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Abstract. The concept of an evolutionarily stable strategy (ESS), in-
troduced by Smith and Price [4], is a refinement of Nash equilibrium
in 2-player symmetric games in order to explain counter-intuitive natu-
ral phenomena, whose existence is not guaranteed in every game. The
problem of deciding whether a game possesses an ESS has been shown
to be X¥-complete by Conitzer [1] using the preceding important work
by Etessami and Lochbihler [2]. The latter, among other results, proved
that deciding the existence of ESS is both NP-hard and coNP-hard. In
this paper we introduce a reduction robustness notion and we show that
deciding the existence of an ESS remains coNP-hard for a wide range
of games even if we arbitrarily perturb within some intervals the pay-
off values of the game under consideration. In contrast, ESS exist almost
surely for large games with random and independent payoffs chosen from
the same distribution [10].

The full paper with all proofs is attached as a clearly marked
appendix, to be read at the discretion of the program commit-
tee.
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1 Introduction

1.1 Concepts of evolutionary games and stable strategies. Evolution-
ary game theory has proven itself to be invaluable when it comes to analysing
complex natural phenomena. A first attempt to apply game theoretic tools to
evolution was made by Lewontin [3] who saw the evolution of genetic mechanisms
as a game played between a species and nature. He argued that a species would
adopt the “maximin” strategy, i.e. the strategy which gives it the best chance
of survival if nature does its worst. Subsequently, his ideas where improved by
the seminal work of Smith and Price in [4] and Smith in [11] where the study of
natural selection’s processes through game theory was triggered. They proposed
a model in order to decide the outcome of groups consisting of living individuals,
conflicting in a specific environment.
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The key insight of evolutionary game theory is that a set of behaviours de-
pends on the interaction among multiple individuals in a population, and the
prosperity of any one of these individuals depends on that interaction of its
own behaviour with that of the others. An evolutionarily stable strategy
(ESS) is defined as follows: An infinite population consists of two types of infi-
nite groups with the same set of pure strategies; the incumbents, that play the
(mixed) strategy s and the mutants, that play the (mixed) strategy t # s. The
ratio of mutants over the total population is €. A pair of members of the total
population is picked uniformly at random to play a finite symmetric bimatrix
game I' with payoff matrix Ap. Strategy s is an ESS if for every ¢t # s there
exists a constant ratio €; of mutants over the total population, such that, if € < ¢
the expected payoff of an incumbent versus a mutant is strictly greater than the
expected payoff of a mutant versus a mutant. For convenience, we say that “s is
an ESS of the game ™.

The concept of ESS tries to capture resistance of a population against in-
vaders. This concept has been studied in two main categories: infinite population
groups and finite population groups. The former was the one where this Nash
equilibrium refinement was first defined and presented by [4]. The latter was
studied by Schaffer [9] who shows that the finite population case is a general-
ization of the infinite population one. The current paper deals with the infinite
population case which can be mathematically modelled in an easier way and in
addition, its results may provide useful insight for the finite population case.
(For an example of ESS analysis in an infinite population game see Appendix.)

1.2  Previous work. Searching for the exact complexity of deciding if a
bimatrix game possesses an ESS, Etessami and Lochbihler [2] invent a nice re-
duction from the complement of the CLIQUE problem to a specific game with an
appointed ESS, showing that the ESS problem is coNP-hard. They also accom-
plish a reduction from the SAT problem to ESs, thus proving that Ess is NP-hard
too. This makes impossible for the ESS to be NP-complete, unless NP=coNP.
Furthermore, they provide a proof for the general ESS being contained in ¥,
the second level of the polynomial-time hierarchy, leaving open the question of
what is the complexity class in which the problem is complete.

A further improvement of those results was made by Nisan [7], showing that,
given a payoff matrix, the existence of a mixed ESS is coDP-hard. (See Papadim-
itriou and Yannakakis [8] for background on this class.) A notable consequence
of both [2] and [7] is that the problem of recognizing a mixed ESS, once given
along with the payoff matrix, is coNP-complete. However, the question of the
exact complexity of ESS existence, given the payoff matrix, remained open. A
few years later, Conitzer finally settles this question in [1], showing that ESS is
actually ¥ -complete.

On the contrary, Hart et al. [10] showed that if the symmetric bimatrix game
defined by a n x n payoff matrix with elements independently randomly chosen
according to a distribution F' with exponential and faster decreasing tail, such
as exponential, normal or uniform, then the probability of having an ESS with
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just 2 pure strategies in the support tends to 1 as n tends to infinity. In view
of this result, and since the basic reduction of [2] used only 3 payoff values, it is
interesting to consider whether ESS finding remains hard for arbitrary payoffs
in some intervals.

1.3  Our results. In the reduction of Etessami and Lochbihler that proves
coNP-hardness of ESS the values of the payoffs used, are 0, k—;l and 1, for
k € N. A natural question is if the hardness results hold when we arbitrarily
perturb the payoff values within respective intervals (in the spirit of smoothed
analysis [12]). In our work we extend the aforementioned reduction and show
that the specific reduction remains valid even after significant changes of the
payoff values.

We can easily prove that the evolutionarily stable strategies of a symmetric
bimatrix game remain the exact same if we add, subtract or multiply (or do all
of them) with a positive value its payoff matrix. However, that kind of value
modification forces the entries of the payoff matrix to change in an entirely
correlated manner, hence it does not provide an answer to our question. In
this work, we prove that if we have partitions of entries of the payoff matrix
with the same value for each partition, independent arbitrary perturbations of
those values within certain intervals do not affect the validity of our reduction.
In other words, we prove that determining ESS existence remains hard even if
we perturb the payoff values associated with the reduction. En route we give
a definition of “reduction robustness under arbitrary perturbations” and show
how the reduction under examination adheres to this definition.

In contrast, [10] show that if the payoffs of a symmetric game are random
and independently chosen from the same distribution F' with “exponential or
faster decreasing tail” (e.g. exponential, normal or uniform), then an ESS (with
support of size 2) exists with probability that tends to 1 when n tends to infinity.

One could superficially get a non-tight version of our result by saying that
(under supposed continuity assumptions in the ESS definition) any small pertur-
bation of the payoff values will not destroy the reduction. However, in such a case
(a) the continuity assumptions have to be precisely stated and (b) this does not
explain why the ESS problem becomes easy when the payoffs are random [10].

In fact, the value of our technique is, firstly, to get as tight as possible ranges
of the perturbation that preserve the reduction (and the ESS hardness) without
any continuity assumptions, secondly, to indicate the basic difference from ran-
dom payoff values (which is exactly the notion of partition of payoffs into groups
in our definition of robustness, and the allowance of arbitrary perturbation within
some interval in each group), and finally, the ranges of the allowed perturbations
that we determine are quite tight. For the reduction to be preserved when we
independently perturb the values (in each of our partitions arbitrarily), one must
show that a system of inequalities has always a feasible solution, and we manage
to show this in our final Theorem 4. Our result seems to indicate that existence
of an ESS remains hard despite a smoothed analysis [12].
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An outline of the paper is as follows: In Section 2 we define the robust
reduction notion and we provide a first extension of the aforementioned reduction
by [2]. In Section 3 we provide another extended reduction and we prove its
robustness in certain intervals. In Section 4 we give our main result and Section
5 refers to further work and conclusion.

1.4 Definitions and notation

Background from game theory. A finite two-player strategic form game I' =
(S1, Sa2,u1,u9) is given by finite sets of pure strategies S; and S and utility, or
payoff, functions u; : S; X So — R and us : S7 x S5 +— R for the row-player and
the column-player, respectively. Such a game is called symmetric if S; = So =: S
and uq(4,5) = ua(y,9) for all 4,5 € S.

In what follows, we are only concerned with finite symmetric two-player
strategic form games in this paper, so we write (S, u1) as shorthand for (S, .S, u1, ug),
with us(j,4) = uq(4,4) for all 4,5 € S. For simplicity assume S = 1,...,n, ie.,
pure strategies are identified with integers 7,1 < i < n. The row-player’s pay-
off matriz Apr = (a; ;) of I' = (S,u1) is given by a,;; = ui(,j) for i,j € S,
so Br = AT is the payoff matrix of the column-player. Note that Ap is not
necessarily symmetric, even if I" is a symmetric game.

A mized strategy s = (s(1),...,5(n))T for I' = (S,uy) is a vector that defines
a probability distribution on s and, in the sequel, we will denote by s(i) the
probability assigned by strategy s on the pure strategy ¢ € S. Thus, s € X,

where X = {s ERL,: Y s(i) = 1} denotes the set of mixed strategies in I

s is called pure iff s(i) = 1 for some ¢ € S. In that case we identify s with ¢. For
brevity, we generally use “strategy” to refer to a mixed strategy s, and indicate
otherwise when the strategy is pure. In our notation, we alternatively view a
mixed strategy s as either a vector (si,...,s,)7, or as a function s : S — R,
depending on which is more convenient in the context.

The expected payoff function, U, : X x X — R for player k € 1,2 is given
by Uk(s,t) =32 jes s(0)t(j)ux(i, ), for all s,t € X. Note that Ui (s, t) = sTArt
and Us(s,t) = sTALt. Let s be a strategy for I' = (S,u;). A strategy t € X
is a best response to s if Uy (t,s) = maxyex Ui(t', s). The support supp(s) of s
is the set {i € S : s(¢) > 0} of pure strategies which are played with non-zero
probability. The extended support ext-supp(s) of s is the set {i € S : U1(4, s) =
max,ecx Ur(x, s)} of all pure best responses to s.

A pair of strategies (s,t) is a Nash equilibrium (NE) for I' if s is a best
response to ¢t and ¢ is a best response to s. Note that (s,t) is a NE if and only
if supp(s)C ext-supp(t) and supp(t)C ext-supp(s). A NE (s,t) is symmetric if
s=t.

Definition 1 (Symmetric Nash equilibrium). A strategy profile (s, s) is a
symmetric NE for the symmetric bimatriz game I' = (S,uy) if sT Aps > tT Aps

for everyt € X.

A definition of ESS equivalent to that presented in Subsection 1.1 is:
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Definition 2 (Evolutionarily stable strategy). A (mized) strategy s € X
is an evolutionarily stable strategy (ESS) of a two-player symmetric game I' if:

1. (s,8) is a symmetric NE of I', and
2. if t € X is any best response to s and t # s, then Uy(s,t) > Uy(t,t).

Due to [6], we know that every symmetric game has a symmetric Nash equi-
librium. The same does not hold for evolutionarily stable strategies (for example
“rock-paper-scissors” does not have any pure or mixed ESS).

Definition 3 (ESS problem). Given a symmetric two-player normal-form game
I', we are asked whether there exists an evolutionarily stable strategy of I.

Background from graph theory. An undirected graph G is an ordered pair
(V, E) consisting of a set V' of vertices and a set E, disjoint from V', of edges,
together with an incidence function g that associates with each edge of G an
unordered pair of distinct vertices of G. If e is an edge and u and v are vertices
such that ¥ (e) = {u, v}, then e is said to join u and v, and the vertices u and
v are called the ends of e. We denote the numbers of vertices and edges in G by
v(G) and e(G); these two basic parameters are called the order and size of G,
respectively.

Definition 4 (Adjacency matrix). The adjacency matriz of the above undi-
rected graph G is the n X n matric Ag := (auy), where ay, is the number of
edges joining vertices u and v and n = v(G).

Definition 5 (Clique). A clique of an undirected graph G is a complete sub-
graph of G, i.e. one whose vertices are joined with each other by edges.

Definition 6 (CLIQUE problem). Given an undirected graph G and a number
k, we are asked whether there is a clique of size k.

In what follows, RZ, denotes the set of non-negative real number vectors
(x1,22,..,2,) and n = |V|.

Theorem 1 (Motzkin and Straus [5]). Let G = (V,E) be an undirected

graph with mazimum clique size d. Let Ay =z € RY, - Z?:l T, = 1}. Then

max,en, o1 Agz = d%dl.

Corollary 1. Let G = (V, E) be an undirected graph with mazimum clique size
d. Let AZ" be a modified adjacency matriz of graph G where its entries with
value 0 are replaced by T € R and its entries with value 1 are replaced by p € R.

Let Ay = {a: ERLy: Y w = 1}. Then maxzea, 27 Az =74 (p— 7) %2,

Proof. 2T APz =2l [ 14+ (p—71) Aglz =7+ (p—7) 2T Agz ,
where 1 is the n X n matrix with value 1 in every entry. By Theorem 1 the result

follows. ad
Corollary 2 (Etessami and Lochbihler [2]). Let G = (V, E) be an undi-
rected graph with mazimum clique size d and let | € R>o. Let Ay =2 € RY, :

i T = l}. Then max,ea, 27 Agz = 45212,



6 Themistoklis Melissourgos and Paul Spirakis
2 Robust reductions

Definition 7 (Neighbourhood). Let v € R. An (open) interval I(v) = [a, b]
(I(v) = (a,b)) with a < b where a < v < b, is called a neighbourhood of v of
range |b — al.

Definition 8 (Robust reduction under arbitrary perturbations of val-
ues). We are given a wvalid reduction of a problem to a strategic game that
involves a real matriz A of payoffs as entries a;;. A consists of m partitions,
with each partition’s entries having the same value v(t), fort € {1,2,...m}. Let
I(v(t)) # 0 be a neighbourhood of v(t) and w(t) € I(v(t)) be an arbitrary value in
that neighbourhood. The reduction is called robust under arbitrary perturbations
of values if it is valid for all the possible matrices W with entries w(t).

2.1 A first extension of the reduction from the complement of the
CLIQUE problem to ESS. In the sequel we extend the idea of K. Etessami and
A. Lochbihler [2] by giving sufficient conditions in order for the reduction to
hold. We replace the zeros and ones of their reduction with 7 > 0 and p < 1
respectively.

Given an undirected graph G = (V, E) we construct the following game
L7 p(G) = (S, u1) for AM(k) = 51, where k € N, and suitable 0 < 7 < p < 1
to be determined later. Note that from now on we will only consider rational 7
and p so that every payoff value of the game is rational.

S =V U/{a,b,c} are the strategies for the players where a,b,c ¢ V.

n = |V| is the number of nodes.

(For an example of the reduction see Appendix)

Theorem 2. Let G = (V,E) be an undirected graph. The game Iy, ; ,(G) with

A(k) = 221 and

—pe(l—ﬁ, 1—@} and re[(l—p)(n—n, p—(1—./1—p)2)
or

—pe(l—ﬁ, 1) and 7'6[(1—p)(n—1)7 (1—p)(n—1)+%ﬂ)

has an ESS if and only if G has no clique of size k.
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Proof. Let G = (V, E) be an undirected graph with maximum clique size d. We
consider the game I, - ,(G) above. Suppose s is an ESS of I ; ,(G).

For the reduction we will prove three claims by using contradiction, that
taken together show that the only possible ESS s of Iy , ,(G) is the pure strat-
egy a. (For the proofs, see Appendix.) Here we should note that these three
claims hold not only for the aforementioned intervals of 7 and p, but for any
7,p € R for which 7 < p.

Claim (1). supp(s) N {b,c} =0 .
Claim (2). supp(s) € V .
Claim (3). s(a) =1 .

Therefore, the only possible ESS of I}, ; ,(G) is the pure strategy a. We now
proceed to show the following lemma, which concludes also the proof of Theorem
2.

Lemma 1. The game I, - ,(G) with the requirements of Theorem 2 has an ESS
(strategy a) if and only if there is no clique of size k in graph G.

Proof. We consider two cases for k:
Case 1: d < k . Let t # a be a best response to a. Then supp(t) CV U {a} .

Let 7 = ;o t(i). Sor > 0(t # a) and t(a) = 1 —r . Combining Corollary
1 and 2 we get,

Ur(t,t) = Ur(a,t) = Y t(i)t(j)ua (i, 5) +7 - t(a) - p+

i,jEV

tta) T a2 p— {r-k_l—&-t(a)-p}
S{T-ﬁ-([)—T) — }r2+r(1—r)~p+

S DS Sl S B St S SRS P
:%E ,whereE:T+p(d—1)—d%

If we can show that E < 0 then strategy a is an ESS. We now show why
E<O0:

Let’s define the following function: f(k,d, p) = d% —p(d-1),
with the restrictions: k > d+1,1 <d <nand p € (0,1) .

Then we define the function g(d, p):

o(d ) = min f(k,d,r) = d—“ = = pld = 1) = (1= p)(d =)+ . (1)

By examining the first and second partial derivative with respect to variable
d, we find the minimum of function g(d, p):

h(p) =ming(d,p) =p— (1= /1=p)* for d"=

L—p
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(For a figure of h(p) see Appendix.) Now there are two subcases; the maxi-
mum clique size may be impossible to reach the value of d*, or it could reach it,
depending on the size of n = |V .

— 1 or equivalently: p > 1 — —— .

Subcase i) n < \/1177p CES)E
From the partial derivatives of function g(d, p) with respect to variable d we
know that it is a strictly decreasing function for d < d*. And given that d < n,

from (1) we get:

h(p):(1—;))(7”L—1)—i—ni_|_1 , for l—ﬁ<p<l. (3)

\/ll_fp — 1 or equivalently: p <1 — m .
The monotonicity of h(p) in this interval implies that there is no minimum
point, but when p gets arbitrarily close to zero then h(p) goes arbitrarily close

to zero as well, i.e. lim, o+ h(p) = 0 . To sum up:

Subcase i) n >

p—(1—T=p)? ,if0<p§1—ﬁ,from(2)
T*zrgi;lf(k:,d,p):
7 (1—p)(n—1)+%+1 ,ifl—ﬁ<p<1,from(3)

Therefore, depending on the interval that p belongs to, we can demand 7 to
be strictly less than 7* , making Uy (¢t,t) — Uy (a,t) negative. We conclude that
when d < k then strategy a is an ESS.

Case 2: d > k . Let C C V be a clique of G of size k. Then t with ¢(i) = ¢ for
i€ Candt(j)=0for j € S\ C is a best response to a and t # a, and

N . k—1Lp+r
it = Y i) = E-DPET
i,j€C
Ui(a,t) = % Then,

Ui (t,1) ~ Unat) = 1 [r = (1= o)k~ 1)]

1
:EE’ , where B/ =7 — (1 —p)(k—1)

If £/ > 0 then a cannot be an ESS. We explain why E’ > 0:
Let’s define the following function:

ylk,p) =(1-=p)(k—1) , with the restrictions: k¥ < d and p € (0,1).

Then we define the function z(d, p) = maxg y(k,p) = (1 — p)(d —1) ,
50, 7** = maxg z(d, p) = (1 — p)(n—1) .
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Now, given that 7 needs to be at least 7" but strictly less than 7* the
following should hold:

(1—-p)n—1)<p—(1-+/1—p)* ,orequivalently, p>1-—

(n+1)2
So we conclude that when d > k then strategy a is not an ESS. This completes
the proof of Lemma 1 and Theorem 2. a
O

Corollary 3. The ESS problem with payoff values in the domains given in The-
orem 2 is coNP-hard.

3 Extending the reduction with respect to A(k)

We now prove a generalization of the latter reduction for A(k) = 1 — with

T > 3:

ka‘?

Theorem 3. Let G = (V. E) be an undirected graph. The game I, (G) with
/\(k‘)zl—%,formzi% and

_ e L—ﬂ)} and

—27%
( ZInI 1n 1) 1+2f(n+1)m(n71
0=y 1- g 1)

(n+1)® —n2”
+ T +OO) and

[(1—p><n—1>+1 A (= p)(n=1) 41— i)

has an ESS if and only if G has no clique of size k.

Proof. Let G = (V, E) be an undirected graph with maximum clique size d. We
consider the game I} , ,(G) defined in Subsectmn 2, with the only difference
that now, we substitute payoffs of value % T with new payoffs & meaning
we make the change k < k*. Suppose s is an ESS of Fk7T7p(G).

In this case, the same analysis as in Subsection 2 is similarly applied up to
the point where we prove that the only possible ESS of Fﬁr,p(G) is the pure
strategy a. Now we proceed to show the following lemma, which concludes also
the proof of Theorem 3.

k-1
kx

Lemma 2. The game I (G) with the requirements of Theorem 3 has an ESS
(strategy a) if and only zf there is no clique of size k in graph G.

Proof. We consider again two cases for k:
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Case 1: d < k . Let t # a be a best response to a. Then supp(t) C V U {a}.

Let 7 = .., t(i). Sor > 0, (t # a) and t(a) = 1 — r. Combining Corollary
1 and 2 we get,

Ur(t,t) = Ur(a,t) = Y t(D)t()ur(i, j) + 7 ta) - p+

ijev
E*—1 k*—1
+t(a)-r- e +t(a)?-p—|r- e +t(a)~p}
<[r+(p—m) =] +r(1—r) ot
k*—1 k*—1
+ 1 —-r)r i +(1=r)2-p—r e —(1=r)-p
2 d

:%E (where B =7~ (1= p)(d—1) = (1= )

If we can show that F < 0 then strategy a is an ESS. We show why E < 0:
Let’s define the following function: f(k,d,p) = (1 —p)(d—1)+1— %
with the restrictions: k > d+ 1,1 <d <n,z > 3.
Trying to minimize f(k,d,p) with respect to k and d, we end up to 2 cases
determined by the interval to which p belongs (see Appendix for the analytical

process).
So, following the notation we used in Subsection 2:

1 : n+1)* —n2%
1-5 i p <1+ wi e

7' =min f(k.d, p) =

d (n+1)*—n2"

(17,0)(71*1)4*1*% ,ifp>1+m

Therefore, we can demand 7 to be strictly less than 7*, making Uy (¢,t) — Uy (a, t)
negative. We conclude that when d < k then strategy a is an ESS.

Case 2: d > k . Let C C V be a clique of G of size k. Then ¢ with ¢(i) = ¢ for

i€ Candt(j)=0"for j € S\ C is a best response to a and t # a, and

N . k—1p+r
it = Y i) = E-DET
i,j€C
Ui(a,t) = b k;; L Then,

Uw(t,t) — Uy (a,t) = %[T_ (1= p)k—1)—(1— k%)}
L ’_ 1
:EE,Where E—T—(l—p)(k—l)—(l—ﬁ)

If E/ > 0 then a cannot be an ESS. We explain why E’ > 0:
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Let’s define the following function:

, with the restrictions: k < d .

y(kp) = (1= p)(k = 1) 41— g

Then we define the function z(d, p):

1
dzfl

kk _ 1
S0, T —mgxz(d,p)—(l—p)(n—l)—kl—nm_l ,

z(d,p) = maxy(k,p) = (1 = p)(d - 1) +1~

Now, given that 7 needs to be at least 7" but strictly less than 7* the
following should hold:

nzfl 9%

1 1
(1_p)(n—1)+1—F<1—— ,orequivalently,p>l+m

2w

So we conclude that when d > k then strategy a is not an ESS. This completes
the proof of Lemma 2 and Theorem 3.
O

O

Corollary 4. The ESS problem with payoff values in the domains given in The-
orem 3 is coNP-hard.

4 Our main result

Now we can prove our main theorem:

Theorem 4. Any reduction as in Theorem 3 for x = xo > 3 from the com-
plement of the CLIQUE problem to the ESS problem is robust under arbitrary
perturbations of values in the intervals:

[ 1 1

(n+ 1)%0 — np2%*o (n+ 1)%0 — n2%o
A
pe ( 270 (n + 1)%0(n — 1)’ 2%0(n + 1)%o(n — 1) AL

I 1 1
A€ _1kxo,1kxl},

where x1 € (9, x0log,(n+1)), C = nml(_nltirf);:g:il), D =C(n-1), any
A€ (0,0) and B=(C—A)(n—1).

Proof. We denote three partitions of the game’s payoff matrix U: U, U,, Uy
disjoint sets, with U, UU,UUy = U and values 7, p, A of their entries respectively.

Each set’s entries have the same value. For every A € [1 — 45,1 — 77| there is
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a x = —log,(1 — \) in the interval [z, z1] such that A =1 — 5, where zy > 3

and 1 € (zg, zg log,(n + 1)). We will show that, for this z, any reduction with
the values of 7, p in the respective intervals stated in Theorem 3, is valid.

In Figure 2 (see Appendix), we show the validity area of 7 depending on p
with parameter x, due to Theorem 3. The thin and thick plots bound the validity
area (shaded) for = zy and x = 1 respectively.

While x increases, the parallel lines of the lower and upper bound of 7 move
to the right, the horizontal line of the upper bound of 7 moves up, and the
left acute angle as well as the top obtuse angle of the plot move to the left (by
examination of the monotonicity of those bounds with respect to x).

The lower bound of 7 for an x = 2’ > (¢ equals the upper bound of 7 for
x = xg, when 2’ = zglog,,(n+ 1). Thus, for all x € (xg,X0 log,(n+ 1)) there
is a non-empty intersection between the validity areas. We have picked
an ¢ = x1 € (xo, zg log,(n + 1)).

In Figure 3 (see Appendix), we show a zoom-in of the intersection of the
validity areas of Figure 2 (see Appendix). Let the intersection of lines: 1 — 2%0 ,
(1—=p)(n—1)+1— —= be at point p = pc. Then,

(I—-pc)n—1)+1- nx}_l =1- 2% or equivalently,
1 1
S 2m(n—1) nmln—1)
(n 4+ 1) — n2%o
2%0(n 4 1)®o(n — 1)

So,

pc =1

(n+41)% —n™
n*1=1(n 4+ 1)%(n —1)

C=1+ — pc, or equivalently, C' =

From the upper bound of 7 as a function of p we can see that tanp =n — 1.

(n+1)% —n*

Thus, D = Ctan, or equivalently, D = w1 (n 4 1)

Now we can pick any A € (0,C). So, it must be
B = (C — A)tan g, or equivalently, B = (n — 1)(C — A).

For the rectangle with sides A, B shown in Figure 3 (see Appendix), the
reduction is valid for all € [zg, 1], thus for all A € [1— 25,1 — A ]. This
completes the proof of Theorem 4. ad

5 Conclusion and further work

In this work we introduce the notion of reduction robustness under arbitrary
perturbations within an interval and we provide a generalized reduction based
on the one in [2] that proves coNP-hardness of ESS. We demonstrate that our
generalised reduction is robust, thus showing that the hardness of the problem
is preserved even after certain arbitrary perturbations of the payoff values of
the derived game. As a future work we would like to examine the robustness of
reductions for other hard problems (especially game-theoretic ones).
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