
Finding Banded Patterns in Data: The Banded
Pattern Mining Algorithm

Fatimah B. Abdullahi, Frans Coenen, and Russell Martin

The Department of Computer Science, The University of Liverpool, Ashton Street,
Liverpool, L69 3BX, United Kingdom

email: {f.b.abdullahi,coenen,russell.martin}@liverpool.ac.uk

Abstract. The concept of Banded pattern mining is concerned with
the identification of “bandings” within zero-one data. A zero-one data
set is said to be fully banded if all the “ones” can be arranged along
the leading diagonal. The discovery of a banded pattern is of interest
in its own right, at least in a data analysis context, because it tells us
something about the data. Banding has also been shown to enhances
the efficiency of matrix manipulation algorithms. In this paper the exact
N dimensional Banded Pattern Mining (BPM) algorithm is presented
together with a full evaluation of its operation. To illustrate the utility
of the banded pattern concept a case study using the Great Britain (GB)
Cattle movement database is also presented.

Keywords: Banded Patterns, Zero-One data, Banded Pattern Mining

1 Introduction

Banded pattern mining is concerned with the identification of “bandings” within
zero-one data [7, 10, 8, 9]. The idea is, given a zero-one data set, to rearrange the
elements in each dimensions so that a banding is revealed. A zero-one data set is
said to be fully banded if all the “ones” can be arranged along the leading diago-
nal. Typically a perfect banding cannot be discovered, however it is still possible
to rearrange the data to reveal a nearest possible banding. The discovery of a
banded pattern is of interest in its own right, at least in a data mining context,
because it tells us something about the data. Banding has also been shown to
improve the operation of various n dimensional matrix manipulation algorithms
in that only the portion of the matrix located near the leading diagonal needs
to be considered.

Previous work on banding identification [7, 10] has been mostly directed at
two dimensional data and has focussed on using heuristics to identify permuta-
tions in the data. Two examples are the Minimum Banded Augmentation (MBA)
algorithm [8] and the Barycentric (BC) algorithm [9]. These approaches worked
well but are difficult to scale up to encompass n dimensional data because of the
exponential increase in the number of permutations that need to be considered.
The idea proposed in this paper, instead of considering large numbers of per-
mutations, is to use a “banding score” mechanism to iteratively rearrange the
elements in each dimension.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80780111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The rest of this paper is organised as follows. Section 2 presents some relevant
previous work, concentrating on the MBA and BC algorithms. Section 3 presents
some formalism concerning the banded pattern problem, while Section 4 presents
the proposed BPM algorithm. To aid in the understanding of the BPM algorithm
Section 5 presents a worked example. A full evaluation, using both artificial and
real data sets, is presented in Section 6. Some conclusion are given in Section 7.

2 Previous Work

The concept of banded matrices, from the data analysis perspective, occurs in
many applications domains; examples can be found in paleontology [2], Network
data analysis [3] and linguistics [8]. More recent work can be found in [7] and
[10]. The current state of the art algorithm, the Minimum Banded Augmen-
tation (MBA) proposed by [8], focuses on minimizing the distance of non-zero
entries from the main diagonal of a matrix by reordering the original matrix.
The MBA algorithm operates by “flipping” zero entries (0s) to one entries (1s)
and vice versa to identify a banding. Gemma et al. fixed the column permu-
tations of the data matrix before executing their algorithm [7]. Here the basic
idea is to solve optimally the consecutive one property on the permuted ma-
trix M and then resolve “Sperner conflicts” to eliminate all the overlapping
row intervals between each row of the permuted matrix, by going through all
the extra rows and making them consecutive. While it can be argued that the
fixed column permutation assumption is not a very realistic assumption with
respect to many real world situations, heuristical methods were proposed in [7]
to determine a suitable fixed column permutation. The MBA algorithm use the
Accuracy (Acc) measure to evaluate the performance of the banding produced.
Another frequently referenced banding strategy is the Barycentric (BC) algo-
rithm that transposes a matrix. It was originally designed for graph drawing,
but more recently used to reorder binary matrices [9]. The BC algorithm uses
the Mean Row Moment (MRM) measure to evaluate the performance of the
banding produced. The distinction between these previous algorithms and that
presented in this paper is that the previous algorithms were all directed at 2D
data, while the proposed algorithm operates in ND. The above MBA and BC
algorithms are the two examplar banding algorithms with which the operation
of the proposed BPM algorithm was compared and evaluated as discussed later
in this paper. Note that Bandwidth minimization of binary matrices is known
to be NP-Complete [5].

3 Formalism

The data space of interest comprises a set of n dimensions, with DIM =
{dim1, dim2, . . . , dimn}. Each dimension dimi comprises a set of sequential co-
ordinates (indexes) commencing with the coordinate 0, dimi = {0, 1, 2 . . .}. Each
dimension dimi also has a set of index positions associated with it posi =
{p1, p2, p3, . . .}. The set of positions is indicated by POS = {pos1, pos2, . . . , posn}.

Note that dimensions are not necessarily all of the same size. However there is
a correspondence between each dimi and posi pairing (|dimi| ≡ |posi|). Initially
the content of each set dimi will be the same as the content of each set posi,
however it is the elements in each set posi in POS that we wish to rearrange so
as to identify a banding.

Each “cell” in the n dimensional data space is thus identifiable by a coordi-
nate tuple of length n, 〈c1, c2 . . . cn〉; where c1 ∈ dimi, c2 ∈ dim2 and so on. If
n = 2 we might think of these as x-y coordinates, and if n = 3 we might think of
these as x-y-z coordinates. Each cell contains either a 1 or 0. For illustrative pur-
poses, in the remainder of this paper, we say that a cell with a 1 value contains
a “dot”, and a cell with a 0 is empty.

The data sets D = {d1, d2, . . .} we are interested in thus comprise a sequence
of k coordinate tuples each of size n and each reprsenting a “dot”. Note that a
specific coordinate tuple can appear only once in D. Each tuple thus describes
the location of a dot in the data space. It is these dots that we wish to arrange
in such a manner that they are as close to the leading diagonal as possible by
rearranging the position of the indexes (coordinates).

4 The Banded Pattern Mining Algorithm

A high level view of the proposed Banded Pattern Mining (BPM) algorithm is
presented in Algorithm 1. The algorithm describes an iterative approach whereby
the elements in each dimension are repeatedly rearranged until a best banding
score is arrived at or until some maximum number of iterations is reached.
The algorithm is founded on ideas presented in [1] where an approximate BPM
algorithm (BPMA) was presented. Comparison are made later in Section 6 using
both the proposed exact BPM algorithm and the previous BPMA algorithm. The
inputs to the algorithm are: (i) a zero-one data set D which is to be banded, (ii) a
desired maximum number of iterations max and (iii) the set of dimensions DIM
describing the n dimensional data space to which D subscribes. The Output is
a rearranged data set D′.

On each iteration each dimension dimi in DIM is considered in turn. For each
element j in dimi a normalised banding score bsij is calculated (line 12) using
equation 2 (the derivation of the equation is described in more detail below).
The elements in dimension dimi are then rearranged (line 14) in descending
order according to the banding scores calculated earlier. If two or more elements
have the same banding score (an unlikely event given a large data set) then the
number of dots featured in each element is taken into consideration together
with the relative position of the new location with respect to the centroid of the
data space (essentially we wish to place elements with larger numbers of dots
closer to the centroid of the current data sub-space than elements with smaller
numbers of dots). The rearranging of elements in dimensions is repeated for each
dimension in turn.

At the end of each complete iteration the global banding score gbs for the
new configuration is determined (line 16) by summing the banding score values

derived earlier (Equation 2). If the newly calculated banding score is equal or
less (worse) than the previously calculated score we break (line18), otherwise
we continue onto the next iteration. On completion (line 25) we derive the new
dataset D′ using the positions of the indexes contained in DIM . The situation
where a worse gbs than that obtained on the previous iteration may be arrived
at is where we have a “poling” effect where we are rearranging that data one
way, and then another way, without improving the banding.

Algorithm 1 The BPM Algorithm

1: Input
2: D = Binary valued input data set
3: max = The maximum number of iterations
4: Output
5: D′ = Data set D rearranged so as to display as near a banding as possible
6: gbs = 0 (The global banding score so far)
7: counter = 0
8: while counter < max do
9: for all dimi ∈ DIM do

10: for j = 1 to j = |dimi| do
11: bsij = Banding score for element j in |dimi| calcuated using
12: Equation 2
13: end for
14: dim′

i = The set dimi rearranged according to the calculated bs
15: (in descending order)
16: end for
17: gbs′ = Global banding score for current configuration described by
18: DIM ′ = {dim′

1, dim
′
2, . . . , dim

′
n} calculated using Equation 3

19: if gbs′ ≤ gbs then
20: break
21: else
22: gbs = gbs′

23: DIM = DIM ′

24: end if
25: counter = counter + 1
26: end while
27: D′ = Input dataset D rearranged according to index positions in POS

The banding score bsij for a particular element j in dimension dimi is deter-
mined according to the location of the subset of dots S in D whose ci coordinate
is equal to j (recall that each dot in D is define by a coordinate tuple of the form
〈c1, c2 . . . cn〉). For each dot in S we calculate the distance to the origin of the
data sub-space that does not include dimi. We exclude the current dimension
because this is the dimension we want to rearrange. Thus a banding score bs is
calculated as follows:

bs =

i=|S|∑
i=1

distToOrigin(doti) (1)

However, to allow for comparison of bs we need to normalise the score. Given
a dot that is at the origin of the sub-space of interest the normalised bs should be
0. Given a dot that is as far away from the the origin of the sub-space of interest
as is geometrically possible the normalised bs should be 1. Thus to normalise bs
we need to divide by the sum of the set of |S| maximum distances that can be
attained in the given sub space:

bs =

∑i=|S|
i=1 distToOrigin(doti)∑i=|M |

i=1 maxi

(2)

where M is a set of maximum distances corresponding to the number of dots in
S. Note that the content of M will vary according to the nature of the set DIM
for a given data set D. Given that we can identify the coordinate value that
features most frequently in the coordinate tuples in D we know the maximum
required size of max. Given our knowledge of DIM we can therefore calculate the
values to be included in M at the start of the process (not shown in Algorithm
1) and thus we can calculate these values in advance and store them in a table
to be used as necessary. In the evaluation section presented later in this paper
a comparison is presented between using a pre calculated BMP “M -table” and
calculating maximum distances as required (not using a BPM“M -table”). Using
an BPM M -table means that values are only calculated once, although it may
be the case that some values are calculated that are never used.

The global banding score, gbs for a configuration is then given by:

gbs =

∑i=|DIM |
i=1

∑j=|dimi|
j=1 bsij∑k=|DIM |

k=1 |dimk|
(3)

the sum of all the identified banding scores for each element in each dimension.
Thus if every element within a given data space is filled with a dot the global
banding score will be 1. Distances can be calculated in a variety of ways. Two
obvious mechanisms are Manhattan distance and Euclidean distance (both are
considered in the evaluation presented later in this paper).

5 Worked Example

The operation of the BPM algorithm can best be illustrated using a worked
example. Consider the 2 dimensional 4 × 4 configuration given in Figure 1(a)
(the origin is in the top left hand corner). It has dimensions Dim = {x, y}, and:

D = {〈0, 1〉, 〈0, 2〉, 〈0, 3〉, 〈1, 0〉, 〈1, 1〉, 〈2, 0〉, 〈2, 1〉, 〈2, 3〉, 〈3, 2〉, 〈3, 3〉}.

Considering dimension x first, we calculate banding scores as shown in Table
1. This produces the banding scores 1.00, 0.20, 0.67 and 1.00. We thus rearrange
the elements in x in ascending order of their banding scores. Note that in the case
where two elements have the same score we arrange things so that the element

(a) Raw Data (b) After rearrangement
of dim1

(c) After rearrangement
of dim2

Fig. 1. Example of operation of BPM algorithm

Element Dist from origin Max. dist. from origin bs

0 1 + 2 + 3 = 6 1 + 2 + 3 = 6 1.00
1 0 + 1 = 1 2 + 3 = 5 0.20
2 0 + 1 + 3 = 4 1 + 2 + 3 = 6 0.67
3 2 + 3 = 5 2 + 3 = 5 1.00

Total 2.87

Table 1. Calculation of banding scores for dimension x

with the largest number of dots associated with it is nearest to the centre of the
data space. The result is as shown in Figure 1(b).

Considering dimension y next, we calculate banding scores as shown in Table
2. This produces the banding scores 0.20, 0.67, 1.00 and 1.00. The elements in y
are more or less already in ascending order of bs. We only need to swap the last
two elements so that the element with the greater number of dots is nearer the
centre of the data space. The result is as shown in Figure 1(c).

Element Dist from origin Max. dist. from origin bs

0 0 + 1 = 1 2 + 3 = 5 0.20
1 0 + 1 + 3 = 4 1 + 2 + 3 = 6 0.67
2 2 + 3 = 5 2 + 3 = 5 1.00
3 1 + 2 + 3 = 6 1 + 2 + 3 = 6 1.00

Total 2.87

Table 2. Calculation of banding scores for dimension y

The global banding score is then the sum of the individual banding scores
divided by the total number of elements in the configuration:

gbs = 2.87+2.87
8 = 5.73

8 = 0.72

The process is repeated on the next iteration (not shown here) and the same
gbs value produced because we already have a best banding. The rearranged
data set D′ arrived at is:

D′ = {〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉, 〈2, 3〉, 〈3, 2〉, 〈3, 3〉}.

6 Evaluation

This section presents an evaluation and discussion of the proposed exact BPM
algorithm. The objectives of the evaluation were as follows:

– To determine the effect of data set size and density on the BPM algorithm
using artificial data.

– To compare the operation of the BPM algorithm with existing algorithms
(MBA and BC) using real data sets.

– To consider the application of the BPM algorithms with respect to a large
scale application (the GB cattle movement database).

Each is discussed in further detail in the following three sub-sections.

6.1 Effect of Data Set Size

To determine the efficiency of the proposed BPM algorithm in comparison with
the MBA and BC all three algorithms were run using artificial data sets of
varying size generated using the LUCS-KDD data generator [6]1. Using this
generator ten data sets measuring 100 × 100, 141 × 141, 173 × 173, 200 × 200,
224×224, 245×245, 265×265, 283×283, 300×300 and 316×316 were generated,
corresponding to numbers of elements approximately increasing from 10, 000 to
100, 000 in steps of 10, 000. A density of 10% was used (in other words 10% of
the cells in each row contained a dot). A further five 100 × 100 data sets were
generated using densities from 10% to 50% increasing in steps of 10.

The recorded runtime results obtained by applying the proposed BPM al-
gorithm and the MBA and BC algorithms to data sets of increasing size are
presented in graph form in Figure 2. From the graph it can be seen that there
is a clear correlation between the dataset and the run-time, as the dataset size
increases the processing time also increases (this is to be expected).

Fig. 2. Recorded run time (sec.) when the BPM, MBA and BC algorithms are applied
to data sets of increasing size (10, 000 to 100, 000 elements in steps of 10, 000)

The recorded runtime results obtained by applying the proposed BPM algo-
rithm and the MBA and BC algorithms to data sets of increasing density are
presented in Figure 3. From the graph it can be seen that there is a correla-
tion between the density of the datasets and the run-time as the density of the
datasets increases the processing time also increases.

1 Available at http://cgi.csc.liv.ac.uk/frans/KDD/Software/LUCS-KDD-DataGen/
generator.html

Fig. 3. Recorded run time (sec.) when the BPM, MBA and BC algorithms are applied
to data sets of increasing density (10% to 50% elements in steps of 10)

6.2 Comparison with BPM, MBA and BC

To compare the nature of the bandings produced using BPM, MBA and BC the
average width of the banding produced was used as an independent measure
(as oppose to global banding score gbs, accuracy Acc and Mean Row Moment
MRM). Average Banding Width (ABW) was calculated as shown in Equation
4. Similarly, Acc and Mean Row Moment (MRM) are calculated as shown in
Equations 5 and 6:

ABW =

∑i=|D|
i=1 distance di from leading diagonal

|D|
(4)

Acc =
TP + TN

TP + TN + FP + FN
(5)

MRM =

∑n
j=1 jaij∑n
j=1 aij

(6)

where TP is the number of “true positives” corresponding to original 1 entries,
TN is the number of “true negatives” corresponding to original 0 entries, FP is
the number of “false positives” corresponding to transformed 0 entries, FN is
the number of “false negatives” corresponding to transformed 1 entries, aij is the
jth entry in row (resp. column) i and n is the number of columns (resp. rows).
For the experiments to compare the nature of the bandings produced we applied
the algorithms to a range of data sets taken from the UCI machine learning
data repository [4]. As in the case of the artificial data sets the UCI data sets
are all two dimensional with one dimension representing records and the other
data attributes. The data sets were discretised using the LUCS-KDD algorithm
[4]. For each dataset we applied the three algorithms, for each algorithm we
recorded four scores (i) ABW , (ii) gbs, (iii) Acc and (iv) MRM . Tables 3 and 4
show the results obtained (best scores highlighted using bold font). In terms of
the independent ABW metric (and the author’s gbs metric) the tables clearly
demonstrate that the proposed BPM algorithm outperformed the MBA and BC
algorithms. Similarly, in terms of Acc and MRM Table 4 shows that in 6 out
of the 10 cases, the proposed BPM algorithm still outperformed MBA and BC.
Figures 4, 5 and 6 show the bandings obtained using the glass data set and the

BPM, MBA and BC algorithms respectively. The Figures shows that banding
can be identified in all cases. However, considering the banding produced when
the MBA algorithm was applied to the glass data sets (Figure 5) the banding
result contains dots (“1s”) at top-right and bottom-left corners while the BPM
algorithm does not. Similarly, when the BC algorithm was applied to the glass
data set (Figure 6) the banding result is less dense than in the case of the
proposed BPM algorithm (which features a smaller bandwidth).

Table 3. ABW and gbs results presented using: BPM , MBA and BC algorithms

Dataset (column BPM MBA BC BPM MBA BC

× rows) ABW ABW ABW gbs gbs gbs

Auto 205 0.6125 0.8182 0.7802 0.7604 0.6545 0.6109
Breast 699 0.9852 0.9982 0.9957 0.8890 0.7281 0.7423
Car 1728 0.9916 0.9983 0.9973 0.8053 0.7783 0.7697
Congress 435 0.9588 0.9918 0.9881 0.8807 0.8086 0.8018
Cylband 540 0.8913 0.9659 0.9496 0.8405 0.7854 0.7417
Dematology 366 0.9205 0.9729 0.9709 0.8189 0.7742 0.7553
Ecoli 336 0.9149 0.9908 0.9717 0.7767 0.7544 0.7697
Flare 1389 0.9794 0.9981 0.9924 0.8014 0.7379 0.7807
Glass 214 0.8392 0.9468 0.9391 0.7744 0.7503 0.6963
Ionosphere 351 0.7152 0.8295 0.8696 0.7906 0.7393 0.6882

Table 4. Acc (%) and MRM results presented using: BPM , MBA and BC algorithms

Dataset (column BPM MBA BC BPM MBA BC

× rows) Acc Acc Acc MRM MRM MRM

Auto 205 71.47 73.37 73.35 135.64 129.78 130.81
Breast 699 52.62 51.25 51.25 437.72 358.75 379.13
Car 1728 61.97 62.01 61.13 1168.23 1146.58 1171.21
Congress 435 55.52 55.68 56.34 352.21 348.66 322.72
Cylband 540 62.86 63.42 63.32 352.21 348.66 322.72
Dematology 366 65.70 65.05 61.79 242.99 238.17 245.77
Ecoli 336 61.94 60.36 60.32 254.70 239.50 249.17
Flare 1389 63.91 63.27 63.21 1051.57 1031.53 1015.01
Glass 214 74.88 72.68 72.86 149.84 141.35 150.84
Ionosphere 351 66.17 65.94 65.90 244.55 243.76 230.42

6.3 Large scale study

To illustrate the utility of the proposed BPM algorithm and the previous BPMA

algorithm, the authors have applied both algorithms to a 5 dimensional data set
constructed from the GB Cattle movement data base. The GB cattle movement
database records all the movements of cattle registered within or imported into
Great Britain. The database is maintained by the UK Department for Envi-
ronment, Food and Rural Affairs (DEFRA). For the analysis reported in this
work, data for the year 2003, for four counties (Aberdeenshire, Cornwall, Lan-
cashire and Norfolk in Great Britain). In total we generated 16 data sets. The

Fig. 4. BPM banding
resulting using Glass
dataset

Fig. 5. MBA banding
resulting using Glass
dataset

Fig. 6. BC banding
resulting using Glass
dataset

easting and northing dimensions were divided into ten sub-ranges and the tem-
poral dimension divided into 3 intervals (each interval represented a month) was
used. Each record comprises: (i) Animal Gender, (ii) Animal age, (iii) the cattle
breed type, (iv) sender location in terms of easting and northing grid values, (v)
the type of the sender location, (vi) receiver location type and (vii) the num-
ber of cattle moved. Discretization and Normalization were undertaken using
the LUCS-KDD ARM DN Software2 to convert the input data into the desired
zero-one format. As a result the GB dataset comprised 110 items distributed
over five dimensions: records, attributes, eastings, northings and time (months).
Some statistics concerning the data sets are presented in Table 5.

The results obtained are presented in Table 6 (best results highligted in bold
font). Note that the table includes results from using and not using a BPM
M -table (as considered in Section 4) and results using the BPMA algorithm
presented previously in [1]. From the table the following can be noted: (i) using
the BPMA algorithm is more efficient than using BPM (Euclidean and Manhat-
tan) (ii) not using BPM M -table requires less runtime than when using such
a table (iii) using BPM with Manhattan weighting is more efficient than when
using BPM with Euclidean weighting (because the use of Manhattan distances
entail less calculation) and (iv) using BPM with Euclidean weighting produces
the best bandings (gbs scores). Thus we can conclude that BPM with Euclidean
weighting coupled with the use of a M -table is the most effective approach to
the banded pattern mining problem. Closer inspection of the table also indicates
that, as expected, there is a correlation between the number of records in the

2 http://www.csc.liv.ac.uk/∼frans/KDD/Software/LUCS KDD DN ARM.

data sets and the run-time; as the number of records increases the processing
time increases (this is to be expected). Note that the BPMA algorithm does not
necessarily find a best banding but only an approximation because it does not
consider the entire data space when calculating bandings (it only consider dimen-
sion pairings). The BPM algorithm presented in this paper is designed to find
an exact banding, instead of considering only dimension pairings as presented
in [1], the bandings are derived with respect to the entire data space.

Table 5. Number of items in each dimension (after discretization) for the 16 5-D GB
cattle movement data sets

Counties Years # Recs. # Atts. # Eings. # Nings. # Time

Aberdeenshire

Abd-Q1 42962 98 10 10 3
Abd-Q2 46187 101 10 10 3
Abd-Q3 41181 104 10 10 3
Abd-Q4 47842 107 10 10 3

Cornwall

Corn-Q1 40501 101 10 10 3
Corn-Q2 39626 104 10 10 3
Corn-Q3 40226 107 10 10 3
Corn-Q4 49890 110 10 10 3

Lancashire

Lanc-Q1 34325 97 10 10 3
Lanc-Q2 40926 100 10 10 3
Lanc-Q3 45765 103 10 10 3
Lanc-Q4 47392 106 10 10 3

Norfolk

Nolf-Q1 11526 98 10 10 3
Nolf-Q2 14311 101 10 10 3
Nolf-Q3 9460 104 10 10 3
Nolf-Q4 11680 107 10 10 3

7 Conclusion

In this paper we have presented the BPM algorithm. Unlike the existing MBA
and BC algorithms, the proposed algorithm does not consider large numbers
of permutations but instead uses the concept of banding scores. In addition
the proposed mechanism operates in N-D. The results presented indicate that
the proposed BPM algorithm produces a better banding, using an independent
Average Banding Width (ABW) measure, than in the case of MBA and BC.
Results were also presented, using a large scale study (directed at the GB cattle
movement database), indicating that the BPM algorithm and the BPMA algo-
rithm (a previous variation of the proposed BPM algorithm) work well in 5-D (in
terms of efficiency and effectiveness). The BPM mining algorithm is also more
efficient than MBA and BC because it does not have to consider large numbers
of permutations. For future work the authors intends to investigate High Per-
formance Computing variation of the BPM algorithm to allow it to be applied
in the context of Big Data Analytics.

Table 6. Runtime (RT) and gbs results obtained using: (i) Manhattan and Euclidean
BPM and no M-Table (ii) Manhattan and Euclidean BMP and M-Table and (iii) BPMA

runtime (sec) Global banding
Month # BPM no M Tab. BPM and M Tab. BPMA gbs score
ID Recs. Manhat. Euclid. Manhat. Euclid. Manhat. Euclid. BPMA

Abd-Q1 42962 15.66 48.68 61.13 212.03 10.95 0.6854 0.6937 0.4115
Abd-Q2 46187 19.82 50.95 60.01 219.04 16.95 0.6861 0.6939 0.4142
Abd-Q3 41181 30.29 43.86 58.32 211.89 08.83 0.6892 0.6942 0.4152
Abd-Q4 47842 28.01 80.86 32.22 231.59 16.44 0.6867 0.6932 0.4101

Corn-Q1 40501 28.73 93.82 45.35 163.42 07.83 0.6880 0.6934 0.4190
Corn-Q2 39626 20.32 69.33 51.60 185.91 06.92 0.6834 0.6931 0.4239
Corn-Q3 40226 33.13 94.41 67.87 201.86 07.58 0.6840 0.6944 0.4263
Corn-Q4 49890 48.92 121.11 80.59 210.54 18.88 0.6885 0.6943 0.4221

Lanc-Q1 34325 27.66 46.68 51.02 147.29 05.13 0.6856 0.6936 0.4346
Lanc-Q2 40926 36.50 50.95 63.11 182.74 09.91 0.6860 0.6938 0.4350
Lanc-Q3 45765 25.74 52.03 59.85 204.87 13.86 0.6859 0.6936 0.4352
Lanc-Q4 47392 36.29 55.52 80.52 228.89 15.99 0.6854 0.6936 0.4368

Nolf-Q1 11280 05.32 26.70 19.65 46.21 01.58 0.6830 0.6934 0.4124
Nolf-Q2 14557 17.04 25.85 47.40 86.82 02.29 0.6814 0.6937 0.4139
Nolf-Q3 9460 10.48 22.23 45.17 56.20 01.27 0.6852 0.6942 0.4202
Nolf-Q4 11680 13.34 25.84 46.38 63.15 02.23 0.6820 0.6939 0.4133

References

1. F. B Abdullahi, F Coenen, and R. Martin. A scalable algorithm for banded pattern
mining in multi-dimensional zero-one data. In In Proc. Data Warehousing and
Knowledge Discovery (DaWaK’14). Springer, LNAI, pages 391–404, 2014.

2. J. Atkins, E. Boman, and B. Hendrickson. Spectral algorithm for seriation and the
consecutive ones problem. SIAM J. Comput., 28:297–310, 1999.

3. A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and R. Mooney. Model-based
overlapping clustering. In Proceedings of Knowledge Discovery and DataMining,
pages 532–537, 2005.

4. F. Coenen. LUCS-KDD ARM DN software. http:// www.csc.liv.ac.uk
/ frans/KDD /Software / LUCS KDD DN ARM/, 2003.

5. A. E. Cuthill and J. McKee. Reducing bandwidth of sparse symmetric matrices.
In Proceedings of the 1969 29th ACM national Conference, pages 157–172, 1969.

6. C. Frans. LUCS-KDD Data generator software. http:// www.csc.liv.ac.uk / frans
/KDD /Software / LUCS KDD DataGen Generator.html, 2003.

7. G .C Gemma, E. Junttila, and H. Mannila. Banded structures in binary matrices.
Knowledge Discovery and Information System, 28:197–226, 2011.

8. E. Junttila. Pattern in Permuted Binary Matrices. PhD thesis, 2011.
9. E . Makinen and H. Siirtola. The barycenter heuristic and the reorderable matrix.

Informatica, 29:357–363, 2005.
10. H. Mannila and E. Terzi. Nestedness and segmented nestedness. In Proceedings of

the 13h ACM SIGKDD international conference on knowledge discovery and data
mining, New York, NY, USA, 2007, pages 480–489, 2007.

