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Abstract. Line of Sight (LoS) networks provide a model of wireless
communication which incorporates visibility constraints. Vertices of such
networks can be embedded in finite d-dimensional grids of size n, and two
vertices are adjacent if they share a line of sight and are at distance less
than ω. In this paper we study large independent sets in LoS networks.
We prove that the computational problem of finding a largest indepen-
dent set can be solved optimally in polynomial time for one dimensional
LoS networks. However, for d ≥ 2, the (decision version of) the problem
becomes NP-hard for any fixed ω ≥ 3 and even if ω is chosen to be a
function of n that is O(n1−ε) for any fixed ε > 0. In addition we show
that the problem is also NP-hard when ω = n for d ≥ 3. This result
extends earlier work which showed that the problem is solvable in poly-
nomial time for gridline graphs when d = 2. Finally we describe simple
algorithms that achieve constant factor approximations and present a
polynomial time approximation scheme for the case where ω is constant.

1 Introduction

Geometric graphs have become a popular tool for reasoning about wireless net-
works. Typically wireless devices positioned in some physical space can be rep-
resented by a collection of vertices. A graph can then be constructed by repre-
senting communication between pairs of vertices by edges.

The disk intersection model is a commonly used model for representing wire-
less sensor networks [16]. Sensors are modelled as vertices in some topological
setting and their communication ranges are represented by circles having some
prescribed radius. Overlapping circles then represent communication between
pairs of vertices and makes it possible to construct a graph. Unfortunately in
many real world applications of wireless networks, the environments often come
with a large number of obstacles which impose line of sight constrictions on ver-
tices. These obstacles are often difficult to incorporate in the geometric models
described above.

Frieze et al [7] developed the notion of a (random) line of sight network to pro-
vide a model of wireless networks which can incorporate line of sight constraints.
For positive integers d and n, let Zdn = {(x1, x2, ..., xd) : xi ∈ {0, 1, ..., n−1}, 1 ≤
i ≤ d} and Zd+ = ∪∞n=1Zdn. In the rest of the paper the distance between points

x = (x1, x2, ..., xd) and x′ = (x′1, x
′
2, ..., x

′
d) in Zdn is the quantity

∑d
i=1 |xi − x′i|.
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We say that two distinct points x = (x1, x2, . . . , xd),x
′ = (x′1, x

′
2, . . . , x

′
d) in Zdn

share a line of sight if there exists a j ∈ {1, . . . , d} such that xi = x′i for all
i ∈ {1, . . . , d} \ {j}, moreover in this case we say that x and x′ share a j-line.

Definition 1 A graph G = (V,E) is said to be a Line of Sight (LoS) network
with parameters d, n and ω, if there exists an embedding fG : V → Zdn, such that
{u, v} ∈ E if and only if fG(u) and fG(v) share a line of sight and the distance
between them is strictly less than ω.

We denote the set of embedded vertices of G = (V,E) by fG(V ) ∈ Zdn. In
what follows, because all graphs will be embedded we will abuse notation so
that u will denote both a vertex in V and the corresponding embedded vertex
fG(u) ∈ fG(V ). The parameter ω, called the network range parameter, can be
used to model the usual proximity constraint in a wireless network. The line of
sight visibility constraint is the mechanism that allows the modelling of obstacles.

Definition 2 We say that a LoS network G with parameters d, n and ω is d-
dimensionally spanning if for each j ∈ {1, 2, . . . , d} there exists an edge {u, v} ∈
E such that fG(u) and fG(v) share a j-line.

Let Ldn,ω denote the set of all graphs G which are d-dimensionally spanning

LoS networks with parameters n, d and ω. Let Ldω = ∪n∈NLdn,ω. Note that ω
might be as large as n. To study the properties of LoS networks with large range
parameter sometimes we are interested in the properties of Ldn,g (or Ldg) the set
of LoS networks with range parameter ω = g(n), if g : N → N is a monotone
increasing function.

LoS networks generalise other well known geometric graph models. For ex-
ample, a LoS network with parameter ω = 2 is known as a grid graph [3], where
each vertex can only share an edge with the 2d other vertices at distance one
in Zdn. On the other hand the elements of Ldn are known as gridline graphs [15].
So far LoS networks have been studied with respect to their typical connectivity
properties [4, 7].

In this paper we investigate the well known maximum independent set prob-
lem (MIS) for both 2-dimensional and higher dimensional LoS networks as the
range parameter ω varies. Large independent sets in graphs have been the sub-
ject of significant study in various branches of Mathematics as they provide a
measure of network dispersion and have a strong connection with other impor-
tant graph measures such as vertex covers, cliques and colourings [6]. It is well
known that finding a largest independent set in a graph is an NP-hard problem
[8], and even good approximate solutions are hard to find [9]. We show that
the problem can be solved optimally in polynomial time for d = 1, for any ω,
using a straightforward greedy strategy. For ω = 2 and any d the problem can
be solved in polynomial time because the LoS network is a bipartite graph. For
d = 2 the problem can be solved in polynomial time for the case ω = n. In higher
dimensions (d ≥ 3) the problem becomes more difficult and the overall picture
is less clear cut. We prove the following (here IS is the decision version of MIS)
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Theorem 1. IS(Ldn,ω) is NP-hard, for each fixed d ≥ 2 and fixed integer ω ≥ 3.

Additionally, for any given ε > 0, IS(Ldg) is NP-hard for any choice of g such
that g(n) = O(n1−ε).

The proof of Theorem 1 cannot be extended to cover the case of very large
range parameters. However a different reduction allows us to prove the following:

Theorem 2. IS(Ldn) is NP-hard for each fixed d ≥ 3.

Note the statement of Theorem 2 is a generalizion to higher dimensions of a
result by Peterson on 2-dimensional gridline graphs [15]. Finally, we complement
these negative results by describing two heuristics that achieve constant factor
approximations and an efficient polynomial time approximation scheme (EPTAS,
a la [2]) for the case when ω is a fixed constant, for any d.

The layout of this paper is as follows. We start our investigation in Section
2 by studying a natural greedy heuristic for the MIS problem in LoS networks.
The algorithm is optimal for d = 1 and represents a base-line benchmark for
approximation strategies in higher dimensions. In Section 3 and 4 we study the
problem complexity for d ≥ 2. The final part of the paper is devoted to the
remaining algorithmic results mentioned above.

In what follows if Π is a computational problem and I is a particular set of
instances for it, then Π(I) will denote the restriction of Π to instances belonging
to I. If Π1 and Π2 are decision problems, then Π1 ≤p Π2 will denote the fact
that Π1 is polynomial-time reducible to Π2. Unless otherwise stated we follow
[6] for all our graph-theoretic notations.

2 The Corner Greedy Algorithm

We start off our investigation of the MIS problem for LoS networks by describing
and analysing a very simple, natural heuristic for tackling this problem. The
strategy is an adaptation of an algorithm described in [12] in the context of unit
disk graphs. Given a graph G = (V,E) and u ∈ V we denote by N(u) the set of
neighbours of u in V . For a d-dimensional LoS network G = (V,E) and a vertex
u = (u1, u2 . . . , ud) ∈ V we denote the set of vertices v = (v1, v2, . . . , vd), such
that u and v share a j-line and v ∈ N(u) as Nj(u) (note that if v ∈ Nj(u) then
u ∈ Nj(v)) and we say that u <j v if uj < vj . Corners in LoS networks are
vertices that are extremes w.r.t. the <j relationship for all j. More precisely we
give the following definition:

Definition 3 Given a d-dimensional LoS network G = (V,E), we say that u ∈
V is a corner if for each j ∈ {1, 2, ..., d}, u <j v for all v ∈ Nj(u) or v <j u for
all v ∈ Nj(u).

If we lexicographically order all vertices in a LoS network w.r.t their d-tuples
the first vertex in such an ordering is a corner. The corner greedy Algorithm can
be described as follows:

Corner Greedy algorithm: Initially S = ∅
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1. Add a corner u to S and remove the closed neighbourhood of N(u) from G.
2. Repeat 1 until the graph G is empty.
3. Return S.

For d = 1 the process is clearly optimal and in general we can prove (here
α(G) is the independence number of G, the size of the largest independent sets
in G):

Theorem 3. For any d-dimensional LoS network G the size of the set of inde-

pendent vertices returned by the corner greedy algorithm is at least α(G)
d .

Proof. In each iteration the algorithm picks a corner vertex, adds it to S and
then removes the vertex and all its neighbours from the graph. Let S∗ be an
independent set of maximum cardinality in G. Each vertex v ∈ S∗ belongs to
exactly one closed neighbourhood identified in step 2. of the Corner Greedy
algorithm. Furthermore since each corner vertex has neighbours in at most d
different line of sights, d different elements of S∗ may belong to a particular
closed neighbourhood. The result follows. ut

Thus, in general, the corner greedy algorithm described in this section rep-
resents a d-approximation algorithm for the MIS problem in d-dimensional LoS
networks. It is then natural to ask whether this can be improved. Perhaps LoS
networks are sufficiently close to grid graphs and the MIS problem can indeed
be solved in polynomial time. Unfortunately in the sections that follow we will
give a negative answer to such conjecture.

3 Hardness for Small Ranges

In this section we prove Theorem 1. For d = 2 (resp. d ≥ 3) we describe ex-
plicit embeddings in Zdn of graphs which are subdivisions of planar graphs with
maximum degree four (resp. subdivisions of bounded degree graphs). In both
instances we start by embedding the given graph G = (V,E) orthogonally (see
Section 3.1). We then add further vertices to obtain (the embedding of) a d-
dimensionally spanning LoS network. Once this is done to prove NP-hardness
we show the existence of a linear relationship between the size of an independent
set in G and the size of an independent set in the resulting LoS network, and
since the IS problem is NP-hard for both planar graphs of maximum degree four
and bounded degree graphs the result follows.

3.1 Embeddings

Graph embedding has been an active research area for quite some time (the
interested reader is referred to reviews like [5], or the more recent one [13],
for additional bibliographic details). Here in particular we will be interested in
so called orthogonal embeddings of bounded degree graphs G = (V,E) in Zdn.
Define a path in Zdn to be any sequence of distinct points in Zdn such that any two
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consecutive points in the sequence have distance one. An orthogonal embedding
of a graph G = (V,E) in Zdn denoted by Γ (G) is an embedding where the vertices
v ∈ V are mapped to points in Zdn and the edges {u, v} ∈ E to paths with end
points Γ (u), Γ (v). Paths representing distinct edges can only intersect at their
end-points. It is well known that an orthogonal embedding of G in Zdn requires
d ≥ d∆(G)/2e and, for general graphs, the bound is tight except for ∆(G) ≤ 4.
In this work we will use the following two results, dealing with the case d = 2
and d ≥ 3 respectively. Moreover the embeddings described in the following two
theorems can be constructed in polynomial time.

Theorem 4. [17] Any planar graph G = (V,E) with ∆(G) ≤ 4 and |E| = m,
admits an orthogonal embedding Γ (G) in Z2

3m.

Theorem 5. [18] Any simple graph G = (V,E) with ∆(G) ≥ 5 admits an
orthogonal embedding Γ (G) in Zdk|V | where d = d∆(G)/2e and k is a positive
integer constant.

3.2 Padding

Given a bounded degree graph G = (V,E) and an arbitrary function r mapping
the edges of G to positive integers, let F (G, r) be a new graph obtained by
replacing each edge e ∈ E by a path containing a 2r(e) additional vertices
between it’s end points. The graph F (G, r) is also known as a subdivision of G
(see [6, Chap. I]). Our reduction then uses the following well-known result.

Lemma 1. Let G = (V,E) be a graph, and r an arbitrary function mapping
the edges of G to positive integers. Then α(G) ≥ k if and only if α(F (G, r)) ≥
k +

∑
e∈E r(e).

3.3 Reduction

We now sketch the main construction in the proof of Theorem 1. Given a bounded
degree graph G = (V,E) we use Theorem 4 (for d = 2) or Theorem 5 (for
d > 2) to define the appropriate orthogonal embedding Γ (G) in the appropri-
ate d-dimensional finite grid. We then stretch the embedding Γ (G) to obtain a
new orthogonal embedding Γ ′(G) by mapping each embedded vertex Γ (u) =
(u1, . . . , ud) ∈ Γ (G) to the embedded vertex Γ ′(u) = (4(ω − 1)u1, . . . , 4(ω −
1)ud) ∈ Γ ′(G). The paths Puv in Γ (G) with end points Γ (u), Γ (v) get mapped
to the corresponding paths P ′uv ∈ Γ ′(G) with end points Γ ′(u), Γ ′(v). Finally we
pad the orthogonal embedding Γ ′(G) with additional sensor vertices to obtain a
LoS network embedding of G which is also a subdivision F (G, r), for a suitable
choice of r. It is easy to check from the orthogonal embedding of G that the
LoS network G′ is d-dimensionally spanning. The additional sensor vertices are
placed along the paths in Γ ′(G) corresponding to the edges of G in a way that
satisfies the following constraints:

1. the total number of padding vertices placed on each path P ′uv is even;
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Fig. 1. A 2-dimensionally spanning LoS network G′ = F (G, r) with sensor vertices in
black, constructed from an orthogonal embedding of the 4-planar graph G with 8 white
vertices.

2. a padding vertex must be placed on every corner (bend in the path);
3. for any set of three consecutive sensor vertices {vs, v′s, v′′s } placed on a path
P ′uv, v

′′
s and vs are at a distance at least ω, but v′s is at a distance distance

at most ω − 1 from vs and v′′s , maintaining a connected line of sight path
structure.

Figure 1 sketches an example of the construction for d = 2. The correctness
of the reduction follows from Lemma 1, where for each {u, v} ∈ E, 4× |Γ (Puv)|
additional sensor vertices are added to the path P ′uv.

The proof of the second part of the statement of Theorem 1 is obtained by
noticing that the construction above works if ω is bounded above by a function
g(n) = O(n1−ε) for any fixed ε > 0.

4 Hardness for (Very) Long Ranges

The outcome of Section 3 is a proof that for any d ≥ 2, IS(Ldω) is NP-hard for
small values of ω. The analysis of the problem’s complexity for ω = n while
different to the sublinear case is quite interesting in its own right. In this section
we prove Theorem 2. Let G = (V,E) ∈ L2

n then for each vertex u ∈ V in a LoS
embedding of G, v ∈ N(u) if and only if u and v share a line of sight since ω is
as large as possible. A simple reduction shows that MIS(L2

n) can be solved via
a single bipartite matching computation [15].

When d ≥ 3 things become more complicated. Each element of Ldn can still be
mapped to a d-partite graph. However the independent sets of the LoS network
correspond to structures that are computationally less tractable than matchings.
In what follows Max 2-Sat(3) is the problem of finding a truth assignment
to the variables of a 2-CNF boolean propositional formula that maximizes the
number of satisfied clauses, restricted to instances in which each variable occurs
in at most three clauses [1]. The proof of Theorem 2 is completed in the case
d ≥ 3 using the following result:

Theorem 6. Max 2-Sat(3) ≤p IS(Ldn), for every d ≥ 3.
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Fig. 2. The construction of the graph E52,3(F ) corresponding to the formula F = (X1∨
X2)∧ (X1 ∨X2)∧ (X1 ∨X2) and the assignment X1 = TRUE, X2 = TRUE satisfying
all three clauses.

The proof of this result consists of two steps. We first describe how to trans-
late a given 2-CNF formula into a graph and then we embed such a graph into
a d-dimensionally spanning LoS network where ω is maximised.

4.1 From Formulae to Graphs

Consider an instance of Max 2-Sat(3) consisting of a formula F = C1 ∨ C2 ∨
. . . ∨ Cm on n variables and m clauses, each formed by two literals. We con-
struct a graph denoted Edn,m(F ) as follows. For each variable Xj we construct
a variable gadget Xj which is a cycle of even length 2m + 3d − (d mod 2) in
Edn,m(F ). The vertices in Cj are split into four sets: a set of 2m base vertices,

{bj1,b
j
2, . . . ,b

j
2m} and 3d− (d mod 2) additional vertices which are further split

into three sets. There are vertices {ej1, e
j
2, . . . , e

j
d+1−d mod2}, {f

j
1, f

j
2, . . . , f

j
d} and

{gj1,g
j
2, . . . ,g

j
d−1}. Cycle Xj is then given by

bj1 . . .b
j
2mfj1 . . . f

j
dg
j
d−1 . . .g

j
1e
j
d+1−d mod 2 . . . e

j
1b

j
1.

For each clause Ci in F we construct a clause gadget Ci containing two clause
vertices ci and c′i which are connected by a path of 3d − (d mod 2) dummy

vertices. Thus the clause gadget consists of the path cic
1
i c

2
i . . . c

3d−(d mod 2)
i c′i. If

Ci in F contains the variable Xj (resp. Xj) we select odd (resp. even) parity

vertex bj2i−1 (resp. bj2i) on the cycle Xj and we connect it to one of the clause
vertices in Ci. Note that because of the variable occurrence constraint, in each
variable gadget at most three base vertices are selected.

Claim. For any instance of Max 2-Sat(3) with m clauses on n variables, there
is an assignment that satisfies r clauses if and only if the graph Edn,m(F ) has an
independent set of size

r + b3d/2c ×m+ n× (m+ (3d− (d mod 2))/2).
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Each variable gadget Xj has an independent set of size m+ (3d− (d mod 2))/2
and in fact there’s always exactly two sets of this size, one using all odd indexed
bjh, the other using all the even indexed ones. The former of these corresponds
to setting Xj to TRUE, the other one to FALSE. Also, each clause gadget Ci

is a path of even length, the largest independent sets of these paths are of size
b3d/2c+ 1 and include one of ci or c′i. If clause Ci is satisfied at least one of its
literals is set to TRUE and that implies that an independent set can be picked
in the corresponding variable gadget that leaves at least one of ci or c′i free to
be added to an independent set. Conversely if Ci is not satisfied, then neither ci
nor c′i are free and the corresponding clause gadgets will only contribute b3d/2c
vertices to the independent set. The first part of the claim follows.

For the opposite direction let I be an independent set in Edn,m(F ). Two cases
arise. If all the variable gadgets contain half of their vertices in I then the 2n

possible settings correspond to the possible ways to assign a truth value to the
variables of F . In each of these cases a clause gadget will contain b3d/2c + 1
elements of I if and only if at least one of the clause vertices is one of them. The
number r of clause gadgets containing b3d/2c+ 1 elements of I satisfies

r = |I| − b3d/2c ×m− n× (m+ (3d− (d mod 2))/2).

We call an independent set of this type full. If I is not full then wlog let Xk be a
variable gadget such that less than half the vertices of Xk belong to Xk ∩I. Call
bk(x), bk(y), bk(z) the three base variables from Xk that are adjacent to clause
gadgets Cx, Cy and Cz. We replace the set Xk∩I with a maximum independent
set of Xk containing half it’s vertices according to the parity of bk(x), bk(y),
and bk(z): if bk(x), bk(y), and bk(z) all have the same, say, odd parity, we
replace Xk ∩ I with the set of all even vertices in Xk. If two of them are of the
same parity we pick the opposite to the majority. During this process we may
remove at most one clause vertex from I. For instance in the case where a base
vertex not in the majority and not in the independent set Xk ∩I is added to the
independent set during the process. In this case it’s adjacent clause vertex must
be removed once it is added. However in replacing Xk ∩ I with an independent
set in Xk consisting of half of the vertices we add at least one extra vertex from
Xk to our independent set, thus negating the potential loss of a clause vertex.
The process terminates in at most n steps with an independent set |I ′| ≥ |I|.

4.2 Embedding

To complete the reduction we need to show that there exists an integer N , poly-
nomial in n and m for fixed d, such that Edn,m(F ) has a d-dimensionally spanning

LoS network embedding in ZdN satisfying ω = N , thus showing Edn,m(F ) ∈ LdN,N .
In what follows we use N = 7(m+ d)n.

In order to explain the embedding of Edn,m(F ), we first discuss how to em-

bed paths and cycles in Z+d satisfying LoS network constraints with the range
parameter maximized. We use methods called path rotation and path connec-
tion to embed, respectively, long and short paths. Given a path P = v1, . . . , vk
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the process starts by assigning (arbitrarily or according to some rule) a d-tuple
(x1, x2, . . . , xd) to v1. After that, the path rotation method assigns d-tuples it-
eratively so that the d-tuple assigned to vi differs from the d-tuple assigned
to vi−1 in co-ordinate position (i − 1) mod d. Furthermore the integer value
assigned to the d-tuple vi in the co-ordinate position (i − 1) mod d is one
more than the integer value assigned to the d-tuple vi−1 in co-ordinate posi-
tion (i − 1) mod d. Note for two adjacent vertices vi−1, vi on the path, there
remains an edge between their assigned d-tuples as these differ in exactly one
co-ordinate position (i.e. share a line of sight). The path connection method is

used to specifically embed a path P ′ = x, c1, c2, . . . cd−1, y in Z+d of length d
where the d-tuples x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) are pre-assigned
and distinct (xi 6= yi for i ∈ {1, 2, . . . , d}). We can denote x = c0 and y = cd.
We then embed ci for i ∈ {1, . . . , d − 1} as follows. Let Sd denote the set of all
permutations of the set {1, . . . , d} and pick σ ∈ Sd. Then the pair (ci, ci−1) differ
in co-ordinate position σ(i) and the value assigned to ci in this position is yσ(i).

We can use a combination of the path rotation and path connection meth-

ods to embed a cycle v1, . . . , vk, v1 where k ≥ 3d in Z+d. We embed the path
v1, v2, . . . , vk−(d−1) using the path rotation method, we then embed vk−(d−1)+1,
. . . , vk using the path connection method. Note that the resulting embedding is
d-dimensionally spanning. We embed each variable gadget Ci in Edn,m(F ) accord-

ing to the method described above, embedding the vertices ejd+1−d mod 2, . . . , e
j
1,

bj1, . . . ,b
j
2m, f

j
1, . . . , f

j
d using the path rotation method initialising ejd+1−d mod 2 =

((j − 1)(Bm,d + 1), (j − 1)(Bm,d + 1), . . . , (j − 1)(Bm,d + 1)) where Bm,d =

d 2m+2d−1
d e. The vertices gj1, . . . ,g

j
d−1 are then embedded using the path connec-

tion method. We next embed the clause gadgets Cj for j = 1, . . . ,m. For each j
we first embed the clause vertices cj and c′j . For each clause vertex we choose the
co-ordinate position that it will differ in from it’s adjacent base vertex carefully.
Without loss of generality assume that clause vertex cj is adjacent to some base
vertex denoted bi (we do not distinguish between bi = bi2j−1 and bi = bi2j).

Then we ensure that for each base vertex bi∗ ∈ N(b), the co-ordinate positions
that the pairs of d-tuples (bi, cj) and (bi,bi∗) differ in are not the same. The
value assigned in the co-ordinate position in which (bi, cj) differ is then unique
for each cj ensuring we do not add unwanted edges. Once cj and c′j have been

assigned their d-tuples the remaining dummy vertices c1j , c
2
j , . . . , c

3d−d mod 2
j are

embedded using a combination of path rotation and path connection methods
fully embedding Cj .

5 Approximation Algorithms

In this section we further extend our understanding of the computational prop-
erties of the MIS problem for d-dimensional LoS networks with constant range
parameter ω ∈ N. The hardness proofs of Section 3 and 4 will be complemented
by two additional algorithmic results. First, we define a polynomial approxi-
mation scheme that works for fixed ω. Then we describe a local improvement
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strategy that beats the approximation guarantee of the corner greedy heuristic
described in Section 2 for the extreme case ω = n.

5.1 An Efficient Polynomial Time Approximation Scheme

In this section we describe an algorithm that accepts as input any d-dimensional
LoS network G = (V,E) with constant range parameter ω ∈ N and returns a
(1 + ε)-approximate independent set in the given graph. The process mimics
an approximation scheme proposed by Nieberg et al. [14] for the MIS problem
in unit disk graphs. The algorithm in this section however has a running time
that, for fixed ω, is linear in the number of vertices of the input graph (al-
though the constant hidden in the big-Oh notation depends exponentially on
ε−1). Algorithms of this type have been referred to as Efficient polynomial time
approximation schemes [2].

Let ε > 0 and let ρ = 1+ε denote the desired approximation guarantee. Given
a LoS network G = (V,E) we seek to construct an independent set of size at
least α(G)/ρ. Let r be a non-negative integer and for u ∈ V define the bounding
box Br(u) centered at u = (u1, u2, . . . , ud) as the region in Zdn containing the set
of points

{y = (y1, y2, . . . , yd) ∈ Zdn | max
i=1,...,d

|yi − ui| < r · ω}.

Let G[Br(u)] denote the induced subgraph of G in the region Br(u) in the
embedding of G. The proposed algorithm is an iterative process that removes
vertices from G. At each iteration it picks a corner vertex u ∈ G among the sur-
viving vertices, builds G[B0(u)], G[B1(u)], . . . , G[Br̂(u)], computing a maximum
independent set Ir of G[Br(u)] and removes G[Br̂+1(u)] from G (note G[B0(u)]
consists of just the single vertex u) . The value r̂ is the smallest positive r for
which

|Ir+1| < ρ · |Ir|. (1)

The independent set returned by the algorithm is the union of the sets Ir̂ pro-
duced by each iteration of the algorithm. Note that a maximum cardinality

independent set can be found in Br(u) in time O((r ·ω)d r
dωd−1

). It follows from
(1) and by the definition of r̂ in addition to the fact that |I0| = 1 that for each
r ≤ r̂,

|Ir| ≥ (1 + ε)r. (2)

In addition, using the pigeon hole principle it can be shown that

|Ir| ≤ r · (r · ω)d−1. (3)

Hence, for each r ≤ r̂,

(1 + ε)r ≤ |Ir| ≤ rd · ωd−1.

The value r̂ is therefore upper bound by the smallest positive integer r for which
rdωd−1 < (1 + ε)r and the process is indeed an EPTAS for the MIS problem
for LoS networks in the case where ω ∈ N. The correctness of the algorithm is
entailed by the following result, which mirrors a similar statement in [14]:
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Theorem 7. Suppose inductively that we can compute a ρ-approximate inde-
pendent set I ′ ⊂ V \ N r̂+1(v) for G′. Then I ≡ Ir̂ ∪ I ′ is a ρ-approximate
independent set for G.

5.2 An Improved Approximation Algorithm

In this section we show that for the case ω ≥ n it is possible to improve the
guarantee of the greedy heuristic provided in section 2. We provide a local im-
provement strategy that approximately doubles the guarantee from 1

d to 2
d − ε

where ε > 0 is a fixed constant. The algorithm uses the following well known
result of Hurkens and Schrijver on set systems [10].

Theorem 8. [10] Let E1, . . . , Em be subsets of a set T of n elements. Suppose
that:

1. Each element of T is contained in at most k ≥ 3 of the E1, . . . , Em sets;
2. For any p ≤ t, any p sets among E1, . . . , Em cover at least p elements of T .

Then:

m

n
≤ k(k − 1)r − k

2(k − 1)r − k
if t = 2r − 1,

m

n
≤ k(k − 1)r − 2

2(k − 1)r − 2
if t = 2r.

Consider a d-dimensional LoS network G = (V,E) with ω ≥ n, the al-
gorithm works as follows. Start with any collection of independent vertices
S = {s1, s2, . . . , sr} and fix a t ≥ 1 in G. We now perform the following it-
erative local search algorithm Ht which takes any set of p ≤ t vertices from S
and replaces them with a collection of p+ 1 vertices from V \ S so that the new
collection remains pairwise independent. By repeating this algorithm it will ter-
minate with a set of disjoint embedded vertices S′ = {s′1, s′2, . . . , s′n} such that
for each set of p + 1 ≤ t + 1 pairwise independent vertices amoung V \ S′ they
intersect at least p + 1 vertices amoung s′1 . . . , s

′
n, otherwise we could run the

algorithm for another step. Let U = {u1, ..., uα(G)} be an independent set in G

of maximum size. Then we claim that α(G)
|S′| satisfies Theorem 9 conditions.

Theorem 9. Let t be a positive integer, G = (V,E) a LoS network with ω ≥ n
and S′ the independent set returned by the algorithm Ht. Then

α(G)

|S′|
≤ d− c/(d− 1)bt/2c

2− c/(d− 1)bt/2c

where c = d− (d− 2)(1− (t mod 2)).

In our application T = S′. Also, if U = {u1, . . . , uα(G)} is a maximum in-
dependent set in G, we may define Ei = {v ∈ S′ : {v, ui} ∈ E(G)} for each
i ∈ {1, . . . , α(G)}. Finally since U is an independent set it follows that any
vertex s′j ∈ S′ can only belong to at most d sets Ei because s′j has exactly d
different line of sights in an embedding of G. Thus k = d in our application, note
that condition 2. in Theorem 8 is satisfied by construction when the algorithm
terminates.
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