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Abstract: 

The prevalence of sexual, as opposed to clonal, reproduction given the many costs associated 

with sexual recombination has been an enduring question in evolutionary biology. In addition 

to these often discussed costs there are further costs associated with mating, including the 

induction of a costly immune response, which leaves individuals prone to infection. Here we 

test whether mating results in immune activation and susceptibility to a common, 

ecologically important, parasite of bumblebees. We find that mating does result in immune 

activation as measured by gene expression of known immune genes, but that this activation 

improves resistance to this parasite. We conclude that while mating can corrupt immunity in 

some systems, it can also enhance immunity in others.  

 

Introduction 

Sexual reproduction is bi-parental reproduction where, previously successful genotypes are 

essentially dismantled by splitting the genome in half and then, only one half is passed on to 

recombine with another previously successful genome dismantled in the same way. As many 

have noticed, this mode of reproduction is therefore not particularly efficient (Williams, 

1975, Maynard Smith, 1971). Despite the obvious costs of sexual reproduction, this mode of 

reproduction is nearly ubiquitous among eukaryotes (Bell, 1982), and a great many 

prokaryotes also occasionally exchange genes through other means (Koonin et al., 2001, 

Gibson & Stevens, 1999). Unsurprisingly, there are many hypotheses that have postulated 

benefits of sexual reproduction that could counteract these costs. Among those benefits, sex 

is thought to clear deleterious mutations more rapidly (Kondrashov, 1988), or sex allows for 

fast adaptation of hosts to coevolving parasites by generating novel host genotypes to which 

parasite may not be adapted (Bell, 1982, Hamilton, 1980). Adding to the disadvantages of 
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sexual reproduction, the need for physical mating, as is prominent among species with 

internal fertilization, carries additional costs (Daly, 1978). For example, finding and courting 

mates is dangerous and energetically expensive. For instance, close physical contact can 

increase the risk of contracting infections, perhaps most obviously to sexually transmitted 

infections (Knell & Webberley, 2004). Mating itself can furthermore cause physical damage, 

and can induce a strong immune response (Fedorka et al., 2007, Castella et al., 2009, 

McGraw et al., 2008), which reduces available resources for defending against subsequent 

infections (Fedorka et al., 2007, Rolff & Siva-Jothy, 2002, Fedorka et al., 2004, Fedorka & 

Zuk, 2005, McKean & Nunney, 2001). On the other hand, males often transfer 

immunologically active compounds to their mates, such as anti-microbial peptides in the case 

of Drosophila, which help to protect the female and the sired offspring (Avila et al., 2011).  

Social insects, such as some bees, wasps, and all ants, may represent unusual cases in mating 

induced immune activation, as many - but not all - species mate multiply, yet during a short 

mating period after which queens of some species can live for many years without further 

mating. Honeybee queens, which mate multiply, increase expression of immune genes after 

mating, even in distant tissue such as the brain (Kocher et al. 2008, 2010, Manfredini et al. 

2015). Wood ant queens have lower phenoloxidase activity immediately after mating, but 

over time it increased to exceed that of virgin queens (Castella et al., 2009). These mated 

queens also have higher antimicrobial responses one week after mating than comparably aged 

virgin queens (Castella et al., 2009). Leaf-cutting ant queens similarly increase their 

encapsulation response after mating but the intensity of encapsulation decreases with the 

amount of stored sperm and the number of males she mated with (Baer et al., 2006) 

suggesting a trade-off between immune protection and reproductive potential. While all of 

these studies suggest that there is some form of immune activation after mating, it still 
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remains to be tested whether this activation corrupts or enhances immunity to natural 

parasites. 

Over the past few decades, the bumblebee Bombus terrestris has become a prominent system 

for the study of natural host-parasite interactions and evolution. Like most bumblebees, 

queens of B. terrestris mate singly (Schmid-Hempel & Schmid-Hempel, 2000), the male 

transferring a plug (containing linoleic acid) that prevents the queen from mating again (Baer 

et al., 2001). After mating queens hibernate for up to eight months before emerging and 

establishing colonies. Young queens - the gynes - emerge into a highly risky environment, as 

the prevalence of many parasites increases over the colony cycle and is at its highest when 

daughter queens leave the colony (Popp et al., 2012). Similarly, parasite transmission is high 

when the young queens emerge from hibernation, as all individuals concentrate on the same 

few flowers at the beginning of the season. When such daughter queens become infected, for 

example, by the common trypanosome parasite Crithidia bombi, they have dramatically 

reduced fitness (Brown et al., 2003). As a consequence, misdirected or costly immune 

responses that leave queens more vulnerable to infection at this stage would be highly 

damaging. Mating in bumblebees, as it also interferes with further copulations, could be one 

factor that compromises the immune system and therefore renders young queens more 

susceptible to infection. Here we test these ideas by investigating the influence of mating on 

the gene expression and effective defense against infection to a natural parasite in the 

bumblebee Bombus terrestris. 
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Materials and Methods 

We collected queens as they emerged from hibernation in the spring of three years (2010, 

2011, 2013) in northern Switzerland and maintained them under conditions conducive to 

colony establishment (as in (Barribeau et al., 2014)). All of the colonies used for this 

experiment were inspected carefully for common pathogens twice and found to be clear of 

infection. Young queens (gynes) and males that were produced towards the end of the colony 

cycle were removed and given the opportunity to mate in an enclosure (mating cage) by 

adding three males to a single gyne per cage. The gynes and males were paired from different 

colonies to avoid inbreeding. After mating, we hibernated the fertilized queens for three 

months at 4˚C. After taking them out from hibernation, the queens were allowed to establish 

colonies in the lab. All experiments used the sexual offspring (males, daughter queens) from 

the colonies derived from these lab-reared queens. Hence, we tested all questions by using the 

F2-generation of field-caught spring queens to standardize history and remove carry-over 

effects from the field.  

We conducted three experiments. (1) In a preliminary experiment, gynes and males were 

randomly allocated to either a 'mated' or 'unmated' condition. In the 'mated' condition males 

and gynes from different colonies were paired and allowed to mate. We kept the individuals 

in the 'unmated' condition individually isolated for the same amount of time as those in the 

'mated' condition. We snap froze the bees in liquid nitrogen two hours after mating finished, 

along with the individuals that had been kept in isolation for the 'unmated' condition 

(numbers of unmated gynes: 8; mated gynes: 11; unmated males: 5, mated males: 8). 

(2) In a second experiment we altered this protocol. Whilst keeping a 'mated' condition, we 

also allowed unmated queens access to males but prevented mating by sealing the males' 

terminal abdominal tergites with wax ('frustrated' condition). This allowed the males to 
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attempt copulation but prevented genital clasping and intromission. We snap froze the gynes 

from these conditions again 2 h after mating (n = 7 queens for 'frustrated', and n = 4 queens 

for the 'mated' condition). In addition, we had groups snap frozen at additional time points, 

this is, at 6 h (n = 6 frustrated, and n = 7 mated) and 24 h (n = 14 frustrated, and n = 18 

mated) after mating. We now also exposed a subset (n = 23) of the gynes - destined to be 

frozen at 24 h - with C. bombi six hours after mating with a cocktail of 20,000 cells from four 

clones (equal amounts each; strain IDs were:  08.068, 08.075, 08.161, 08.261) of the parasite. 

Individuals that did not eat the inoculum were excluded from the experiment. All bumblebees 

were housed individually in boxes and fed with pollen and sugar water ad libitum. Finally, 

we exposed in the same way, and monitored the infection success in an additional 74 gynes 

(37 of which were from the 'mated' and 37 of which were from the 'frustrated’ condition) 

after one week by visually checking the feces for the presence/absence of C. bombi cells. All 

gynes were randomly assigned to an experimental condition and sampling time point. As the 

infection success in the previous (2) experiment was modest, we repeated the experiment as 

before (3) but only to monitor infection success with a higher dose of 40,000 cells to ensure 

that any differences in infection outcome found earlier was not due to dose limitation (n = 77 

bees infected; mated: n = 37, frustrated: n = 40). 

 

Molecular methods 

We extracted total RNA from whole bumblebee abdomens with RNeasy plus mini kits 

(Qaigen, UK). We checked RNA integrity with a 2100 Bioanalyzer (RNA 6000 Nano Kit, 

Agilent Technologies) and synthesized cDNA with QuantiTect reverse transcription kits 

(Qiagen, UK). We measured gene expression as in (Barribeau et al., 2014, Brunner et al., 

2013, Brunner et al., 2014) using a Fluidigm 96.96 dynamic array IFCs on the BioMark 
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system with EvaGreen DNA binding dye (Biotium) with three technical replicates according 

to the advanced development protocol 14 (PN 100-1208 B). We measured the expression of 

27 target genes, as informed by the analysis of the immune genes in the bumble bee genome 

(Barribeau et al., 2015), relative to the invariant geometric mean of five housekeeping genes 

(dCt-values, Table S1). The details of these primers can be found in Table S1.  

We targeted genes that span multiple classes of immune function and pathways including 

recognition (BGRP, BGRP2, dscam, PGRP-LC, PGRP-S3), signal transduction (calcineurin, 

hopscotch, pelle, relish), effectors (abaecin, apidaecin, defensin, ferritin, hymenoptaecin, 

lysozyme, TEP-A, transferrin), melanization (peroxidase, PPO, punch, serpin 27a, yellow), 

reactive oxygen species regulation (jafrac, peroxiredoxin 5), and metabolic and lipid transfer 

(apolipophorin III, cytochrome P450, vitellogenin). We preferentially included genes where 

interesting transcriptional responses upon infection had already been found (Barribeau et al., 

2015, Barribeau et al., 2014, Brunner et al., 2013, Brunner et al., 2014, Erler et al., 2011, 

Radyuk et al., 2010, Riddell et al., 2009, Riddell et al., 2011, Roditi, 2008, Schlüns et al., 

2010, Vogel et al., 2011). The choice of the reference gene set was based on previous studies 

(Hornáková et al., 2010) and our own expression stability tests (Brunner et al., 2013). Gene 

details, primer sequences and NCBI accession numbers are summarized in the electronic 

supplementary material, Table S1. 

 

Statistical methods 

In the first experiment we analysed how expression differed according to sex and whether 

they mated or did not mate, in a MANOVA where each gene's expression added as a 

component to the overall multivariate response (R, stats package). To improve multivariate 

normality, expression-values (dCt) of five genes was transformed using Yeo-Johnson power 
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transformations (R, car package; apolipophorin III: -0.01, BGRP2: 0.22, CYP4GII: -0.19, 

dscam: log). We also used a linear discriminant analysis (LDA) to assess how individuals 

grouped according to treatment and sex based on their gene expression and assessed the 

predictability of these groupings using leave-one-out cross validation. We analysed gene 

expression similarly in the second experiment, with time and mating condition as fixed 

factors. One sample was dropped because of high variation across technical replicates. Five 

genes required Yeo-Johnson power transformations to meet assumptions of multivariate 

normality (Apidaecin: 0.5, CYP4GII: 4.28, ferritin: 4.16, vitellogenin: log, yellow: log). In 

both analyses, if the MANOVA revealed a significant effect of any fixed effect or interaction, 

we examined the univariate ANOVA results for each gene (Bray & Maxwell, 1982). While 

the univariate analyses of MANOVA protects against P value inflation to some extent (Bray 

& Maxwell, 1982), we also tested for statistical significance after several multiple testing 

corrections using p.adjust (R, stats package: Benjamini & Hochberg false discovery rate, 

Benjamini & Yekutieli false discovery rate, Holm and Bonferonni adjustments, Table S2-3). 

We analyzed how infection varied by mating condition using a generalized mixed model with 

a binomial distribution in R (stats package) with block (expt 2 or 3) and mating as fixed, 

crossed effects (infection ~ block*mating). 

 

Results 

Gene expression. Males and gynes from our first experiment, where individuals were allowed 

to mate, or were kept singly, differed remarkably in their overall gene expression profile (for 

gene and primer details see Table S1, MANOVA F2,27 = 115.54, p = 0.009, Table S2). The 

genes that were either male- or gyne-biased in expression can be found in Fig 1A. 
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Whether or not individuals mated did significantly influence the overall gene expression 

(MANOVA F2,27 = 23.71, p = 0.041), with the significantly altered genes shown in Fig 1B. 

There was a trend suggesting that males and gynes responded differently upon mating 

(sex*mating interaction, F2,27 =15.98, p =0.061). The linear discriminant analysis revealed 

that gynes that mated were more different in their expressed genes from their non-mated 

counterparts than the respective groups were different in the males (Fig 1C). Jackknifed 

leave-one-out validation was able to accurately predict membership to a group 62.5% of the 

time (considerably better than the 25% accuracy predicted by chance). Predictive power was 

better with gynes, accurately predicting unmated gynes 87.5% and mated gynes 75% of the 

time, vs. 37.5% for unmated males and 50% for mated males. All of these values, however, 

exceed the 25% random prediction. 

In our second experiment, we focused on gyne expression when they were allowed to mate, 

or were in the presence of a male who was unable to physically transfer sperm, termed the 

‘frustrated’ condition. Here we also explored how immune gene expression changed in gynes 

in response to mating and parasite exposure over time. We detected no significant effect of 

the parasite 18 h after infection (which is 24 h after mating; MANOVA F2,27 = 0.66,  p = 

0.11),  so we excluded the factor 'exposure' from the full model. But, both, the time point 

sampled and mating strongly influenced expression, and expression varied depending on the 

interaction of these factors (MANOVA, time: F26,27 = 6.373, p < 0.0001; mating F26,27 = 

18.952, p < 0.0001; time*mating: F26,27 = 3.744, p = 0.00060, Table S4). The genes that 

individually varied in their expression, either according to mating or time as the main effect, 

or according to the interaction of the two factors, are shown in Fig 2A. Genes that only varied 

by mating or time are shown in Fig 2B-C. 
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Resistance. In two separate experiments, we tested mated and ‘frustrated’ queens, which were 

allowed access to males but prevented actual sperm transfer, for their resistance against 

infections by the parasite C. bombi. Contrary to the expectation from an immune cost of 

mating, we found that mated gynes were almost three times less likely to become infected 

than unmated ‘frustrated’ gynes (testing all cases from both experiments: 11% vs 27% 

infected, 2
1,148 = 6.91, p = 0.0086). The different experiments had different average infection 

rates but there was no interaction between experimental block (experiment 2 vs. 3) and 

mating condition ( 2
1,147 =0. 74, p = 0.39), suggesting that the effect of mating was consistent 

across both experiments. 

 

Discussion 

Contrary to a number of previous studies in other insects (McKean & Nunney, 2001, Rolff & 

Siva-Jothy, 2002, Fedorka et al., 2004, 2007, Fedorka & Zuk, 2005), we find that mating 

reduced the likelihood of infection by two thirds - although, consistent with other work 

(Avila et al., 2011), we see that mating induced an immune response as measured by a 

change in expression of a number of key immune genes for up to 24 h post-mating. These 

included genes responsible for the recognition of pathogens (BGRP1, BGRP2, PGRP-LC), 

for signaling (relish, hopscotch), for melanization (SPN27a, punch), as well as effectors that 

damage parasites (the anti-microbial peptides apidaecin, abaecin, defensin, and 

hymenoptacin) (Fig1B, 2A-B). The expression of anti-microbial peptides is extraordinarily 

high in the mating condition. For instance, the expression of defensin is more than 120 times 

higher in mated queens than in frustrated queens 24 h after mating (Fig 2A). This high 

expression of anti-microbial peptides may explain the reduced infection of mated queens. 

Infection with C. bombi results in increased expression of anti-microbial peptides (Barribeau 
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& Schmid-Hempel, 2013, Barribeau et al., 2014, Brunner et al., 2013, 2014, Riddell et al., 

2009, 2011). One study found that C. bombi genotypes that induced high anti-microbial 

peptide expression was least likely to establish successful infection, indicating that higher 

expression of these peptides may explain reduced infection after mating (Barribeau et al., 

2014). Richter et al. (2012) found that social context influences B. terrestris immune 

expression. When workers were housed with other workers they expressed anti-microbial 

peptides, lysozymes, and components of the melanization response (SPN27a, PPO) more 

strongly than if they were housed singly (Richter et al., 2012). We find that many of these 

same genes (abaecin, defensin, hymenoptaecin, SPN27a) and other functionally linked genes 

like the antimicrobial peptide apidaecin and upstream recognition and signaling genes 

(BGRP1&2, PGRP-LC, relish), and another melanization response gene, punch, are higher 

expressed in mated queens relative to unmated queens that had a similar social condition. 

This suggests that mating per se, rather than social context, influenced immune gene 

expression in these queens. Mating-induced defenses perhaps make the most sense in terms 

of defending against sexually transmitted diseases. Peng et al. (2016) recently demonstrated 

that honeybee seminal fluid has antimicrobial activity which can inhibit the sexually 

transmitted microsporidian parasite Nosema apis. While mating-induced defenses may be 

very important in defense against sexually transmitted infections, such kinds of parasites 

arguably are generally rare in social insects (Knell & Webberley, 2004, Schmid-Hempel, 

1998), and other kinds of pathogens or other transmission pathways might therefore be more 

relevant. Regardless of the induced function in the reproductive tract, our results demonstrate 

that mating can itself activate the immune response, and which in turn can protect queens 

from non-sexually transmitted parasites, such as C. bombi, that infects other tissue, i.e. the 

gut in this case. Previous work with honeybees that explored gene expression associated with 

behavioral shifts after mating also found increased expression of immune genes, including 
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anti-microbial peptides and recognition genes such as BGRPs and PGRPs, even in the brain 

(Kocher et al 2008, 2010, Manfredini et al. 2015). These studies suggested that increased 

immune gene expression may help to protect queens from subsequent infection but did not 

directly test their defense after mating.  Some genes in our study had a distinct male or queen 

bias in expression (Fig1A) but none of these showed an interaction between sex and mating, 

suggesting common responses of these genes even if they differ in expression between males 

and queens. Our discriminant analysis suggests that queens respond much more strongly and 

distinctively to mating than males (Fig. 1C). The expression of many genes also changed with 

time according to mating condition. In fact, the expression of AMPs, recognition, and 

melanization genes increased over time in the mated queens but remained relatively constant 

in unmated queens. Apolipophorin III and vitellogenin, which are involved in lipid movement 

and yolk provisioning decreased in mated queens (Fig. 2A). Interestingly, decreases in 

apolipophorin III also leads to immunosuppression in crickets (Adamo et al., 2008), which 

might suggest that the observed changes reflect a regulation of the immune response. Further 

recent work in Texas field crickets (Gryllus texensis) demonstrated that transfer of the intact 

ejaculate, rather than courtship, copulation without spermatozoa transfer, or the transfer of 

accessory gland fluids without sperm, protects females against the generalist bacterial 

pathogen, Serratia marscesens (Worthington & Kelly, 2016).   

Bumblebees queens from most species mate singly, even when polyandry confers tangible 

benefits by increasing their colony defense against infection (Baer & Schmid-Hempel, 1999), 

but see (Baer & Schmid-Hempel, 2001). During mating in bumblebees, males will clasp the 

female and maintain copulation for over an hour in some species (Goulson, 2010) during 

which time he will transfer sperm and a mating plug that prevents multiple mating by the 

queen (Baer et al., 2001). A mating plug that discourages sperm competition and multiple 

paternity of the colony are advantageous for males but not necessarily for the female. In 
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social insects, females often store sperm for extended periods of time. In ants sperm storage 

leads to a cost for immune function (Baer et al., 2006). In bumblebees, queens mate before 

the diapause and store the sperm until use the next season. In this system, too, the 

insemination of queens can reduce her hibernation success even though only males from 

certain colonies are 'harmful' (Korner & Schmid-Hempel, 2003, Baer & Schmid-Hempel, 

2001) although the mechanism behind this effect remains unknown. This cost could be 

outweighed by the induced immune response - as shown here - that may serve to protect the 

male’s investment. It may also protect the female from becoming infected around the mating 

period. More importantly, an enhanced readiness of the immune system would benefit the 

young queen when she comes out from hibernation the next spring, as she would suffer 

considerable fitness losses if she became infected (Brown et al., 2003); as yet, there is no 

evidence for this effect. 
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Figure Legends. 

Figure 1 Mean log2 fold expression (ddCt) ± 1 SEM of target genes relative to housekeeping 

genes for the main effects of A sex and B mating condition. A) Positive values indicate 

higher expression in queens while negative values indicate higher expression in males 

regardless of mating condition. B) mated and unmated bees, ignoring sex of the bee. Here 

positive values indicate genes that are more highly expressed in mated bees and negative 

values indicate genes more highly expressed in unmated bees. All shown genes are 

significantly different among their respective groups based on univariate analyses of 

MANOVA which, to some degree protects against P value inflation (Bray & Maxwell, 1982), 

we also denote genes that were significantly different after additional multiple testing 

correction (* < 0.05, ~ < 0.1, Table S2-3)C: Linear discriminant analysis of all genes 

according to sex and treatment group. Full statistics can be found in Tables S2-3. 

Figure 2 A: Mean log2 fold expression (dCt) ± 1 SEM of queens where there were significant 

main effects of both mating and time effects (apidaecin, BGRP2,  Punch, SPN27a) or a 

significant interaction between mating and time (abaecin, apolipophorin III, BGRP1, 

defensin, vitellogenin). B: boxplots of log2 fold expression of queens that differ according to 

mating treatment across all timepoints. Full statistics can be found in Tables S4-5. 
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