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Abstract Frequent itemset mining is a fundamental ele-

ment with respect to many data mining problems directed

at finding interesting patterns in data. Recently the PrePost

algorithm, a new algorithm for mining frequent itemsets

based on the idea of N-lists, which in most cases outper-

forms other current state-of-the-art algorithms, has been

presented. This paper proposes an improved version of

PrePost, the N-list and Subsume-based algorithm for min-

ing Frequent Itemsets (NSFI) algorithm that uses a hash

table to enhance the process of creating the N-lists asso-

ciated with 1-itemsets and an improved N-list intersection

algorithm. Furthermore, two new theorems are proposed

for determining the ‘‘subsume index’’ of frequent 1-item-

sets based on the N-list concept. Using the subsume index,

NSFI can identify groups of frequent itemsets without

determining the N-list associated with them. The experi-

mental results show that NSFI outperforms PrePost in

terms of runtime and memory usage and outperforms dE-

clat in terms of runtime.

Keywords Data mining � Pattern mining � Frequent
itemset � N-list � Subsume

1 Introduction

Itemset mining is an important problem within the field of

data mining. Currently, there are many variations of

itemset mining such as frequent itemset mining [1, 23],

frequent closed itemset mining [25, 35], frequent weighted

itemset mining [29], constrained itemset mining [5], eras-

able itemset mining [8, 16, 17] and so on. However, fre-

quent itemset mining is the most popular. Frequent itemset

mining plays an important role in association rule mining

[2, 22, 30, 33], sequential mining [3, 4, 12, 14, 26], clas-

sification [6, 7, 18–21, 24, 28, 36, 37]. Currently, there are

a large number of algorithms which effectively mine fre-

quent itemsets. They may be divided into three main

groups:

1. Methods that use a candidate generate-and-test

strategy: These methods use a level-wise approach for

mining frequent itemsets. First, they generate frequent

1-itemsets which are then used to generate candidate

2-itemsets, and so on until no more candidates can be

generated. Apriori [2] and BitTableFI [11] are exem-

plar algorithms.

2. Methods that adopt a divide-and-conquer strategy:

Methods that compress the dataset into a tree structure

and mine frequent itemsets from this tree by using

a divide-and-conquer strategy. FP-Growth [15] and

FP-Growth* [13] are exemplar algorithms.

This paper is a expanded version of the paper ‘‘A hybrid approach for

mining frequent itemsets’’ [32] presented in IEEE International

Conference on Systems, Man, and Cybernetics 2013.
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3. Methods that use a hybrid approach: These methods

use vertical data formats to compress the database and

mine frequent itemsets by using a divide-and-conquer

strategy. Eclat [34], dEclat [35], Index-BitTableFI

[27], DBV-FI [31], and Node-list-based method [9, 10]

are some examples.

Although many solutions have been proposed in recent

years, the complexity of the frequent itemset mining problem

remains a challenge. Therefore more computationally effi-

cient solutions are desirable especially in the face of ever

larger datasets to be processed. Recently, Deng andWang [9]

proposed the idea of PPC-trees (Pre-order Post-order Code

trees), an FP-tree like structure for holding frequent item set

information. The PPC-tree outperforms FP-tree because the

algorithm using PPC-tree traverses the tree one time to

determine the N-List associated with frequent 1-itemset.

Meanwhile the algorithm using FP-tree traverses the tree in

many times. And then Deng et al. [10] proposed the PrePost

algorithm for mining frequent itemsets using that structure.

PrePost operates as follows. First a tree construction algo-

rithm is used to build a PPC-tree (a data structure for holding

frequent item set information). Then N-lists are generated,

each associated with a 1-itemset contained in the tree. A N-list

of a k-itemset is a list describing its features, it is a compact

form of transaction ID list (TID list). A divide-and-conquer

strategy is then used for mining frequent itemsets. Unlike FP-

tree-based approaches, this approach does not build additional

trees on each iteration, it mines frequent itemsets directly

using the N-list concept. The efficiency of PrePost is achieved

because: (i) N-lists are much more compact than previously

proposed vertical structures, (ii) the support of a candidate

frequent itemset can be determined through N-list intersection

operations which have a time complexity of O(m ? n ? k),

where m and n are the cardinalities of the two N-lists and k is

the cardinality of the resulting N-list. This process is more

efficient than finding the intersection of TID lists, as used in

some frequent itemset mining algorithms, because it avoids

unnecessary comparisons. The experimental results in Deng

et al. [10] shows that PrePost is more efficient than FP-

Growth [15], FP-Growth* [13] and dEclat [35].

Song et al. [27] proposed the concept of the ‘‘subsume

index’’. Broadly the subsume index of a frequent 1-itemset

is the list of frequent 1-itemsets that co-occur with it. This

method is used to enhance the performance of frequent

itemset mining. Therefore, this idea has also been incor-

porated into the proposed NSFI algorithm.

In this paper, two new theorems for effectively deter-

mining the ‘‘subsume index’’ of frequent 1-itemsets based

on the N-list associated with frequent 1-itemsets are also

presented. Using these theorems and a theorem in Song

et al. [27], we propose an effective algorithm which com-

bines N-lists and the subsume index concept to speed up

the runtime and reduce the memory usage in comparison

with the original PrePost algorithm. The proposed

NSFI algorithm features the following improvements:

(i) Use of a hash table to speed up the process of creating

the N-lists associated with frequent 1-itemsets, (ii) an

improved N-list intersection procedure to determine the

intersection between two N-lists, (iii) the use of the sub-

sume concept (with two supporting theorems) to quickly

identify frequent itemsets without needing to determine the

N-lists associated with them.

The rest of the paper is organized as follows. Section 2

presents the basic concepts. The NSFI algorithm is pre-

sented in Sect. 3. Section 4 gives an illustration of the

operation of NSFI. Then, Sect. 5 shows the results of

experiments comparing the runtime and memory usage of

NSFI with those of PrePost to show the effectiveness of

NSFI. Finally, Sect. 6 summarizes the results and offers

some future research topics.

2 Basic concepts

2.1 Notations

DB The dataset

DBe An example transaction dataset

minSup A given threshold

X An itemsets

r(X) The support of an itemset X

k-itemset A itemset with k items

R The root of the PPC-tree

Ni A node in PPC-tree

Ci The PP-code of node Ni

NL(A) The N-list of item A

Subsume(A) The subsume index of item A

2.2 Frequent itemsets

We assume a dataset DB comprised of n transactions such

that each transaction contains a number of items belonging

to I where I is the set of all items in DB. An example

transaction dataset, DBe, is presented in Table 1 which will

Table 1 An example transac-

tion dataset DBe

Transaction Items

1 a, b

2 a, b, c, d

3 a, c, e

4 a, b, c, e

5 c, d, e, f

6 c, d
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be used for illustrative purposes throughout the remainder

of this paper. The support of an itemset X, denoted by

r(X) where X [ I, is the number of transactions in DB

which contain all the items in X. An itemset X is a ‘‘fre-

quent itemset’’ if r(X) C dminSup 9 ne, where minSup is a
given threshold. Note that a frequent itemset with k ele-

ments is called a frequent k-itemset, and I1 is the set of

frequent 1-itemsets sorted in frequency descending order.

2.3 PPC-tree

Deng and Wang [9] and Deng et al. [10] presented the PPC-

tree and the PPC-tree construction algorithm as follows:

Definition 1 (The PPC-tree) A PPC-tree, R, is a tree

where each node holds five values: Ni.name, Ni.frequency,

Ni.childnodes, Ni.pre and Ni.post which are: a the frequent

item identifier (taken from the set I), the associated fre-

quency count, the set of children node associated with this

node, the order index of this node when traversing this tree

in a pre-order manner and the order index of this node

when traversing this tree in post-order manner.

The PPC-tree construction algorithm is presented in

Fig. 1. DBe will be used, with minSup = 30 %, to illustrate

the operation of this algorithm. First the algorithm removes

all items whose frequency does not satisfy the minSup

threshold and sorts the remaining items in descending order

of frequency (see Table 2).

Then the algorithm inserts, in turn, the remaining items

in each transaction into the PPC-tree with respect to DBe.

Finally the algorithm traverses the full tree (Fig. 2f) to

generate the required pre and post values associated with

each node. The final PPC-tree is presented in Fig. 3.

2.4 N-list

Deng et al. [10] also presented the definition of the N-list

concept and three theorems associated with it. We sum-

marize these as follows:

Definition 2 (The PP-code) The PP-code, Ci, of each

node Ni in a PPC-tree comprises a tuple of the form:

Fig. 1 The PPC-tree

construction

Table 2 DBe after removing

infrequent 1-itemsets and sort-

ing in descending order of

frequency

Transaction Ordered frequent

items

1 a, b

2 c, a, b, d

3 c, a, e

4 c, a, b, e

5 c, d, e

6 c, d
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Ci ¼ ðNi :pre; Ni :post; Ni :frequencyÞ ð1Þ

Example 1 The highlighted nodes N1 and N2 (for exam-

ple) in Fig. 3 have the PP-codes C1 ¼ 1; 7; 5h i and

C2 ¼ 5; 4; 2h i, respectively.

Theorem 1 [10] APP-codeCi is anancestorof anotherPP-

code Cj if and only if Ci.pre � Cj.pre and Ci.post � Cj.post.

Example 2 According to Example 1, we have C1 ¼
1; 7; 5h i and C2 ¼ 5; 4; 2h i. Based on Theorem 1, C1 is an

ancestor of C2 because C1.pre = 1\C2.pre = 5 and

C1.post = 7[C2.post = 4.

Definition 3 (The N-list of an item) The N-list associated

with an item A, denoted by NL(A), is the set of PP-codes

associated with nodes in the PPC-tree whose name is equal

to A. Thus:

NLðAÞ ¼
[

fNi2RjNi:name¼Ag
Ci ð2Þ

where Ci is the PP-code associated with Ni.

Example 3 Let A = {c} and B = {e}. According to the

PPC-tree in Fig. 3, NL Að Þ ¼ 1; 7; 5h if g and

NL Bð Þ ¼ 3; 0; 1h i; 6; 2; 1h i; 8; 5; 1h if g.

c, 1

null

d, 1

c, 2

null

d, 2

e, 1

c, 3

null

d, 2

e, 1

a, 1

b, 1

e, 1

(a) (b) (c)

c, 4

null

d, 2

e, 1

a, 2

b, 1

e, 1

e, 1

(d)

c, 5

null

d, 2

e, 1

a, 3

b, 2

e, 1

e, 1

d, 1

c, 5

null

d, 2

e, 1

a, 3

b, 2

e, 1

e, 1

d, 1

a, 1

b, 1

(e) (f)

Fig. 2 Illustration of the

creation of a PPC-tree using

DBe with minSup = 30 %

d, 2

e, 1

a, 1(9,9)(1,7) c, 5

(2,1) a, 3(4,6)

(3,0) b, 2(5,4) e, 1(8,5)

e, 1(6,2) (7,3) d, 1

null(0,10)

N1

N2

b, 1(10,8)

Fig. 3 The final PPC-tree

created from DBe with

minSup = 30 %
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Theorem 2 [10] Let A be an item with its N-list NL(A).

The support for A, r(A), is calculated by:

rðAÞ ¼
X

Ci2NLðAÞ
Ci:frequency ð3Þ

Example 4 According to Example 3 we have and

NL Bð Þ ¼ 3; 0; 1h i; 6; 2; 1h i; 8; 5; 1h if g. Therefore, r(A) = 5

and r(B) = 1 ? 1 ? 1 = 3.

Definition 4 (The N-list of a k-itemset) Let XA and XB be

two (k-1)-itemsets with the same prefix X such that A is

before B according to the I1 ordering. NL(XA) and NL(XB)

are two N-lists associated with XA and XB, respectively.

The N-list associated with XAB is determined as follows:

1. For each PP-code Ci [ NL(XA) and Cj [ NL(XB), if Ci

is an ancestor of Cj, the algorithm will add

Ci:pre;Ci:post;Cj:frequency
� �

to NL(XAB).

2. Traversing NL(XAB) to combine the PP-codes which

has the same pre and post values.

Example 5 According to Example 4 we have NL Að Þ ¼
1; 7; 5h if g and NL Bð Þ ¼ 3; 0; 1h i; 6; 2; 1h i; 8; 5; 1h if g.

Therefore NL ABð Þ ¼ 1; 7; 1h i; 1; 7; 1h i; 1; 7; 1h if g ¼
1; 7; 3h if g.

Theorem 3 [10] Let X be an itemset and NL(X) be N-list

associated with X. The support of X denoted by r(X) is

calculated as follows:

rðXÞ ¼
X

Ci2NLðXÞ
Ci:frequency ð4Þ

Example 6 According to Example 5 we have NL ABð Þ ¼
1; 7; 3h if g , therefore r(AB) = 3.

2.5 The subsume index of frequent 1-itemsets

To reduce the search space, the concept of a subsume index

was proposed in Song et al. [27] which is based on the

following function:

gðXÞ ¼ T � IDj T 2 DB and X � Tf g ð5Þ

where T�ID is the ID of the transaction T, and g(X) is the set

of IDs of the transactions which include all items i [ X.

Example 7 Let A = {c}, we have g(A) = {2, 3, 4, 5, 6}

because A exists in the transactions 2, 3, 4, 5, 6.

Definition 5 [27] The subsume index of a frequent item

A, denoted by subsume(A) is defined as follows:

subsume Að Þ ¼ fB 2 I1jg Að Þ � g Bð Þg ð6Þ

Example 8 Let A = {e} and B = {c}, we have

g(A) = {3, 4, 5} and g(B) = {2, 3, 4, 5, 6}. Because

g Að Þ � g Bð Þ , thus B 2 subsume Að Þ.

The following theorem concerning the subsume index

idea were also presented, which in turn can be used to

speed up the frequent itemset mining process.

Theorem 4 [27] Let the subsume index of an item A be

{A1, A2,…, Am}. The support of each of the 2m-1 nonempty

subsets of {A1, A2,…, Am} combined with A is equal to the

support of A.

Example 9 Let A = {e} and B = {c} and according to

Example 8, we have subsume(A) = {B}. Therefore 2m-1

nonempty subsets of subsume(A) is only {B}. Based on

Theorem 4, the support of 2m-1 itemset which are com-

bined 2m-1 nonempty subsets of subsume(A) with A is

equal to r(A). In this case, we have r(AB) = r(A) = 3.

Besides, the support of the frequent itemset XA is also

equal to the support of frequent itemset XAB. For example

ae is a frequent itemset with r(ae) = 2. So, aec is also a

frequent itemset and r(aec) = 2.

3 NSFI algorithm

In this section, we present the NSFI algorithm. More spe-

cifically we present the main contributions of this paper:

(i) the use of a hash table to speed up the process of cre-

ating the N-lists associated with frequent items, (ii) an

improved N-list intersection function, and (iii) two new

theorems associated with the generation of subsume

indexes, incorporated into the NSFI algorithm, that serves

to both reduce the runtime and memory usage.

3.1 The N-list intersection method

Deng et al. [10] proposed the N-list intersection method,

for determining the intersection of two N-lists, which has a

time complexity of O(n ? m ? k) where n, m and k is the

length of the first, the second and the resulting N-lists (the

method traverses the resulting N-list so as to merge the

same PP-codes). In this section we present an improved

N-list intersection method to give O(n ? m). This

improved method offers the advantage that it does not

traverse the resulting N-list to merge the same PP-codes.

Furthermore, we also propose an ‘‘early abandoning’’

strategy comprised of three steps: (i) determine the total

frequency of two N-list (sF) by summing the frequencies of

the first and the second N-list; (ii) for each PP-code Ci that

does not belong to the result N-list, update sF = sF-Ci.-

frequency; and (iii) if sF is less than dminSup 9 ne then

stop the function (the itemset currently being considered is

not frequent).

Given the above the improved N-list intersection

method is presented in Fig. 4.
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Example 10 To illustrate the improved N-list intersection

method, let A = {c} and B = {e}. According to Example 4

we have NL Að Þ ¼ 1; 7; 5h if g and NL Bð Þ ¼ 3; 0; 1h i;f
6; 2; 1h i; 8; 5; 1h ig. The N-List intersection method [10]

comprises four steps (column 2 in Table 3). Notably step 3 in

this method traverses the resulting N-list so as to merge the

same PP-codes. Vice versa, the improved N-list intersection

method only requires three steps and does not traverses the

resulting N-list (column 3 in Table 3).

3.2 The subsume index associated with each frequent

1-itemset based on N-List concept

Theorem 5 Let A be a frequent item. We have:

subsume Að Þ ¼ fB 2 I1j8Ci 2 NL Að Þ; 9Cj

2 NL Bð Þsuch that Cj is anancestor of Cig
ð7Þ

Proof This theorem can be proven as follows: all PP-

codes in NL(A) have a PP-code ancestor in NL(B), this

means that all transactions that contain A also contain B.

This, g(A) ( g(B), which implies that B [ subsume(A).

Therefore, this theorem is proven.

Example 11 Let A = {e}, B = {c}. We have NL Bð Þ ¼
1; 7; 5h if g and NL Að Þ ¼ 3; 0; 1h i; 6; 2; 1h i; 8; 5; 1h if g.

According to Theorem 5, 3; 0; 1h i, 6; 2; 1h i and 8; 5; 1h i [
NL(A) are descendants of 1; 7; 5h i [ NL(B). Therefore, B [
subsume(A).

Theorem 6 Let A, B, C [ I1 be three frequent items. If A [
subsume(B) and B [ subsume(C) then A [ subsume(C).

Proof We have A [ subsume(B) and B [ sub-

sume(C) therefore g(B) ( g(A) and g(C) ( g(B). So

g(C) ( g(A) and thus this theorems is proven.

Fig. 4 The improved N-list

intersection method

Table 3 The comparison

between the N-list intersection

method [10] and the improved

N-list intersection method

Step No. The N-list intersection method [10] The improved N-list intersection method

1 NL(AB) = {} NL(AB) = {}

2 NL ABð Þ ¼ 1; 7; 1h if g NL ABð Þ ¼ 1; 7; 1h if g
3 NL ABð Þ ¼ 1; 7; 1h i; 1; 7; 1h if g NL ABð Þ ¼ 1; 7; 2h if g
4 NL ABð Þ ¼ 1; 7; 1h i; 1; 7; 1h i; 1; 7; 1h if g NL ABð Þ ¼ 1; 7; 3h if g
5 NL ABð Þ ¼ 1; 7; 3h if g
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To find all frequent items associated with the subsume

index of each A [ I1, I1 should be sorted in ascending order

of frequency. However, I1 has already been sorted in

descending order of frequency with respect to the PPC-tree

constructed previously. Therefore, in the context of the

generate subsume index procedure, we propose a different

traversal (see Fig. 5) to avoid the cost of this re-ordering

process and also so as to facilitate the use of Theorem 6.

3.3 Main algorithm

The theorem proposed in Song et al. [27], which was re-

presented in Sect. 2.5, was also adopted in the NSFI

algorithm so as to speed up its operation (Fig. 6). Adoption

of this theorem also helped reduce the NSFI algorithm’s

memory usage requirements, because it is not necessary to

determine and store the N-lists associated with a group of

frequent itemsets to determine their supports.

First the NSFI algorithm creates the PPC-tree, then

traverses this tree to generate the N-lists associated with

the frequent 1-itemset. Then, a divide-and-conquer strat-

egy, together with the subsume index concept, is used to

mine frequent itemsets. For each element X, if its sub-

sume index has elements, the set of itemsets produced

by combining X with the elements in its subsume index

are frequent and has the same support as X. For each

of the remaining elements that are not contained in

the subsume index of X, the algorithm will combine them

with X to create the frequent candidate itemsets. Note that

for 2-itemsets or more, the algorithm does not use

the subsume index.

4 Example

An illustrative example is presented in this section using

DBe with minSup = 30 %. First the NSFI algorithm scans

DBe to create the PPC-tree (Fig. 3). Then the algorithm

traverses the PPC-tree to generate the N-lists associated

with the frequent items (Fig. 7).

Next the algorithm finds the subsume index associated

with the frequent items using the generating subsume index

proceduce (Fig. 5). The subume index associated with the

frequent items is shown in Table 4.

Then the NSFI algorithm combines, in turn, the frequent

(k-1)-itemsets in I1 in reverse order using a divide-and-

conquer strategy to create the k-itemset candidates. For

detail, e, the last frequent 1-itemset, is used to: (i) find the

2m-1 subsets from the m frequent 1-itemsets in sub-

sume({e}) and combine them with {e} to generate the

2m-1 frequent itemsets S. In this case, sub-

sume({e}) = {c}, therefore S = {ec}; (ii) combine, in

turn, with remaining frequent items {d, b, a} (not com-

bined with c because c [ subsume({e})) to create candidate

2-itemsets {de, be, ae}. However, only {ae} is frequent,

thus FIsnext= {ae}. Next the algorithm combines the ele-

ments in FIsnext with the elements in S to create further

frequent itemsets without calculating their support. In this

case, only {aec} is created; and (iii) use the elements in

FIsnext to combine together to create the candidate 3-

itemsets. In this case, this algorithm will stop here because

FIsnext has only one element (see Fig. 8).

Then, using the above strategy, the remaining frequent

1-itemsets in turn continue to create the tree which contains

Fig. 5 The generating subsume

index proceduce
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Fig. 6 NSFI algorithm

260 Int. J. Mach. Learn. & Cyber. (2016) 7:253–265

123



all frequent itemsets as Fig. 9. In Fig. 9, the NSFI algo-

rithm does not compute and store the N-lists of the nodes

{ba, cba, dc, ae, ec, aec}. Therefore, using the subsume

index concept it not only reduces the runtime but also

reduce the memory usage.

5 Experimental results

All experiments presented in this section were performed

on a laptop with Intel core i3-3110 M 2.4 GHz and 4 GBs

of RAM. All the programs were coded in C# on MS/Visual

studio 2012 and run on Microsoft.Net Framework Version

4.5.50709. The experiments were conducted using the

following UCL datasets: Accidents, Chess, Mushroom,

Pumsb_star and Retail1. Some statistics concerning these

datasets are shown in Table 5.

We compared the proposed algorithm with PrePost and

dEclat in terms of the mining time in Sect. 5.1. Then the

memory usage of the proposed algorithm and PrePost were

compared in Sect. 5.2. Note that:

1. Runtime in this context is the period between the start

of the input to the end of the output.

2. Memory usage is determined by summing either:

(i) the memory to store frequent itemsets, their

N-lists, their frequency and the subsume

index (NSFI algorithm) or

(ii) the memory to store frequent itemsets and

their N-lists and their frequency (PrePost

algorithm). We assume that pre, post,

frequence and the item identifier associ-

ated with a frequent itemset are all stored

in an integer format which requires 4 bytes

per integer.

5.1 The runtime

The experimental results with respect to the runtime

experiments are presented in Figs. 10, 11, 12, 13 and

14. From these figures it can be observed that with

datasets which have a small number of elements (or

no elements) with respect to the subsume index for a

frequent items such as Retail (Fig. 14), NSFI is a little

slower than PrePost. This is explained as follows.

Generating the subsume index involves a cost. How-

ever, the subsume index associated with each of the

frequent items in a sparse datasets usually have few

elements. Therefore, using the subsume concept is not

effective in this case. Fortunately, this cost is usually

relatively low, about 4 s for Retail dataset with min-

Sup = 0.1 (0.072 % of the runtime) (see Fig. 14).

Similar to Retail, Accidents (Fig. 10) also has a small

number of elements with respect to the subsume

index; therefore, using the subsume concept is not

better. However, using a hash table to speed up the

process of creating the N-lists associated with fre-

quent items is effective; Therefore, the runtime of

NSFI is much better than that of PrePost. On the other

hand, given a dense datasets, the performance of NSFI

Fig. 7 The I1 and its N-lists on

DBe (minSup = 30 %)

Table 4 The subsume index

associated with frequent items
Frequent

items

Subsume

index

c

a

b a

d c

e c

Fig. 8 The frequent itemsets generated from e on DBe

(minSup = 30 %)

Table 5 Statistical summary of

the experimental datasets
Dataset #Trans #Items

Accidents 340,183 468

Chess 3,196 76

Mushroom 8,124 120

Pumsb_star 49,046 7,117

Retail 88,162 16,470

1 Downloaded from http://fimi.cs.helsinki.fi/data/.
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Fig. 9 All frequent itemsets on

DBe (minSup = 30 %)
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Fig. 10 The runtime using

NSFI, PrePost and dEclat

applied to the Accidents dataset
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Fig. 11 The runtime using

NSFI, PrePost and dEclat

applied to the Chess dataset
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Fig. 12 The runtime using

NSFI, PrePost and dEclat

applied to the Mushroom

dataset
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is better than PrePost (see Figs. 11, 12, 13), especially

with low thresholds. NSFI thus generally outperforms

PrePost. Besides, the runtime of the dEclat algorithm

is always greater than that of the NSFI algorithm.

Therefore, we conclude that NSFI outperforms PrePost

and dEclat in terms of the runtime.

0

50

100

150

200

250

300

350

400

45 35 25

PrePost

NSFI

dEclat

R
un

tim
e 

(s
ec

on
ds

)

minSup(%)

Fig. 13 The runtime using

NSFI, PrePost and dEclat

applied to the Pumsb_star

dataset
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Fig. 14 The runtime using

NSFI, PrePost and dEclat

applied to the Retail dataset
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Fig. 15 The memory usage

using NSFI and PrePost applied

to the Accidents dataset
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Fig. 16 The memory usage

using NSFI and PrePost applied

to the Chess dataset
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5.2 The memory usage

The experimental results with respect to the memory usage

experiments are presented in Figs. 15, 16, 17, 18 and 19.

With datasets which have no elements in the context of the

subsume index of the frequent items, such as Accidents

and Retail, the memory usage of NSFI is equal to that of

PrePost (Figs. 15, 19). However, the operation of NSFI is

better than PrePost in the case of dense datasets (Figs. 16,

17, 18). Therefore, using the subsume index concept is

effective with respect to dense datasets.

6 Conclusions and future work

This paper has proposed the NSFI algorithm, an effective

algorithm for mining frequent itemsets using the N-list

and subsume concepts. First, we proposed several

improvements on the previously published PrePost algo-

rithm: (i) use of a hash table to enhance the process of

creating the N-lists associated with the frequent 1-itemsets

and (ii) an improved intersection function to find the

intersection between two N-lists. Then, two theorems were

proposed for application with respect to the determination

of the subsume index of frequent items based on the N-list

concept which were incorporated into the NSFI algorithm

so as to improve the runtime and memory usage. NSFI does

not improve over the PrePost with respect to sparse data-

sets but the time gap is not significant. With respect to

dense datasets NSFI is faster than PrePost. Besides, the

runtime of NSFI is always faster than dEclat. We therefore

conclude that NSFI generally outperforms the PrePost and

dEclat.

For future work we will focus on applying the N-list

concept and the hybrid approach for mining frequent

closed/maximal itemsets.
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Fig. 17 The memory usage

using NSFI and PrePost applied

to the Mushroom dataset
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Fig. 18 The memory usage

using NSFI and PrePost applied

to the Pumsb_star dataset
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Fig. 19 The memory usage

using NSFI and PrePost applied

to the Retail dataset
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