, as Th17 170 

responses are strongly associated with Helicobacter infections. The part of the stomach 171 

between corpus and antrum of H felis infected and uninfected INS-Gas mice was homogenized 172 

twice in PBS with protease inhibitors (SigmaFast, Sigma Aldrich, UK), using the TissueLyserII 173 

(QIAGEN, Tokyo, Japan) at 25Hz for 3 min. After centrifugation (4°C, 12,000 rpm, 10 min), 174 

supernatants were transferred to a clean tube, and stored at −80°C until use. Immediately before 175 

analysis, samples were clarified by further centrifugation (4 °C, 12,000 rpm, 10 min). 176 

Electrochemiluminescence analysis was performed according to the manufacturer’s 177 

instructions. A standard curve for each analyte was curve-fitted and allowed determination of 178 

the concentration in pg cytokine/mL. 179 

 180 

Murine primary gastric gland cultures 181 

Gastric epithelial cultures were generated as previously described (Duckworth et al., 2015a) 182 

and were maintained in 12-well tissue culture plates on glass cover slips (Appleton Woods, 183 

Selly Oak, UK) that contained 1.0mL/well DMEM-Ham’s F-12 mix (Sigma Aldrich), 10% 184 

fetal calf serum (Invitrogen, Paisley, UK), 1.25% L-glutamine (Sigma Aldrich), and 1% 185 

antibiotic/antimycotic mixture (Sigma Aldrich). Following digestion and plating, glands were 186 

maintained at 37°C in a humidified environment containing 5% CO2 for 24h. Media was 187 

changed to fresh complete media after a further 24h. 48h after initial plating, cells were treated 188 

with HECb, brasiliensic and isobrasiliensic acids (12.5 to 100 µg/mL) for 24h, 2 hours before 189 

fixation EdU was added to the culture media. Cells were fixed in 2% formaldehyde for 30 min 190 

followed by three washes in PBS. Treatments were repeated a minimum of 4 times using glands 191 

extracted from a different mouse on each occasion.  192 

 193 

Immunofluorescence 194 

Primary glands were immunolabeled for cleaved caspase 3 and EdU. Two hours before the end 195 

of treatment, 200µL of treatment media was replaced by 200µL of 10µM EdU and incubated 196 

to complete the treatment. Cultures were washed and fixed with 2% paraformadehyde in PBS 197 

for 30 min. Following fixation, EdU intercalation was labelled using the Click-iT EdU Alexa 198 
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Fluor 594 Imaging Kit (Invitrogen, Paisley, UK) as per protocol. Subsequently non-specific 199 

protein binding was blocked with 10% goat serum and apoptotic cells were labelled with a 200 

rabbit anti-cleaved caspase 3 antibody (AF835, Cell Signalling, Beverly, MA, USA) and 201 

visualised with Alexa fluor 488 conjugated donkey anti-rabbit immunoglobulins (Invitrogen). 202 

Coverslips were mounted with Vectashield with DAPI (Vector Labs). Slides were observed 203 

using a standard Nikon fluorescent microscope, and proliferative and apoptotic events were 204 

quantified as previously described (Duckworth et al., 2015a). 205 

 206 

Human gastric cancer cell culture 207 

The human gastric adenocarcinoma cell line AGS (ATCC CRL 1739) were grown in complete 208 

medium, consisting of Dulbecco's Modified Eagle's medium (DMEM) supplemented with 10% 209 

fetal calf serum, 1% L-glutamine and 1% penicillin/streptomycin at 37◦C in 5% CO2 210 

atmosphere with humidity. 211 

 212 

Flow cytometry 213 

AGS cells (106 cells/well) were seeded in 12-well plates, then treated or not with HECb, 214 

brasiliensic and isobrasiliensic acids (12.5, 25 and 50 µg/mL) for 24h. Cells were harvested, 215 

washed with phosphate-buffered saline (PBS), fixed with cold 70% ethanol and kept at -20°C 216 

until use. Cells were washed three times with PBS and stained with a solution of ribonuclease 217 

A (R4875, Sigma-Aldrich, Sao Paulo, BR) at 50 ug/mL and propidium iodide (P4170, Sigma-218 

Aldrich, Sao Paulo, BR) at 20 ug/mL in PBS for 90 min, cell cycle distribution was determined 219 

by flow cytometric analysis using a BD AccuriTM C6 (BD, New Jersey, USA).  220 

 221 

Western blotting and blot densitometry 222 

AGS cells (2×106 cells/well) were seeded in 6-well plates, pretreated with HECb (12.5, 25 and 223 

50 µg/mL) and a highly selective MEK1 inhibitor (PD98059) at 10mM for 24h. Cultures were 224 

subsequently infected with H. pylori at a MOI of 300:1 for 1h. After incubation, cells were 225 

lyzed in ice-cold RIPA buffer supplemented with protease cocktail and phosphatase inhibitors 226 

(Sigma Fast, 10mM sodium orthovanadate, 10mM sodium pyrophosphate and sodium fluoride 227 

100mM).  228 

 229 

Protein lysates were subjected to SDS-PAGE before being immobilized onto nitrocellulose 230 

membranes (Biorad, USA). After transfer, membranes were blocked (20mM Tris-HCl, pH 7.4, 231 

125mM NaCl, 0.2% Tween 20, 1% bovine serum albumin, 3% non-fat milk) for 1h at room 232 
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temperature and incubated for 4h at 4°C with specific primary antibodies: p-ERK1/2 and β-233 

actin (as above, Santa Cruz Biotechnology, TX, USA). Blots were incubated with secondary 234 

antibody rabbit anti-mouse IGG-HRP (sc-358914, Santa Cruz Biotechnology, TX, USA) and 235 

immunoreactive bands were visualized by chemiluminescence (ECL Amersham, USA) and 236 

detected with ChemiDoc XRS system™ software and subsequently analyzed with Image 237 

Lab™ (Biorad, CA, USA).  238 

 239 

Statistical analysis 240 

Statistical analysis was performed using GraphPad Prism 6 software. Data represent mean ± 241 

SEM. Comparisons were made using 1-way or 2-way ANOVAs and Tukey’s or Sidak’s post-242 

hoc analysis as appropriate. p<.05 was considered significant.  243 

 244 

Results 245 

HECb protects against H. felis induced pre-neoplasia in INS-Gas mice 246 

To determine whether the administration of HECb affected the outcome of H. felis induced 247 

gastric pre-neoplasia, groups of 5 six-week old male INS-Gas mice were infected with H. felis 248 

by oro-gastric gavage, two weeks later drinking water was supplemented with hHECb, lHECb 249 

or vehicle (2% Tween 20). This treatment was maintained until the end of the procedure 6 250 

weeks after the final dose of H. felis. At the end of the procedure, animals were culled and 251 

gastric epithelial tissues prepared for quantitative histopathology and electrochemiluminescent 252 

cytokine analysis. Control groups that underwent changes to their water supply, but did not 253 

receive H. felis were also maintained. 254 

 255 

Pathological gastric lesions were quantified using an established visual analogue scoring tool. 256 

Uninfected animals had low combined pathology scores (mean score 2.2 +/- 0.58), with no 257 

significant differences observed in mice exposed to HECb compared to those receiving vehicle. 258 

The administration of H. felis led to the development of marked gastric corpus pathology in 259 

the vehicle group (5.6 +/- 0.87). lHECb appeared to have no impact on development of gastric 260 

corpus neoplasia at this timepoint, with similar composite pathology scores (7.2 +/- 0.37) 261 

compared to vehicle treated, H. felis infected mice. In contrast, composite pathology scores 262 

were partially attenuated in animals co-administered hHECb (4.0 +/- 0.45) (Figure 1A and B). 263 

At this time-point, treatment with HECb had no discernable effect on inflammatory cell 264 

infiltration or parietal cell loss (Figure 1 C and D), however the gastric mucosa was 1.9 times 265 

thicker in vehicle treated H. felis infected mice compared to vehicle treated uninfected mice 266 
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(p<.05). In HECb treated mice H. felis infection did not significantly alter mucosal thickness 267 

(Figure 1 E), and mucous metaplasia was decreased on morphological scoring criteria in H. 268 

felis infected mice receiving hHECB (Figure 1F). 269 

  270 

To further characterize the gastric epithelial immune response to H. felis infection in this model 271 

mucosal cytokine abundance was determined by electrochemiluminescent assay. Colonisation 272 

with H. felis induced a Th17 polarised immune response, as previously demonstrated in this 273 

and other mouse models of Helicobacter induced gastric pre-neoplasia (Figure 2A). 274 

 275 

Administration of either vehicle or HECb did not alter this overall response, however, there 276 

were subtle changes in the abundance of individual cytokines. Amongst H. felis infected mice 277 

IFN-, TNF and IL-6 were all less abundant (3.3 fold, 3.1 fold and 1.7 fold respectively) in 278 

animals administered hHECb compared to those treated with vehicle. Treatment with lHECb 279 

also induced an apparent, though statistically not-significant, reduction in IFN- and IL-6 280 

abundance, supportive of a dose response effect for HECb on production of these cytokines. 281 

lHECb had minimal impact on TNF abundance compared to vehicle (Figure 2C-E). The 282 

abundance of KC-GRO, a mouse homolog for IL-8, in vehicle treated mice was 10.9 fold more 283 

abundant in mice colonized with H. felis, compared to the uninfected group, this cytokine was 284 

unaffected by the administration of HECb (Figure 2F). These observations suggest that 285 

treatment with HECb minimally attenuates the inflammatory response induced by H. felis.  286 

  287 

HECb influences gastric epithelial remodeling by altering epithelial cell turnover in 288 

response to Helicobacter felis in-vivo 289 

The observation that H. felis induced metaplasia was less abundant in mice treated with hHECb 290 

led us to hypothesize that HECb treatment might influence epithelial remodeling, either 291 

impacting de-differentiation of mature cell lineages, or influencing epithelial cell turnover. To 292 

characterize this, quantitative histology was used to determine the number of Ki67 positive 293 

proliferating cells (Figure 3A), and cleaved caspase 3 positive (Figure 3C) apoptotic cells in 294 

the gastric corpus mucosa of mice.  295 

 296 

A mean apoptotic index of 3.8 (± 0.53) cells per high powered field (hpf) was demonstrated in 297 

vehicle treated, uninfected mice. This did not change significantly following H. felis infection, 298 

or administration of HECb (Figure 3D). In contrast H. felis infection had a profound impact on 299 
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abundance of Ki67 immunopositive cells. Uninfected mice treated with Tween20 had a 300 

proliferation index of 20.5 (± 3.2), which was similar to the proliferation index of uninfected 301 

mice treated with HECb. Following H. felis infection vehicle treated mice exhibited a 2.8 fold 302 

increase in proliferative index (p<0.01, Figure 3B). When HECb was administered at either 303 

dose Ki67 abundance was significantly lower in infected mice compared to vehicle treated 304 

controls (2.3 fold and 2.2 fold reductions for hHECb and lHECb respectively, p<.01), leading 305 

to proliferation indices similar to those seen in uninfected mice. 306 

 307 

HECb induced suppression of proliferation is an epithelial cell event 308 

To determine whether the anti-proliferative effect of HECb observed in H. felis infected INS-309 

Gas mice was driven purely by its apparently modest influence on inflammation, or through an 310 

immune cell independent mechanism, primary cultures of murine gastric glands were 311 

generated. In our hands these cultures can be maintained for in excess of 5 days, and have 312 

previously been shown to contain cells of each of the major gastric epithelial lineages 313 

(Duckworth et al., 2015a).  314 

 315 

Cultures were generated from male C57BL/6 mice. On the third day of culture, gastric glands 316 

were treated with rising concentrations of HECb or its constituents, brasiliensic acid and 317 

isobrasiliensic acid. Cells were fixed at 24h. Epithelial cell proliferation was assayed by 318 

quantifying the percentage of cells that had intercalated EdU, apoptosis was quantified by 319 

immunofluorescence for cleaved caspase-3. Each treatment was performed on cultures derived 320 

from 4 individual mice. 321 

 322 

In untreated cultures, 8.2 % (± 0.58) of cells intercalated EdU into their DNA. At different 323 

doses of treatment with HECb, brasiliensic acid and isobrasiliensic acid all suppressed 324 

proliferation (Figure 4A-C). Significant suppression of proliferation was observed following 325 

treatment with HECb at doses in excess of 25g/mL. Brasiliensic acid partially suppressed 326 

proliferation at 12.5g/mL and had more pronounced effects at doses in excess of 25g/mL. 327 

Isobrasiliensic acid suppressed proliferation at doses of 50g/mL and 100g/mL. 328 

 329 

All three compounds also induced apoptotic responses. Cytotoxicity in this model occured 330 

following treatment with 100g/mL of HECb or Brasiliensic acid. 100g/mL HECb induced 331 

a 13.3 fold increase in apoptosis compared to untreated glands (42% apoptotic cells, p<0.001), 332 
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whilst 100g/mL Brasiliensic acid triggered 55% (p<0.0001) of cells to become apoptotic. 333 

Isobarasiliensic acid treatment induced apoptosis at both 50g/mL and 100g/mL with 334 

respectively 31% and 52% of cells shown to be apoptotic (Figure 4 D-F). These observations 335 

demonstrate that HECb and its constituents induce cell cycle arrest and apoptosis in 336 

untransformed epithelial cell culture, suggesting that there is a direct epithelial effect of these 337 

compounds.  338 

 339 

To characterize whether the impact of HECb and its constituents on gastric epithelial cell 340 

proliferation was an isolated phenomenon in the ex-vivo culture setting, or whether the same 341 

effects are identifiable in transformed cell lines, the cell cycle dynamics of AGS cells treated 342 

with HECb and its constituent chromanones was characterized by propidium iodide FACS 343 

analysis. Experiments were repeated a total of 4 times for each treatment. 344 

 345 

In untreated AGS cultures, 0.11 % (± 0.02 %) of cells were identified in the pre-G1 apoptotic 346 

phase, 37.7 % (± 1.14 %) were in the G1 phase, 21.8 % (± 2.52 %) of cells were in S phase and 347 

35.7 % (± 1.7 %) were in G2M phase (Figure 5). No increase in the proportion of cells in pre-348 

G1 was observed when AGS cells were treated with HECb or its constituents at 25g/mL or 349 

50g/mL. This is in keeping with our findings in primary cell culture where apoptosis was not 350 

induced when these concentrations were tested.  351 

 352 

HECb significantly decreased the proportion of cells in S-phase at both 25g/mL and 50g/mL 353 

(9.9% and 8.3% of cells in S-phase respectively, Figure 5A), with a reciprocal increase in 354 

proportion of cells in G1 (45.5% and 54.9%, p<.05 and p<.0001 respectively for 25g/mL and 355 

50g/mL HECb). Brasiliensic acid induced a similar reduction in percentage of cells in S-356 

phase at a dose of 50g/mL (13.0% of cells in S-phase, p<.01 Figure 5B), with an increase in 357 

proportion of cells in G1 observed (52.3%, p<.01). Both 25g/mL and 50g/mL isobrasiliensic 358 

acid also reduced the proportion of cells in S-phase compared to control (11.5% and 9.4% of 359 

cells in S-phase respectively, both p<.01 Figure 5C). Intriguingly however lower dose 360 

isobrasiliensic acid induced an increase in proportion of cells in G1 (52.9 %, p<.001), similar 361 

to that observed in cells treated with either HECb or brasiliensic acid, whilst higher dose 362 

isobrasiliensic acid appeared to induce G2M arrest with an increase in the number of cells in 363 

this phase (45.4 %, p<.05). 364 

 365 
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These data demonstrate that HECb and its constituents are capable of inducing cell cycle arrest 366 

in transformed cell lines. The evidence that isobrasiliensic acid induced G1 arrest at low dose 367 

and G2M arrest at higher doses attests to these compounds potentially acting through more 368 

than one mechanism, dependent upon the drug dosing regime. 369 

 370 

HECb suppresses Helicobacter induced phosphorylation of ERK in-vitro and in-vivo 371 

To further characterize how HECb affects Helicobacter induced proliferation, we pre-treated 372 

AGS cells with either HECb or the MEK 1 inhibitor PD98025 for 24 hours. Subsequently cells 373 

were co-cultured with H. pylori at a multiplicity of infection of 300:1 for 1h. A well 374 

characterized strain of H. pylori was used for these asssays, rather than H. felis as the effects 375 

of this organism on human cell culture are better characterized than those of H. felis, and H. 376 

pylori infection is more relevant to human disease.  377 

 378 

The abundance of p-ERK in whole cell lysates was quantified by Western blotting. All 379 

experiments were repeated 3 times. Blot densitometry was performed to quantify relative 380 

expression of p-ERK compared to pan-actin abundance.  381 

 382 

Exposure of AGS cells to Helicobacter pylori for 1h induced phosphorylation of ERK 1 and 383 

2. When cells were pre-treated with HECb we observed significantly less phosphorylation of 384 

ERK at all doses that were administered (Figure 6A and B). 385 

 386 

To determine whether ERK phosphorylation was also involved in the reduction of gastric 387 

epithelial cell proliferation in response to H. felis infection, in-vivo gastric corpus tissue 388 

samples from mice infected with H.felis or not, and treated with hHECb, lHECb or vehicle 389 

were immunostained for p-ERK. The number of cells expressing p-ERK was determined by 390 

quantitative immunohistochemistry. 391 

 392 

The gastric corpus of vehicle treated, uninfected mice exhibited 1.3 (± 0.2) p-ERK positive 393 

cells per high power field. Administration of HECb did not significantly influence this in 394 

uninfected mice, however administration of H. felis induced a 6.4 fold (p<.001) increase in p-395 

ERK positive cells in mice treated with vehicle. H. felis induced phosphorylation of ERK was 396 

almost entirely suppressed by treatment with either of the tested doses of HECb (Figure 6C 397 

and D).  398 

 399 



 13 

This suggests that regulation of a classical MAPK pathway may be targeted directly or 400 

indirectly by HECb administration both in-vitro and in-vivo. 401 

 402 

Discussion: 403 

 404 

The data presented here provide further evidence that the oral administration of HECb 405 

influences the outcome of gastric epithelial injury. These effects were observed in the context 406 

of minimal changes in inflammatory phenotype with only a modest reduction in cytokine 407 

production in hHECb treated mice and no difference in morphological inflammation. It 408 

therefore appears likely that HECb acts predominantly through a protective effect on the gastric 409 

epithelium. This is in keeping with previous studies which demonstrated mucosal protection 410 

by HECb and some of its fractions during stress or chemically induced gastric ulceration 411 

(Sartori et al., 1999). In rats with ethanol induced gastric lesions HECb administration led to 412 

the inhibition of malondialdehyde and catalase activity suggesting that this gastroprotective 413 

role is, in part, due to an antioxidant effect (Lemos et al., 2012). 414 

 415 

The mechanism by which HECb influences gastric epithelial homeostasis remains 416 

incompletely understood, however we have now shown that it suppresses proliferation in 417 

gastric epithelial cells both in untreated primary cell culture and in transformed cell lines. In 418 

addition we have shown that Helicobacter felis induced proliferation is suppressed in-vivo by 419 

this compound. In-vitro we also demonstrated marked gastric epithelial cell cytotoxicity at 420 

higher doses of HECb (100μg/mL). However at doses used in-vivo this was not observed, 421 

suggesting that effective pharmacological doses probably did not reach this toxic 422 

concentration.  423 

 424 

To understand how HECb influences proliferation at a molecular level we have characterized 425 

the phosphorylation of ERK. ERK is phosphorylated in response to Helicobacter co-culture 426 

in-vitro, whilst administration of HECb suppresses Helicobacter associated phosphorylation 427 

of ERK. In-vivo we also observed marked suppression of Helicobacter induced 428 

phosphorylation of ERK when mice were treated with HECb. This suggests that HECb 429 

interacts with the Ras-Raf-MEK-ERK pathway, though it remains unclear whether this is 430 

through direct interaction with a pathway member, or whether this effect is secondary to 431 

interaction with upstream regulators of the pathway. Further mechanistic studies aiming to 432 
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characterize the precise interaction of HECb and its constituents with mammalian proteins are 433 

indicated to enable us to understand the mechanism of action of this extract.  434 

 435 

Due to the complexity of extracting the constituent chromanones from HECb it has not been 436 

possible to characterize the effects of either brasiliensic or isobrasiliensic acids on murine pre-437 

neoplastic pathology. However observations from ex-vivo and in-vitro cell culture models 438 

suggest that both of these agents are able to influence gastric epithelial cell turnover. In 439 

untransformed cells, brasiliensic acid appeared to have the widest potential therapeutic window 440 

where epithelial cell proliferation was suppressed, but apoptosis had not been induced (between 441 

12.5g/mL and 100g/mL), however the effect of these doses of brasiliensic acid on the 442 

proliferation of transformed cell lines was more modest, and isobrasiliensic acid at doses of 443 

25g/mL and 50g/mL were required to induce cell cycle arrest. In ths model an increase in 444 

apoptosis was not observed at the tested doses. Intriguingly we also demonstrated that high 445 

doses of isobrasiliensic acid induced a G2M cell cycle arrest as opposed to the G1 arrest 446 

observed following administration of either low dose isobrasiliensic acid, or HECb or 447 

brasiliensic acid at any dose tested.  448 

 449 

Chromanones synthesized or extracted from diverse sources have previously been assessed and 450 

shown to exhibit diverse pharmacological functions (including antimicrobial (Xu et al., 1998; 451 

Kanokmedhakul et al., 2002; Cottiglia et al., 2004; do Nascimento et al., 2007; Tanaka et al., 452 

2009), anti-oxidant (Lee et al., 2005) and anti-inflammatory effects (Konieczny et al., 1976), 453 

as well as effects on cardiac muscle repolarization (Wang et al., 2014) and coronary artery 454 

vasodilation (Nagao et al., 1972)). This diversity of pharmacological activity supports our cell-455 

cycle data which may suggest divergent mechanisms of action for brasiliensic and 456 

isobrasiliensic acids at higher doses. 457 

 458 

The differences in drug doses that induce apoptosis and cell cycle arrest suggest that there may 459 

be therapeutic windows in which these compounds could be used to induce gastric cell cycle 460 

arrest without inducing cytotoxicity. These findings support the need for further studies to 461 

investigate whether HECb and its constituents may influence the process of human gastric 462 

carcinogenesis. 463 

 464 

Conflict of Interest Statement: 465 



 15 

The authors declare no conflicts of interest. 466 

 467 

Authors Contributions: 468 

 469 

LL: Generated primary data, contributed to data analysis and drafted manuscript 470 

FM: Generated primary data, contributed to data analysis, edited manuscript and helped secure 471 

funding 472 

GC: Generated primary data  473 

DM: Conceived intellectual concept, supervised primary data generation, helped secure 474 

funding and edited manuscript 475 

DP: Conceived intellectual concept, supervised primary data generation, helped secure funding 476 

and edited manuscript 477 

MB: Conceived intellectual concept, generated primary data, supervised primary data 478 

generation, led data analysis, drafted manuscript and helped secure funding 479 

 480 

Funding agencies: 481 

 482 

LL wishes to acknowledge the Conselho Nacional de Desenvolvimento Científico e 483 

Tecnológico (CNPq) for the research project financial support and scholarship through Science 484 

without Borders programme; the Instituto Nacional de Ciência e Tecnologia em Áreas Umidas 485 

(INAU) for further financial support and to Fundação de Amparo a Pesquisa do Estado de Mato 486 

Grosso (FAPEMAT) for scholarship funding. MDB received financial support from the 487 

University of Liverpool and Wellcome Trust Institutional Strategic Support Fund.  488 

 489 

Acknowledgements 490 

We thank Dr T. C. Wang for providing the colony of INS-Gas mice. 491 

 492 

References: 493 

Bauer, K., Schroeder, M., Porzsolt, F., and Henne-Bruns, D. (2015). Comparison of 494 
international guidelines on the accompanying therapy for advanced gastric cancer: 495 
reasons for the differences. J. Gastric Cancer. 15, 10-18. 496 

Burkitt, M.D., Duckworth, C.A., Williams, J.M., and Pritchard, D.M. (2017). Helicobacter 497 
pylori-induced gastric pathology: insights from in vivo and ex vivo models. Dis Model 498 
Mech. 10, 89-104. 499 

Burkitt, M.D., Williams, J.M., Duckworth, C.A., O'Hara, A., Hanedi, A., Varro, A., et al. 500 
(2013). Signaling mediated by the NF-kappaB sub-units NF-kappaB1, NF-kappaB2 501 



 16 

and c-Rel differentially regulate Helicobacter felis-induced gastric carcinogenesis in 502 
C57BL/6 mice. Oncogene. 32, 5563-5573. 503 

Corrêa, M. (1978). Dicionário das plantas úteis do Brasil e das exóticas cultivadas (v. 6). Rio 504 
de Janeiro: Imprensa Nacional. 505 

Cottiglia, F., Dhanapal, B., Sticher, O., and Heilmann, J. (2004). New chromanone acids with 506 
antibacterial activity from Calophyllum brasiliense. J Nat Prod. 67, 537-541. 507 

do Nascimento, A.M., Costa, F.C., Thiemann, O.H., and de Oliveira, D.C. (2007). 508 
Chromanones with leishmanicidal activity from Calea uniflora. Z Naturforsch C. 62, 509 
353-356. 510 

Duckworth, C.A., Abuderman, A.A., Burkitt, M.D., Williams, J.M., O'Reilly, L.A., and 511 
Pritchard, D.M. (2015a). bak deletion stimulates gastric epithelial proliferation and 512 
enhances Helicobacter felis-induced gastric atrophy and dysplasia in mice. Am J 513 
Physiol Gastrointest Liver Physiol. 309, G420-430. 514 

Duckworth, C.A., Burkitt, M.D., Williams, J.M., Parsons, B.N., Tang, J.M., and Pritchard, 515 
D.M. (2015b). Murine Models of Helicobacter (pylori or felis)-associated Gastric 516 
Cancer. Curr Protoc Pharmacol. 69, 11-35. 517 

Ferlay J, S.I., Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, 518 
F. (2013). GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC 519 
CancerBase No. 11 [Internet]. [Online]. International Agency for Research on Cancer. 520 
Available: http://globocan.iarc.fr/ [Accessed 20/07/2016 2016]. 521 

Ford, A.C., Forman, D., Hunt, R.H., Yuan, Y., and Moayyedi, P. (2014). Helicobacter pylori 522 
eradication therapy to prevent gastric cancer in healthy asymptomatic infected 523 
individuals: systematic review and meta-analysis of randomised controlled trials. BMJ. 524 
348:g3174. doi: 10.1136/bmj.g3174. 525 

Kanokmedhakul, S., Kanokmedhakul, K., Phonkerd, N., Soytong, K., Kongsaeree, P., and 526 
Suksamrarn, A. (2002). Antimycobacterial anthraquinone-chromanone compound and 527 
diketopiperazine alkaloid from the fungus Chaetomium globosum KMITL-N0802. 528 
Planta Med. 68, 834-836. 529 

Konieczny, M., Pomorski, J., and Kedzierska, L. (1976). New derivatives of 2-chromanone-4 530 
as potential antiinflammatory drugs. II. 2-Carboxymethyl-3,6-diacetoxybenzo-(b)-531 
furan and its amido derivatives. Arch Immunol Ther Exp (Warsz). 24(4), 603-620. 532 

Lee, H., Lee, K., Jung, J.K., Cho, J., and Theodorakis, E.A. (2005). Synthesis and evaluation 533 
of 6-hydroxy-7-methoxy-4-chromanone- and chroman-2-carboxamides as 534 
antioxidants. Bioorg Med Chem Lett. 15, 2745-2748. 535 

Lemos, L.M., Martins, T.B., Tanajura, G.H., Gazoni, V.F., Bonaldo, J., Strada, C.L., et al. 536 
(2012). Evaluation of antiulcer activity of chromanone fraction from Calophyllum 537 
brasiliesnse Camb. J Ethnopharmacol. 141, 432-439. 538 

Lemos, L.M., Oliveira, R.B., Sampaio, B.L., Ccana-Ccapatinta, G.V., Da Costa, F.B., and 539 
Martins, D.T. (2016). Brasiliensic and isobrasiliensic acids: isolation from 540 
Calophyllum brasiliense Cambess. and anti-Helicobacter pylori activity. Nat Prod Res. 541 
1-6. doi: 10.1080/14786419.2015.1137568. 542 

Mesia-Vela, S., Sanchez, R.I., Estrada-Muniz, E., Alavez-Solano, D., Torres-Sosa, C., 543 
Jimenez, M., et al. (2001). Natural products isolated from Mexican medicinal plants: 544 
novel inhibitors of sulfotransferases, SULT1A1 and SULT2A1. Phytomedicine. 8, 481-545 
488. 546 

Nagao, T., Nishio, S., Kato, H., and Takagi, K. (1972). Coronary vasodilating effect of some 547 
chromanone derivatives. Chem Pharm Bull (Tokyo). 20, 82-87. 548 

Neto, G.G. (2012). O saber tradicional pantaneiro: as plantas medicinais e a educação 549 
ambiental. REMEA : revista eletrônica do Mestrado em Educação Ambiental. 17, 71-550 
89. 551 



 17 

Newman, D.J., and Cragg, G.M. (2012). Natural products as sources of new drugs over the 30 552 
years from 1981 to 2010. J Nat Prod. 75, 311-335. 553 

Reyes-Chilpa, R., Baggio, C.H., Alavez-Solano, D., Estrada-Muniz, E., Kauffman, F.C., 554 
Sanchez, R.I., et al. (2006). Inhibition of gastric H+,K+-ATPase activity by flavonoids, 555 
coumarins and xanthones isolated from Mexican medicinal plants. J Ethnopharmacol. 556 
105, 167-172. 557 

Rogers, A.B. (2012). Histologic scoring of gastritis and gastric cancer in mouse models. 558 
Methods Mol Biol. 921, 189-203. 559 

Sartori, N.T., Canepelle, D., de Sousa, P.T., Jr., and Martins, D.T. (1999). Gastroprotective 560 
effect from Calophyllum brasiliense Camb. bark on experimental gastric lesions in rats 561 
and mice. J Ethnopharmacol. 67, 149-156. 562 

Shiota, S., Reddy, R., Alsarraj, A., El-Serag, H.B., and Graham, D.Y. (2015). Antibiotic 563 
Resistance of Helicobacter pylori Among Male United States Veterans. Clin 564 
Gastroenterol Hepatol. 13, 1616-1624. 565 

Tanaka, N., Kashiwada, Y., Nakano, T., Shibata, H., Higuchi, T., Sekiya, M., et al. (2009). 566 
Chromone and chromanone glucosides from Hypericum sikokumontanum and their 567 
anti-Helicobacter pylori activities. Phytochemistry. 70, 141-146. 568 

The Angiosperm Phylogeny, G. (2016). An update of the Angiosperm Phylogeny Group 569 
classification for the orders and families of flowering plants: APG IV. Botanical Journal 570 
of the Linnean Society. 181, 1-20. 571 

Thomson, M.J., Pritchard, D.M., Boxall, S.A., Abuderman, A.A., Williams, J.M., Varro, A., et 572 
al. (2012). Gastric Helicobacter infection induces iron deficiency in the INS-GAS 573 
mouse. PLoS One. 7:e50194. doi: 10.1371/journal.pone.0050194. 574 

Wang, R., Liu, Z., Du, L., and Li, M. (2014). Design, synthesis and biological evaluation of 4-575 
chromanone derivatives as IKr inhibitors. Drug Discov Ther. 8, 76-83. 576 

Wang, T.C., Bonner-Weir, S., Oates, P.S., Chulak, M., Simon, B., Merlino, G.T., et al. (1993). 577 
Pancreatic gastrin stimulates islet differentiation of transforming growth factor alpha-578 
induced ductular precursor cells. J Clin Invest. 92, 1349-1356. 579 

Wang, T.C., Dangler, C.A., Chen, D., Goldenring, J.R., Koh, T., Raychowdhury, R., et al. 580 
(2000). Synergistic interaction between hypergastrinemia and Helicobacter infection in 581 
a mouse model of gastric cancer. Gastroenterology. 118, 36-47. 582 

Xu, Z.Q., Buckheit, R.W., Jr., Stup, T.L., Flavin, M.T., Khilevich, A., Rizzo, J.D., et al. (1998). 583 
In vitro anti-human immunodeficiency virus (HIV) activity of the chromanone 584 
derivative, 12-oxocalanolide A, a novel NNRTI. Bioorg Med Chem Lett. 8, 2179-2184.  585 

  586 



 18 

Figure Legends: 587 

 588 

Figure 1: Evaluation of gastric corpus pathology of INS-Gas mice infected or not with 589 

Helicobacter felis for 6 weeks and treated with 33 mg/L (lHECb) or 133 mg/L (hHECb) ad 590 

libitum for the final 4 weeks. (A) Representative photomicrographs of HE-stained sections of 591 

gastric corpus, scale bar = 50μm. Histopathologic scoring results of (B) composite atrophy 592 

pathology (C) inflammation (D) oxyntic gland atrophy (E) mucosal thickness and (F) 593 

metaplasia. Two-way ANOVA followed by Sidak´s multiple comparison post-hoc test. All 594 

data are mean ± SEM of 5 mice. *p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 vs. 595 

uninfected mice with the same treatment. 596 

 597 

Figure 2: Effect of HECb on cytokine abundance in homogenate from the stomachs of INS-598 

Gas mice infected or not with Helicobacter felis for 6 weeks and treated with 33 mg/L (lHECb) 599 

or 133 mg/L (hHECb) ad libitum for the final 4 weeks, by electrochemoluminescence assay. 600 

(A) Th1 and Th17 ratio response, abundance of (B) IL-17, (C) IFN-γ, (D) TNF, (E) IL-6 and 601 

(F) KC-GRO in gastric tissue. Two-way ANOVA followed by Tukey’s multiple comparison 602 

post-hoc test. All data are means ± SD of 5 mice. *p<0.05, ***p<0.001, ****p<0.0001 vs. 603 

uninfected mice with the same treatment, θθ p<0.01 vs. Tween 20 control group with the same 604 

infection status.  605 

 606 

Figure 3: Effect of HECb on cell turnover in gastric corpus of INS-Gas mice infected or not 607 

with Helicobacter felis for 6 weeks and treated with 33 mg/L (lHECb) or 133 mg/L (hHECb) 608 

ad libitum for the final 4 weeks. (A) Representative photomicrographs of proliferating cells 609 

immunostained with Ki67 and (B) graph showing Ki67 positive cells scored, scale bars 50μm 610 

(C) representative photomicrographs of apoptotic cells immunostained for cleaved caspase-3 611 

and (D) graph showing the number of cleaved caspase 3 positive cells per high powered fields. 612 

Two-way ANOVA followed by Tukey’s multiple comparison post-hoc test. All data are mean 613 

± SEM of 5 mice. ** p<0.01 vs. uninfected mice with the same treatment, θ p<0.05 vs. Tween20 614 

control group with the same infection status. 615 

 616 

Figure 4: Effects of HECb on cell turnover of murine primary gastric epithelial cell cultures 617 

treated with HECb, brasiliensic acid or isobrasiliensic acid (12.5-100 µg/mL) for 24h, 618 

evaluated by immunofluorescence. Data expressed as percentage of proliferating cells 619 

following (A) HECb, (B) brasiliensic acid and (C) isobrasiliensic acid and percentage of 620 
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apoptotic cells following (D) HECb, (E) brasiliensic acid and (F) isobrasiliensic acid. Two-621 

way ANOVA followed by Tukey’smultiple comparison post-hoc test. All data are mean ± SD 622 

n=4. ** p<0.01 *** p<0.001, **** p<0.0001 vs. untreated cells. 623 

 624 

Figure 5: Effect of HECb and its constituents on cell cycle of transformed gastric epithelial 625 

cells. AGS cells were treated with HECb, brasiliensic acid or isobrasiliensic acid (25 or 626 

50µg/mL) or untreated for 24h and stained with propidium iodide. Figure A shows 627 

representative plots from untreated and HECb treated cells demonstrating the shift in 628 

distribution of cels byl cell cycle phase folowing HECb administration. Figures B-D show the 629 

mean percentage of cells (+/- SEM) in PreG1, G1, S and G2M phases of cell cycle, HECb (B), 630 

brasiliensic acid (C) and isobrasiliensic acid (A). Two-way ANOVA followed by Tukey’s post 631 

hoc analysis. * p<0.05 ** p<0.01 *** p<0.001, **** p<0.0001 vs. untreated cells in the same 632 

phase of cell cycle. 633 

 634 

Figure 6: Effect of HECb on Helicobacter induced phosphorylation of ERK in-vitro and in-635 

vivo. AGS cells were pretreated with HECb (12.5-50µg/mL) for 24h, and infected with 636 

Helicobacter pylori (MOI 1:300) for 1h . A. p-ERK1/2 abundance relative to β actin. One-way 637 

ANOVA, followed by Sidak´s post-hoc test. Data are mean ± SD n=3. **** p<0.0001 vs. 638 

untreated, uninfected cells. B. representative western blotting. Phosphorylation was estimated 639 

in relation to the relative amount of the endogenous β-actin control. Each line represents the 640 

mean of 3 independent experiments. C. Effect of HECb on ERK1/2 phosphorylation in gastric 641 

corpus of INS-Gas mice infected or not with Helicobacter felis for 6 weeks and treated with 642 

33 mg/L (lHECb) or 133 mg/L (hHECb) ad libitum for the final 4 weeks. Means ± SEM. N=5. 643 

***p<0.001 vs. uninfected mice with the same treatment, ## p<0.01, ###p<0.001 vs. Tween 20 644 

control group with the same infection status. D. Representative photomicrographies of ERK1/2 645 

immunostaining, scale bar = 25μm. 646 

 647 

 648 

 649 
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