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Abstract: The decision support model of mean-lower semi-absolute deviation (MLSAD) and
the optimization algorithm of group search optimizer with intraspecific competition and lévy walk
(GSOICLW) are presented to solve wind-thermal power system dispatch. MLSAD model takes
the profit and downside risk into account simultaneously brought by uncertain wind power. Using
a risk tolerance parameter, the model can be converted to a single-optimization problem, which
is solved by an improved optimization algorithm, GSOICLW. Afterwards, both the model and the
algorithm are tested on a modified IEEE 30-bus power system. Simulation results demonstrate that
the MLSAD model can well solve wind-thermal power system dispatch. The study also verifies
GSOICLW obtains better convergent dispatching solutions, in comparison with other evolutionary
algorithms, such as group search optimizer and particle swarm optimizer.

1. Introduction

Power system dispatch problems (PSDPs) are of great importance for power system operations
[40], including optimal power flow (OPF), economic dispatch (ED), etc. PSDPs usually aim to
obtain the optimal dispatching solution to realize the minimization of the fuel cost of thermal units
[40, 19]. Therefore, PSDP is essentially an optimization problem, and conventional optimization
techniques based on mathematical programming have been used for solving it [26, 5, 35].

However, mathematical methods relies on the initial searching solution, and they are easily
trapped in local optima. Therefore, evolutionary algorithms (EAs), the heuristic optimization al-
gorithms inspired by natural mechanisms, have been used for solving PSDPs and the results are
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promising [2, 8, 17]. In recent years, an algorithm, i.e., group search optimizer (GSO), is proposed
by simulating animal searching behavior [9], which is famous for its good global searching ability.
However, it shows modest performance on optimizing unimodal functions [9], which demonstrates
the local searching ability should be enhanced. Therefore, an improved GSO, GSOICLW, has been
proposed to improve its local searching ability [18]. In reference [18], GSOICLW is verified to
show better performances than that of GSO by testing against standard benchmark functions.

It is known the utilization of wind energy is a hot issue [10]. However, with more wind pow-
er integrated into power grids, optimal dispatching of the wind-thermal power system becomes
complex because it is difficult to make prediction of wind power, due to its inherent nature of
uncertainty [45, 12]. The fuzzy and the probabilistic methods are the two main methodologies pro-
posed to solve PSDPs with wind power integrated. The former method regards wind power as the
fuzzy variable, and can well reflect dispatchers’ attitude. However, the final dispatching solution
maybe subjected to strong subjectiveness [25, 39].

The probabilistic method is based on the analysis of a specific distribution, e.g., Weibull distri-
bution [10, 31] or Gaussian distribution [15, 1]. However, Weibull distribution describes long-term
characteristics of wind speed, therefore, it is not suited to be used for PSDPs [45]. In this way,
Gaussian distribution is widely applied to PSDPs [45, 38, 36]. Furthermore, Monte Carlo (M-
C) simulation is usually used for generating wind power samples for the stochastic optimization
[38, 34, 32]. However, it is noted that the objective function of stochastic optimization problem is
usually the mean value of fuel cost, and the corresponding risk brought by uncertain wind power
is not considered [7].

The mean-variance (MV) model that measures the profit and risk was proposed in economic
investment [24], and this model has been applied in power system dispatching [19, 7, 41]. However,
variance is the risk index in MV model, which makes no difference between gains and losses [21].
By and large, behavioural finance studies have consistently found that economic decision-makers
try to avoid “pain”, i.e., down risk (DR) [13]. DR was first proposed by Roy, who assumed that an
investor goal was to minimize his/her potential losses. This kind of potential losses is manifested
by the lower semi-deviation [29]. It is noted that even Markowitz, the proposer of the MV model,
has stated that mean-lower semi-absolute deviation (MLSAD) model considering both averaged
profit and downside risk is more plausible than his MV model [23]. Consequently, we attempt to
use downside risk based on MLSAD model to solve PSDPs with wind power.

The contribution of this paper is that we use the MLSAD model for the wind-thermal power
system dispatch. In this way, dispatchers can further balance interests of profit and risk in the
uncertain environment to determine a suitable dispatching solution. Then this model is converted
to a single-optimization problem using the risk tolerance parameter, which becomes a complex
optimization problem under uncertainty and an advanced optimization algorithm is needed to solve
it. Therefore, the improved algorithm of GSOICLW is applied, and its effectiveness is proved by
comparison with other algorithms, such as GSO and particle swarm optimization (PSO). In the
end, simulation studies verify the outperformance of MLSAD model and GSOICLW algorithm.
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2. Mean-Lower Semi-Absolute Deviation Model for OPF Considering the
Integration of Wind Power

2.1. OPF

OPF is one of the most difficult issue for PSDPs, formulated in the following:

min F (x, u)

s.t. g(x, u) = 0

h(x, u) ≤ 0

(1)

where F is the fuel cost function, x and u stand for state variables and decision variables respec-
tively. g and h are the equality and inequality constrains respectively.

F is formulated as follows:

F =

NG∑
i=1

ciP
2
Gi

+ biPGi
+ ai (2)

where ai, bi and ci are fuel cost coefficients corresponding to the ith generator, respectively. PGi
is

the real power output of the ith generator, and NG is the number of generators.
x is formulated in the following:

xT = [PG1 , VL1 , · · · , VLND
, QG1 , · · · , QGNG

, S1, · · · , SNE
] (3)

where PG1 is the active power output of the slack bus generator, and VL represent voltages of load
buses. QG and S are reactive power outputs of generators and apparent power flows in the grid.
NE is the number of power grid branches.

u are the decision variables:

uT = [PG2 · · ·PGNG
, VG1 · · ·VGNG

, T1 · · ·TNT
, QC1 · · ·QCNC

] (4)

where PG and VG are active power outputs and voltages of generators respectively. T and QC

are tap ratios of transformers and power outputs of shunt reactive compensators. NT and NC are
numbers of transformers and shunt compensators.

g(x, u) requires the power balance in the grid, listed in the following:

0 = PGi
− PDi

− Vi

Ni∑
j=1

Vj(Gij cos θij +Bij sin θij)

1 ≤ i ≤ N0 (5)

0 = QGi
−QDi

− Vi

Ni∑
j=1

Vj(Gij sin θij +Bij cos θij)

1 ≤ i ≤ NPQ. (6)
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h(x, u) represents operational limits of a power system:

Pmin
Gi

≤ PGi
≤ Pmax

Gi
1 ≤ i ≤ NG

Qmin
Gi

≤ QGi
≤ Qmax

Gi
1 ≤ i ≤ NG

Qmin
Ci

≤ QCi
≤ Qmax

Ci
1 ≤ i ≤ NC

Tmin
k ≤ Tk ≤ Tmax

k 1 ≤ k ≤ NT

V min
i ≤ Vi ≤ V max

i 1 ≤ i ≤ NB

|Sk| ≤ Smax
k 1 ≤ k ≤ NE (7)

Nomenclature can be referred to [40].

2.2. MLSAD Model for OPF Considering the Integration of Wind Power

Markowitz firstly proposed the mean-variance (MV) model to deal with the portfolio optimization
problem, considering maximization of the profit and minimization of the risk under the uncertain
environment [24]. Furthermore, this model has been applied in power system optimization prob-
lems [7, 41, 19, 16]. However, variance is the risk index in terms of MV model, which makes
no distinction between gains and losses [21]. Behavioural finance studies have consistently found
that economic decision-makers try to avoid “pain”, i.e., the deviation between of lower profits
and expected one [13]. Therefore, the downside risk was proposed in the MLSAD model, which
looks at the lower standard deviations of expected returns and tries to avoid potential losses [29].
Due to its advantage, the MLSAD model has been widely used in dealing with portfolio problems
[33, 14, 30]. Moreover, even Markowitz, the proposer of the MV model, has admitted that semi-
variance is the more plausible measure of risk than his mean-variance theory [23]. As a result, in
this paper, the MLSAD model is attempted to solve PSDPs with uncertain wind power integrated.

We set the gap of fuel costs of a power system with and without wind power as the profit
function, R(u), and its expectation is expressed as follows:

R(u)exp = EPW1
,PW2

,··· ,PWM

{ NS∑
i=1

(F0 − Fi)P(Fi)
}

(8)

where E is the expectation operator, M is the number of wind farms, and (PW1 , PW2 , · · · , PWM
)

represent active power outputs. NS is the number of wind power samples corresponding to PWj
(j =

1, 2, · · · ,M) obtained by a sampling method [42]. F0 is the optimized fuel cost of a power system
without wind farms integrated, Fi is the fuel cost as for the ith wind power sample, (F0 − Fi) then
describes the profit brought by wind power. P(Fi) is the probability of the fuel cost Fi occurs.

On the other hand, the downside risk, i.e., the lower semi-absolute deviation is formulated as:

V−(u) = EPW1
,PW2

,··· ,PWM

{
|R(u)−R(u)exp)|−

}
(9)

where |a|− = max{0,−a}.
It can be seen that profits are much lower than the expectation if the value of downside risk is

high. Therefore, it is of necessity to take both profit and downside risk into consideration. [7, 41]
optimize the mean and variance by using a risk tolerance parameter, converting this model into a
single-objective optimization problem. Therefore, in this paper, a risk tolerance parameter, λ, is
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also used to analyze the MLSAD model. The objective function is formulated as:

max Rexp − λV− (10)
s.t. g(x, u, PW) = 0 (11)

h(x, u) ≤ 0 (12)

where PW donates active wind power.
Usually, fuel cost is analysed in power systems, therefore, the objective function as below can

also be expressed as:

min F exp + λV− (13)

where

F exp = EPW1
,PW2

,··· ,PWM

NS∑
i=1

FiP(Fi) (14)

F exp means the expectation of fuel cost.

2.3. Wind Power

As OPF is studied in wind-thermal PSDP, the time resolution is one hour [6]. During this resolu-
tion, the forecast error △v is proved to follow the Gaussian distribution [15, 45].

△v ∼ N(0, σ2
v) (15)

where N(0, σ2
v) donates Gaussian distribution and the standard deviation is σv.

Therefore, the actual wind speed is:

v = vf + △v (16)

where vf is the forecasting value.
The active power of a wind turbine, Pwt, is obtained [44]:

Pwt =


0 0 ≤ v < vci
Prav

3
ci

v3ra − v3ci
+

Pra

v3ra − v3ci
v3 vci ≤ v < vra

Pra vra ≤ v ≤ vco
0 v > vco

(17)

where vci, vra, vco are the cut-in , rated and cut-out wind speed. Pra is the rated power.
When Nwt turbines are installed in a wind farm, evidently, the active and reactive power are:

Pfarm = Pwt ×Nwt (18)

Qfarm =
Pfarm

cosφ

√
1− cos2φ (19)

where cosφ is the constant power factor.
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If the wind farm is integrated into a power system, it will affect the state of power flow. For
example, when a wind farm is connected to bus i, power flow equations are changed to:

PGi = PDi − Pfarm + Vi

∑
j∈Ni

Vj(Gij cos θij +Bij sin θij) (20)

QGi = QDi −Qfarm + Vi

∑
j∈Ni

Vj(Gij sin θij −Bij cos θij) (21)

3. GSOICLW

3.1. GSO

GSO is a recently proposed optimization algorithm, which simulates animals’ searching behav-
ior. The producer, scroungers and rangers comprise the searching group. The producer has the
best searching ability, and scroungers employ producer-scrounger model [9] to do local searching
around the producer. Rangers adopt the searching behavior of random walk to enhance chances
to escape local optima. Therefore, GSO outperforms other evolutionary algorithms as for global
searching [9].

Each member has their position Xk
i ∈ Rn and a scanning angle φk

i = (φk
i1, φ

k
i2, · · ·, φk

i(n−1)) ∈ Rn−1

at the kth iteration, then the unit vector as for the scanning angle Dk
i = (dki1, d

k
i2, · · ·, dkin) ∈ Rn is

obtained [9]. The formulations of searching regarding these members are shown in the following
respectively.

3.1.1. Producer: The producer, Xk
p, adopts the animal searching behavior by randomly sampling

three points, which is formulated as follows.

Xz = Xk
p + r1lmaxDk

p(φ
k
p) (22)

Xr = Xk
p + r1lmaxDk

p(φ
k
p + r2θmax/2) (23)

Xl = Xk
p + r1lmaxDk

p(φ
k
p − r2θmax/2) (24)

where Xz, Xr and Xl are the sampled points. φk
p is scanning angle, θmax ∈ R1 and lmax ∈ R1 are

maximum pursuit angle and distance. r1 ∈ R1 is a standard normally distributed random number
and r2 ∈ Rn−1 is a uniformly distributed random vector in the range of (0, 1).

When the producer hunts for a better resource, it will fly there. Otherwise, it will take a new
randomly scanning angle:

φk+1 = φk + r2αmax (25)

where αmax ∈ R1 is the maximum turning angle.
If the producer cannot hunt for a better resource after a iterations, the scanning angle goes back

to zero degree

φk+a = φk (26)

where a ∈ R1 is a constant.
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3.1.2. Scroungers and rangers: Scroungers are selected from group members in random, and
they perform local searching around the producer, which is formulated as follows.

Xk+1
i = Xk

i + r3 ◦ (Xk
p − Xk

i ) (27)

where r3 ∈ Rn is a uniformly distributed random vector in the range of (0, 1) and “ ◦ ” is the
Hadamard product.

Then rangers adopt random walk, i.e., each ranger moves to a new position by adopting a
random head angle φk

i and a random distance ar1lmaxt at the kth iteration.

Xk+1
i = Xk

i + ar1lmaxDk
i (φ

k
i ) (28)

Although GSO shows excellent performance on global searching, while its local searching abil-
ity is modest [9]. In order to overcome this drawback, an enhanced GSO, GSOICLW is proposed
[18], which incorporates intraspecific competition (IC) [27] and lévy walk (LW) [37] based on
GSO.

3.2. Intraspecific Competition

IC comprises contest and scramble competition [27]. In the former one, successful competitor
monopolises the resources. The scramble competition happens if competitors are crowded around
limited resources, which cannot be monopolized. Therefore, this kind of competition stimulates
members to be involved in a serious scramble [3].

In GSO, each member hunts for the optimal resource. As a result, IC exists when members are
crowded around the producer. Here we use an index proposed by Zhan [43] to describe crowded-
ness, f , and detailed calculation are presented:

(1) The mean distance di of each particle i with its position xi to all the other particles is
calculated.

di =
1

N − 1

N∑
j=1,j ̸=i

√√√√ D∑
k=1

(xk
i − xk

j )
2 (29)

where N and D are the population size and the number of particles’ dimensions.
(2) Then, f can be expressed as

f =
dg − dmin

dmax − dmin

∈ [0, 1]. (30)

where dg is the di as for the leading particle, dmax and dmin are the maximum and minimum distance
by comparing all di.

It can been seen GSO members are crowded around the producer when f is small. Then IC
happens, and r3 = (r31 , r32 , · · ·, r3D) (called scrounging coefficient), is chosen as higher values to
show the serious competition. In GSOICLW, we suppose IC happens if f is less than a constant
value, η. Therefore, the value of r3 is determined by f as follows.

r3i =

{
random ∈ (ζ, 1) f < η

random ∈ (0, ζ) f ≥ η
i = 1, 2, · · · , D (31)

where ζ is threshold for the scrounging coefficient to manifest IC.

7



Intraspecific
Competition

Producer Scrounger Ranger

Levy Walk

GSO GSOICLW

Fig. 1. The illustration of GSOICLW

3.3. Diversifying Effect of IC

IC happens when group members are in crowdedness and competing for a limited resource. Then
the diversifying effect will emerge, i.e., the increasing density of IC will make some individuals
resort to alternative resources [28]. In this way, more members will hunt for another resource, who
become dispersed individuals as rangers [28, 4, 22].

In this way, the diversifying effect will also happen when the group members of GSO are in
IC, i.e., some members will become rangers, escaping from the competition. Furthermore, more
intense IC, more rangers emerging [28]. As for GSO, the ratio of rangers is a constant of 20%.
However, the diversifying effect implies that the proportion of rangers should vary corresponding
to the intensity of IC. As a result, the ratio of rangers (donated as cf ) in GSOICLW is expressed
as:

c(f) =


1

α + β × sin(f)
f < η

0.2 f ≥ η
(32)

where α and β are coefficients, they can be determined when programming.

3.4. Lévy Walk

In the algorithm of GSO, rangers adopt RW to hunt for alternative resources. However, it has
been proved that LW is of high efficiency, compared with RW [37]. As a result, we set rangers’
dispersing behavior to be LW rather than RW, and it is adopted in GSOICLW. Rangers’ dispersing
length, r, should be drawn from a power-law tail probability distribution function: [37]

P (r) ∼ r−µ (1 < µ < 3). (33)

Therefore, the ith ranger moves to:

Xk+1
i = Xk

i + a · rlmaxDk
i (φ

k+1) (34)

To be concluded, IC and LW are incorporated into GSO shown in Fig. 1. Initially, scrounger-
s follow the producer, and rangers adopt RW to find other resources. When group members are
crowded, IC happens and the scrounging coefficient and rangers’ ratio varies adaptively. Moreover,
it has already been proved GSOICLW outperforms other algorithms, such as GSO [18]. Conse-
quently, we adopt this algorithm to solve the MLSAD model. It is noted that latin hypercube
sampling with cholesky decomposition (LHS-CD) is used to sample wind speed forecast errors.
The detailed LHS-CD calculation steps can be referred to [42].
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Fig. 2. The framework of obtaining the optimal dispatching solution of wind-thermal power system
dispatch

The procedure of wind-thermal power system dispatch is illustrated in Fig. 2. At the first
step, the forecasting error samples of wind speed are obtained by the LHS-CD method, and the
frequency distribution is described. Then the frequency distribution and samples of the wind power
are also derived. Consequently, the MLSAD model and the algorithm of GSOICLW are applied to
to gain the optimal solution, considering both the mean and downside risk.

4. Simulation Studies

To evaluate effectiveness of the MLSAD model and algorithm of GSOICLW, simulation studies are
based on a modified IEEE 30-bus power system, which is shown in Fig. 3. For this system, the fuel
cost coefficients ai, bi and ci are listed in Table 1. It is assumed that a wind farm with 80 turbines is
integrated to the bus 10. Moreover, the predicted wind speed and its standard deviation of forecast
error are assumed to be 10 m/s and 8%, respectively. The sampling numbers of LHS-CD is set as
400.
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Fig. 3. IEEE 30-bus power system

Table 1 Fuel cost coefficients of the test system

Unit ai bi ci Pmax Pmin

1 0 2 0.00375 250 50
2 0 1.75 0.0175 80 20
3 0 1 0.0625 50 15
4 0 3.25 0.0083 35 10
5 0 3 0.025 30 10
6 0 3 0.025 40 12

Table 2 Results of 3 algorithms in terms of Case I

Algorithms Best Worst Average Standard p-value
($/h) ($/h) ($/h) deviation (h-value)

GSOICLW 532.4 533.6 533.1 0.18 N/A
GSO 536.6 538.4 537.4 0.39 1.801× 10−12 (1)
PSO 535.9 540.8 538.1 0.97 2.526× 10−14 (1)

Two cases are studied, one is to verify the outperformance of GSOICLW on minimization of
the fuel cost with predicted wind speed, compared with GSO and PSO. The reason is that it is usual
to compare performances of these algorithms to further prove advance of the enhanced one, using
experiments [20]. The other aims to test the effectiveness of the MLSAD model, with consideration
of uncertainty of wind power.

In the first case, GSOICLW is tested and compared with the other two optimization algorithms,
i.e., GSO and PSO, and 50 independent trails and the Mann-Whitney U-test are adopted [11]. The
numbers of fitness evaluation for the three algorithms are all set to be 15000. It is known that
parameters will affect the performance of optimization algorithms, therefore, we adopt the method
of investigating effects of control parameters [9], and obtain the appropriate parameters of IC and
LW: ζ = 0.8, η = 0.2, α = 2.0, β = 3.56 and µ = 2.
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4.1. Minimization of fuel cost considering predicted wind speed

This case aims to minimize the fuel cost as shown in (2). It is noted that we use the predicted wind
speed on bus 10 rather than uncertain speed. Simulation results, including best, worst, average
results and standard deviations of fuel costs obtained by the 3 algorithms as for 50 runs are shown
in Table 2 respectively. It is seen GSOICLW obtains better solution as the values of average and
standard deviation obtained by this algorithm are 533.1 $/h and 0.18. In terms of GSO and PSO,
the worst results (538.4 $/h and 540.8 $/h) and standard deviations (0.39 and 0.97), are much
worse than that of GSOICLW. In addition, the gained p-values and h-values of Mann-Whitney
U-test show results of GSOICLW are different from the other algorithms. Therefore, it has been
proved that GSOICLW outperforms GSO and PSO on OPF with predicted wind speed.

Moreover, Fig. 4 shows the convergent results obtained by these algorithms in the 50 trails. It is
verified that results of GSOICLW are more robust. Consequently, the standard deviation in terms
of GSOICLW is merely 0.18. Furthermore, to well demonstrate the process of IC, the varying
values among 300 iterations of scrounging coefficient (SC) and rangers’ ratio are shown in Fig. 5.
It is noted that SC is a vector, therefore, the minimum value of this vector is shown in the figure. It
can be seen that members of GSOICLW are in IC when the minimum value of SC is bigger than ζ
(0.8), and then rangers’ ratio are adaptively varying in this phrase.
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Fig. 4. The varying paremters in 300 iterations as for GSOICLW

4.2. Optimization of the MLSAD model with uncertain wind speed

In order to obtain the optimal dispatch solution considering the uncertain wind speed, the MLSAD
model is then solved by GSOICLW. By introducing risk tolerance parameter, different weights are
assigned to F exp versus the downside risk term V− shown in (10). λ is set to vary from 0.0 to
0.5. The values of mean and downside risk are obtained and shown in Table 3, and Table 4 lsits
the solutions corresponding to difficult risk tolerance parameters. We can see that different levels
of risk lead to varying fuel costs. The mean value of fuel cost corresponding to a conservative
solution (λ = 0.5) is 681.5 $/h while 533.5 $/h for the aggressive dispatch solution (λ = 0).

Furthermore, Fig. 6 depicts mean value and semi-absolute deviation (downside risk) versus the
risk tolerance parameter, which shows expected fuel cost increases as downside risk decreases.
Fig. 7 presents fuel costs corresponding to different wind power samples for solutions A, B and C
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Fig. 6. Values of mean and semi-absolute deviation with different risk tolerance parameters

when λ is chosen as 0.5, 0.2 and 0.0 respectively. It is noted that in this paper, the downside risk
is studied, therefore, the fuel costs which are more than their expectation and imply downside risk,
are shown in Fig. 7. It is evident that the averaged fuel cost of C is much less than those of other
solutions. However, its semi-absolute deviation is as high as 43.3 $/h, much more that those of
other dispatch solutions. This means that solution C cannot well adjust different wind samples, in
detail, its high downside risk implies more potential losses. For instance, the values of some fuel
costs samples are larger than those of solution B, the 47th, 202th and 264th samples are even more
than those of solution A.

Table 3 Values of mean and lower semi-absolute deviation with different risk tolerance parameters

λ 0.0 0.1 0.2 0.3 0.4 0.5
R(u)exp ($/h) 533.5 590.2 631.8 642.6 658.8 681.5

V− ($/h) 43.3 20.2 13.2 8.9 7.1 6.4
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Fig. 7. Fuel costs samples as for solutions A, B and C

On the contrary, although the deviation in terms of A is much smaller, its corresponding expect-
ed fuel cost is too high, i.e., 681.5 $/h. For the consideration of economic aspects, it may not be
reasonable for dispatchers to select this solution. Based on the discussion above, it is probable that
solution B is chosen as a final dispatch solution, to a large extent. To be concluded, power sys-
tem dispatchers should analyze both the profit and downside risk in terms of wind-thermal power
system dispatch problem.
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Table 4 The obtained solutions corresponding to difficult risk tolerance parameters

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 Min Max
PG2 36.43 45.01 49.59 51.70 52.38 53.15 20 80
PG5 17.78 20.82 23.53 19.67 19.90 25.64 15 50
PG8 10.75 15.52 25.24 13.37 12.72 26.76 10 35
PG11 10.68 11.17 17.45 12.05 13.19 16.22 10 30
PG13 12.32 12.52 15.89 14.36 12.99 23.86 12 40
VG1 1.0123 1.0221 1.0315 1.0265 1.0443 1.0232 0.95 1.10
VG2 0.9957 1.0321 1.0372 1.0367 1.0356 1.0321 0.95 1.10
VG5 0.9850 0.9905 1.0010 0.9973 1.0040 1.0199 0.95 1.10
VG8 0.9836 0.9922 0.9842 1.0097 1.0001 0.9701 0.95 1.10
VG11 1.0392 1.0192 1.0421 1.0912 1.0549 1.0758 0.95 1.10
VG13 1.0138 1.0196 1.0268 1.0795 1.0188 1.0693 0.95 1.10
T11 0.9875 0.9625 1.0000 0.9875 0.9875 0.9875 0.90 1.10
T12 0.9625 0.9500 0.9625 0.9625 0.9500 0.9625 0.90 1.10
T15 0.9750 0.9750 1.0000 0.9875 0.9750 0.9875 0.90 1.10
T36 0.9500 0.9875 0.9500 0.9625 0.9500 0.9500 0.90 1.10
QC10 0.04 0.02 0.05 0.04 0.03 0.02 0.00 0.05
QC12 0.05 0.04 0.02 0.05 0.03 0.05 0.00 0.05
QC15 0.04 0.04 0.04 0.05 0.04 0.03 0.00 0.05
QC17 0.02 0.04 0.05 0.05 0.05 0.05 0.00 0.05
QC20 0.04 0.04 0.04 0.04 0.05 0.04 0.00 0.05
QC21 0.04 0.05 0.05 0.05 0.04 0.05 0.00 0.05
QC23 0.02 0.03 0.03 0.02 0.03 0.04 0.00 0.05
QC24 0.04 0.03 0.05 0.05 0.05 0.05 0.00 0.05
QC29 0.03 0.04 0.02 0.03 0.04 0.03 0.00 0.05

5. Conclusion and Further Study

The mean-lower semi-absolute deviation (MLSAD) model has been applied to solve the wind-
thermal power system dispatch. It takes the profit and downside risk into account, and GSOICLW
is used to solve this complex problem for obtaining the dispatch solution. The simulation study
including two cases, the first has tested the performance of GSOICLW on the minimization of the
fuel cost considering predicted wind speed, and results have proved that GSOICLW outperforms
GSO and PSO. In the other case, the MLSAD model has been optimized by GSOICLW consid-
ering uncertain wind speed. Its effectiveness and applicability as for wind-thermal power system
dispatch problems have been verified by analysing expected fuel costs and downside risks in terms
of different solutions. Further study using the MLSAD model and the GSOICLW algorithm can
be investigated in the area of microgrid scheduling, energy network operations, etc.
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