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Abstract   

This study used probabilistic elicitation and a Bayesian framework to quantitatively 

explore how logically practitioners’ update their clinical beliefs after exposure to new data. 

The clinical context was the efficacy of antibiotics versus teat sealants for preventing 

mammary infections during the dry period. While most practitioners updated their clinical 

expectations logically, the majority failed to draw sufficient strength from the new data so 

that their clinical confidence afterwards was lower than merited. This study provides 

quantitative insight into how practitioners’ update their beliefs. We discuss some of the 

psychological issues that may be faced by practitioners when interpreting new data. The 

results have important implications for evidence-based practice and clinical research in terms 

of the impact that new data may bring to the clinical community.  
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1.  Introduction  

A Bayesian statistical framework is ideally suited to and increasingly being used in 

evidence-based medicine (Ashby, 2006). This approach is conceptually straightforward. 

There are always two sources of information, the new data arising from a recent experiment 

and the prior information (Spiegelhalter et al., 2000). Prior information is any pre-existing 

information of relevance to the parameter of interest that has not arisen from the new 

experiment. The prior information must be expressed in a quantitative format as a probability 

distribution, called ‘the prior’ (Garthwaite et al., 2005). The information originating from the 

new data is summarised by a likelihood function. To conduct the analysis, Bayes theorem is 

used to combine the prior with the likelihood function and produce a posterior probability 

distribution (Bayes, 1763). Bayes theorem expresses how the prior information should, 

logically, be updated in light of the new evidence. Hence the posterior distribution 

encapsulates everything that is now known about the parameter, having updated the prior 

with the new data (Spiegelhalter et al., 2004). If the prior information is weak (i.e. contains 

considerable uncertainty), and the new data comparatively strong, the posterior will be 

dominated by the new data, and vice versa.  

By always including prior information formally in the statistical analysis itself, Bayesian 

statistics quantitatively places the new data in the context of pre-existing knowledge and 

addresses the question: how should the data change what we currently believe? (Spiegelhalter 

et al., 2004). It is, therefore, a formalisation of ‘learning from experience’ and hence 

evidence-based practice (Ashby, 2006). In contrast, the traditional (frequentist) statistical 

framework does not include prior information in the analysis itself and hence the reader is left 

to quantify for themselves how the new data should be combined with prior knowledge to 

arrive at a final answer. There are several possible choices for the prior information, 

including data from previously conducted experiments and ‘off-the-shelf’ theoretical 
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distributions aimed at representing different prior perspectives, for example, a ‘reasonable 

cautious sceptic’ (Spiegelhalter et al., 1994). Another possibility is to base the prior 

information on pre-existing clinical knowledge, which is then referred to as a ‘clinical prior’ 

(Chaloner and Rhame, 2001). In this case, the practitioner’s current belief needs to be 

captured in a numerical format as a probability distribution (Johnson et al., 2010a). The 

technique used to do this is called probabilistic elicitation (O'Hagan et al., 2006).  

Currently, UK National Health Service data monitoring committees may use a Bayesian 

analysis to aid their decisions over when to terminate a trial (Spiegelhalter et al., 2004). 

Clinical priors obtained by eliciting doctors’ beliefs are combined with the accruing trial data. 

When the posterior distribution associated with the most sceptical clinical prior supports the 

new treatment, the trial may be trial stopped on the grounds that the new data will be 

sufficiently strong to convince the medical community (Fayers et al., 1997). The assumption 

underpinning this decision is that doctors will actually update their beliefs in keeping with 

Bayes theorem. There is literature on the intuitiveness of Bayesian logic in several non-

clinical contexts (O'Hagan et al., 2006; Kynn, 2008). Experimental psychologists in the 

1970’s questioned clinicians’ abilities to reason logically due to heuristics. These are quick 

mental strategies that people may employ instinctively to make judgements when faced with 

uncertainty. They can be effective but may lead to severe bias and error (Tversky and 

Kahneman, 1974; Cooke, 1991). For example, people often make estimates by starting from 

an initial value and amend this to arrive at a final answer. Even if the initial value is known to 

be arbitrary, people will typically give answers that are biased towards the initial value, the 

so-called anchoring phenomenon (Tversky and Kahneman, 1974). There is also 

psychological and behavioural literature indicating that people may react in a negative way 

when their beliefs are challenged, be that emotionally, cognitively or behaviourally (Brehm, 

1966; Politi et al., 2007). Such negative reactions may contravene Bayesian logic.  
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In contrast, there is also recent work suggesting that people’s judgements are very close 

to Bayesian estimates for certain tasks (Baker et al., 2006; Griffiths and Tenenbaum, 2006; 

Westover et al., 2011) and especially when information is represented in a way to facilitate 

Bayesian reasoning (Hoffrage et al., 2000; Gigerenzer, 2011). However, the existing 

literature has predominately involved undergraduate students and lay tasks (Phillips and 

Edwards, 1966; Griffiths and Tenenbaum, 2006). Given the increased emphasis on evidence 

based medicine and the increased use of Bayesian methods in clinical care, it is of real 

practical interest to understand how practitioners’ update their beliefs compared to Bayes 

Theorem for clinical parameters such as incidence rates using the type of information that is 

published in medical journals. There is, however, a paucity of specific literature.  To start to 

address this research gap, we used the clinical context of dry cow therapy to illustrate a 

simple practical method that may be used to quantitatively investigate how logically 

practitioners update their clinical beliefs compared to Bayes theorem for a continuous clinical 

parameter.  

In the UK, blanket antibiotic dry cow therapy (BDCT) is a commonly used strategy to 

aid mastitis control. It involves the infusion of an intra-mammary antibiotic in all quarters of 

all cows at dry-off, irrespective of infection status. The aim is to cure any pre-existing intra-

mammary infections (IMI) and prevent new IMI over the dry period. An alternative strategy 

is selective dry cow therapy (SDCT) whereby cows with a low probability of an IMI receive 

an internal teat sealant (ITS) instead of antibiotics to prevent new IMI. Using SDCT instead 

of BDCT can considerably reduce antibiotic use. A key clinical question underpinning the 

use of SDCT is whether practitioners believe that ITS is as effective as an antibiotic, or 

better, at preventing new IMI in uninfected quarters. Therefore, this study aimed to quantify 

practitioners’ beliefs for the efficacy of an antibiotics versus ITS, before and after exposure to 
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new data. The study illustrates a practical way to quantitatively investigate how practitioners 

updated their beliefs compared to Bayes theorem.  

2. Materials and methods 

2.1. Recruitment of practitioners 

In total, 20 practitioners were recruited from 6 practices in the South of England.  Sample 

size was a pragmatic choice in keeping with existing research involving the elicitation of 

beliefs (Johnson et al., 2010a).  Since we set out to demonstrate a method to quantitatively 

assess changes in belief, rather than to draw inferences to a wider population, we selected 

practices based on the convenience of being within a practical driving distance.  Inclusion 

criteria were practitioners providing healthcare to cattle during their normal working hours. 

Voluntary signed consent was obtained. Individual face-to-face interviews lasting 30 minutes 

were conducted by HMH between 1 December 2014 and 31 January 2015, at the participants’ 

workplaces. A standard script was used for consistency. The script was piloted on 3 

practitioners to ensure the method was tenable. This pilot data is not included.   

  2.2. Clinical context and definition of elicited parameter,  

The population of interest was cows with all four quarters uninfected at dry-off. To 

ensure everyone considered the same population and to avoid any potential confusion over 

uncertainty associated with diagnosing cows as uninfected, it was emphasised to participants 

that when giving their answers the population they must consider were cows that were 

genuinely uninfected (free from both major and minor pathogens) i.e. they must assume that 

this had been 100% reliably established.  

The outcome of interest was the dry period new infection rate, defined as the percentage 

of uninfected quarters that acquire a new infection during the dry period. The new infection 

could be either a major or minor pathogen, and result in either a sub-clinical or clinical 
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infection. To avoid any potential ambiguity associated with diagnosing the new infections, it 

was emphasised to participants that when giving their answers they simply needed to 

consider how many quarters would actually acquire a new infection, and diagnosing this 

infection was not something they needed to think about.  

The two treatments considered at dry-off were (i) a long acting intra-mammary 

suspension containing 0.250g cefalonium per syringe, administered correctly and (ii) an ITS, 

specifically a 4g intra-mammary suspension containing 65% bismuth subnitrate, administered 

correctly. To ensure everyone considered the same baseline, participants were told the 

infection rate with cefalonium was 30%. The elicited parameter, , was the difference in the 

infection rate if an ITS was used instead of cefalonium, i.e. how much higher (+) or lower (-) 

than 30% the infection rate would be with ITS. It was assumed that influencing factors other 

than which treatment was given remained constant and the dry period was 60 days. We chose 

to compare ITS to antibiotics rather than giving no treatment because giving no treatment in 

uninfected cows is generally not considered a tenable option in high yielding dairy cows in 

the UK, mainly due to delay in closure of the teat canal keratin plug (Dingwell et al., 2004). 

Furthermore, we elicited the difference in the infection rates, as opposed to other measures of 

relative efficacy, because we considered adding and subtracting to be the simplest way for 

participants to give their answer.   

    The probability that an ITS treated, uninfected quarter would be infected at calving was 

denoted by . After the interviews were finished, participants beliefs for  were calculated 

using 
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We could have elicited beliefs directly for  (the infection rate with ITS conditional on a 

30% infection rate with cephalonium), rather than the difference. However, by asking for the 

difference it was envisaged that it would facilitate participants to think more carefully about 

which treatment was better (the infection rate with cephalonium was marked in red on the 

chart, see Fig 1). 

2.3. Probabilistic elicitation method to capture beliefs  

A variety of different methods have been reported to elicit beliefs probabilistically 

(Johnson et al., 2010a).  This study used a version of the roulette method (also called chip and 

bins) because it is a method that has been shown to be feasible, valid and reliable for 

capturing beliefs in a clinical setting (Johnson et al., 2010b). Current best practice for 

elicitation was followed (Garthwaite et al., 2005; O'Hagan et al., 2006). This included: (i) a 

face-to-face interview; (ii) providing a training exercise; (iii) use of a standardized script; (iv) 

a design that avoided heuristics; (v) provision of feedback; (vi) opportunity to revise 

responses and (vii) use of simple graphical methods.  

Following the general methodology of Johnson et al. (2010b), participants were asked to 

express their beliefs probabilistically by indicating the weight of their belief for  using 10 

chips each worth 0.1 probability, and placing them in discrete 5 per cent intervals (the bins) 

over the range of . Coins, specifically 5 pence pieces, were used for the chips.  Adhesive 

putty (Blu-Tack®, Bostik) was used to make the coins adhere to, but be easily detached from, 

a laminated sheet. This allowed participants to easily revise their answers.  

(1) 
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The training exercise took approximately 5 minutes. Participants were shown 3 generic 

examples involving 2 treatments, A and B. Each example demonstrated a different belief and 

their meanings were explained (see Fig 1). No context was provided in order to reduce any 

bias. Example 1 (Fig 1) represents a practitioner who “believes confidently” that treatment B 

is definitely inferior to A, because they have assigned 0.8 probability (80% chance) that the 

infection rate will be higher with B by 25-30%. Example 2 represents a practitioner who 

believes that treatment B is definitely superior to A, but they hold a less confident belief 

compared to example 1. Example 3 represents a belief that favours treatment B, but allows 

some probability (0.3 in total) that A is superior. Afterwards, the examples were placed out of 

sight to mitigate bias. 
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Fig.1. The 3 examples used for training. Each circle denotes a 0.10 probability. Example 1 

represents a “confident” belief that treatment B is inferior to A. Example 2 represents the 

belief that treatment B is superior to A; it is a less confident belief relative to example 1. 

Example 3 represents a belief that favours treatment B, but allows some probability that A is 

superior. 

2.4. Task structure and new data presented  

The task itself started by capturing participants’ current beliefs for  as probability 

distributions using the roulette method (see Section 2.3). This distribution is denoted by . 

They were then shown the results (point estimate and 95% classical confidence interval) from 
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a clinical trial. The trial data was fictitious and followed a binomial distribution, Y ~ 

Binomial , where  is the number of uninfected quarters at dry-off ,  is (as defined 

previously) the probability that an ITS treated,  uninfected quarter is infected at calving, and 

the number of infected quarters were realisations, , on the random variable Y.   was set to 

1000, which resulted in 95% confidence intervals that were  ~5% wide i.e. the width of one 

bin. The 95% binomial confidence intervals (Wilson, 1927) were calculated using the 

‘binom’ package in the software program R (R Core Team, 2015). 

The data,  each practitioner was shown was dependent on their prior distribution, as 

follows. The point estimate for the data was centred in the 5% interval adjacent to the mode 

of their prior and favouring cefalonium. For example, the mode of the prior in Example 2, 

Figure 1, is in the lower -(5 to 10)% interval for  (i.e.  0.2-0.25), and the adjacent 

interval to this is -(0 to 5%), (i.e.  = 0.25-0.3). Hence the point estimate of the data would be 

in the middle of this at  = -2.5%. Using Eq. 1, this is  , and with =1000, this 

means  275 infected quarters. By varying the point estimate of the data according to each 

participant’s prior belief, all participants had their prior beliefs challenged to the same extent 

with respect to central location.  

Due to the properties of the binomial distribution, the width of the confidence interval 

each participant was shown differed slightly (range 4.4 - 5.4%) as it was related to their prior 

mode. However, in the context of the precision of the task as it was set (5% interval bins), 

differences in the strength of data they were shown was minor.  

The final part of the task involved re-eliciting the practitioner’s belief for  as a 

probability distribution after seeing the new data using a new set of coins and laminated sheet 

(see Section 2.3). This probability distribution is denoted by . During the interviews, no 
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analysis was done and practitioners were not told how their updated beliefs compared to a 

Bayesian analysis.   

2.5. Initial data manipulation 

The raw data was entered into a Microsoft Excel spread sheet (v2010, Microsoft Corp).  

For each participant, their probability distributions  and  were transformed to probability 

distributions for  using Eq. 1, to yield  and .  Hence  was the practitioner’s prior 

distribution and this will also be referred to as their prior belief for . Similarly,  was their 

elicited posterior distribution and this will also be referred to as their elicited posterior belief 

for . Since the raw data comprised discrete quantities of probability placed in fixed intervals, 

the mean and variance of  and  were simply calculated using 

 

 

where  is the mean, the variance,  took the possible values of 

 corresponding to the mid-point of each interval and  is the 

probability placed in each interval.   A parametric distribution from the Beta family was fitted 

to  and  for each practitioner by equating  and  to the first and second 

moments of the Beta family expressed in terms of its two hyper-parameters , and 

solving the two simultaneous equations (Gupta and Nadarajah, 2004): 

 

 

From the fitted distributions, summary statistics including 95% equal tailed Bayesian credible 

intervals, means and standard deviations were calculated.  

 

(2) 
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2.6. Conjugate Bayesian analysis  

For each practitioner, Bayes theorem was used to combine their prior distribution with 

the new data they were shown, to produce a posterior distribution. This posterior distribution 

is subsequently referred to as their Bayesian posterior distribution (or Bayesian belief) and 

has probability density function, . It is a theoretical distribution that expresses how 

each practitioner should have updated their prior belief, according to Bayes theorem. Since 

Beta distributions were fitted to the prior beliefs and the new data followed a binomial 

distribution, this Bayesian analysis was conjugate with the Bayesian posterior distribution 

also taking the form of Beta distribution: 

 

 

where  and  were derived for each practitioner by solving Eqs. 2,  is the binomial 

likelihood function, =1000 and  varied with the mode of  (see section 2.4) 

By comparing their elicited posterior belief, , with the Bayesian posterior belief, calculated 

from Eq. 3 it was possible to quantify how close practitioners were to Bayesian logic. In this 

respect, for continuous parameters such as , there are two key elements to consider. First, 

whether the elicited posterior belief is centred as in keeping with Bayes theorem, which in 

this context could be termed their ‘clinical expectation’. Second, whether the elicited 

posterior belief carries the appropriate uncertainty, which in this context could be termed 

their ‘clinical confidence’. To make an assessment of each of these, we used the mean and the 

standard deviation of the elicited posterior distribution and the Bayesian posterior 

distribution. We produced scatterplots of the elicited posterior means versus Bayesian 

posterior means, and the elicited posterior standard deviations versus the Bayesian posterior 

(3) 
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standard deviations.  Other metrics for quantifying the overall distance between two 

probability distributions could have been used. However, they are less useful in this context 

because they do not allow a separate assessment of clinical expectations and clinical 

confidence, i.e. the first and second moments of the distributions. 

2.7. Discrete Bayesian analysis  

Since the raw data comprised discrete quantities of probability placed in fixed intervals it 

was also possible to use these directly as prior discrete probability distributions because it 

was possible to solve the summation in the denominator of Bayes theorem and calculate a 

Bayesian discrete posterior distribution for each practitioner as follows: 

   

            

where  is the probability mass function of the Bayesian posterior distribution,  

is the prior probability mass function,   is the binomial likelihood function, and the 

summation in the denominator is over possible values for  of  We 

compared the results obtained to those derived from the conjugate Bayesian analysis (section 

2.6), in order to make an assessment of the sensitivity of the results to using the discrete 

versus the continuous form of Bayes theorem. 

 

3. Results 

3.1 Prior beliefs 

Figure 2 presents summary statistics (95% credible interval and mean) for the 

practitioners’ prior beliefs for  derived from the fitted Beta distributions. In Fig. 2, 

practitioners are ordered vertically by their prior mean. The majority of practitioners had the 

mean of their distribution ≤ 0.3 suggesting that the clinical opinion of practitioners in this 
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sample was an expectation that ITS was either equivalent or superior to cefalonium. 

However, only 8 practitioners (numbers 1-8 in Fig. 2) were entirely convinced of the 

superiority of ITS in the sense that they had their entire 95% credible intervals ≤ 0.3 and 

hence gave minimal probability for ITS being the inferior treatment. Overall, there was 

heterogeneity in clinical beliefs with respect to the efficacy of ITS compared to cephalonium, 

both in terms of centre of location and variance of the prior distributions. As illustrated in 

Fig. 2, several pairs of practitioners had non-over-lapping 95% credible intervals indicating 

very different clinical opinions.  
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Fig. 2 Prior beliefs (95% credible interval and mean) for 20 practitioners for : the 

probability that an uninfected quarter treated with a teat  seal is infected at calving, given a 

0.3 probability with cephalonium.  

 

3.2 Elicited posterior compared to Bayesian posterior distributions 

For the 20 practitioners, Fig. 3 presents summary statistics for their prior, elicited 

posterior and Bayesian posterior distributions for  derived from the conjugate Bayesian 

analysis; practitioners are ordered vertically by their prior mean.  
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Fig. 3. Summary statistics (95% credible interval and mean) for the prior (blue), elicited 

posterior (red) and Bayesian posterior (black) distributions for 20 practitioners for : the 
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probability that an uninfected quarter treated with a teat  seal is infected at calving, given a 

0.3 probability with cephalonium.  

In total, 4 out of the 20 practitioners, (numbered 1, 8, 14 and 18 in Fig. 3) updated their 

beliefs perfectly logically in light of the new data, both central location and variance (i.e. 

clinical expectation and confidence).  For all the participants, their prior beliefs were weak 

relative to the strength of new data they were shown, and hence all the Bayesian posterior  

beliefs predominately reflected the new data.  

Figure 4 presents a scatterplot of the elicited posterior versus the Bayesian posterior means. 

The dashed diagonal line in Fig. 4 is the line along which the elicited posterior mean equals 

the Bayesian posterior mean. Practitioners falling on this line were exactly in keeping with 

Bayes theorem. Figure 4 shows that most practitioners updated their clinical expectations 

either exactly, or close to, Bayesian logic. 
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Fig. 4.  Scatterplot of elicited posterior versus Bayesian posterior means for 20 practitioners 

regarding : the probability that an uninfected quarter treated with a teat  seal is infected at 

calving, given a 0.3 probability with cephalonium.  

In marked contrast, however, the majority did not update their uncertainty (i.e. their clinical 

confidence) in keeping with Bayesian logic. Figure 5 presents a scatterplot of the elicited 

posterior versus the Bayesian posterior standard deviations. The diagonal line denotes 

equality and hence practitioners falling on this line updated their uncertainty about  exactly 

in keeping with Bayes theorem.  

 

Fig. 5. Scatterplot of elicited posterior versus Bayesian posterior standard deviations for 20 

practitioners regarding : the probability that an uninfected quarter treated with a teat  seal is 

infected at calving, given a 0.3 probability with cephalonium.  
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In addition, while not apparent from Figure 3,  eight practitioners (numbers 4, 5, 6, 10, 

12, 15, 16, 20, Fig  3) had elicited posterior distributions with variance less than their prior 

but greater than their Bayesian posterior distribution, and this is reflected in the relative 

widths of their 95% credible intervals in Figure 3. In total, six had elicited posterior 

distributions with variances equal to their prior (numbers 3, 7, 9, 11, 13, 19 Figure 3), and 

two had elicited posterior distributions with variances greater than their prior (numbers 2 and 

17, Figure 3); the latter is a considerable departure from Bayes theorem. Thus, most 

practitioners did not draw as much confidence from the new data as was logical. 

 

3.3 Discrete versus conjugate Bayesian analysis  

 

Updating the discrete prior distributions directly gave the same results as fitting parametric 

Beta distributions to the raw data and performing a conjugate Bayesian analysis. 

 

4. Discussion 

 

4.1 Clinical implications for the prescription of antibiotics versus teat sealants 

The existing evidence suggests that in uninfected quarters at dry-off, using an ITS instead 

of an antibiotic is as effective at preventing new IMI (Rabiee and Lean, 2013). The priors we 

elicited suggest that some practitioners’ are currently not entirely convinced of the efficacy of 

teat sealants when administered correctly. We chose not to give participants a review of the 

current evidence at the start of their interviews and therefore part of the variation in their 

prior beliefs may have been due to differences in their awareness or interpretation of the 

current literature.  
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 The fact that some practitioners’ are currently not entirely convinced of the efficacy of 

teat sealants may play a role in the implementation of SDCT in practice and hence it has 

potential implications for responsible antimicrobial prescribing because using SDCT instead 

of BDCT can considerably reduce antibiotic use.  However, there are, of course, many 

important practical and psychological barriers to implementing SDCT in reality and the 

clinical beliefs of practitioners are just one of many factors in the broader perspective.  

4.2 The use of Bayes theorem and a Bayesian approach in a clinical setting 

Bayes theorem is derived directly from the fundamental axioms of probability theory. 

There is no controversy among statisticians that Bayes theorem per se is correct, in the sense 

that it is the logical way to update prior information based on new data (Spiegelhalter et al., 

2004). Bayes theorem cannot think (!) and as such is impervious to psychological issues, 

heuristics or bias. In contrast, humans on occasion may fall foul of such factors when 

updating their beliefs.  On the other hand, since humans can think they can also consider 

other factors when updating their beliefs which Bayes theorem cannot do, such as how 

trustworthy they consider the new data to be. Therefore, prima facie, it may be tempting to 

believe that it is not appropriate to use Bayes theorem as a gold standard for clinical belief 

updating. There are three key points here, however. 

Firstly, when using Bayes theorem to update data there is an important, albeit 

somewhat implicit, underlying assumption which is that the new data is valid, i.e. that it was 

produced by a robust, appropriately designed and conducted scientific experiment, and that it 

yields information directly about the clinical parameter of interest.  

Secondly, using Bayes theorem and a Bayesian approach does not mean that clinical 

judgement is not important. On the contrary, by taking a Bayesian approach, the existence 

and validity of clinical experience and judgement is formally incorporated into the analysis, 
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in the form of the prior information. This means, for example, that if a practitioner is 

confidently sceptical that a new treatment will not work, based on their current clinical 

experience and knowledge, this will be reflected in their prior probability distribution and 

hence also their posterior distribution and the inferences they will draw from the new data; 

with a strongly sceptical prior the new data would have to be very strong to yield a posterior 

that gives any support for the new treatment. Furthermore, once a practitioner has logically 

updated their beliefs with new data, clinical judgement and human thinking are crucial in 

order to take into consideration a multitude of contextual and social factors that will 

determine how the evidence should be used and applied in clinical practice.   

Lastly, the use of a Bayesian approach in a clinical setting has been steadily growing 

over the last 25 years and it has now permeated all major areas of medical statistics (Ashby, 

2006). It has been strongly argued by leading statisticians and psychologists that clinicians’ 

prior beliefs should be elicited before a new clinical trial commences and a Bayesian 

approach used to facilitate the design, monitoring and interpretation of new data (Edwards et 

al., 1963; Parmar et al., 1994; Spiegelhalter et al., 1994; Berry, 1996; Parmar et al., 2001; 

O'Hagan and Luce, 2003).    

4.3 Clinical expectations versus clinical confidence in belief updating for continuous 

parameters 

It was an interesting contrast to observe that the majority of practitioners updated the 

central location (clinical expectation) of their distributions logically, but the variance (clinical 

confidence) of their beliefs illogically. For this task, the data was centred close to the 

participant’s prior mode and hence in terms of central location per se, the data was not 

radically challenging any of the practitioners’ prior beliefs. In contrast, the strength of the 

evidence they were shown was, for all participants, much stronger than the strength of their 
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prior beliefs (i.e. the variance of their prior distributions). Hence with respect to variance per 

se, the data was challenging the participants’ prior beliefs to a reasonable degree. We 

hypothesize that this may to some extent explain the observed contrast; more negative 

reactions may have been evoked by the greater challenge to their prior beliefs with respect to 

the variance than central location, and negative reactions may impede updating in accordance 

with Bayes theorem. 

4.4 Implications for evidence based veterinary medicine 

Evidence based practice relies heavily on changing practitioners’ beliefs by presenting 

them with new data. The results, however, provide quantitative support for the notion that 

new data which differs from practitioners’ current beliefs can generate uncertainty (Ellsberg, 

1961; Politi et al., 2007). Thus, new data may result in practitioners failing to draw enough 

confidence from the evidence or even in them having weaker beliefs upon which to base their 

clinical decisions than they did before. This ‘psychological handicap’, effectively a hurdle of 

doubt, is important for clinical researchers and data monitoring committees to bear in mind 

when assessing the strength of conviction that new data may bring to the clinical community. 

A difficult decision when conducting a new clinical trial is when to stop it. One 

consideration is whether the accruing evidence is strong enough to be convincing to 

clinicians, even those who currently hold relatively sceptical beliefs about the new treatment 

that is being assessed by the trial. One way to make an assessment of the impact of the 

accruing results of a new trial on clinicians is to use a Bayesian approach (Fayers et al., 

1997). Thus, as the results of a clinical trial accumulate, they could be shown to clinicians 

and their beliefs elicited probabilistically. By doing this at regular intervals of time during the 

clinical trial as an interim analysis, the decision over when to stop the trial would be 

facilitated; when the data is strong enough to result in previously sceptical clinicians having a 

posterior distribution that favours the new treatment, the trial could be stopped.  Using the 
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roulette method employed here, it would not be arduous task to elicit the beliefs of clinicians 

on a regular basis during a clinical trial.  

The results also support the view that some practitioners may benefit from assistance to 

appropriately adjust their current beliefs in the light of new evidence, and in particular it may 

be worthwhile training practitioners to be more comfortable with uncertainty. An 

interpretation section in clinical papers that presents a variety of prior beliefs and 

demonstrates how the trial result should influence them may be helpful. This would enable 

practitioners to self-evaluate how they should adjust their clinical beliefs, and help them to 

make the best use of data. In turn, this would facilitate the efficient uptake of new evidence 

into clinical practice. It is important for clinical researchers to make their results transparent 

and easily interpretable to all practitioners in the context of their current clinical beliefs, and a 

Bayesian framework is ideally suited to this.  Furthermore, the type of task described here 

could be used to help teach the logical updating of clinical beliefs and the concepts of 

Bayesian statistics to clinicians as part of undergraduate or postgraduate training.  

4.5 Assessing the updating of clinical beliefs       

When comparing practitioners’ belief updating to Bayes theorem, it is worth noting that 

it is difficult to differentiate a practitioner who did not express their prior belief accurately as 

a probability distribution from a practitioner who appeared to update their prior belief 

illogically. By following best practice for elicitation, we mitigated this potential bias. 

Nonetheless, it is possible that some practitioners may have specified priors that did not 

reflect their true beliefs.  Interestingly other authors have elicited clinical priors from doctors 

and remarked that some doctors appeared to give over-confident answers given the available 

evidence (Chaloner and Rhame, 2001). We hypothesise that, psychologically, at least some 
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practitioners’ may have difficulties separating their bedside manner from their own 

uncertainty with respect to the evidence.  

Other psychological issues in the updating of clinical beliefs that could usefully be 

explored in further studies include the consequences of believing the new information for a 

practitioner’s previous and future actions. Practitioners may be resistant to change and react 

against it simply because they have perceptions that treatments they have used have worked 

in the past and their prior beliefs are overly and inaccurately strong (Brehm, 1966).  

Furthermore in practice, practitioners’ will usually update their clinical beliefs without 

being required to specifically think and probabilistically quantify what they currently believe 

first; thus of primary importance is how they update their clinical beliefs without having to 

first think and express their beliefs probabilistically. This is unfortunate, given it is currently 

impossible to know if a person has updated their belief logically, without in some way 

ascertaining what it was they believed to begin with.  Of relevance here, is the existing debate 

in the literature over whether practitioners’ have beliefs that already exist, pre-formed and 

coherent, and hence are ‘ready for the taking’ by elicitation (Lindley et al., 1979), or 

alternatively, whether their beliefs exist in a more diffuse state, and hence are ‘conjured up on 

the fly’ in response to the elicitation task itself (Winkler, 1967); if the latter is true, then we 

speculate that any potential differences between measurable and actual belief updating in 

practice, may be greater.  

4.6 Use of discrete versus continuous probability distributions  

We chose the roulette method to probabilistically elicit beliefs which directly 

produced discrete prior probability distributions, and in our case it was possible to explicitly 

(by hand) calculate the summation in the denominator of Bayes theorem to yield a discrete 

posterior distribution.  However many methods to elicit beliefs do not produce discrete 
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probability distributions, instead a small number of summary statistics are elicited and it is 

common practice and mathematically convenient to fit continuous parametric distributions to 

the raw data to represent the prior beliefs. With the prior beliefs expressed in this format, a 

conjugate analysis (or in more complex cases, sophisticated simulation techniques) are 

needed to solve Bayes theorem and derive the posterior distribution.   

The extent to which a fitted parametric density function actually represents what a 

person believes is a non-trivial statistical problem within the field of probabilistic elicitation 

that has not yet been resolved (Garthwaite et al., 2005; O'Hagan et al., 2006; Oakley and 

O'Hagan, 2007). This is because to specify the uncertainty in a continuous random variable X 

uniquely as a probability distribution requires eliciting an infinite collection of probability 

statements from the person, , which is impossible. The person can only 

provide a finite summary of their beliefs. 

In our case, given we could both fit parametric distributions to our raw data and use 

the discretely elicited prior distributions directly, it was of interest to do both and compare the 

results.  We chose to present the results using 95% credible intervals and means derived from 

the conjugate analysis using the fitted parametric distributions for convenience and reader 

familiarity.   

4.7 Limitations 

The results are conditional on the task as it was set and in particular our choice of the 

roulette method and the way we chose to challenge their beliefs (strength and central location 

of the new data). It is possible that different results would be obtained using a different 

methodological approach, thus repetition of this type of study is warranted. Furthermore, our 

design does not take account of any clustering of the data which may be relevant and add 

complexity to the design of the task. In addition, any method must be acceptable to 
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practitioners themselves and as simple as possible. Our perception was that the practitioners 

in our sample found the methodology acceptable; however the training exercise is important. 

The fact that this study used fictitious data may potentially have given rise to some 

psychological implications, particularly that the results may not have been believed. Steps 

were taken to overcome this, however, including specifically emphasising at the outset that 

the task required participants to ‘use their imagination and really believe’ the trial results. 

Indeed, in our experience it is crucial to remind practitioners at the end of the interview that 

the data are synthetic in order to avoid them transferring incorrect information to clients. 
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Figures and captions (black and white versions) 

 

Fig.1. The 3 examples used for training. Each circle denotes a 0.10 probability. Example 1 

represents a “confident” belief that treatment B is inferior to A. Example 2 represents the 

belief that treatment B is superior to A; it is a less confident belief relative to example 1. 

Example 3 represents a belief that favours treatment B, but allows some probability that A is 

superior. 
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Fig. 2 Prior beliefs (95% credible interval and mean) for 20 practitioners for : the 

probability that an uninfected quarter treated with a teat  seal is infected at calving, given a 

0.3 probability with cephalonium.  
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Fig. 3. Summary statistics (95% credible interval and mean) for the prior (diamond), elicited 

posterior (dot) and Bayesian posterior (cross) distributions for 20 practitioners for : the 

probability that an uninfected quarter treated with a teat seal is infected at calving, given a 0.3 

probability with cephalonium.  


