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Abstract

Let r and s be fixed positive integers. Assume that the n vertices of a
planar graph are partitioned into blocks (or empires) each containing exactly
r vertices. The (s, r)-colouring problem (s-COLr) asks for a colouring of the
vertices of the graph that uses at most s colours, never assigns the same
colour to adjacent vertices in different empires and, conversely, assigns the
same colour to all vertices in the same empire, disregarding adjacencies. For
r = 1 the problem coincides with the classical vertex colouring problem on
planar graphs. The generalization for r ≥ 2 was defined by Percy Heawood
in 1890 in the same paper in which he refuted a previous “proof” of the
famous Four Colour Theorem.

In a recent paper we have shown that if s ≥ 3, s-COLr is NP-hard for
linear forests if s < r. Furthermore, the hardness extends to s < 6r − 3
(resp. s < 7) when r ≥ 3 (resp. for r = 2) for arbitrary planar graphs.
For trees, our argument entails a nice dichotomy: s-COLr is NP-hard for
s ∈ {3, . . . , 2r − 1} and solvable in polynomial time for any other positive
value of s. In this paper we argue that linear forests don’t make the problem
any easier, even for small values of r. We prove that the s-COLr problem is
NP-hard for linear forests even if r = 2 and s = 3, or r = 3 and s ∈ {3, 4}.
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1. Introduction

Let r and s be fixed positive integers. Assume that a partition is de-
fined on the n vertices of a planar graph G. In this paper we usually call
the blocks of such partition the empires of G and we will assume that each
block contains exactly r vertices. The graph G along with a partition of this
type will be referred to as an r-empire graph. The (s, r)-colouring problem
(s-COLr) asks for a colouring of the vertices of G that uses at most s colours,
never assigns the same colour to adjacent vertices in different empires and,
conversely, assigns the same colour to all vertices in the same empire, dis-
regarding adjacencies. We call such colourings (s, r)-colourings of G. For
r = 1, the problem coincides with the classical vertex colouring problem on
planar graphs and an (s, 1)-colouring is just a proper vertex colouring of the
the host graph. The generalization for r ≥ 2 was defined by Heawood (1890)
in the same paper in which he refuted a previous “proof” of the famous Four
Colour Theorem. It has since been shown (Jackson and Ringel, 1983) that
6r colours are always sufficient and in some cases necessary to solve this
problem.

McGrae (2010) studied the (s, r)-colouring problem on trees. He proved
(also see McGrae and Zito (2008)), that 2r colours suffice and are sometimes
needed to colour a collection of empires defined in an arbitrary tree (in fact
the result generalizes to arbitrary forests). He also looked at the proportion
of (s, r)-colourable trees on n vertices. He showed that, as n tends to infinity,
for each r there exist positive integers s1 and s2 with s1 < s2, depending on
r, such that almost no r-empire tree can be coloured with at most s1 colours
and, conversely, s2 colours suffice with (at least) constant positive probability.
Later on Cooper et al. (2009) improved on this showing that, as n tends to
infinity, the minimum value s for which a random tree is (s, r)-colourable is
concentrated in a very short interval with high probability.

Although this investigation considerably expanded the state of knowledge
on s-COLr, it failed to shed light on its computational complexity. Clearly
the (s, r)-colouring problem can be solved in polynomial time if one has a
sufficiently large palette. However the picture is less clear when s is smaller
than, say, r times the maximum average degree of a graph in the class of in-
terest. McGrae and Zito (2011) explored questions of this type. They proved
that s-COLr is NP-hard for linear forests (i.e. forests whose components are
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paths) if 3 ≤ s < r and solvable in polynomial time for s < 3 or s ≥ 2r.
Furthermore, the hardness extends to s < 6r − 3 (resp. s < 7) when r ≥ 3
(resp. r = 2) on arbitrary planar graphs. Finally, for trees, the authors
uncovered a nice dichotomy: s-COLr is NP-hard for s ∈ {3, . . . , 2r − 1} and
solvable in polynomial time for any other positive value of s (the same algo-
rithm that provides a polynomial solution for trees works for linear forests).
The hardness proofs mentioned above hinge on the fact that the connectiv-
ity within empires has no effect on the graph colourability. Essentially, to
solve an instance of s-COLr it suffices to be able to colour with at most s
distinct colours (in such a way that no two distinct vertices connected by an
edge receive the same colour) the reduced graph of the input graph G. This
is a (multi)graph obtained by contracting each empire to a distinct pseudo-
vertex and adding an edge between a pair of pseudo-vertices u and v for each
edge connecting two vertices in G, one belonging to the empire represented
by u, the other one to that represented by v. In particular such reduction
to the classical vertex colouring problem implies that s-COLr can be solved
in polynomial time for s = 2, as checking whether the reduced graph of an
r-empire graph is bipartite is easy.

The results above left the possibility that, for any positive integer s, s-
COLr might be solvable in polynomial time when r < 4 if the input instance
graph is a linear forest. In this paper we show that this is not the case. We
prove that, for r = 2, the problem is not any easier than in the case where
the input is a tree (thus one may argue that connectivity does not make
the empire colouring problem any harder). Furthermore, we show that, for
r = 3, the problem is NP-hard for s ∈ {3, 4}. In what follows LFOREST
denotes the collection of linear forests.

The rest of the paper is organized as follows. In Section 2 we introduce
a few computational problems whose complexity will be related to that of
s-COLr. We then (Section 3) discuss a couple of gadgets that will be used
in the proofs of our main results. Then Section 4 is devoted to our NP-
hardness result for r ∈ {2, 3} and s = 3, whereas Section 5 deals with the
case r = 3, s = 4. The last section provides a summary of our results and a
brief discussion of open problems and relevant issues.

2. Decision Problems

In this section we define a few computational problems that will be used
in our main reductions. Unless otherwise stated we follow Diestel (1999) for
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all our graph-theoretic notations.
Let k and s be positive integers greater than two. In what follows k-SAT

denotes the well known (e.g., Garey and Johnson, 1979; Karp, 1972) NP-
complete problem of checking the satisfiability of a k-CNF boolean formula.
Similarly s-COL denotes the problem of deciding whether the vertices of a
graph G can be coloured using at most s distinct colours in such a way that
no edge of G connects two vertices of the same colour. Also, if Π is a decision
problem and I is a particular set of instances for it, then Π(I) will denote
the restriction of Π to instances belonging to I. If Π1 and Π2 are decision
problems, then Π1 ≤p Π2 will denote the fact that Π1 is polynomial-time
reducible to Π2. The following result (Garey et al., 1976) shows the NP-
hardness of 3-COL. The proof of Theorem 3 in Section 4 is reminiscent of
the reduction that proves this result.

a

b

c

T

Figure 1: The clause gadget in the reduction of Theorem 1 for
the clause a∨b∨c. The five “special” vertices for this
gadget are the five ones without a label.

Theorem 1. 3-SAT ≤p 3-COL.

Proof. Given a formula φ of m clauses on variables a1, . . . , an we construct a
graph Gφ = (V,E) having a vertex for each literal on the variables a1, . . . , an,
five “special” vertices for each clause of φ and three additional vertices la-
belled T , F , and X. The sets {T, F,X} as well as {ai, ai, X} for i = 1, . . . , n
span a triangle. Each clause of φ is represented by a gadget like the one in
Figure 1.

To complete the reduction one needs to prove that φ is satisfiable if and
only if Gφ is 3-colourable. This is a consequence of the following two claims:

1. In any 3-colouring of the subgraph of Gφ induced by the set {T, F,X}∪
{a1, . . . , an}∪{a1, . . . , an}, exactly one of ai and ai is coloured with the
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same colour as vertex T and the other one is coloured with the same
colour as vertex F .
Hence, for each choice of colour for T , F , and X, there are exactly
2n possible ways of completing the colouring of the subgraph of Gφ

induced by the set {T, F,X} ∪ {a1, . . . , an} ∪ {a1, . . . , an}.
2. For each clause gadget if the vertices corresponding to variables are

coloured like vertices T or F then the gadget is 3-colourable if and only
if at least one of the variable vertices is coloured like vertex T .

To believe the first claim notice that T, F and all vertices corresponding to
literals of φ are adjacent to vertex X. Hence none of them can be coloured
like X in any colouring of Gφ. Also, T and F (resp. ai and ai, for each
i ∈ {1, . . . , n}) must have a different colour because they are adjacent to
each other.

As to the second claim, if all three variables corresponding to literals in
the gadget in Figure 1 are coloured like vertex F then, in particular, the white
vertex at the bottom of the picture must be coloured like vertex X and that
implies that its other special neighbour must be coloured like vertex F . This
in turn entails that all remaining special vertices are adjacent to a vertex
coloured like vertex F and therefore they cannot be coloured using just the
colours of vertex T and X. Conversely, if at least one of the literal vertices
is coloured like vertex T then all special vertices can be coloured with the
three available colours.

The proof of the Lemma follows.

Let s and k be positive integers with s > max(2, k). Also, let n and m
be positive integers. An (s, k)-formula graph (see McGrae and Zito, 2011)
is an undirected graph Φ = (V,E) such that V (Φ) = T ∪ C ∪ A where
T = {T, F,X1, . . . , Xs−2}, C contains m groups of vertices {c1,1, . . . , c1,s−1},
{c2,1, . . . c2,s−1}, . . . , {cm,1, . . . , cm,s−1} and A is a set of 2n vertices paired
up in some recognizable way. In particular, in what follows we will denote
the elements of A by a1, . . . , an, a1, . . . , an, and we will say that for each
i ∈ {1, . . . , n}, ai and ai are a pair of complementary vertices. Set T spans a
complete graph; for each pair of complementary vertices a and a, {a, a,Xj}
spans a complete graph for each j ∈ {1, . . . , s− 2}; for each i ∈ {1, . . . ,m},
{T, ci,1, . . . , ci,s−1} spans a complete graph and if j ∈ {1, . . . , k} then there
is a single edge connecting ci,j to some vertex in A, else if j ≥ k + 1 then
{ci,j, F} ∈ E(Φ). Figure 2 gives a simple example of a (5, 3)-formula graph
with m = 1 and n = 3.
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Figure 2: A small formula graph

Let FG(s, k) denote the class of all (s, k)-formula graphs. McGrae and
Zito (2011) proved the following result.

Theorem 2. Let s be an integer with s ≥ 3. Then k-SAT≤p s-COL(FG(s, k))
for any integer k < s.

Theorem 2 implies in particular that s-COL(FG(s, k)) is NP-hard for
any k ≥ 3 and s > k. In Section 5 we will use 4-COL(FG(4, 3)) to show the
NP-hardness of 4-COL3.

3. Gadgets

Before presenting our main results we introduce a number of useful gad-
gets.

Clique Gadgets. Let r and s be positive integers with s < 2r. In what follows
the clique gadget Br,s is an r-empire graph satisfying the following properties.

B0 The graph Br,s has r(s + 1) vertices partitioned into s + 1 empires of
size r.

B1 The graph Br,s is a linear forest.

B2 The reduced graph of Br,s contains a spanning copy of Ks+1. Hence
Br,s admits an (s + 1, r)-colouring and cannot be coloured with fewer
colours.

Figure 3 describes the clique gadgets that will be used in this paper.

Connectivity Gadgets. For positive integers r, s and m with r, s ≥ 2 and
m ≥ r, the connectivity gadget, denoted by Ar,s,m, is an r-empire graph
satisfying the following conditions:
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B2,2 B3,3

Figure 3: The clique gadgets used in this paper. Empires are
denoted by sets of vertices enclosed by a dashed line.

A0 The graph Ar,s,m contains no more than 2srm vertices split into empires
of size r.

A1 The graph Ar,s,m is a linear forest.

A2 The graph Ar,s,m contains a set of m isolated vertices and such vertices
must be given the same colour in any (s, r)-colouring of Ar,s,m. These
vertices define the so called monochromatic set of the gadget and will
collectively be denoted by Z. The elements of such a set will generically
denoted by z.

Figure 4 shows the reduced graphs of two elements of the families of connec-
tivity gadgets that will be used in this paper. The white vertices in each case
span disjoint copies of a complete graph. These are used to constrain the
colour that can be assigned to the other vertices. Details of the construction
process as well as a proof that the relevant gadgets satisfy properties A0,
A1, and A2 are provided in the following Lemma.

Figure 4: The reduced graphs of the connectivity gadgets: A2,3,5

(A3,3,11, A3,3,12, and A3,3,13) at the top, and A3,4,5 in
the bottom picture.
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Figure 5: Small connectivity gadgets used for s = 3. The dark
vertices form the monochromatic set of the gadget.

Lemma 1. Let m, r and s be positive integers, with r ∈ {2, 3} and s = 3
or r = 3 and s = 4, and m ≥ r. Then there exists an r-empire graph Ar,s,m
satisfying properties A0, A1, and A2. Furthermore Ar,s,m can be constructed
in time polynomial in r, s and m.

Proof. In all cases the graph Ar,s,m will be built up two distinct sets of ver-
tices. There will be a colour constraining set Wr,s,m, and an independent set
of vertices Ur,s,m.

We describe a construction for Ar,3,m first. For r = 2 we provide an
inductive contruction. In particular, the empires defined on the set U2,3,m in
the resulting graph will either have all vertices of degree two, or be formed by
a vertex of degree two, and one isolated vertex which belongs to the gadget’s
monochromatic set. The graph A2,3,2 is represented on the left-hand side of
Figure 5. Sets W2,3,2 and U2,3,2 are defined as follows:

W2,3,2 = {w1, w2, w3, w4},
U2,3,2 = {u1, u2, u3, u4}.

Blocks w1 ≡ {w1, w2}, w2 ≡ {w3, w4}, {u1, u2} and {u3, u4} define the em-
pires of A2,3,2. Thus condition A0 is obvious. Note that A2,3,2 is in fact just
a simple path connecting all vertices except u2 and u4, and therefore it also
satisfies condition A1. As to A2, the monochromatic set of A2,3,2 contains
the two isolated vertices: u2 and u4. Note that, because of the edge {w2, w4},
empires w1, and w2 are adjacent and therefore they must receive different
colours in any (3, 2)-colouring of A2,3,2. The remaining empires form an inde-
pendent set (in the reduced graph of A2,3,2) and hence they can be coloured
with a single additional colour. Notice that they must be coloured with one
additional colour, as empires {u1, u2} and {u3, u4} are both adjacent to each
of w1 and w2. Thus A2 is verified for A2,3,2.
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For m > 2, assume that the graph A2,3,m−1 = (W2,3,m−1 ∪U2,3,m−1, Em−1)
has been built already, with W2,3,m−1 ≡ {w1, . . . , w4(m−2)} and U2,3,m−1 ≡
{u1, . . . , u4(m−2)} and each empire in U2,3,m−1 either having all vertices of
degree two or consisting of a vertex of degree two and a vertex of degree zero
belonging to the monochromatic set of A2,3,m−1. Let {u, u′} be an arbitrary
empire in U2,3,m−1 such that the degree of u is two whereas u′ is part of the
monochromatic set of A2,3,m−1. The graph A2,3,m will have vertex set defined
by the union of the following sets:

W2,3,m = W2,3,m−1 ∪ {w4(m−2)+i : 1 ≤ i ≤ 4},
U2,3,m = U2,3,m−1 ∪ {u4(m−2)+i : 1 ≤ i ≤ 4},

and edge set formed by the union of the edges of A2,3,m−1, with one of the
edges incident with u, say {w, u}, replaced by the edge {w, u′}, and the edges

{u,w4m−7}, {u′, w4m−5},
{w4m−6, w4m−4},
{w4m−7, u4m−7}, {w4m−4, u4m−7}, {w4m−6, u4m−5}, {w4m−5, u4m−5}.

The graph A2,3,4 (with vertex labels omitted for clarity) is shown on the right-
hand side of Figure 5. Thus A2,3,m has eight more vertices than A2,3,m−1 and
its monochromatic set contains one more element than that of A2,3,m−1 (ver-
tex u′ is not part of the monochromatic set any more, but u4m−6 and u4m−4

are added to Z). The empires of A2,3,m are those of A2,3,m−1 plus four new
ones: w2m−3 ≡ {w4m−7, w4m−6}, w2m−2 ≡ {w4m−5, w4m−4}, {u4m−7, u4m−6}
and {u4m−5, u4m−4}. Condition A0 follows. Furthermore the graph induced
by the newly introduced vertices is isomorphic to A2,3,2 and the “re-wiring”
of the edges incident to {u, u′} implies that A2,3,m is a simple path. Hence
A1 holds for A2,3,m. The following properties are an immediate consequence
of our construction:

1. The empires defined on U2,3,m form an independent set in the reduced
graph of A2,3,m, and each of them consists either entirely of vertices of
degree two or of a vertex of degree two and a vertex of degree zero.

2. For each integer x ∈ {2, . . . ,m}, empires w2x−3 and w2x−2 are adjacent,
they are not adjacent to any other empire defined over W2,3,m, and they
are both adjacent to exactly three empires defined over U2,3,m.
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Condition A2 is satisfied as, we claim, all vertices in the set U2,3,m must
be given the same colour in any (3, 2)-colouring of A2,3,m. Assume by con-
tradiction that this claim does not hold. This implies that there exists a
(3, 2)-colouring of A2,3,m such that for some x ∈ {2, . . . ,m} empires w2x−3

and w2x−2 are adjacent to three empires which are coloured with at least
two different colours. But then there is no way to complete the colouring of
w2x−3 and w2x−2 using only one more colour.

The construction of the connectivity gadgets for the case s = 3 is com-
pleted by noticing that, when r = 3, for m ≥ 3, gadget A3,3,m can be obtained
from A2,3,d(m+2)/3e by adding an isolated vertex to each empire. Conditions
A0 and A1 are clearly satisfied. Condition A2 is also true provided we
define the monochromatic set of A3,3,3 as a set of three isolated elements of
U3,3,3 and that of A3,3,m by extending the one in A2,3,d(m+2)/3e.

u
6

4
u

v
1

v
2

v
3

1
u

2
u

3
u

5
u

1
w

2
w

3
w

4
w

7
w

8
w

9
w

6
w

5
w

A3,4,3 A3,4,5

Figure 6: Small connectivity gadgets for s = 4.

The construction of A3,4,m is similar to that of A2,3,m. In particular, for
each m ≥ 3, the empires defined on the set U3,4,m will either have all vertices
of degree two or a vertex of degree two, a vertex of degree one, and a vertex
of degree zero. The graph A3,4,3 is represented on the left-hand side of Figure
6. Sets W3,4,3 and U3,4,3 are defined as follows:

W3,4,3 = {w1, w2, w3, w4, w5, w6, w7, w8, w9},
U3,4,3 = {v1, v2, v3, u1, u2, u3, u4, u5, u6}.

The empires of A3,4,3 are wi ≡ {w3(i−1)+j : 1 ≤ j ≤ 3} for i ∈ {1, 2, 3},
and blocks {v1, v2, v3}, {u1, u2, u3} and {u4, u5, u6}. Condition A0 is clearly
satisfied. By construction A3,4,3 is just a collection of paths connecting all
vertices except v3, u2 and u6, and therefore it satisfies condition A1.
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As for A2, note that the monochromatic set of A3,4,3 contains the three
isolated vertices v3, u2 and u6. Also, empires w1,w2, and w3 are all adjacent
and therefore they must receive different colours in any (4, 3)-colouring of
A3,4,3. The remaining empires form an independent set (in the reduced graph
of A3,4,3) and hence they can be coloured with only one additional colour.
Thus A2 is verified for A3,4,3.

As in the case s = 3, for m > 3, A3,4,m is defined by concatenating a copy
of A3,4,m−1 with a copy of A3,4,3. Let {u, u′, u′′} be a particular empire in
U3,4,m−1 such that the degree of u′ is one, that of u′′ is two, whereas u is part
of the monochromatic set of A3,4,m−1. The graph A3,4,m will have vertex set
defined by the union of the following sets:

W3,4,m = W3,4,m−1 ∪ {w9(m−3)+i : 1 ≤ i ≤ 9},
U3,4,m = U3,4,m−1 ∪ {u6(m−3)+i : 1 ≤ i ≤ 6}

(here W3,4,m−1 ≡ {w1, . . . , w9(m−3)} and U3,4,m−1 ≡ {u1, . . . , u6(m−3)}). The
edge set of A3,4,m is formed by the union of the edges of A3,4,m−1, and the
edges

{u′, w9m−26}, {u,w9m−23}, {u,w9m−19},
{w9m−26, w9m−20}, {w9m−25, w9m−21}, {w9m−21, w9m−19},
{w9m−22, u6m−17}, {w9m−25, u6m−15}, {w9m−18, u6m−15},
{w9m−24, u6m−14}, {w9m−22, u6m−13}, {w9m−18, u6m−13}.

Note that each of the empires defined on U3,4,m consists either entirely of ver-
tices of degree two or of a vertex of degree two, a vertex of degree one, and a
vertex of degree zero. The graph A3,4,5 is shown in Figure 6. In general A3,4,m

has fifteen more vertices than A3,4,m−1 and its monochromatic set contains
one more element than that of A3,4,m−1. The empires of A3,4,m are those of
A3,4,m−1 and five new empires: w3m−8, w3m−7, w3m−6 defined on the new
elements of W3,4,m, and {u6m−17, u6m−16, u6m−15}, {u6m−14, u6m−13, u6m−12},
Condition A0 follows. The reader can easily verify that the resulting graph
also satisfies A1.

The empires defined on U3,4,m form an independent set in the reduced
graph of A2,3,m. Furthermore, for each integer x ∈ {3, . . . ,m}, empires w3x−8,
w3x−7 and w3x−6 are all adjacent, they are not adjacent to any other empire
defined over W3,4,m, and they are both adjacent to exactly three empires
defined over U3,4,m. Condition A2 can be readily verified arguing as in the
case s = 3.
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Given an r-empire graph G, and an empire v in V (G), the r-degree of v
is simply the degree of vertex v in the reduced graph of G. Gadgets Ar,s,m
will be used to replace particular empires with high r-degree by an array
of vertices of degree one or two, chosen among the monochromatic vertices
of the gadget. Let m be an integer at least as large as the r-degree of v.
The linearization of v in G is the r-empire graph obtained by replacing v
with a copy of Ar,s,m attaching each edge incident with some element of v
to an element of the monochromatic set of Ar,s,m. We will often denote the
monochromatic set of the connectivity gadget Ar,s,m that linearize v as Z(v)
and say that the chosen elements of such set simulate the connectivity of the
empire v.

4. Hardness s = 3

We are now ready to describe our main results. We start from the case
s = 3.

Theorem 3. Let r ∈ {2, 3}. Then 3-SAT ≤p 3-COLr(LFOREST).

Proof. The proof construction is reminiscent of that used in Theorem 1.
Given an instance φ of 3-SAT we can produce a linear forest P (φ) and a
partition of V (P (φ)) into empires of size r such that P (φ) admits a (3, r)-
colouring if and only if φ is satisfiable. The key property of P (φ) is that it
is closely related to the graph Gφ used in the proof of Theorem 1.

P (φ) consists of one truth gadget, one variable gadget for each variable
used in φ, and one clause gadget for each clause in φ. To define the truth
gadget, we start by adding r − 2 distinct isolated vertices to each empire
in B2,2. The empires in the resulting graph (which we denote by B+r

2,2) will
be labelled T, F and X. If φ uses n different variables and m clauses, we

+2

+2

3,2+

Ar,  ,occ(a)3

a

a

r,  ,occ(a)3

r,       nA               

A

Figure 7: The shape of a variable gadget for s = 3.

12



linearize T and X in B+r
2,2, using one copy of Ar,3,2+2m, and one copy of Ar,3,2+n

respectively (as both T and X have r-degree equals to two with respect to
the graph B+r

2,2). This completes the definition of the truth gadget. Since
T, F and X are all pairwise adjacent (in the reduced graph of B+r

2,2) and
the linearization preserves colour constraints (because of property A2), the
vertices of the truth gadget simulating the three empires of B+r

2,2 must have
different colours in any (3, r)-colouring of the truth gadget. Without loss of
generality we call these colours TRUE, FALSE and OTHER respectively.

For each variable a in φ, P (φ) contains a variable gadget. Let occ(·)
be a function taking as input a literal of φ and returning the number of
occurrences of its argument in the given formula. The variable gadget for a
is defined as the graph formed by the two connectivity gadgets Ar,3,occ(a)+2

and Ar,3,occ(a)+2, along with a single monochromatic vertex zX in Ar,3,2+n (a
distinct monochromatic vertex is used for each variable of φ). The edges in
the variable gadgets will be those of Ar,3,occ(a)+2 and Ar,3,occ(a)+2 plus three
further edges: {zX, za}, {zX, za}, and {z′a, z′a}. Here za and z′a (resp. za and
z′a) are in the monochromatic sets of the gadgets used to linearize a (resp.
a). Figure 7 gives a schematic view of the variable gadget for an arbitrary
variable a. Since X has colour OTHER, there are only two possible colourings
for a and a — either a is TRUE and a is FALSE, or a is FALSE and a is
TRUE (this corresponds to claim 1. in the proof of Theorem 1).

Finally, for each clause in φ, P (φ) contains a gadget like the one depicted
in Figure 8. This is connected to the rest of the graph via four connectiv-
ity gadgets. More specifically, the two vertices labelled T1 and T2 (in the
Figure) are two monochromatic vertices in Ar,3,2+2m (a distinct pair of such
monochromatic vertices for each case clause gadget). Also, vertices labelled
a, b and c in the Figure belong to the monochromatic set of three connec-
tivity gadgets of the form Ar,3,occ(`)+2 used to replace a literal ` in φ (` = a,
b, and c in the given example). The careful reader will notice the similarity
between the clause gadget used in this proof and the one used in the proof
of Theorem 1. Reasoning as in the proof of claim 2. in Theorem 1 it can be
shown that the clause gadget admits a (3, r)-colouring if and only if at least
one of the empires corresponding to a literal is coloured like empire T.

The fact that P (φ) is (3, r)-colourable if and only if φ is satisfiable follows
from the argument above and the fact that the graph obtained from P (φ) by
shrinking each connectivity gadget first and then each remaining empire in
P (φ) to a distinct (pseudo-)vertex coincides with the graph Gφ used in the
proof of Theorem 1.
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T2

1b

c

a

Figure 8: The clause gadget for the clause (a∨b∨ c), for r = 2.
Each dashed curve encloses a pair of vertices belonging
to the same empire. The vertices labelled T1 and T2

are in Z(T), while vertices labelled a, b and c are in
Z(a), Z(b) and Z(c) respectively.

5. Hardness s = 4

For s = 4, it is convenient to show the NP-hardness of the relevant
empire colouring problem using a reduction from 4-COL(FG(4, 3)), rather
than directly from 3-SAT.

Theorem 4. 4-COL(FG(4, 3)) ≤p 4-COL3(LFOREST).

Proof. Let Φ be a (4, 3)-formula graph defined on a set of complementary
vertices A = {a1, . . . , an, a1, . . . , an} and with set C containing m groups of
three vertices. A few simple replacement rules enable us to define a forest of
paths P (Φ) and a partition of V (P (Φ)) into empires of size three such that
Φ is 4-colourable if and only if P (Φ) is (4, 3)-colourable.

First, the complete graph on T = {T, F,X1, X2} is replaced by four
empires of size three labelled T, F, X1 and X2 spanning a copy of B3,3.
Moreover we linearize T, X1 and X2 in B3,3 using a copy of A3,4,3+3m, A3,4,3+2n

and A3,4,3+n, respectively. Three monochromatic vertices in each connectivity
gadget are used in the linearization. The 2n and n monochromatic vertices in
the connectivity gadgets replacing X1 and X2 will be needed in the definition
of the subgraph of P (Φ) replacing the subgraph of Φ induced by A, X1

and X2, while the 3m monochromatic vertices in the connectivity gadget
replacing T are needed to replace the complete graphs induced in Φ by
{T, ci,1, ci,2, ci,3}, for each i ∈ {1, . . . ,m}. Details will follow. By A1, the
graph resulting from such linearization is a collection of paths and isolated
vertices. Furthermore, because of A2, all vertices simulating T (resp. X1,
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or X2) must be given the same colour in any 4-colouring of the resulting
3-empire graph.

Next, for each pair of complementary vertices a, a ∈ A, we define two
empires, a = {a1, a2, a3} and a = {a1, a2, a3}, and we replace the cycle
X1, a,X2, a in Φ with a path zX1 , a1, zX2 , a1, z

′
X1 (distinct cycles replaced by

paths using distinct vertices zX1 , z′X1 ∈ Z(X1) and zX2 ∈ Z(X2)). We also
replace the edge {a, a} with {a2, a2}. As a result of these replacements, by
the properties of the connectivity gadgets, empires a and a in P (Φ) cannot
take any of the colours assigned to the vertices in either Z(X1) or Z(X2) in
any (4, 3)-colouring of P (Φ). To finish dealing with complementary vertices
we linearize a (resp. a) using a copy of A3,4,occ(a)+2 (resp. A3,4,occ(a)+2).

Finally, for each i ∈ {1, . . . ,m}, the clique on {T, ci,1, ci,2, ci,3} is replaced
by a copy of B3,3 on the empires ci,1, ci,2, ci,3 and three vertices from Z(T)
(for different values of i three different monochromatic vertices are used).
Also, for each i, j and vertex ` ∈ A such that {ci,j, `} ∈ E(Φ) the edge is
replaced by one connecting ci,j3 , the currently unused vertex from ci,j, and a
vertex from Z(`).

To see the correctness of the reduction, notice that when we first shrink
each connectivity gadget and then each remaining empire of P (Φ) to a dis-
tinct (pseudo-)vertex, the graph obtained coincides with the initial formula
graph.

6. Conclusions

The results in this paper prove that linear forests are no easier than
trees with respect to the (s, r)-colouring problem, even for small values of r.
Thus perhaps long distance connections, rather than connectivity, are really
instrumental to making the colouring problem hard.

Somewhat disappointingly, the constructions presented in this paper do
not cover the case r = 3 and s = 5. More generally, for arbitrary values of r
it seems difficult to prove hardness results when s is very close to 2r − 1.
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of the paper.
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