
Modal Analysis of Fluid Flows: An Overview

Kunihiko Taira∗

Florida State University, Tallahassee, FL 32310, USA

Steven L. Brunton†

University of Washington, Seattle, WA, 98195, USA

Scott T. M. Dawson,‡ Clarence W. Rowley§

Princeton University, Princeton, NJ 08544, USA

Tim Colonius¶, Beverley J. McKeon‖, Oliver T. Schmidt∗∗

California Institute of Technology, Pasadena, CA, 91125, USA

Stanislav Gordeyev††

University of Notre Dame, Notre Dame, IN 46556, USA

Vassilios Theofilis‡‡

University of Liverpool, Brownlow Hill, L69 3GH, UK

Lawrence S. Ukeiley§§

University of Florida, Gainesville, FL, 32611, USA

February 7, 2017

1 Introduction

Simple aerodynamic configurations under even modest conditions can exhibit complex flows with a wide
range of temporal and spatial features. It has become common practice in the analysis of these flows to
look for and extract physically important features, or modes, as a first step in the analysis. This step
typically starts with a modal decomposition of an experimental or numerical dataset of the flow field, or of
an operator relevant to the system. We describe herein some of the dominant techniques for accomplishing
these modal decompositions and analyses that have seen a surge of activity in recent decades [1–8]. For a
non-expert, keeping track of recent developments can be daunting, and the intent of this document is to
provide an introduction to modal analysis in a presentation that is accessible to the larger fluid dynamics
community. In particular, we present a brief overview of several of the well-established techniques and clearly
lay the framework of these methods using familiar linear algebra. The modal analysis techniques covered in
this paper include the proper orthogonal decomposition (POD), balanced proper orthogonal decomposition
(Balanced POD), dynamic mode decomposition (DMD), Koopman analysis, global linear stability analysis,
and resolvent analysis.
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In the study of fluid mechanics, there can be distinct physical features that are shared across a variety
of flows and even over a wide range of parameters such as the Reynolds number and Mach number [9,
10]. Examples of common flow features and phenomena include von Kármán shedding [11–17], Kelvin–
Helmholtz instability [18–20], and vortex pairing/merging [21–23]. The fact that these features are often
easily recognizable through simple visual inspections of the flow even under the presence of perturbations or
variations provides us with the expectation that the features can be extracted through some mathematical
procedure [24]. We can further anticipate that these dominant features provide a means to describe in a
low-dimensional form what appears as complex high-dimensional flow. Moreover, as computational results
and experimental measurements are advancing their ability in providing large-scale high-fidelity data, the
compression of a vast amount of flow field data to a low-dimensional form is ever more important in studying
complex fluid flows and developing models for understanding and modeling their dynamical behavior.

To briefly illustrate these ideas, let us provide a preview of modal decomposition. In Fig. 1, we present
a modal decomposition analysis of 2D laminar separated flow over a flat-plate wing [25, 26]. By inspecting
the flow field, we clearly observe the formation of a von Kármán vortex street in the wake as the dominant
unsteady feature. A modal decomposition method discussed later (proper orthogonal decomposition [1,
27, 28]; see Section 3) can extract the important oscillatory modes of this flow. Moreover, two of these
most dominant modes and the mean represent (reconstruct) the flow field very effectively, as shown in the
bottom figure. Additional modes can be included to reconstruct the original flow more accurately, but their
contributions are much smaller in comparison to the two unsteady modes shown in this example. What
is also encouraging is that the modes seen here share striking resemblance to the dominant modes for 3D
turbulent flow at a much higher Reynolds number of 23, 000 with a different airfoil and angle of attack (see
Fig. 5).

We refer to modal decomposition as a mathematical technique to extract energetically and dynamically
important features of fluid flows. The spatial features of the flow are called (spatial) modes and they are
accompanied by characteristic values, representing either the energy content levels or growth rates and
frequencies. These modes can be determined from the flow field data or from the governing equations. We
will refer to modal decomposition techniques that take flow field data as input to the analysis as data-based
techniques. This paper will also present modal analysis methods that require a more theoretical framework or
discrete operators from the Navier–Stokes equations, and we will refer to them as operator-based techniques.

The origin of this document lies with an AIAA Discussion Group, Modal Decomposition of Aerodynamic
Flows, formed under the auspices of the Fluid Dynamics Technical Committee (FDTC). One of the initial
charters for this group was to organize an invited session where experts in the areas of modal decomposition
methods would provide an introductory crash course on the methods. The intended audience for these
talks was the non-specialist, e.g. a new graduate student or early-career researcher, who, in one afternoon,
could acquire a compact, yet intensive introduction to the modal analysis methods. This session (121-FC-5)
appeared at the 2016 AIAA Aviation conference1 (June 13-17, Washington, D.C.) and has also provided the
foundation for the present overview article.

In this overview document, we present key modal decomposition/analysis techniques that can be used to
study a range of fluid flows. We start by reprising the basics of eigenvalue and singular value decompositions in
Section 2, which serve as the backbone for all decomposition and analysis techniques discussed here. We then
present data-based modal decomposition techniques: Proper Orthogonal decomposition (POD) in Section
3, Balanced POD in Section 4, and Dynamic Mode Decomposition (DMD) in Section 5. These sections are
then followed by discussions on operator-based modal analysis techniques. The Koopman analysis is briefly
discussed in Section 6 as a generalization of the DMD analysis to encapsulate nonlinear dynamics using a
linear (but infinite-dimensional) operator-based framework. Global linear stability analysis and resolvent
analysis are presented in Sections 7 and 8, respectively. Table 1 provides a brief summary of the techniques
to facilitate comparison of the methods before engaging in details of each method.

For each of the methods presented, we provide subsections on overview, description, illustrative examples,
and future outlook. We offer in the Appendix an example of how the flow field data can be arranged into
vector and matrix forms in preparation for performing the (data-based) modal decomposition techniques

1Video recordings of this session are made available by AIAA on Youtube.
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Figure 1: Modal decomposition of two-dimensional incompressible flow over a flat-plate wing [25,26] (Re =
100 and α = 30◦). This example shows complex nonlinear separated flow being well-represented by only two
POD modes and the mean flow field. Visualized are the streamwise velocity profiles.

Table 1: Summary of the modal decomposition/analysis techniques for fluid flows presented in the present
paper. L (linear), NL (nonlinear), C (computational), E (experimental), and NS (Navier–Stokes).

Techniques Sections Inputs General descriptions

d
a
ta

-b
a
se

d

POD 3 data (L or NL
flow; C & E)

Determines the optimal set of modes to represent
data based on L2 norm (energy).

Balanced POD 4 data (L forward &
L adjoint flow; C)

Gives balancing and adjoint modes based on
input-output relation (balanced truncation).

DMD 5 data (L or NL
flow; C & E)

Captures dynamic modes with associated growth
rates and frequencies; linear approximation to
nonlinear dynamics.

o
p

er
a
to

r-
b
a
se

d

Koopman analysis 6 theoretical (also
see DMD)

Transforms nonlinear dynamics into linear repre-
sentation but with an infinite-dimensional opera-
tor; Koopman modes are approximated by DMD
modes.

Global linear stability
analysis

7 L NS operators &
base flow (C)

Finds linear stability modes about base flow
(i.e., steady state); assumes small perturbations
about base flow.

Resolvent analysis 8 L NS operators &
mean flow (C)

Provides forcing and response modes based on
input-output analysis with respect to mean flow;
can be applied to turbulent flow.
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presented here. At the end of the paper in Section 9, we provide concluding remarks on modal decomposition
methods/analyses.

Preliminaries

2 Eigenvalue and Singular Value Decompositions

The decomposition methods presented in this paper are founded on the eigenvalue and singular value decom-
positions of matrices or operators. In this section, we briefly present some important fundamental properties
of the eigenvalue and singular value decomposition techniques.

Eigenvalue decomposition is performed on a square matrix whereas singular value decomposition can be
applied on a rectangular matrix. Analyses based on the eigenvalue decomposition are usually employed when
the range and domain of the matrix or operator are the same [29]. That is, the operator of interest can take
a vector and map it into the same space. Hence, eigenvalue decomposition can help examine the iterative
effects of the operator (e.g, Ak and exp(At) = I +At+ 1

2A
2t2 + · · · ).

The singular value decomposition on the other hand is performed on a rectangular matrix, which means
that the domain and range spaces are not necessarily the same. As a consequence, singular value decom-
position is not associated with analyzing iterative operators. That is, rectangular matrices cannot serve as
propagators. However, singular value decomposition can be applied on rectangular data matrices compiled
from dynamical processes (see Section 2.3 and Appendix A for details).

The theories and numerical algorithms for eigenvalue and singular value decompositions are not provided
here but are discussed extensively in textbooks by Horn and Johnson [30], Golub and Loan [31], Trefethen
and Embree [29], and Saad [32]. Numerical programs and libraries to perform eigenvalue and singular value
decompositions are listed in Section 2.4.

2.1 Eigenvalue Decomposition

Eigenvalues and eigenvectors of a matrix (linear operator) capture the directions in which vectors can grow
or shrink. For a given matrix A ∈ Cn×n, a vector v ∈ Cn and a scalar λ ∈ C are called an eigenvector and
an eigenvalue, respectively, of A if they satisfy

Av = λv. (1)

Note that the eigenvectors are unique only up to a complex scalar. That is, if v is an eigenvector, αv is also
an eigenvector (where α ∈ C). The eigenvectors obtained from computer programs are commonly normalized
such that they have unit magnitude. The set of all eigenvalues2 of A is called a spectrum of A.

While the above expression in Eq. (1) appears simple, the concept of an eigenvector has great significance
in describing the effect of premultiplying A on a vector. The above expression states that if an operator A
is applied to its eigenvector (eigendirection), that operation can be captured solely by the multiplication of
a scalar λ, the eigenvalue associated with that direction. The magnitude of the eigenvalue tells us whether
the operator A will increase or decrease the size of the original vector in that particular direction. If
multiplication by A is performed in an iterative manner, the resulting vector from the compound operations
can be predominantly described by the eigenvector having the eigenvalue with the largest magnitude as
shown by the illustration in Fig. 2.

If A has n linearly independent eigenvectors vj with corresponding eigenvalues λj (j = 1, . . . , n), then
we have

AV = V Λ, (2)

where V = [v1 v2 · · · vn] ∈ Cn×n and Λ = diag(λ1, λ2, · · · , λn) ∈ Cn×n. Post-multiplying V −1 to the
above equation, we have

A = V ΛV −1. (3)

2If the square matrix A is real, its eigenvalues are either real or come in complex conjugate pairs.
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Figure 2: A collection of random points (vectors x) stretched in the direction of the dominant eigenvector
v1 with iterative operations Ak for matrix A that has eigenvalues of λ1 = 1.2 and λ2 = 0.5.

Im(�)

Re(�)

unstablestable

increasing
growth rate

increasing
frequency

Figure 3: The dynamic response of a linear system characterized by the eigenvalues (stable: Re(λ) < 0 and
unstable: Re(λ) > 0). Location of example eigenvalues λ are shown by the symbols with corresponding
sample solutions exp(λt) in inset plots.

This is called the eigenvalue decomposition. For the eigenvalue decomposition to hold, A needs to have a
full set of n linearly independent eigenvectors3.

For linear dynamical systems, we often encounter systems for some state variable x(t) ∈ Cn described
by

ẋ = Ax (4)

with the solution of
x(t) = exp(At)x(t0) = V exp(Λt)V −1x(t0), (5)

where x(t0) denotes the initial condition. Here, the eigenvalues characterize the long-term behavior of linear
dynamical systems [6,34] for x(t), as illustrated in Fig. 3. The real and imaginary parts of λj represent the
growth (decay) rate and the frequency at which the state variable evolves in the direction of the eigenvector
vj . For a linear system to be stable, all eigenvalues need to be on the left-hand side of the complex plane,
i.e., Re(λj) ≤ 0 for all j.

For intermediate dynamics, the pseudospectra [33, 35, 36] can provide insights. The concept of psue-
dospectra is associated with non-normality of operators and the sensitivity of the eigenvalues to pertur-
bations. Section 7 touches briefly on this topic, but it is generally outside the scope of this presentation.
Readers are referred to an excellent introductory article on the topic by Trefethen [35] and the textbook by
Trefethen and Embree [33].

For some problems, there can be a mass matrix B ∈ Cn×n that appears on the left-hand side of Eq. (4):

Bẋ = Ax. (6)

In such a case, we are led to a generalized eigenvalue problem of the form

Av = λBv. (7)

3In such case, A is called diagonalizable or non-defective. If A is defective, we have A = V JV −1 with J being the canonical
Jordan form [31,33].
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If B is invertible, we can re-write the above equation as

B−1Av = λv (8)

and treat the generalized eigenvalue problem as a standard eigenvalue problem. However, it may not be
desirable to consider this reformulation ifB is not invertible4 or if the inversion ofB results in ill-conditioning
(worsening of scaling) of the problem. Note that generalized eigenvalue problems can also be solved with
many numerical libraries, similar to the standard eigenvalue problem, Eq. (1). See Trefethen and Embree [33]
and Golub et al. [31] for additional details on the generalized eigenvalue problems.

2.2 Singular Value Decomposition (SVD)

The singular value decomposition is one of the most important matrix factorizations, generalizing the eigende-
composition to rectangular matrices. The SVD has many uses and interpretations, especially for dimension-
ality reduction, where it is possible to use the SVD to obtain optimal low-rank matrix approximations [37].
The singular value decomposition also reveals how a rectangular matrix or operator stretches and rotates a
vector. As an illustrative example, consider a set of vectors vj ∈ Rn of unit length that describe a sphere.
We can premultiply these unit vectors vj with a rectangular matrix A ∈ Rm×n as shown in Fig. 4. The
semiaxes of the resulting ellipse (ellipsoid) are represented by the unit vectors uj and magnitudes σj . Hence,
we can view the singular values to capture the amount of stretching imposed by matrix A in the directions
of the axes of the ellipse.

Generalizing this concept for complex A ∈ Cm×n, vj ∈ Cn, and uj ∈ Cm, we have

Avj = σjuj . (9)

In matrix form, the above relationship can be expressed as

AV = UΣ, (10)

where U = [u1 u2 · · · um] ∈ Cm×m and V = [v1 v2 · · · vn] ∈ Cn×n are unitary matrices5 and Σ ∈ Rm×n
is a diagonal matrix with σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 along its diagonal, where p = min(m,n). Now, multiplying
the inverse of V from the right side of the above equation, we arrive at

A = UΣV ∗, (11)

which is referred to as the singular value decomposition (SVD). In the above equation, ∗ denotes conjugate
transpose. The column vectors uj and vj of U and V are called the left and right singular vectors, respec-
tively. Both of the singular vectors can be determined up to a complex scalar of magnitude 1 (i.e, eiθ, where
θ ∈ [0, 2π]).

Given a rectangular matrixA, one can decompose the matrix with SVD in the following graphical manner

A = U

V ⇤⌃

n

m m

n

nm

m� n

n

(12)

where we have taken m > n in this example. Sometimes the components in U enclosed by the broken lines
are omitted from the decomposition, as they are multiplied by zeros in Σ. The decomposition that disregards

4The incompressible Navier–Stokes equations can lead to singular B since the continuity equation does not have a time
derivative term. Also see Section 7.

5Unitary matrices U and V satisfy, U∗ = U−1, V ∗ = V −1, with ∗ denoting conjugate transpose.
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Figure 4: Graphical representation of singular value decomposition transforming a unit radius sphere, de-
scribed by right singular vectors vj , to an ellipse (ellipsoid) with semiaxes characterized by the left singular
vectors uj and magnitude captured by the singular values σj . In this graphical example, we take A ∈ R3×3.

the submatrices in the broken line boxes are called the reduced SVD (economy-sized SVD), as opposed to
the full SVD.

In a manner similar to the eigenvalue decomposition, we can interpret SVD as a means to represent the
effect of matrix operation merely through the multiplication by scalars (singular values) given the appropriate
directions. Because SVD is applied to a rectangular matrix, we need two sets of basis vectors to span the
domain and range of the matrix. Hence, we have the right singular vectors V that span the domain of A
and the left singular vectors U that span the range of A, as illustrated in Fig. 4. This is different from
the eigenvalue decomposition of a square matrix, in which case the domain and the range are (generally)
the same. While the eigenvalue decomposition requires the square matrix to be diagonalizable, SVD on the
other hand can be performed on any rectangular matrix.

2.3 Relationship between Eigenvalue and Singular Value Decompositions

The eigenvalue and singular value decompositions are closely related. In fact, the left and right singular
vectors of A ∈ Cm×n are also the orthonormal eigenvectors of AA∗ and A∗A, respectively. Furthermore,
the nonzero singular values ofA are the square roots of the nonzero eigenvalues ofAA∗ andA∗A. Therefore,
instead of the SVD, the eigenvalue decomposition can be performed on AA∗ or A∗A to solve for the singular
vectors and singular values of A. For these reasons, the smaller of the square matrices of AA∗ and A∗A is
often chosen to perform the decomposition in a computationally inexpensive manner compared to the full
SVD. This property is taken advantage of in some of the decomposition methods discussed below since flow
field data usually yields a rectangular data matrix that can be very high-dimensional in one direction (e.g.,
snapshot POD method [28] in Section 3).

2.4 Numerical Libraries for Eigenvalue and Singular Value Decompositions

We list a few standard numerical libraries (codes) to perform eigenvalue and singular value decompositions.

MATLAB In MATLAB R©, the command eig finds the eigenvalues and eigenvectors for standard eigen-
value problems as well as generalized eigenvalue problems. The command svd outputs the singular values
and the left and right singular vectors. It can also perform the economy-sized SVD. For small to moderate
size problems, MATLAB can offer a user-friendly environment to perform modal decompositions. We pro-
vide in Table 2 some common examples of eig and svd in use for canonical decompositions. For additional
details, see the documentation available on http://www.mathworks.com.

LAPACK (Linear Algebra PACKage) LAPACK offers standard numerical library routines for a va-
riety of basic linear algebra problems, including eigenvalue and singular value decompositions. The routines
are written in Fortran 90. See http://www.netlib.org/lapack and the users’ guide [38].

ScaLAPACK (Scalable LAPACK) ScaLAPACK is comprised of high-performance linear algebra rou-
tines for parallel distributed memory machines. ScaLAPACK solves dense and banded eigenvalue and sin-
gular value problems. See http://www.netlib.org/scalapack/ and the users’ guide [39].

7
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ARPACK (ARnoldi PACKage) ARPACK is a numerical library, written in FORTRAN 77, specialized
to handle large-scale eigenvalue problems as well as generalized eigenvalue problems. It can also perform
singular value decompositions. The library is available both for serial and parallel computations. See
http://www.caam.rice.edu/software/ARPACK and the users’ guide [40].

Table 2: MATLAB eig and svd examples for eigenvalue and singular value decompositions.
Decomposition MATLAB code Ref.

Eigenvalue decomposition [V,Lambda] = eig(A) (A*V = V*Lambda) Eq. (2)
Generalized eigenvalue decomp. [V,Lambda] = eig(A,B) (A*V = B*V*Lambda) Eq. (7)
Singular value decomposition [U,Sigma,V] = svd(A) (A = U*Sigma*V’) Eq. (11)
Reduced (economy-sized) SVD [U,Sigma,V] = svd(A,’econ’) (A = U*Sigma*V’) Eq. (12)

Data-based Modal Decomposition Methods

3 Proper Orthogonal Decomposition (POD)

The Proper Orthogonal Decomposition (POD) is a modal decomposition technique that extracts modes
based on optimizing the mean square of the field variable being examined. It was introduced to the fluid
dynamics/turbulence community by Lumley [27] as a mathematical technique to extract coherent structures
from turbulent flow fields. The POD technique, also known as the Karhunen-Loève (KL) procedure [41,42],
provides an objective algorithm to decompose a set of data into a minimal number of basis functions or modes
to capture as much energy as possible. The method itself is known under a variety of names in different fields:
POD, principal component analysis (PCA), Hotelling analysis, empirical component analysis, quasiharmonic
modes, empirical eigenfunction decomposition and others. Closely related to this technique is factor analysis,
which is used in psychology and economics. Roots of POD can be traced back to the middle of 19th century
to the matrix diagonalization technique, which is ultimately related to SVD (Section II). Excellent reviews
on POD can be found in Refs. [43], [1], and Chapter 3 of [44].

In applications of POD to a fluid flow, one starts with a vector field q(ξ, t) (e.g., velocity) and assumes
it can be decomposed in the following manner

q(ξ, t) =
∑
j

ajφj(ξ, t), (13)

where φj(ξ, t) and aj represent the modes and expansion coefficients respectively. Here, ξ denotes the
spatial vector6. This expression represents the flow field in terms of a generalized Fourier series for some
basis functions φj(ξ, t), which are optimal in a mean square sense and extracted from the flow field data
itself. In the framework of POD, we can seek the optimal set of basis functions to represent a given flow field
data due to the fact that that modes are extracted from the flow field of interest itself. In early applications
of the POD, this has typically led to modes that are functions of space and time [45–48] as in Eq. (13).

In many modern applications of modal decompositions, one seeks to split space and time, hence only
needing spatial modes. In that context, the above equation can be written as

q(ξ, t) =
∑
j

aj(t)φj(ξ), (14)

where the expansion coefficients are now time dependent. Note that Eq. (14) explicitly employs a separation
of variables, which may not be appropriate for all problems. The application of two forms listed above should

6Because we reserve the symbol x to denote the data vector, we use ξ to represent the spatial coordinates in this paper.

8

http://www.caam.rice.edu/software/ARPACK


depend on the properties of the flow and the information one wishes to extract as discussed in Holmes et
al. [49]. In what follows, we will discuss the properties of the POD assuming that the desire is to extract a
spatially dependent set of modes.

POD is one of the most widely used techniques in analyzing fluid flows. There are a large number of
variations of the POD technique with applications including fundamental analysis of fluids flows, reduced-
order modeling, reconstruction of fluid flow data, flow control, and aerodynamic design optimization. Since
POD has served as a basis and motivation for the development of other modal decomposition techniques, we
provide a somewhat detailed overview of the techniques, including the three approaches to perform POD, as
described below.

3.1 Description

Algorithm

Inputs: Snapshots of spatial field (1D, 2D or 3D) of any scalar (e.g., pressure, temperature) or vector (e.g.,
velocity, vorticity) field, q(ξ, t), over discrete spatial points ξ at discrete times ti.

Outputs: Set of orthogonal modes, φj(ξ), with their corresponding temporal coefficients, aj(t), and energy
levels, λj , arranged in the order of their relative amount of energy. The original field is expressed as a linear
combination of the modes and their corresponding temporal coefficients, q(ξ, t) =

∑
j aj(t)φj(ξ).

There are three main approaches to perform POD of the flow field data, namely the classical POD
method, snapshot POD method, and SVD. Below, we briefly describe these three methods and discuss how
they are related to each other.

Classical POD Method

With POD, we determine the set of basis functions that can optimally represent the given flow field data.
First, given the flow field q(ξ, t), we prepare snapshots of the flow field stacked in terms of a collection of
column vectors x(t). That is, we consider a collection of finite-dimensional data vectors that represents the
flow field

x(t) = q(ξ, t)− q(ξ) ∈ Rn, t = t1, t2, . . . , tm. (15)

Here, x(t) is taken to be the fluctuating component of the data vector with the time-averaged value q(ξ)
removed. While the data vector can be written as x(ξ, t), we simply write x(t) to emphasize that it is being
considered as a snapshot at time t. An example of forming the data vector x(t) for a given flow field is
provided in Appendix A.

The objective of the POD analysis is to find the optimal basis vectors that can best represent the given
data. That is, we seek the vectors φj(ξ) in Eq. (14) that can represent q(ξ) in an optimal manner and with
the least number of modes. The solution to this problem [37] can be determined by finding the eigenvectors
φj and the eigenvalues λj from

Rφj = λjφj , φj ∈ Rn, λ1 ≥ · · · ≥ λn ≥ 0, (16)

where R is the covariance matrix7 of vector x(t)

R =

m∑
i=1

x(ti)x
T (ti) = XXT ∈ Rn×n, (17)

where the matrix X represents the m snapshot data being stacked into a matrix form of

X = [x(t1) x(t2) . . . x(tm)] ∈ Rn×m. (18)

7Precisely speaking the covariance matrix is defined as R ≡ XXT /m or XXT /(m − 1). For clarity of presentation, we
drop the factor 1/m and note that it is lumped into the eigenvalue λk.
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The size of the covariance matrix n is based on the spatial degrees of freedom of the data. For fluid flow
data, n is generally large and is equal to the number of grid points times the number of variables to be
considered in the data, as illustrated in Eq. (51) of the Appendix. See the Appendix for an example of how
the data matrix can be prepared from the velocity field data.

The eigenvectors found from Eq. (16) are called the POD modes. It should be noted that the POD modes
are orthonormal. That means that the inner product8 between the modes are orthonormal:〈

φj ,φk
〉
≡
∫
V

φj · φkdV = δjk, j, k = 1, . . . , n. (19)

Consequently, the eigenvalues λk convey how well each eigenvector φk captures the original data in the L2

sense (scaled by m). When the velocity vector is used for x(t), the eigenvalues correspond to the kinetic
energy captured by the respective POD modes. If the eigenvalues are arranged from the largest to the smallest
in decreasing order, we can arrange the POD modes in the order of importance in terms of capturing the
kinetic energy of the flow field.

We can use the eigenvalues to determine the number of modes needed to represent the fluctuations in
the flow field data. Generally, we retain only r number of modes to express the flow such that

r∑
j=1

λj/

n∑
j=1

λj ≈ 1. (20)

With the determination of the important POD modes, we can represent the flow field only in terms of finite
or truncated series,

q(ξ, t) ≈
r∑
j=1

aj(t)φj(ξ) (21)

in an optimal manner, effectively reducing the high-dimensional (n) flow field to be represented only with r
modes. The temporal coefficients are determined by

aj(t) =
〈
q(ξ, t)− q(ξ),φj(ξ)

〉
=
〈
x(t),φj

〉
, (22)

where q is the mean flow variable.

Method of Snapshots

When the size of the data n is very large, the size of the correlation matrix R = XXT also becomes very
large (n × n) that the use of the classical POD method for finding the eigenfunctions becomes practically
impossible. Sirovich [28] pointed out that the temporal correlation matrix will yield the same dominant
spatial modes, while giving rise to a much smaller and computationally more tractable eigenvalue problem.
This alternative approach called the method of snapshots takes a collection of snapshots x(ti) at discrete
time levels ti, i = 1, 2, . . . , m, with m� n, and solves an eigenvalue problem of a smaller size (m×m) to
find the POD modes. The number of snapshots m should be chosen such that important fluctuations in the
flow field are well resolved in time.

The method of snapshots relies on solving an eigenvalue problem of a much smaller size

XTXψj = λjψj , ψj ∈ Rm, m� n, (23)

where XTX is of size m×m instead of the original eigenvalue problem of size n × n, Eq. (16). While we
are analyzing the smaller eigenvalue problem, the same nonzero eigenvalues are shared by XTX and XXT

8For the sake of discussion, we consider the flow field data to be placed on a uniform grid such that scaling due to the size
of the cell volume does not need to be taken into account. In general, cell volume for each data point needs to be included
in the formulation to represent this inner product (volume integral). Consequently, the covariance matrix, Eqs. (16) and (17)
should be written as R ≡ XXTW , where W holds the spatial weights. The matrix XTX that later appears in Eq. (23) for
the method of snapshot would similarly be replaced by XTWX.
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and the eigenvectors of these matrices can be related to each other (see Section 2.3). With the eigenvectors
ψj of the above smaller eigenvalue problem determined, we can recover the POD modes through

φj = Xψj
1√
λj
∈ Rn, k = 1, 2, . . . ,m, (24)

which can equivalently be written in matrix form as

Φ = XΨΛ−1/2, (25)

where Φ = [φ1 φ2 . . . φm] ∈ Rn×m and Ψ = [ψ1 ψ2 . . .ψm] ∈ Rm×m.
Due to the significant reduction in the required computation and memory resource, the method of snap-

shots has been widely used to determine POD modes from high-dimensional fluid flow data. In fact, this
snapshot-based approach is the most widely used POD method.

SVD and POD

Let us consider the relation between POD and SVD, as discussed in Section 2.3. Recall that SVD [3,29,31]
can be applied to a rectangular matrix to find the left and right singular vectors. In matrix form, a data
matrix X can be decomposed with SVD as

X = ΦΣΨT , (26)

where Φ ∈ Rn×n, Ψ ∈ Rm×m, and Σ ∈ Rn×m, with m < n. The matrices Φ and Ψ contain the left and
right singular vectors9 of X and matrix Σ holds the associated singular values (σ1, σ2, . . . , σm) along its
diagonal. In fact, these singular vectors Φ and Ψ are identical to the eigenvectors of XXT and XTX,
respectively. Moreover, the singular values and the eigenvalues are related by σ2

j = λj . This means that
SVD can be directly performed on X to determine the POD modes Φ. It should be noted that Φ obtained
from Eq. (26) has a full size of n × n compared to Φ from the snapshot approach which is n ×m, holding
only the leading m modes.

The terms POD and SVD are often used interchangeably in the literature. However, SVD is a decom-
position technique for rectangular matrices in general and POD can be seen as a decomposition formalism
for which SVD can be one of the approaches to determine its solution. While the method of snapshot is
preferred for handling large data sets, the SVD based technique to determine the POD modes is known to
be more robust against roundoff errors [3].

Notes

Optimality The POD modes are computed in the optimal manner in the L2 sense [1]. If the velocity or
vorticity field is used to determine the POD modes, the modes are optimal to capture the kinetic energy
or enstrophy, respectively, of the flow field. Moreover, POD decomposition is optimal not only in terms of
minimizing mean-square error between the signal and its truncated representation, but also minimizing the
number of modes required to describe the signal for a given error [50].

The optimality (the fastest-convergent property) of POD reduces the amount of information required to
represent statistically-dependent data to a minimum. This crucial feature explains the wide usage of POD in
a process of analyzing data. For this reasons, POD is used extensively in the fields of detection, estimation,
pattern recognition, and image processing.

Reduced-order Modeling The orthogonality of POD modes,
〈
φj ,φk

〉
= δjk, is an attractive property

for constructing reduced-order models [1,51]. Galerkin projection can be utilized to reduce high-dimensional
discretizations of partial differential equations into reduced-order ordinary-differential equation models for
the temporal coefficients aj(t). POD modes have been used to construct Galerkin projection based reduced-
order models for incompressible [46,52–54] and compressible [55] flows.

9The matrices Φ and Ψ are orthonormal, i.e, ΦTΦ = ΦΦT = I and ΨTΨ = ΨΨT = I.
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Constraints With linear superposition of POD modes in representing the flow field, each and every POD
mode also satisfies linear constraints, such as the incompressibility constraint and the no-slip boundary
condition. This statement assumes that the given data also satisfies these constraints.

Homogeneous directions For homogeneous, periodic, or stationary (translationally invariant) directions,
POD modes reduce to Fourier modes [56].

Strengths and Weaknesses

Strengths:

• POD gives an orthogonal set of basis vectors with the minimal dimension. This property is useful in
constructing a reduced-order model of the flow field.

• POD modes are simple to compute using either classical or snapshot methods. The method of snapshots
is especially attractive for high-dimensional spatial data sets.

• POD can be used to remove the incoherent noise from the dataset by simply removing high-order
modes from the expansion.

• POD (PCA) analysis is very widely used in a broad spectrum of studies. It is used for pattern
recognition, image processing, and to optimally store/compress large databases.

Weaknesses:

• As POD is based on second-order correlation, higher order correlations are ignored.

• POD modes generally correspond to a mix of frequencies.

• POD arranges modes in terms of the amount of energy, and not in the order of the dynamical impor-
tance. This point is addressed by Balanced POD and DMD analyses.

• It is not always clear how many POD modes should be kept, and there are many different truncation
criteria.

• POD modes are not well-suited to describe traveling wave structures, since the technique assumes that
the flow field can be separated into temporal and spatial functions (i.e., f(ξ − ct) is not separable into
temporal and spatial functions).

3.2 Illustrative Examples

Turbulent Separated Flow over an Airfoil

We present an example of applying the POD analysis on the velocity field obtained from 3D large-eddy
simulation (LES) of turbulent separated flow over a NACA 0012 airfoil [57]. The flow is incompressible with
spanwise periodicity at Re = 23, 000 and α = 9◦. Visualized in Fig. 5 (left) are the instantaneous and time-
averaged streamwise velocity on a spanwise slice. We can observe that there are large-scale vortical structures
in the wake from von Kármán shedding yielding spatial and temporal fluctuations about the mean flow. Also
present are the finer-scale turbulent structures in the flow. Performing POD on the flow field data, we can
find the dominant modes [58]. Here, the first four dominant POD modes with the percentage of kinetic
energy held by the modes are shown in Fig. 5 (middle and right). The shown four modes together capture
approximately 19% of the unsteady fluctuations over the examined domain. Modes 1 and 2 (first pair)
represent the most dominant fluctuations in the flow field possessing equal level of kinetic energy, amounting
to oscillatory (periodic) modes. Modes 3 and 4 (second pair) represent the subharmonic spatial structures
of modes 1 and 2 in this example. Compared to the laminar case shown in Fig. 1, the number of modes
required to reconstruct this turbulent flow is increased, due to the increased complexity and dimensionality
of the turbulent flow. Note that the dominant features of the shown POD modes share similarities with the
laminar flow example shown in Fig. 1, despite the large difference in the Reynolds numbers.
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Figure 5: POD analysis of turbulent flow over a NACA0012 airfoil at Re = 23, 000 and α = 9◦. Shown are
the instantaneous and time-averaged streamwise velocity fields and the associated four most dominant POD
modes [57,58]. Reprinted with permission from Springer.

Compressible Open Cavity Flows

As the second sample application of POD, let us look at an analysis of the velocity field in the shear layer
above an open cavity obtained from experiments, as reported in Murray et al. [59]. In this study the snapshot
POD was applied to two-component PIV data acquired with several different free stream Mach numbers from
0.2 through 0.73. In these applications, the dominant mode (mode 1) contains between 15 and 20 percent
of the energy with 50 percent represented by the first 7 modes. The interesting result of this study was
the similarity of the modes amongst 4 of the free stream Mach numbers investigated even though there
were differences in the mean flow patterns. The first 5 POD modes associated with the vertical velocity
component are presented in Fig. 6. In this figure, one can observe a representation of the vortical structures
in the cavity shear layer with similar wavelengths regardless of the free stream Mach number. Further
quantitative analysis of the similarity of the modes was verified by checking the orthogonality between the
modes for the various applications. The implication of this study was that the similarity of the modes implied
that the underlying turbulence had the same structure, at least over the range of free stream Mach numbers
investigated, regardless of the mean flow differences.

3.3 Outlook

POD has been the bedrock of modal decomposition techniques to extract coherent structures for unsteady
fluid flows. To address some of the shortcomings of standard POD analysis, many variations have emerged;
namely the Balanced POD [60] (see Section 4), Split POD [61], Temporal POD [62], Joint POD [63], amongst
others. Moreover, there has been an overarching study recently to bridge the gap between POD and Fourier
modes through Spectral POD [64], which reintroduced some of the early POD discussions by Lumley [27]
and George [65].

There have also been efforts to construct reduced-order models based on Galerkin projection to capture
the essential physics [1, 46, 52–54] and to implement model-based closed-loop flow control [51, 66]. More
recently, there are emerging approaches to model and control fluid flows leveraging cluster-based analysis [67]
and networked-oscillator representation [68] of complex unsteady fluid flows taking advantage of the POD
modes.

4 Balanced Proper Orthogonal Decomposition (Balanced POD)

Balanced Proper Orthogonal Decomposition (Balanced POD) is a modal decomposition technique that
can extract two sets of modes for specified inputs and outputs. Here, the inputs are typically external

13



M1 = 0.19 M1 = 0.29

m
o
d
e

1
m

o
d
e

2
m

o
d
e

3
m

o
d
e

4
m

o
d
e

5

Figure 6: POD modes of the vertical fluctuating velocity for flows over a rectangular cavity at Mach numbers
M∞ = 0.19 and 0.29 [59]. Reprinted with permission from AIP Publishing.

disturbances, or actuation used for flow control. The outputs are typically the available sensor measurements,
or the quantities one wants to capture with a model (for instance, they could be amplitudes of POD modes).

This method is an approximation of a technique called balanced truncation [69] that is a standard method
used in control theory, and balances the properties of controllability and observability: the most controllable
states correspond to those that are most easily excited by the inputs, and the most observable states corre-
spond to those that excite large future outputs. In a reduced-order model, one wishes to retain both the most
controllable modes and the most observable modes, but the difficulty is that for some systems (particularly
systems that are non-normal which arise in many shear flows), states that have very small controllability
might have very large observability, and vice versa. Balancing involves determining a coordinate system
in which the most controllable directions in state space are also the most observable directions. One then
truncates the states that are the least controllable/observable.

Balanced POD is closely related to POD: both procedures produce a set of modes that describe the
coherent structures in a given fluid flow, and the computations required are also similar (both involve SVD).
However, there are some important differences. POD provides a single set of modes that are orthogonal, and
are ranked by energy content; in contrast, Balanced POD provides two sets of modes, balancing modes and
adjoint modes, which form a bi-orthogonal set, and are ranked by controllability/observability (which one can
think of as importance to the input-output dynamics). With both POD and Balanced POD, a quantity q(ξ, t)
is expanded as q(ξ, t) =

∑n
j=1 aj(t)φj(ξ), where φj are the POD modes or direct balancing modes, and aj(t)

are scalar temporal coefficients. For POD, the modes φj are orthonormal (which means
〈
φj ,φk

〉
= δjk), so

the coefficients aj are computed by aj(t) =
〈
q,φj

〉
. With Balanced POD, bi-orthogonality of the balancing

modes φj and adjoint modes ψk means that these satisfy
〈
φj ,ψk

〉
= δjk, and the coefficients aj are then

determined by aj(t) =
〈
q,ψj

〉
.

The dataset used for Balanced POD is also quite specific: it consists of the linear responses of the system
to impulsive inputs (one time series for each input), as well as impulse responses of an adjoint system (one
adjoint response for each output). It is these adjoint simulations that enable Balanced POD to determine
the observability (or sensitivity) of different states, which makes the procedure so effective for non-normal
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systems. However, because adjoint information is required, it is usually not possible to apply Balanced
POD to experimental data. It has been shown that a system identification method called the Eigensystem
Realization Algorithm (ERA) [70] produces reduced-order models that are equivalent to Balanced POD
models, without the need for adjoint responses, and can therefore be used on experimental data [71]. For
the full details of Balanced POD, see Rowley [60] or the second edition of Holmes et al. [1] (Chapter 5). A
description of a related method is also given in Willcox and Peraire [72].

4.1 Description

Algorithm

As the Balanced POD analysis is founded on linear state-space systems, the inputs to Balanced POD should
be obtained from linear dynamics.

Inputs: Two sets of snapshots from a linearized forward simulation and a companion adjoint simulation.

Outputs: Sets of balancing modes and adjoint modes ranked in the order of the Hankel singular values.
These modes comprise a coordinate transform that balances the controllability and observability of the
system.

Balanced POD is based on the concept of balanced truncation that seeks the balancing transform Φ
and its inverse transform Ψ that can diagonalize and equate the (empirical) controllability and observability
Gramians, W c and W o, respectively, such that Ψ∗W cΨ = ΦW oΦ

∗ = Σ is a diagonal matrix, providing
a balancing measure between controllability and observability in the transformed coordinate. While the
controllability Gramian can be determined from forward simulation, the observability Gramian requires
results from the adjoint simulation.

Here, let us introduce the forward and adjoint linear systems and present the snapshot-based Balanced
POD technique [60] that is analogous to the snapshot-based POD method. Following standard state-space
notation from control theory, the forward and adjoint simulations should solve{

ẋ = Ax+Bu

y = Cx
(27)

and {
ż = ATz +CTv

w = BTz.
(28)

For the forward dynamics, Eq. (27), x(t) ∈ Rn, y(t) ∈ Rq, u(t) ∈ Rp are the state, output, and input vectors,
and A ∈ Rn×n, B ∈ Rn×p, and C ∈ Rq×n are the state, input, and output matrices, respectively. For the
adjoint system, Eq. (28), z(t) ∈ Rn, w(t) ∈ Rp, v(t) ∈ Rq are the adjoint state, output, and input vectors.
Based on the solution of these systems, we can construct the data matrices (also see Appendix A):

X = [x(t1) x(t2) . . . x(tm)] ∈ Rn×m (29)

and
Z = [z(t1) z(t2) . . . z(tm)] ∈ Rn×m. (30)

Consequently, the empirical controllability and observability Gramians are given by W c ≈ XXT and
W o ≈ ZZT , respectively. The balancing transform Φ and its inverse Ψ can simply be found as

Φ = XV Σ−1/2 and Ψ = ZUΣ−1/2, (31)

where U , Σ, are V are determined from the SVD of the matrix product ZTX:

ZTX = UΣV T . (32)

The columns φj and ψj of Φ and Ψ correspond to the balancing and adjoint modes ranked in the order of
Σ = diag(σ1, σ2, . . . , σm), which are referred to as the Hankel singular values.
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Notes

Bi-orthogonality The property of bi-orthogonality (
〈
φj ,ψk

〉
= δjk) can be used as a projection to derive

a reduced-order model known as the Petrov–Galerkin model [73].

Eigenvalue Realization Algorithm (ERA) If one is only interested in deriving such a reduced-order
model without the need to access the balancing and adjoint modes, one can instead utilize ERA and remove
the requirement to perform the adjoint simulation. For additional details on the derivation of the models
and ERA, we ask the readers to refer to the work of Juang and Papas [70] and Ma et al. [71].

Strengths and Weaknesses

Strengths:

• Balanced POD is particularly attractive for capturing the dynamics of non-normal systems with large
transient growth [73]. Since POD ranks the modes based on energy content, non-normal characteristics
of the flow may not be captured. In contract, with BPOD models capture small-energy perturbations
that are highly observable (typically through the adjoint modes). For this reason, Balanced POD
models typically perform better than POD models for non-normal systems.

• Balanced POD provides an input-output model suitable for feedback control [73].

Weaknesses:

• Snapshots from adjoint simulations are needed, which makes Balanced POD analysis difficult or im-
possible to perform with experimental measurements. However, ERA can be used instead if only the
Balanced POD-based model is sought for; without access to the balancing and adjoint modes [70,71].

• Both forward and adjoint simulations should be based on linear dynamics (though various extensions
to nonlinear systems have been introduced [74,75]).

4.2 Illustrative Example

Control of Wake Behind a Flat-Plate Wing

Balanced POD has been applied to analyze and control the unsteady wake behind a flat-plate wing at
Re = 100. In the work of Ahuja and Rowley [76], they have performed linearized forward and adjoint
simulations of flow over a flat-plate wing to determine balancing and adjoint modes as shown in Fig. 7 (left).
The balancing modes resemble those of the traditional POD modes but the adjoint modes highlight regions
of the flow that can trigger large perturbations downstream. The modes are then used to develop models
and closed-loop controllers to stabilize the naturally unstable fluid flows, as depicted in Fig. 7 (right). While
their work necessitated snapshots from the forward and adjoint simulations, the requirement for adjoint
simulations was later removed by the use of ERA in the work by Ma et al. [71]. Although the balancing and
adjoint modes are not revealed from ERA, the resulting reduced-order model was shown to be identical to
the Balanced POD based model. This was numerically demonstrated using the same flat-plate wing problem
along with a successful implementation of the observer-based feedback control.

4.3 Outlook

While BPOD has been successfully applied to model and control a number of fluids systems [73, 76–79],
further research could validate and extend its use to a wider range of fluids applications. Work towards this
goal currently includes application to the control of nonlinear systems [80], direct application to unstable
systems [81], and use with harmonically forced data [82]. Further work could also seek algorithmic variants
that improve efficiency. Examples of work in this direction include analytic treatment of impulse response
tails [83], and the use of randomized methods [84, 85]. While at present the need for adjoint simulations
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Figure 7: Use of BPOD analysis for feedback stabilization of the unstable wake behind a flat plate (Re = 100,
α = 35◦) [76]. First and third balancing and adjoint modes are shown on the left. Baseline lift history is
shown in dashed line and controlled cases with different initiation times of feedback control using Balanced
POD based reduced-order model are plotted in solid lines on the right. Reprinted with permission from
Cambridge University Press.

makes BPOD unsuitable for experimental data, future work could possibly remove this restriction, by making
use of the connections that BPOD shares with methods such as ERA and DMD.

5 Dynamic Mode Decomposition (DMD)

Dynamic mode decomposition (DMD) provides a means to decompose time-resolved data into modes, with
each mode having a single characteristic frequency of oscillation and growth/decay rate. DMD is based on
the eigendecomposition of a best-fit linear operator that approximates the dynamics present in the data. This
technique was first introduced to the fluids community in an APS talk [86], subsequently followed up with
an archival paper by Schmid [87]. The connections with the Koopman operator (see Section 6) were given in
Rowley et al. [88], which explains the meaning of DMD for a nonlinear system (see also the review articles
by Mezic [89] and Tu et al. [90]). There have been a number of different formulations and interpretations of
DMD since then [4], which are mentioned in this section.

In many ways, DMD may be viewed as combining favorable aspects of both the POD and the discrete
Fourier transform (DFT) [88, 91], resulting in spatio-temporal coherent structures identified purely from
data. Because DMD is rooted firmly in linear algebra, the method is highly extensible, spurring considerable
algorithmic developments. Moreover, as DMD is purely a data-driven algorithm without the requirement for
governing equations, it has been widely applied beyond fluid dynamics: in finance [92], video processing [93–
95], epidemiology [96], robotics [97], and neuroscience [98]. As with many modal decomposition techniques,
DMD is most often applied as a diagnostic to provide physical insight into a system. The use of DMD
for future-state prediction, estimation, and control is generally more challenging and less common in the
literature [4].

5.1 Description

Algorithm

Inputs: A set of snapshot pairs from fluids experiments or simulations, where the two snapshots in each
pair are separated by a constant interval of time. Often, this will come from a time-series of data.

Outputs: DMD eigenvalues and modes. The modes are spatial structures that oscillate and/or grow/decay
at rates given by the corresponding eigenvalues. These come from the eigendecomposition of a best-fit linear
operator that approximates the dynamics present in the data.
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We begin by collecting snapshots of data and arranging them as columns of matrices X and X#, such
that

X = [x(t1) x(t2) · · · x(tm)] ∈ Rn×m and X# = [x(t2) x(t3) · · · x(tm+1)] ∈ Rn×m. (33)

In DMD, one assumes a linear relationship between the snapshots, so that there is a matrix A such that

X# = AX. (34)

The matrix A may be defined by A = X#X+, where X+ denotes the pseudoinverse of X. The DMD
eigenvalues and modes are then defined as the eigenvalues and eigenvectors of A [90]. It is common that the
number of snapshots is smaller than the number of components of each snapshot (m � n). In this case, it
is not efficient to compute A explicitly, so one normally uses an algorithm such as the following, similar to
Algorithm 2 in Tu et al. [90]:

• Perform the reduced SVD10 (Section 2.2) of X, letting X = UΣV T .

• (Optional) Truncate the SVD by considering only the first r columns of U and V , and the first r rows
and columns of Σ (with the singular values ordered by size), to obtain U r, Σr, and V r.

• Let Ã = UT
rAU r = UT

rX
#V rΣ

−1
r ∈ Rr×r and find the eigenvalues µj and eigenvectors ṽj of Ã, with

Ãṽj = µj ṽj ,

• Every nonzero µi is a DMD eigenvalue, with corresponding DMD mode given by vi = µ−1i X
#V rΣ

−1
r ṽi.

It is common to compute the projected DMD modes, which are simply Pvi = U rṽi, where P = U rU
T
r

is the orthogonal projection onto the first r POD modes of the data in X.

Note that matrix A in Eq. (34) is related to operator exp(A∆t) in Eq. (5), with ∆t = ti+1 − ti. Hence,
their eigenvalues are related by

λj =
1

∆t
log(µj). (35)

Using this relationship, the growth/decay rates and frequencies of the DMD modes can be inferred by
examining the real and imaginary components of λj .

Notes

Computationally efficient algorithms A fast method to perform DMD in real time on large datasets
was recently proposed in Hemati et al. [99]. A library of tools for computing variants of DMD is available
at https://github.com/cwrowley/dmdtools, and a parallelized implementation of DMD (as well as other
system identification/modal decomposition techniques) is described in Belson et al. [100].

Sparsity It is often desirable to represent a dataset sparsely, i.e., in terms of a small number of DMD
modes. Because DMD modes are not orthogonal and have no objective ranking (as POD modes have),
this is not an easy task. A number of variants of DMD have been proposed to provide such a sparse
representation: for instance, the optimized DMD [91] and the optimal mode decomposition [101] are two
such variants. An algorithm called sparsity-promoting DMD has also been proposed [102], with Matlab
code available at http://www.ece.umn.edu/users/mihailo/software/dmdsp/. Note that finding a sparse
representation of a dataset is different from applying DMD to sparse data. On this latter problem, it has
been shown that compressed sensing can be used to apply DMD to temporally [103] or spatially [104, 105]
sparse data, and that randomized methods can be used for enhanced computational efficiency [106].

Systems with inputs/control Some systems have external inputs that are known (unlike process noise):
for instance, in a flow control situation, the input would be the signal to the actuator. DMD has recently
been extended to handle such systems [107].

10Since X ∈ Rn×m, we have U ∈ Rm×m, V ∈ Rn×n, and Σ ∈ Rm×n. Note that in this case, UT = U−1 and V T = V −1.
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Nonlinear systems As mentioned above, the connections with the Koopman operator give meaning to
DMD when applied to a nonlinear system; however, when nonlinearity is important, DMD often gives un-
reliable results, unless a sufficiently large set of measurements is used in the snapshots: for instance, it can
help to include the square of the velocities in each snapshot, in addition to the velocities themselves. Recent
work [108] clarifies these issues and extends DMD to allow for a better global approximation of Koopman
modes and eigenvectors, as well as Koopman eigenfunctions. Data-driven approximation of Koopman eigen-
functions can be used as a set of universal coordinates, through which disparate datasets may be related [109],
for example.

Connections with other methods In many situations, DMD is equivalent to a Discrete Fourier Trans-
form [88, 91]. In addition, DMD shares algorithmic similarities with a number of other techniques, such as
the eigensystem realization algorithm [90], and linear inverse modeling [87, 90] (a technique used in climate
science). If DMD is applied to linearized flow about its steady state, the extracted DMD modes capture the
global modes (also see Section 7).

Strengths and Weaknesses

Strengths:

• DMD does not require any a priori assumptions or knowledge of the underlying dynamics (entirely
data-driven).

• DMD can be applied to many types of data, or even concatenations of disparate data sources.

• Under certain conditions, DMD gives a finite-dimensional approximation to the Koopman operator,
which is an infinite-dimensional linear operator that can be used to describe nonlinear dynamics (see
Section 6).

• DMD modes can isolate specific dynamic structures (associated with a particular frequency).

• DMD has proven to be quite customizable, in the sense that a number of proposed modifications address
the weaknesses outlined below.

Weaknesses:

• It can be difficult (or at least subjective) to determine which modes are the most physically relevant
(i.e., there is no single correct way to rank eigenvalue importance, unlike other methods such as POD).

• DMD typically requires time-resolved data to identify dynamics, although extensions exist [90,103].

• If DMD is used for system identification (without any modifications), the resulting model will be linear.

• DMD can be unreliable for nonlinear systems. In particular, for a nonlinear system, one must be careful
to choose a sufficiently rich set of measurements (in each snapshot). Without care, the connection with
the Koopman operator and the underlying dynamical system may be lost. Furthermore, for nonlinear
systems with complex (e.g., chaotic) dynamics, there are further complications that could limit the
applicability of DMD and related algorithms.

• The outputs of DMD can be sensitive to noisy data, which was shown empirically [110] and analytically
[111]. The effect of process noise (that is, a disturbance that affects the dynamics of the system) has also
been investigated [112]. However, there are algorithms that are more robust to sensor noise [111,113].

• DMD should generally be used only for autonomous systems (i.e., the governing equations should have
no time dependence or external inputs, unless these are explicitly accounted for [107]).

• DMD modes are not orthogonal. This has a number of drawbacks: for instance, if the modes are used
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as a basis/coordinate system for a reduced-order model, the model will have additional terms due to
the spatial inner product between different modes being non-zero. Note that a recent variant, recursive
DMD [114], considers orthogonalized DMD modes.

• DMD relies fundamentally on the separation of variables, as does POD, and hence does not readily
extend to traveling wave problems.

• DMD does not typically work well for systems with highly intermittent dynamics. However, multi-
resolution [115] and time-delay [116] variants show promise for overcoming this weakness.

5.2 Illustrative Example

Jet in Crossflow

We show an example from Rowley et al. [88], where DMD is applied to 3D jet-in-crossflow direct numerical
simulation (DNS) data. A typical snapshot of the complex flow is visualized in Fig. 8 (top) using the λ2
criterion. The results of applying DMD to a sequence of 251 snapshots are shown in Fig. 8 (bottom).
The bottom-left plot shows the frequency and amplitude of each DMD mode, with two modes having large
amplitudes visualized in the bottom plots. Note that these modes capture very different flow structures,
each having a different characteristic frequency of oscillation identified by DMD.
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Figure 8: Snapshot of jet-in-crossflow data used for DMD [88], shown with λ2 contour in the top plot. The
frequency and amplitude of the DMD modes are shown in the bottom left plot, while the bottom right figures
show the modes corresponding to (dimensionless) frequencies of 0.0175 and 0.141, visualized with contours
of streamwise velocity. Reprinted with permission from Cambridge University Press.

Canonical Separated Flow with Control

Let us present a second example [117] of DMD (and POD) analysis performed on 3D separated turbulent
flow over a finite-thickness plate with elliptical leading edge at Re = 100, 000. The plate is aligned with
the freestream, and separation is induced by the imposition of a steady blowing/suction boundary condition
above the plate. The flow field is obtained from LES and the wake dynamics in the example is modified
by a synthetic jet actuator placed on the top surface of the wing. First, we consider the dominant and
secondary POD modes, shown in Fig. 9 (left). We can observe that some interactions between the actuation
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input (at 0.6 chord location) and the wake are captured by these energetically dominant modes. Also shown
on the right are the DMD modes corresponding to the actuation frequency and its superharmonic. While
the fundamental DMD mode is similar to the dominant POD mode, the secondary mode is able to clearly
identify how that frequency component of the actuator input synchronizes with the downstream wake. In
contrast, POD modes are comprised of spatial structures having a distribution of frequencies that makes
pinpointing the POD mode to a specific frequency difficult.
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Figure 9: Comparison of POD and DMD modes for separated 3D turbulent flow over a flat-plate wing with
synthetic-jet actuation on the top surface [117]. The fundamental and secondary DMD modes correspond
to the actuation frequencies of 4.40 (blue) and its superharmonic (red). Reprinted with permission from J.
Tu.

5.3 Outlook

While DMD has quickly become a widely used method for analyzing fluids data, there remain challenges
and applications that have yet to be fully addressed. Connections between DMD and the Koopman operator
indicate its potential to model (and control) nonlinear systems; however, choosing suitable observables to give
an accurate finite-dimensional approximation to the Koopman operator generally remains an open question.
Algorithmic improvements that have been and should continue to be made will allow DMD to remain a
practical tool to analyze increasingly large fluid flow datasets.

Operator-based Modal Analysis Methods

6 Koopman Analysis

Koopman analysis provides an important alternative perspective to classical dynamical systems theory [118]
for the description of complex systems. The Koopman operator was introduced in the early 1930s [119]
to show how the dynamics of Hamiltonian systems could be described by an infinite-dimensional linear
operator on the space of observable functions of the state of the system. Recently, this theory has been at
the center of efforts for the data-driven characterization of complex systems [120], and there is particular
interest in obtaining finite-rank approximations to the linear Koopman operator. Practically, dynamic mode
decomposition (Section 5) is the most implemented numerical framework for Koopman mode decomposition
in fluids [86–88]. There have been a number of excellent in-depth reviews on Koopman analysis recently
[89,121].

Koopman analysis not only provides a set of modes, of which DMD modes are a subset, but also a set of
eigenvalues that determine the modal dynamics and a set of Koopman eigenfunctions that serve as intrinsic
observable functions. In many contexts, Koopman analysis provides an equation-free method [122] to extract
coherent structures and dynamics from data measurements of a complex system; these coherent structures
are related to POD modes in fluids [1].
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6.1 Description

Algorithm

Inputs: Nonlinear dynamical system:

xi+1 = f(xi). (36)

The state x typically lives in a vector space, such as Rn or Cn, although the theory is defined more generally
on curved manifolds. Although the dynamical system above is written in discrete-time, the theory also holds
for continuous dynamical systems.

Outputs: Infinite-dimensional linear operator U t that describes the evolution of scalar observables g(x) on
state-space:

U tg = g ◦ f . (37)

Here, ◦ denotes function composition11. This operator advances all functions in the Hilbert space of mea-
surement functions, and holds for all states x. An implication is that measurements are advanced in time:

U tg(xi) = g ◦ f(xi) = g(xi+1). (38)

An alternative description, related to DMD, is:

Inputs: Data snapshots of observables on the state-space of a dynamical system.

Outputs: Modal decomposition and linear dynamical system describing modal evolution (see DMD).

Notes

Approximation by DMD The Koopman mode decomposition is usually approximated via the dynamic
mode decomposition (DMD), described in Section 5. This is essentially a linear regression of data onto
dynamics; augmenting the measurement data with nonlinear functions of the state enables a larger linear
regression, which may provide a more accurate approximation of the Koopman operator [108]. Another
promising algorithm computes Koopman eigenfunctions based on the diffusion operator [123].

Hamiltonian Systems For Hamiltonian systems, the Koopman operator is unitary, meaning that the
inner product of any two observable functions remains the same before and after the operator. Unitarity
is a familiar concept, as the discrete Fourier transform (DFT) and the POD basis both provide unitary
coordinate transformations. In the original paper of Koopman [119], connections were drawn between the
Koopman eigenvalue spectrum and both conserved quantities and integrability.

Strengths and Weaknesses

Strengths:

• Koopman analysis provides an alternative operator-theoretic perspective to dynamical systems and
allows nonlinear systems to be represented and analyzed using linear techniques.

• The Koopman operator is amenable to standard spectral decomposition in terms of eigenvalues and
eigenvectors.

• Powerful techniques in control theory apply to linear systems and may improve nonlinear control
performance via Koopman linear systems.

Weaknesses:
11e.g., sin(x) ◦ x2 = sin(x2).
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Figure 10: Example illustrating how the nonlinear system in Eq. (39) shown in (a) may be transformed into
the linear system in Eq. (40) shown in (b) through an appropriate choice of measurements y of the state x.
In this case, the measurement subspace given by (y1, y2, y3) = (x1, x2, x

2
1) provides a matrix representation

K of the Koopman operator. Modified from Ref. [124].

• By introducing the Koopman operator, we trade finite-dimensional nonlinear dynamics for infinite-
dimensional linear dynamics. Dealing with infinite-dimensional operators and obtaining low-order
approximations is challenging, although there are a larger number of computational techniques to
analyze linear operators than there are for differential geometry on manifolds.

• It may be difficult to find Koopman eigenfunctions, which define an intrinsic observable measurement
coordinate system. Without Koopman eigenfunctions, it may be difficult or impossible to obtain a
finite-dimensional subspace of the Hilbert space of measurement functions that remains closed under
the Koopman operator. However, if discovered, a Koopman invariant subspace defines a measurement
system where measurements are propagated by a finite-dimensional linear dynamical system.

• The integration of control theory and Koopman analysis remains to be fully developed.

6.2 Illustrative Example

Simple Nonlinear Dynamical System

As an example, consider the following simple nonlinear dynamical system in two variables with a single fixed
point [90,124]:

ẋ1 = µx1

ẋ2 = λ(x2 − x21).
(39)

For λ � µ < 0 the fixed point at the origin is stable and there is a slow manifold given by x2 = x21;
trajectories quickly attract onto this manifold before converging to the origin (Fig. 10a). Introducing a
nonlinear change of coordinates, given by (y1, y2, y3) = (x1, x2, x

2
1), the nonlinear dynamics become linear:ẏ1ẏ2

ẏ3

 =

µ 0 0
0 λ −λ
0 0 2µ


︸ ︷︷ ︸

K

y1y2
y3

 . (40)

The nonlinear system in Eq. (39) and the linear Koopman system in Eq. (40) are shown in Fig. 10. The
system in Eq. (40) is defined on a vector of observables y = (y1, y2, y3)T , which defines a Koopman-invariant
subspace. The infinite-dimensional Koopman operator restricted to this subspace defines a 3× 3 matrix K.
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With this linear representation, it is possible to analytically predict the state of the system at any future
time (i.e., y(t) = exp(Kt)y(0)), or extend textbook linear estimation and control techniques to nonlinear
systems.

The example above may appear exceedingly simple, but there are few direct applications of Koopman
analysis for more complex systems, as it is challenging to discover the coordinate transformations that
linearize the problem. In fluid dynamics, Bagheri [125] analyzed the Koopman mode decomposition of the
flow past a cylinder, relating the decomposition to POD–Galerkin with a shift mode [53]. Related work
investigates the Liouville equation [126], which has resulted in cluster-based reduced-order models in fluid
systems [67]. In power electronics, Koopman mode decomposition has been used to model and predict
instabilities [127,128]. However, DMD is used in most fluid applications to approximate the Koopman mode
decomposition, although the quality of this approximation depends on the measurements used for DMD [4].
True Koopman linearization of complex systems in fluid dynamics relies on the choice of good observable
functions that provide linear embeddings for the nonlinear dynamics, as in the example above. The extended
DMD [108] provides one approach to augment DMD with nonlinear measurements of the state, although
this still relies on careful choice of the augmented function library.

6.3 Outlook

Dynamic mode decomposition, which is a workhorse of Koopman analysis, implicitly uses linear observable
functions. In fluid flows, these take the form of direct velocity field measurements from particle image
velocimetry (PIV). In other words, the observable function is an identity map on the fluid flow state. This
set of linear observables is often too limited to describe the rich dynamics observed in fluid systems. Recently,
DMD has been extended to include a richer set of nonlinear observable functions, providing the ability to
effectively analyze nonlinear systems [108]. Using sparse regression has recently been used to select active
terms in nonlinear dynamical systems [129], and similar techniques may be used to identify useful observable
functions. Discovering Koopman eigenfunctions is a central computational issue to obtain closed systems
that may be used for nonlinear control and estimation. Recent techniques construct Koopman eigenfunctions
using a regularized advection-diffusion operator [123].

7 Global Linear Stability Analysis

Global linear stability analysis solves the linearized Navier–Stokes equations pertinent to an underlying
base flow with multiple inhomogeneous spatial directions. The introduction of a modal formulation for the
linear perturbations converts the linearized equations of motion (initial value problem) to an eigenvalue
problem with respect to the base flow, which needs to be an exact steady (or unsteady) solution of the
equations of fluid motion. The term global is used to distinguish the analysis from the classic local linear
stability theory [6,34,130], where the base flow is independent of two coordinate directions. The eigenvalue
problem delivers information on the spectrum of the linearized Navier–Stokes operator at asymptotically large
times. Much like in classic local linear stability theory, the eigenvalue determines whether the corresponding
eigenvector grows (exponentially) in time or space and also delivers information on the frequency of the
linear perturbation (Section 2.1 and Fig. 3). The eigenvector describes the spatial structure of the linear
perturbation and may be used to reconstruct the full flow field at conditions consistent with the linear
approximation.

Global modes are solutions to the 2 or 3D partial derivative eigenvalue problems to which the linearized
Navier–Stokes equations may be recast. They describe disturbances developing upon base flows that vary
inhomogeneously in two (biglobal) or three (triglobal) spatial directions [131]. Thus global modes are the
counterparts, in base flows that vary in multiple spatial dimensions, of well-known linear instabilities de-
veloping in 1D base flows such as the inviscid Kelvin–Helmholtz instabilities, viscous Tollmien–Schlichting,
and crossflow modes. When the 2 or 3D base flow contains portions of flow that could be analyzed with
local theory, the spatial distribution of the global eigenfunction is seen to contain structures related to the
eigenfunction delivered by local analysis, e.g. Tollmien–Schlichting waves in the boundary layer on a flat
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plate [132] and on the downstream wall of an open cavity [133]. The applications of global stability anal-
ysis to study linearly stability of 2 and 3D base flow have been reviewed recently [5] and are continuously
expanding.

7.1 Description

Algorithm

Inputs: Steady or time-periodic laminar base flow, inhomogeneous in two or all three spatial directions, at
a given Reynolds number and Mach number. The base flow can be a stable or an unstable steady state.

Outputs: Global linear modal stability theory delivers global modes (spatial distribution pattern) and as-
sociated growth rates and frequencies of small-amplitude perturbations about the base state.

Unlike the aforementioned POD, BPOD, or DMD techniques, global stability analysis is not based on
the snapshots of the flow field. Global modes are found numerically by discretizing the Navier–Stokes
equations, which result from the decomposition of any flow quantity q into a base flow q0 and small-amplitude
perturbations q′ (i.e., ||q′||/||q0|| � 1):

q(ξ, t) = q0(ξ, t) + q′(ξ, t). (41)

One can then examine the growth or decay of the perturbations with respect to the base state q0, which
is taken to be steady here. Substitution of the flow variable in the form of Eq. (41) into the Navier–Stokes
equations and neglecting the quadratic terms of small perturbation q′ yields the linearized Navier–Stokes
equations.

Now, as an example, let us assume the base flow q0 = q0(ξ) to be steady and homogeneous (e.g.,
periodic in space) in the ζ direction and perform a biglobal stability analysis. In this case, the perturbation
can assume the form of

q′(ξ, η, ζ, t) = q̂(ξ, η)ei(βζ−ωt) + complex conjugate, (42)

where β is a real wavenumber in the ζ direction. The real and imaginary components of the complex number
ω = ωr + iωi respectively correspond to the frequency and the growth/decay rate of the amplitude function of
the global mode q̂(ξ, η). There are two main approaches to find the global stability modes and the associated
eigenvalues. Namely, they are the matrix-based approach and the time-stepping approach, described below.
Various techniques have also been summarized in the review by Theofilis [5], where the relative merits of
matrix-based and time-stepping techniques are discussed.

Matrix-based Approach

The matrix-based approach determines the global modes by solving a generalized eigenvalue problem. The
substitution of the assumed form of Eq. (42) into the linearized Navier–Stokes equations results in

A(q0;β)q̂ = ωBq̂, (43)

which is written in terms of a generalized eigenvalue problem where ω is the eigenvalue and q̂ is the global
stability mode (eigenvector). The matrix A is dependent on the base state q0 as well as the wavenumber
β and flow parameters such as the Reynolds number and Mach number. In general, B is invertible for
compressible flow but is not invertible for incompressible flow due to the incompressibility constraint.

The matricesA andB are approximately of size ngridnvar×ngridnvar, where ngrid and nvar are the number
of grid points and number of variables, respectively. If the operators are of modest size, the matrices may be
formed and stored on memory. For larger size operators, the eigenvalues can be determined without storing
the operators but by only relying on matrix-vector operations [5, 134–136] or by distributing the matrix
entries over several processors of a cluster and using appropriate libraries (e.g. ScaLAPACK) for the linear
algebra operations [137].
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Time-stepping Approach

In the time-stepping approach [5,138,139], a code is employed to compute the Jacobian via formation of the
Fréchet derivative, without the need to store the matrix [140]. Since typically the numerical discretization of
the operator does not expand the solution on bases which automatically satisfy the boundary conditions for
the perturbations, spurious modes are introduced and matrix operations are needed to extract the physically
meaningful modes from the numerically obtained part of the eigenspectrum.

Notes

Computational effort With either the matrix-based approach or the time-stepping approach, the com-
putational effort required to find eigenvalues and eigenfunctions can be very high. Hence the use of sparse
yet high-order spatial discretization methods can be beneficial [141,142]. Potentially existing symmetries can
also be exploited to reduce the computational cost of solving 2 and 3D eigenvalue problems [140,143,144].

Choice of base flow For stable flows, the steady state solution to the Navier–Stokes equations can be
found by integrating the solution in time until all unsteadiness is eliminated. If the unstable steady state is
needed, techniques such as the selective frequency damping method [145] or a Newton–Krylov type iterative
solver [146,147] can be utilized. We note that time-periodic flow can also be utilized as the base flow [148];
as we will see in the first illustrative example below [149].

Occasionally researchers compute global modes for base flows that are not themselves solutions of the
governing equations (e.g., the mean of a turbulent flow). In these cases, the resulting modes are not associated
with a question of stability of the base flow, but may be useful in identifying the frequency content of large-
scale coherent structures (e.g. for control) [135] or in developing reduced-order models for disturbances in
these flows.

Global non-modal/transient-growth analysis Global modes may represent either stable or unstable
disturbances with respect to the base flow. When unstable modes are identified, the base flow itself is
said to be asymptotically unstable, meaning that at least one perturbation will grow exponentially in time
and the equilibrium is not expected to be observed in nature. Systems that are non-normal can exhibit
significant growth of linear combinations of modal perturbations, known as transient growth, a phenomenon
which may occur even when the global modes are all stable [33, 36, 150]. Non-normality of the governing
linear operator implies that global transient growth analysis may deliver qualitatively different short-time
behavior of linear combinations of perturbations when modal analysis predicts only asymptotically stable
perturbations (see Section 2.1). Global transient growth analysis has unraveled initial optimal perturbations
that are qualitatively different from their corresponding global eigenmodes on the cylinder [151], low pressure
turbine blades [152,153] and several stalled NACA airfoils [149].

Strengths and Weaknesses

Strengths:

• A spectrum of (discrete and continuous) eigenmodes can be determined, especially with the matrix-
based approach.

• Modal analysis, based on the solution of the eigenvalue problem (see Section 2), determines whether
unstable modes exist. Exponential growth implies that flow dynamics will be asymptotically dominated
by the characteristics of the most unstable eigenmode (or the least stable mode if stable).

• If only stable modes are found, global non-modal/transient growth analysis, using linear combination of
the leading members of the eigenvalue spectrum, or solution of a related SVD problem (see Section 2),
can determine the level of energy growth of small-amplitude perturbations over a short time horizon.

Weaknesses:
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• Global linear stability analysis is inherently linear.

• The base flow provides the spatially variable coefficients of the underlying partial derivative eigenvalue/initial-
value problem. Any algorithm for the solution of the latter problems can be influenced by the quality
(accuracy) of the underlying base flow.

• The analysis requires a base flow which is an exact solution of the equations of motion. Although
counter-examples exist in both classic [154] and global linear stability theory [155], analysis of mean
turbulent flow requires validation of the turbulence closures employed and typically aims at prediction
of frequencies and spatial structure of coherent turbulent structures.

7.2 Illustrative Examples

Large-scale Separation Cells on Stalled Airfoils

He et al. [149] have employed a suite of matrix-forming and time-stepping techniques to re-examine large-scale
separation patterns on the suction side of wings in near-stall flight conditions. The origins of these structures
was explained through systematic application of primary and secondary linear global eigenvalue and transient
growth stability analysis to massively separated spanwise homogeneous laminar flows over three-dimensional
wings of different thickness and camber. At low chord Reynolds numbers, the dominant flow structure
arising from either primary modal or non-modal mechanisms is associated with two- or three-dimensional
Kelvin–Helmholtz eigenmodes. As the wing aspect ratio is shortened, the stationary three-dimensional global
eigenmode discovered by Theofilis et al. [156] is amplified stronger than the Kelvin–Helmholtz mode and
stall cells may arise through this primary modal linear amplification mechanism [157]. As the Reynolds
number increases, linear amplification of the two-dimensional Kelvin–Helmholtz global eigenmode leads
to a time-periodic wake which, in turn, is linearly unstable to two distinct classes of three-dimensional
secondary (Floquet) eigenmodes, which peak at short- and long spanwise wavelengths, respectively. The
short-wavelength Floquet eigenmode is the stronger of the two at moderate and high Reynolds numbers.
The three-dimensional spatial structure of the short-wavelength mode can be seen in Fig. 11(a), while the
wall-streamline pattern resulting from its linear superposition upon the underlying time-periodic base flow
gives rise to stall-cell-like patterns on the wing surface, as they can be seen in Fig. 11(b).
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Figure 11: Three-dimensional short-wavelength instability mode determined from global stability analysis
for a NACA 4415 airfoil at Re = 500 and α = 20◦. (a) Streamwise vorticity (ωζ) isosurface of the short-
wavelength eigenmode and (b) the corresponding wall-streamlines, superposed upon the time-periodic base
state [149]. Reprinted with permission from Cambridge University Press.

Finite-span Open Cavity Flow

The second example leverages the time-stepper based approach to gain insights into the critical conditions
and spatial characteristics of distinct classes of eigenmodes of incompressible flow over a rectangular three-
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dimensional lateral-wall bounded open cavity. The analysis has been performed in a triglobal setting [140].
The leading traveling shear-layer mode responsible for transition in this geometry as well as the next in
significance stationary and traveling centrifugal modes, respectively, are shown in Fig. 12 at the slightly
subcritical Reynolds number Re = 1050. Detailed temporal biglobal analysis of the related spanwise ho-
mogeneous open cavity has also been performed [136, 141] and the effect of the presence of lateral walls on
the linear instability mechanisms in this class of flows can now be quantified on the basis of global stability
theory.
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Figure 12: Amplitude functions of the components of the three-dimensional perturbation velocity components
of the leading eigenvectors in lateral-wall bounded open cavity flow at Re = 1050 [140]. Reprinted with
permission from Cambridge University Press.

7.3 Outlook

With the availability of enhanced computational resources, use of temporal and spatial biglobal stability
analysis is becoming prevalent to examine a range of fluid flows. An area in which the theory is expected
to become particularly useful is laminar-turbulent transition prediction in hypersonic flow, in support of
increasing efforts to understand and control flow phenomena critical to the design of next-generation vehicles.
The main reason is that, unlike typical incompressible or supersonic conditions at which turbulent flow
prevails in flight, hypersonic flow is mostly laminar and the underlying base flows are exact solutions of the
equations of motion which can be computed either using a continuum assumption [158] or by employing Direct
Simulation Monte Carlo (DSMC) methods [159–162]. As an example, linear global instability analysis has
recently addressed hypersonic flow over the HIFiRE-5 elliptic cone [144,163]. The spatial biglobal eigenvalue
problem has been solved and four classes of (leading) centerline, attachment-line, crossflow and second Mack
modes have been recovered as two-dimensional global mode amplitude functions, underlying the potential
of the theory to provide predictions of laminar-turbulent transition at hypersonic speeds.

The parabolized assumption [164] has been combined with global analysis. For instance, 3D inhomoge-
neous base flows which depend strongly on two and weakly on the third spatial direction is an extension
of the non-local stability analysis, based on the parabolized stability equations. Examples of successful ap-
plication include the system of trailing vortices behind an aircraft wing [165–167], the wake of an isolated
roughness element in supersonic flow [168], streaks in a boundary layer [169], corner flows [170] and models
of duct intakes [171]. Computationally expensive triglobal stability analysis is emerging to provide insights
into the influence of three-dimensionality on the stability of flows. [138–140] We anticipate the growing use
of these approaches to analyze increasingly complex flows.
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As a companion to the global flow stability analysis, adjoint global stability analysis [172] can provide
efficient responses to questions on flow receptivity, sensitivity and control. Global modes are the right
eigenvectors of the eigenvalue problem, while the left eigenvectors are the adjoint global modes. The adjoint
LNSE, which are at the heart of efficient linear instability analysis and linear control methodologies [172], can
be solved at the same level of effort as that of the global eigenvalue problem. At its simplest implementation,
a single solution of the global eigenvalue problem delivers the eigenvalues, as well as linear perturbations
and their adjoint variables as the right and left eigenvectors, respectively.

8 Resolvent Analysis

The resolvent is defined in the context of fluid mechanics as the linear operator relating an input forcing to
a linear system to the output. For the complete incompressible Navier–Stokes equations for turbulent flow,
the output is the (divergence-free) velocity field and the input to the resolvent (linear dynamics) is provided
by the nonlinear term, as shown in Fig. 13. Resolvent analysis is therefore a complement to eigenvalue
and global stability analyses, which are linear analyses with perturbations assumed to be sufficiently small
such that the nonlinear advective forcing term (second order in the perturbation) can be neglected. More
generally, inputs to resolvent analysis can include actuation and other kinds of forcing terms added to the
governing equations, and outputs can be any observable.

Resolvent analysis relies on the pseudospectrum of the linearized Navier-Stokes operator rather than
the spectrum itself (see Section 2). For stable base flows, the damped modes of the linear system can be
superposed to construct the response to stationary (real-frequency) inputs. Even for these stable flows,
when the operator is non-normal (most fluid systems linearized about spatially non-uniform flows give rise
to non-normal operators), stationary inputs can be amplified. For these systems, there are typically a limited
number of highly amplified inputs, implying that the resolvent can be effectively approximated at low rank.
An SVD of the resolvent (in the discrete setting) can be used to identify these inputs and their corresponding
outputs, and to provide a low-rank approximation of the input-output dynamics of the full system. High
gain inputs are useful for flow control efforts by showing where actuation will produce the largest effect.

Figure 13: Schematic of a divergence-free projection of the resolvent formulation of the incompressible
Navier–Stokes equations, showing the nonlinear term, f , providing input forcing to the linear dynamics
(described by the resolvent operator), with velocity output, u (i.e., q′ in Eq. (44)) [173]. Reprinted with
permission from AIP Publishing.

8.1 Description

Algorithm

Inputs: A real-valued frequency ω, and a linear time-invariant input-output system (operator) including
its boundary conditions, for example the linearized Navier–Stokes equations with an appropriate assumed
base or mean velocity profile q. These must typically have been discretized in space using a finite-difference,
finite-element, spectral, or other numerical method.

Outputs: An ordered set of modes (total number equal to the number of degrees of freedom of the discretized
system) that represent the spatial pattern of inputs, outputs, and the positive gain (amplification) from input
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to output. High-gain modes represent stationary (statistically steady) inputs that are most amplified, at the
specified frequency.

Consider q = q + q′ and the spatially discretized governing equations for the perturbation variable
expressed in the compact form

M
∂q′

∂t
+Aq′ = f (q′) , (44)

where the vector q′ represents the fluctuating discrete flow variables, the (typically sparse) matrices M and
A = A(q) represent the linearization about a time-invariant flow, q, and f denotes the remaining nonlinear
terms, as well as any additional forcing terms added to the equations. Such terms can include, for example,
stochastic forcing (synthetic turbulence) added to inflow regions of spatially developing flows. For stationary
flows, we may work in the frequency domain. By expressing

q′ = q̂eiωt and f = f̂eiωt, (45)

for temporal frequency ω ∈ R, Eq. (44) can be written as

(iωM +A) q̂ = f̂ . (46)

Proceeding formally, we write q̂ = Rf̂ , where R = (iωM +A)
−1

is the resolvent operator. For a particular
frequency, ω, the maximum amplification G (defined in a chosen norm, q̂∗Qq̂, where Q is a positive definite
matrix) of any forcing may be found

G = max
f̂

q̂∗Qq̂

f̂
∗
Qf̂

= max
f̂

f̂
∗
R∗QRf̂

f̂
∗
Qf̂

. (47)

The solution to this maximization problem may in turn be found through the SVD ofR. The largest singular
value represents the gain (squared) and the left and right singular vectors represent the optimal response
and forcing, respectively.

In the context of the incompressible Navier-Stokes equations, the resolvent, H, is the linear operator
that relates velocity perturbation u′ and pressure perturbation p′ to the nonlinear term, f ,[

u′

p′

]
= Hf . (48)

Note that a base velocity profile is required to formulate the resolvent (and to define the perturbations).
Spatial homogeneity can be exploited to reduce the computational burden by first decomposing the

linear system into the Fourier basis in the homogeneous spatial directions. This is also useful for identifying
dynamics associated with individual wavenumber components of interest in the data. For simplicity, we
consider here an example flow that is homogeneous in the streamwise and spanwise directions and statistically
stationary in time, such that the wavenumber/frequency triplet k = (kx, kz, ω) associated with oblique
downstream traveling waves can be defined. Accordingly, we have

Hk =

(
−iω

[
I

0

]
−
[
Lk −∇
∇T 0

])−1 [
I
0

]
, (49)

where Lk is the linear Navier–Stokes (advection and diffusion) operator evaluated at k, ∇ and ∇T are the
gradient and divergence operators, and I is the identity operator. As such, the resolvent operator can be
obtained by relatively minor extension of code for the more common Orr–Sommerfeld–Squire analysis. Of
course, the system may be formulated in terms of either velocity-vorticity or primitive variables. For an
analogous derivation of the resolvent for compressible flow, see Jeun et al. [174].

Two closely related formulations of the resolvent analysis are common in the literature. In the input-
output formulation, an output quantity is defined as the state vector premultiplied by a matrix that is
chosen to extract an observable of interest [174]. Similarly, the forcing is premultiplied by a (not necessarily)
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different matrix to restrict the input-output relation to forcings of interest. In the linear frequency response
approach [175], the gain is defined as the quotient of the input and output in terms of their energy defined
through (not necessarily different) norms.

For a given k, the SVD procedure described above in Section 2 returns right singular vectors corresponding
to the most dangerous (most amplified) inputs or forcing modes, left singular values corresponding to the
associated response modes, with gains given by the corresponding singular values. Example code for resolvent
analysis of turbulent pipe flow in primitive variables is available online for general use [176].

The analysis proceeds depending on the specific objective. For example, the globally most amplified
input can be sought, the forcing and response modes compared with observations, or data projected onto
the resolvent basis [173,177].

Notes

Origin The resolvent is a familiar construction in the study of forced, ordinary differential equations, and
more generally, linear operators and their spectra. It arises in control theory and in eigenvalue/eigenvector
perturbation analysis. Identified by Schmid and Henningson [6], its use as a tool to study structures in
transitional and turbulent flows seems to have been stimulated by Farrell and Ioannou [178], who considered
a stochastically forced Navier–Stokes system, and follows contemporaneous work on understanding transient
growth in stable base flows with pseudospectra [35].

Implementation in Different Geometries The use of resolvent analysis is increasing in fluid dynamics
to study both transitional and fully turbulent flows. Flows that have been analyzed in terms of the most
amplified (forced) modes include, amongst others, canonical flows such as boundary layers, Couette and
Poiseuille flows [177,179] jets [174,175,180], backward-facing step [181], and cavity flows [182].

Computational Costs Resolvent modes can be routinely and efficiently (i.e., on a laptop) computed for
base flows that are homogeneous in two spatial dimensions (1D base flow). Resolvent analysis for flows that
are homogeneous in one spatial dimension (2D base flow) incurs significantly more computing cost [183].
With current computational resources, fully inhomogeneous flows represent an unmet challenge, although
flows with narrowband perturbations can be tackled [182].

Wall Boundary Conditions and Control Resolvent analysis admits any linear control formulation
through the boundary conditions. For example, passive (a compliant surface [184]), open-loop (dynamic
roughness [185]), and active (opposition control [186]) control inputs at the wall have been investigated in
wall turbulence.

Wavepackets and Coherent Structures While formally a tool for linear systems, resolvent analysis can
provide insights into coherent structures in turbulent flow by analyzing the response of the system associated
with the linear resolvent operator formed using the turbulent mean flow. This is not necessarily equivalent
to linearization, since the nonlinear forcing is required to sustain an otherwise stable system (and note that
the mean velocity itself can be recovered via an extension of the analysis shown in Fig. 13). Resolvent modes
can be identified and the corresponding inputs can be thought to represent how such coherent structures
are forced through nonlinear (triadic) interactions amongst modes at other frequencies, or through other
stochastic inputs to the system (for example noise added at an inflow in a DNS to excite turbulence). A
particular success has been the recovery of packets of hairpin vortices in wall turbulence from resolvent
modes [187].

The resolvent-based approach is also particularly useful to analyze convectively unstable configurations
that exhibit no intrinsic dynamics. Despite the absence of an unstable linear global mode (see Section 7)
in such cases, coherent structures are often observed in such flows. A typical example is a turbulent jet
under most operating conditions. Here, continuous forcing through the background turbulence sustains
large-scale coherent structures in the jet shear-layer over a wide range of frequencies. The resolvent analysis
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allows identification of these wavepackets as optimal responses, and associates each response mode to its
corresponding optimal input via the gain of the input-output relation (see second example below).

Strengths and Weaknesses

Strengths:

• Resolvent analysis can use the mean flow as the base state (instead of the exact solution to the Navier–
Stokes equations), even in the case of turbulent flows.

• When resolvent analysis is applied to turbulent mean flows, large-scale coherent structures can be
interpreted as modal solutions that are sustained through forcing by the turbulent background.

• The resolvent operator can be formulated to describe the linear dynamics associated with the governing
Navier–Stokes equations.

• Resolvent analysis identifies the form of the most amplified inputs, the corresponding output, and the
gain.

• The resolvent operator is often low-rank, with underlying mathematical structure that can be used to
understand coherent flow structure and permitting exploitation of state-of-the-art matrix approxima-
tion techniques.

Weaknesses:

• Resolvent analysis identifies the most amplified inputs and outputs, whereas the product of the amplifi-
cation (singular value) and the weight of the nonlinear forcing determines the observations. Information
on the nonlinear forcing term is therefore required to predict the most energetic observed modes and
synthesize nonlinear models.

8.2 Illustrative Examples

Turbulent Channel Flow

We show in Fig. 14 an example of the typical form of first, i.e. most amplified, resolvent response modes in
turbulent channel flow. Here, a left-and right-going pair of modes (i.e., ±kζ) are considered with wavenum-
bers and wavespeed representative of the very-large scale motions in wall turbulence. For this mode, the
amplitudes of the three velocity components have relative magnitudes (|u|, |v|, |w|) = (1, 0.05, 0.17), i.e., the
turbulent kinetic energy of the mode is mostly associated with the streamwise velocity fluctuations. The
isocontours of velocity correspond to a quasi-streamwise vortex (inclined roll) structure in the cross-stream
plane familiar from observations of fully-developed turbulence at all scales, but especially reminiscent of the
very large scale motions, suggesting that the resolvent mode is a useful simplified model for that structure
at least.

Turbulent Jet

In Fig. 15(a), the gain of first five resolvent modes associated with a turbulent jet is given as a function of
the Strouhal number St (dimensionless frequency in acoustic units). The gain of the leading resolvent mode
clearly dominates over a large frequency interval. Two features of the gain curve are of special physical
interest. The sharp peak at St ≈ 0.4 is associated with an acoustic resonance in the potential core [188], and
the underlying broad-band response peak with the preferred mode of forced jets [175]. The forcing structure
at St = 0.5 in Fig. 15(b) reveals that the response depicted in Fig. 15(c) is most efficiently sustained by an
upstream forcing distribution that utilizes the Orr-mechanism in the shear-layer and direct acoustic forcing
in the potential core to achieve optimality. The optimal response closely resembles the coherent structure
educed from a LES database using POD (see Section 3) based on the spectral cross-correlation matrix.
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Figure 14: Isocontours at half the maximum value for each component (warm/light colors positive value,
cold/dark colors negative value) of the real part of the first resolvent response mode pair (kξ,±kζ , c = ω/kξ) =
(1h, 6h, 0.5hUCL) in channel flow at friction Reynolds number h+ = 3000. Here UCL is the centerline velocity
and h+ is the channel half-height normalized by the viscous length scale.

8.3 Outlook

The use of resolvent analysis to develop parametric sensitivity studies is an especially promising direction for
future research. The utility of the resolvent approach in developing dynamical models rests on identifying
important nonlinear interactions; determining the correct weighting of the nonlinear forcing. These weights
can be obtained or approximated in various ways: for example by direct calculation of the forcing from full-
field snapshots [180, 189], projection of the snapshots onto resolvent response modes [190–192], by scaling
arguments [193], or by direct solution of the quadratic programming problem defining the coupling between
response modes and wavenumbers [173], the subject of ongoing work.

Resolvent modes have recently been shown to provide an efficient basis to represent exact coherent
solutions of the Navier–Stokes equations [192], suggesting that the analysis may both provide an inexpensive
approximate continuation method within families of solutions and aid the search for new exact solutions.
Formal connections between resolvent analysis, Koopman analysis, DMD and exact nonlinear traveling wave
solutions have recently been outlined [194]. This is out of scope of this manuscript, but may be of interest
to the expert practitioner.

9 Concluding Remarks

We have provided an overview of the modal decomposition/analysis techniques that are widely used to
examine a variety of fluid flows. Specifically, we have presented POD, Balanced POD, DMD, Koopman
analysis, global linear stability analysis, and resolvent analysis. The modal structures extracted by these
techniques can shed light on different aspects of the flow field with some shared similarities. For the data-
based methods, POD analysis captures the most energetic modes and the balanced POD analysis captures
the most controllable and observable modes, providing balancing and adjoint modes. DMD (and Koopman
analysis) extracts the dynamic modes along with their growth rates and frequencies from the flow field
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Figure 15: Resolvent analysis of a turbulent jet mean flow. The gains σ of the five leading axisymmetric
resolvent modes over Strouhal number are reported in (a). As an example, the pressure component of the
leading input mode f1 for St = 0.5 is shown in (b). The corresponding response u1 shown in (c) closely
resembles the leading POD mode φ1 deduced from LES data in (d).

data. While POD and DMD methods can use flow field data from numerical simulation and experimental
measurements, Balanced POD requires adjoint flow data, which makes it applicable to data only from
numerical simulations. We have also presented operator-based analysis techniques of Koopman analysis,
global linear stability analysis, and resolvent analysis. The former rigorously connects DMD to nonlinear
dynamical systems. The latter two techniques can examine growth or decay characteristics of perturbations
with respect to a given base or mean flow. These two approaches require discretized operators from the
Navier–Stokes equations to perform the modal stability analysis.

Discussions of the modal analysis techniques were kept fundamental and did not include the applications.
The examples shown in this paper focused mostly on presenting the fluid flow analysis. However, modes
obtained from these techniques can also be used to develop reduced-order models, which can capture the
dynamics of the flow with significantly lower computational cost. Such models can be useful in closed-loop
flow control [51, 66–68, 73, 76, 195] as well as aerodynamic design [196, 197]. A large number of references
were provided throughout the paper so that readers can seek additional insights as needed. We hope that
this document can serve as a stepping stone for the readers to become familiar with various modal analysis
techniques, analyze a variety of complex flow physics problems, and further advance the developments of
these modal analysis techniques.
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A Appendix

We present an example of formatting the flow field data into a matrix form X in preparation to perform the
modal decomposition analysis. For simplicity, we assume that the grid is structured with uniform spacing and
constant time step. Here, we take data from a 2D velocity field q = (u, v) and construct X. In general, the
data to be examined can be from an unstructured or non-uniform grid, if scaled appropriately, or processed
to reside on a uniform grid. The formulation discussed here can be easily extended to scalar variables or 3D
vector fields.

Consider the velocity field q made available from simulation or experiment

qij = (uij , vij) = (u(ξi, ηj), v(ξi, ηj)), (50)

where the spatial coordinates (ξi, ηj) with i = 1, . . . , nξ and j = 1, . . . , nη are for a collocated setup, as
illustrated in Fig. 16. To construct the data matrix X, we need to organize the data in the form of a column
vector at each time instance. An example of stacking the snapshot data to form a column vector x(t) at
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time t = tk can be written as
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v11
.
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.
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.
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.

.

.
vnξnη




t=tk

∈ Rn (51)

Note that the above stacking and unstacking operations are for a 2D vector, which yield a column vector size
n = 2nxny. The unstacking operation is useful for visualizing the decomposition modes once decomposition
is performed on the flow field data. For a scalar data, we only need to consider a particular component. For
a 3D vector data, we can append the third component to the above setting. Once the column data vectors
are available at the desired time levels, we can collect them into a data matrix X

X = [x(t1) x(t2) . . . x(tm)] ∈ Rn×m. (52)

In general, this data matrix is a tall and skinny matrix for fluid flows (n � m). With this data matrix at
hand, we are ready to perform modal decompositions through POD, BPOD, and DMD.
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[132] Åkervik, E., Ehrenstein, U., Gallaire, F., and Henningson, D. S., “Global two-dimensional stability
measures of the flat plate boundary-layer flow,” Eur. J. Mech. B / Fluids, Vol. 27, 2008, pp. 501–513.

[133] Theofilis, V. and Colonius, T., “An algorithm for the recovery of 2- and 3-D BiGlobal Instabilities of
Compressible Flow Over 2-D Open Cavities,” AIAA Paper 2003-4143, 2003.

[134] Zhang, W. and Samtaney, R., “BiGlobal linear stability analysis on low-Re flow past an airfoil at high
angle of attack,” Phys. Fluids, Vol. 28, 2016, pp. 044105.

[135] Sun, Y., Taira, K., Cattafesta, L. N., and Ukeiley, L. S., “Spanwise effects on instabilities of compress-
ible flow over a long rectangular cavity,” Theor. Comput. Fluid Dyn., 2016 (in press).

[136] Sun, Y., Taira, K., Cattafesta, L. N., and Ukeiley, L. S., “Global instabilities of compressible open-
cavity flows,” J. Fluid Mech., 2016 (in review).
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