
Information and Computation 00 (2015) 1�16

Procedia

Computer

Science

Position Discovery for a System of Bouncing RobotsI

Jurek Czyzowicz

Université du Québec en Outaouais.

Gatineau, Québec J8X 3X7, Canada.

Leszek G¡sieniec

University of Liverpool.

Liverpool L69 3BX, UK.

Adrian Kosowski

INRIA Bordeaux Sud-Ouest.

LaBRI, 33400 Talence, France

Evangelos Kranakis∗

Carleton University.
Ottawa, Ontario K1S 5B6, Canada.

(613) 520-4333

Oscar Morales-Ponce

Chalmers University of Technology

Maskingränd 2, 412 58 Göteborg, Sweden

Eduardo Pacheco

Carleton University.

Ottawa, Ontario K1S 5B6, Canada.

Abstract

A collection of n anonymous mobile robots is deployed on a unit-perimeter ring or a unit-length line segment.

Every robot starts moving at constant speed, and bounces each time it meets any other robot or segment endpoint,

changing its walk direction. We study the problem of position discovery, in which the task of each robot is to detect

the presence and the initial positions of all other robots. The robots cannot communicate or perceive information

about the environment in any way other than by bouncing. Each robot has a clock allowing it to observe the times

IThis is an extended and revised version of a paper that appeared in the proceedings of the 26th International Symposium
on Distributed Computing, DISC 2012, Salvador, Brazil, October 16-18, 2012. 341-355, Lecture Notes in Computer Science.

∗Corresponding author
Email addresses: jurek.czyzowicz@uqo.ca (Jurek Czyzowicz), L.A.Gasienec@liverpool.ac.uk (Leszek G¡sieniec),

kosowski@labri.fr (Adrian Kosowski), kranakis@scs.carleton.ca (Evangelos Kranakis), mooscar@chalmers.se (Oscar
Morales-Ponce), epacheco@cmail.carleton.ca (Eduardo Pacheco)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80780087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

/ Information and Computation 00 (2015) 1�16 2

of its bounces. The robots have no control over their walks, which are determined by their initial positions and the

starting directions. Each robot executes the same position detection algorithm, which receives input data in real-time

about the times of the bounces, and terminates when the robot is assured about the existence and the positions of

all the robots.

Some initial con�guration of robots are shown to be infeasible � no position detection algorithm exists for them.

We give complete characterizations of all infeasible initial con�gurations for both the ring and the segment, and we

design optimal position detection algorithms for all feasible con�gurations. For the case of the ring, we show that

all robot con�gurations in which not all the robots have the same initial direction are feasible. We give a position

detection algorithm working for all feasible con�gurations. The cost of our algorithm depends on the number of

robots starting their movement in each direction. If the less frequently used initial direction is given to k ≤ n/2
robots, the time until completion of the algorithm by the last robot is 1

2
dn
k
e. We prove that this time is optimal. By

contrast to the case of the ring, for the unit segment we show that the family of infeasible con�gurations is exactly

the set of so-called symmetric con�gurations. We give a position detection algorithm which works for all feasible

con�gurations on the segment in time 2, and this algorithm is also proven to be optimal.

c© 2011 Published by Elsevier Ltd.

Keywords: Position Detection Mobile Robots Distributed Computing Algorithms Complexity

1. Introduction

A mobile robot is an autonomous entity with the capabilities of sensing, i.e. ability to perceive some
parameters of the environment, communication - ability to receive/transmit information to other robots,
mobility - ability to move within the environment, and computation - ability to process the obtained data.
Mobile robots usually act in a distributed way, i.e. a collection of mobile robots is deployed across the
territory and they collaborate in order to achieve a common goal by moving, collecting and exchanging the
data of the environment. The typical applications are mobile software agents (e.g. moving around and
updating information about a dynamically changing network) or physical mobile robots (devices, robots or
nano-robots, humans).

In many distributed applications, mobile robots operate in large collections of massively produced, cheap,
tiny, primitive entities with very restricted communication, sensing and computational capabilities, mainly
due to the limited production cost, size and battery power. Such groups of mobile robots, called swarms,
often perform exploration or monitoring tasks in hazardous or hard to access environments. The usual
swarm robot attributes assumed for distributed models include anonymity, negligible dimensions, no ex-
plicit communication, no common coordinate system (cf. [1]). Moreover, some of these models may assume
obliviousness, limited visibility of the surrounding environment and asynchronous operation. In most situ-
ations involving such weak robots the fundamental research question concerns the feasibility of solving the
given task (cf. [2, 3, 1]). When the question of e�ciency is addressed, the cost of the algorithm is most
often measured in terms of length of the robot's walk or the time needed to complete the task. This is also
the case of the present paper, despite the fact that the robot does not have any control over its walk. In our
case, the goal is to stop the robot's walk, imposed by the adversary, at the earliest opportunity - when the
collected information (or its absence) is su�cient to produce the required solution.

There have been other papers studying theoretical aspects involving extremely limited robots in the
context of their positioning in simple, uni-dimensional environments (e.g. [4, 5, 6]. One of the central
problems in robotics concerns the related problem of multi-robot localization or positioning (cf. [7, 8, 9, 10,
11, 12, 13], where the robots use sensing devices (e.g. [11, 12]) or they leave and observe landmarks (e.g.
[7, 9]) in order to exchange knowledge with other robots. The position discovery problem may be viewed as
a version of mapping (cf. [14]), where the target is to discover and map of the static environment, rather
than recognize the other robots.

There exists extensive literature in the robotics community on the related aspects of the problem, e.g.
on robot-coordination, domain coverage and clean-up, target tracking, etc. [15] provide heuristics and a
protocol to enable agents to negotiate and form coalitions (e.g., agents required to join together) when there
is uncertain and heterogeneous information. [16] proves complexity results concerning the e�cient use of

2

/ Information and Computation 00 (2015) 1�16 3

�ant robots� for covering a connected region on the Z2 grid, whose area n is unknown in advance, but which
is expanding at a given rate. For example, the minimum number of such robots is shown to be in Ω(

√
n),

while Θ(
√
n) is su�cient when the region is expanding at a su�ciently slow rate. [17] studies the cooperative

cleaners problem which requires that several agents clean a connected region of �dirty� pixels in Z2. [18]
studies team coordination for the collision free target tracking problem of multi-agent robot system. [19]
present an approximation algorithm utilizing �nite-horizon planning and implicit coordination (to achieve
linear scalability in the number of searchers) for the problem of locating a mobile, non-adversarial target
in an indoor environment using multiple robotic searchers. [20] is a feasibility study on building terrain-
covering ant robots which leave trails in the terrain so as to cover a closed terrain repeatedly. [21] studies
both theoretically and by simulation the behaviour of ant robots for one-time as well as repeated coverage
of a terrain (e.g., for lawn mowing, mine sweeping, patrolling, etc).

Although the most frequently studied question for mobile robots is environment exploration, numerous
papers related to such weak robots often study more basic tasks, such as pattern formation ([3, 22, 1, 23]).
Gathering or point convergence ([24, 25]) and spreading (e.g. see [26]) also fall into this category. [1]
introduced anonymous, oblivious, asynchronous, mobile robots which act in a so-called look-compute-move
cycle. An important robot sensing capacity associated with this model permits to perceive the entire
([3, 22, 1]) or partial ([27, 25]) environment.

Contrary to the above model, in our paper, a robot has absolutely no control over its movement, which
is determined by the bumps against its neighbors or the boundary points of the environment. In [28, 29] the
authors introduced population protocols, modeling wireless sensor networks by extremely limited �nite-state
computational devices. The agents of population protocols also move according to some mobility pattern
totally out of their control and they interact randomly in pairs. This is called passive mobility, intended
to model, e.g., some unstable environment, like a �ow of water, chemical solution, human blood, wind
or unpredictable mobility of agents' carriers (e.g. vehicles or �ocks of birds). In the recent work [30], a
coordination mechanism based on meetings with neighboring robots on the ring was considered, also aiming
at location discovery. The approach of [30] is randomized and the robots operate in the discrete environment
in synchronous rounds.

Pattern formation is sometimes considered as one of the steps of more complex distributed task. Our
involvement in the problem of this paper was motivated by the patrolling problem [31], where spreading
the robots evenly around the environment may result in minimizing the idleness of patrolling, i.e., the
time interval during which environment points remain unvisited by any robot. Clearly, position discovery
discussed in the present paper is helpful in uniform spreading of the collection. A related problem was studied
in [26], where the convergence rate of uniform spreading in a one-dimensional environment in synchronous
and semi-synchronous settings was discussed. Previously, [32] studied the problem of n robots {0, 1 . . . , n−1},
initially placed in arbitrary order on the ring. It was shown that the rule of each robot i moving to the
middle point between i− 1 and i+ 1 may fail to converge to equal spreading (it was also shown in [32] that
the system would converge if a fair scheduler activates units sequentially).

The model adopted in our paper assumes robot anonymity, passive mobility (similarly to that adopted in
[28, 29]), restricted local sensing through bounce perception with a neighbor robot only, no communication
between the robots, and continuous time. The only ability of the robot is the tacit observation of the timing
of bounces and the computation and reporting of robots' locations. The clock of each robot turns out to be
a very powerful resource permitting to solve the problem e�ciently in most cases.

2. The Model and Our Results

We consider a continuous, connected, one-dimensional universe in which the robots operate, which is
represented either by a unit-perimeter ring or by a unit-length line segment. The ring is modeled by a real
interval [0, 1] with 0 and 1 corresponding to the same point. A set of n robots r0, r1, . . . , rn−1 is deployed in
the environment and each of them starts moving at time t = 0 (where the indexing of the robots is used for
purposes of analysis, only). The robots are not aware of the original positions and directions of other robots
or the total number of robots in the collection. The robots move at constant unit speed, each robot starting
its movement in one of the two directions. Each robot knows the perimeter of the ring (or the length of

3

/ Information and Computation 00 (2015) 1�16 4

the segment) and it has a clock permitting to register the time of each of its bounces and store it in its
memory. All clocks are synchronized. We assume that the time and distance traveled are commensurable,
so during time t each robot travels distance t. Consequently, in the paper we compare distances travelled
to time intervals.

By ri(t) ∈ [0, 1] we denote the position of robot ri at time t. We suppose that originally each robot
ri occupies point ri(0) of the environment and that 0 ≤ r0(0) < r1(0) < . . . < rn−1(0) < 1. Each robot
is given an initial direction (clockwise or counterclockwise in the ring and left-to-right or right-to-left on
the segment) in which it starts its movement. By diri we denote the starting direction of robot ri and we
set diri = 1 if ri starts its movement in the counterclockwise direction around the ring or the left-to-right
direction along the segment. By diri = −1 we denote the clockwise starting direction (on the ring) or
right-to-left (on the segment). We call the sequence of pairs (r0(0), dir0), . . . , (rn−1(0), dirn−1) the initial
con�guration of robots.

When two robots meet, they bounce, i.e., they reverse the directions of their movements. We call the
trajectory of a robot a bouncing walk. The robots have no control over their bouncing walks, which depend
only on their initial positions and directions, imposed to them by an adversary, and the bounces caused by
meeting other robots. Each robot has to report the coordinates of all robots of the collection, i.e., their
initial positions and their initial directions. The robots cannot communicate in any other way except for
observing their meeting times. Each robot is aware of the type of the environment (ring or segment). All
robots are anonymous, i.e. they have to execute the same algorithm. The only information available to
each robot is the bounce sequence, i.e. the series of time moments t1, t2, . . ., corresponding to its bounces
resulting from the meetings with other robots.

By position detection algorithm we mean a procedure executed by each robot, during which the robot
performs its bouncing walk and uses its bounce sequence as the data of the procedure, outputting the initial
positions and directions of all robots. By the cost CA(n) of algorithm A we understand the smallest value,
such that for any feasible initial con�guration of n robots in the environment, each robot executing A can
report the initial con�guration while performing a bouncing walk of total distance CA(n). As in some cases
the cost of the algorithm varies, depending on the robots' initial directions, we denote by CA(n, k) the cost
of A for the class of initial con�gurations such that 1 ≤ k ≤ n/2 robots start in one direction and n − k
start in the opposite one.

Question: Is it possible for each robot to �nd out, after some time of its movement, what is the number
of robots in the collection and their relative positions in the environment? If not, what are the con�gurations
of robots' initial positions and directions for which a position detection algorithm exists (i.e. it is possible
to report the initial con�guration after a �nite time)? What is the smallest amount of time after which a
robot is assured to identify all other robots in the collection?

Our goal is to propose an algorithm to be executed by any robot, which computes the original positions
of all other robots of the collection. We say that such an algorithm is optimal if the time interval after which
the robot is assured to have the knowledge of the positions of all other robots is the smallest possible.

We characterize all the feasible con�gurations for the ring and the segment. For both cases we give
optimal position detection algorithms for all feasible con�gurations. Our algorithm for the segment requires
O(n) robot's memory, while constant size memory is su�cient for robots bouncing on the ring. [We suppose
that in one memory word we may store a real value representing the robot's position in segment [0, 1].]

For the case of the ring, we show that all robot con�gurations with not all robots given the same initial
direction are feasible. We give a position detection algorithm working for all feasible con�gurations. The
cost of our algorithm is not constant, but it depends on the number of robots starting their movement in
each direction. When k ≤ n/2 is the number of robots starting their walks in one direction with n− k given
the opposite direction we prove that our algorithm has cost 1

2dnk e. We prove that this algorithm is optimal.
For the case of the segment we prove that no position detection algorithm exists for symmetric initial

con�gurations. Each symmetric con�guration is a con�guration of a subset of robots on a subsegment,
concatenated alternately with its re�ected copy and itself. We give a position detection algorithm of cost
2 working for all feasible (non-symmetric) con�gurations on the segment. This algorithm is proven to be
optimal.

In Section 3 we give the position detection algorithm for the ring and prove its correctness for all feasible
4

/ Information and Computation 00 (2015) 1�16 5

con�gurations. Section 4 analyses the cost of the position detection algorithm for the ring and proves its
optimality. The segment environment is addressed in Section 5. The argument for the segment proceeds by
reduction to that for the ring, but the criteria for a feasible con�guration on the segment take a di�erent
form, dependent on the symmetry of the con�guration.

3. The Algorithm on the Ring

As there is no system of coordinates on the ring common to all robots, each robot must compute the
relative positions of other robots with respect to its own starting position. We may then infer that each robot
assumes that its starting position is the point 0. We then suppose that 0 = r0(0) < r1(0) < . . . < rn−1(0) < 1
and it is su�cient to produce the algorithm for robot r0.

We assume in this paper that all robot indices are taken modulo n. When two robots meet, they reverse
the directions of their movements, so the circular order of the robots around the ring never changes. When
two robots ri and ri+1 meet at time t, we have ri(t) = ri+1(t), and ri(t) was moving counterclockwise while
ri+1(t) was moving clockwise just before the meeting time t.

We denote by dist(x, y) the distance that x has to traverse in the counterclockwise direction around the
ring to reach the position of y (we call it the counterclockwise distance from x to y. Note that the clockwise
distance from x to y equals 1− dist(x, y).

In order to analyze the ring movement of the robots we consider an in�nite line L = (−∞,∞) and for

each robot ri, 0 ≤ i ≤ n − 1 we create an in�nite number of its copies r
(j)
i , all having the same initial

direction, such that their initial positions are r
(j)
i (0) = j + ri(0) for all integer values of j ∈ Z (see Fig. 1).

We show that, when all copies of robots move along the in�nite line while bouncing at the moments of

meeting, all copies r
(j)
i of a robot ri bounce and reverse their movements at the same time. More precisely

we prove

Lemma 1. For all t ≥ 0, 0 ≤ i ≤ n− 1 and j ∈ Z we have r
(j+1)
i (t) = r

(j)
i (t) + 1.

Proof. Since the claim of the lemma holds by construction at time t = 0 and at any bounce moment all

copies of the bouncing robots r
(j)
b simultaneously reverse their movement, the claim of the lemma holds by

induction on the number of bounces.

0 1 2−1

r
(0)
0r

(−1)
1 r

(1)
2r

(1)
0 r

(2)
3r

(2)
2r

(2)
0r

(0)
1 r

(0)
2 r

(0)
3 r

(2)
1r

(−1)
0 r

(−1)
2 r

(1)
1r

(−1)
3 r

(1)
3

time

t = 2

Figure 1. Example of a bouncing movement of four robots

We use the concept of a baton, applied recently in [30]. Suppose that each robot initially has a virtual
object (baton), that the robot carries during its movement, but at the moment of meeting, two robots

5

/ Information and Computation 00 (2015) 1�16 6

exchange their batons. By b
(j)
i we denote the baton originally held by robot r

(j)
i and by b

(j)
i (t) we denote

the position of this baton on the in�nite line at time t. We can easily show the following lemma.

Lemma 2. For all t ≥ 0, 0 ≤ i ≤ n− 1 and j ∈ Z we have b
(j)
i (t) = b

(j)
i (0) + diri · t = b

(0)
i (0) + j + diri · t.

Proof. Since the bouncing robots exchange their batons, the batons travel at constant speed 1 in their

original directions. Therefore, at time t each baton travelled the distance t so we have b
(j)
i (t) = b

(j)
i (0)+diri·t.

On the other hand, by construction we have b
(j+1)
i (0) = b

(j)
i (0) + 1 and both batons b

(j)
i , b

(j+1)
i travel at

unit speed in the same direction. Hence, we have by induction on j, that b
(0)
i (t) = b

(j)
i (t) + j. The claim of

the lemma follows.

In Fig. 1 the trajectories of all the batons held originally by the robots going in direction dir are the
lines of slope dir. Each robot ri bounces while its trajectory intersects a trajectory of some baton, since this

baton is then held by one of the robots ri−1, ri+1. For example, the trajectory of robot r
(0)
0 , is represented

by a fat polyline on Fig. 1, while the trajectories of its neighbor robots r
(−1)
3 and r

(0)
1 bouncing at r

(0)
0 are

given by dashed polylines.

Lemma 3. Consider robot ra, which at the time moment t, while traveling in direction dir, meets some
other robot. Suppose that, at the time of this meeting, ra travelled the total distance d in direction dir (hence
the total distance of t − d in direction −dir). Then there exists a robot rb, which was originally positioned
at distance (2d mod 1) in direction dir on the ring. More precisely, (2d mod 1) = dist(ra, rb) if dir = 1
and (2d mod 1) = dist(rb, ra) = 1− dist(ra, rb) if dir = −1. Moreover rb started its movement in direction
−dir.

Proof. Suppose that at time t robot ra traveling in direction dir meets some other robot traveling in

the opposite direction (e.g. on Fig. 1, see the intersection of the trajectory of r
(0)
0 with the trajectory of the

baton b
(2)
2 originally held by r

(2)
2). Suppose that the baton obtained by ra at the moment of the meeting

was originally held by some robot rb. Robot ra travelled the total distance d in direction dir and the total
distance t − d in direction −dir, while the baton obtained by ra at the moment of the bounce travelled
distance t in direction −dir. Hence during time t − d robot ra and the baton stayed at the same distance
and during time d they were both traveling approaching each other (i.e. jointly covering total distance 2d
while approaching). Therefore, at time t = 0 the distance between robots ra and rb was 2d. Since rb may
be a copy of a robot and all copies of the same robot are at integer distance, the distance of ra to rb on the
ring is 2d mod 1. The initial direction of rb equals the direction of its original baton, i.e. −dir.

Remark 1. The value (2d mod 1) may sometimes be equal to zero which corresponds to ra meeting the

robot currently holding the original baton of ra (e.g. the sixth bounce of r
(0)
0 on Fig. 1). On the other hand,

some meetings of robots may correspond to the same computed value of (2d mod 1) (e.g. all odd-numbered

bounces of r
(0)
0 on Fig. 1), so some bounces do not have a new informative value about other robot positions.

The algorithm RingBounce executed by a robot, which reports initial positions and directions of all other
robots on the ring, uses Lemma 3. Each bounce results in the output of information concerning one robot of
the ring. In this way, a robot running such an algorithm needs only a constant-size memory. An additional
test is made in line 10 to avoid outputting the same robot position more than once.

The robot's memory consists of two real variables right and left in which the robot will store the total
distance travelled, respectively, in the counterclockwise and clockwise direction. The robot also accesses its
system variable clock which automatically increases proportionally to the time spent while traveling (i.e. to
the distance travelled).

Theorem 1. Suppose that among all robots bouncing on the ring there is at least one robot having ini-
tial clockwise direction and at least one robot with the initial counterclockwise direction. The algorithm
RingBounce, executed by any robot of the collection, correctly reports the initial positions and directions of
all robots on the ring with respect to its initial position.

6

/ Information and Computation 00 (2015) 1�16 7

Algorithm RingBounce (dir : {−1, 1});

1. var left← 0, right← 0 : real;
2. reset clock to 0;
3. while true do
4. do walk in direction dir until
5. ((clock − left ≥ 1/2) and (clock − right ≥ 1/2)) or a meeting occurs;

6. if (clock − left ≥ 1/2) and (clock − right ≥ 1/2) then EXIT;
7. if dir = 1 then
8. right← clock − left;
9. if (0 < right < 1/2) then
10. OUTPUT robot at original position 2 · right and direction −dir;
11. else
12. left← clock − right;
13. if (0 < left < 1/2) then
14. OUTPUT robot at original position 1− 2 · left and direction dir;
15. dir ← −dir;

Proof. Suppose w.l.o.g., that the robot executing RingBounce is robot r0. Since there exists at least one
other robot starting in the direction di�erent from dir0, robot r0 will alternately travel in both directions,
inde�nitely bouncing against its neighbors r1 and rn−1 on the ring.

We show by induction, that at the start of each iteration of the while loop from line 3, the variable
left (resp. right) equals the total distance travelled by r0 clockwise (resp. counterclockwise). Suppose, by
symmetry, that r0 walks counterclockwise in the i-th iteration and the inductive hypothesis is true at the
start of this iteration. Since, by inductive hypothesis, variable left keeps the correct value through i-th
iteration, variable right is correctly modi�ed at line 8, as the clock value equals the total distance travelled
in both directions. Consequently, the inductive claim is true in the (i+ 1)-th iteration.

We prove now that positions and directions of all robots are correctly reported before the algorithm ends.
Take any robot ri, 1 ≤ i ≤ n− 1. We consider �rst the case when the initial direction of ri was clockwise.

The trajectory of its original baton b
(0)
i is then a line of slope 1 (cf. Fig. 1). Observe that robot r0 stays

at the same distance from baton bi when walking in the clockwise direction and approaches it (reducing
their counterclockwise distance dist(r0, bi)) when walking counterclockwise. Since dist(r0, bi) ≤ 1, and r0
and bi walk towards each other, they approach at speed 2 during the counterclockwise movement of r0.
Consequently, the trajectories of r0 and bi intersect and r0 eventually meets robot r1 carrying baton bi.
Indeed, in line 4 of algorithm RingBounce, robot r0 continues its movement as long as its total distance
travelled in the counterclockwise direction is less than 1/2, which leads to the meeting of r0 and r1 (carrying
baton bi), before both robots �nish their executions of the algorithm. Consequently, at the moment of their

meeting, r0 outputs at line 10 the initial distance between r
(0)
0 and r

(0)
i on line L, which equals twice the

time spent while the robots were approaching each other. As r0 may obtain a copy of the same baton more

than once (cf. r0 intersecting several trajectories of batons b
(j)
2 on Fig. 1), the condition (0 < right < 1/2)

at line 9 permits to report the position of each other robot once only. Indeed, only r
(0)
i - the copy of ri at

the closest counterclockwise distance to r0 veri�es this condition.
Consider now the case when robot ri, 1 ≤ i ≤ n− 1, starts its walk on the ring in the counterclockwise

direction. Then r0 obtains baton bi while walking clockwise, i.e. at the moment of some bounce at rn−1,
while rn−1 holds baton bi. In this case, robot r0 stays at the same distance from baton bi when walking
in counterclockwise direction and approaches it (reducing their distance of dist(bi, r0) = 1 − dist(r0, bi))
when walking clockwise. At the moment when r0 meets rn−1 holding baton bi (whose trajectory originates
from segment [−1, 0] of L) the value of variable left equals half the clockwise distance from r0(0) to ri(0).

7

/ Information and Computation 00 (2015) 1�16 8

Indeed, at the moment of the meeting, half of this distance was covered by r0 walking clockwise (the value of
left) and the other half was covered by the counterclockwise move of baton bi. Consequently the clockwise
distance from the initial position of r0 to the initial position of ri equals 1− 2 · left, correctly output at line
14.

Observe that, once the original positions and directions of all robots are reported, it is easy to monitor
all further movements of all robots of the collection, i.e. their relative positions at any moment of time.
However, this would require a linear memory of the robot performing such task.

4. The Execution Time of Bouncing on the Ring

As stated in the introduction, we look for the algorithm of the optimal cost, i.e. the smallest possible
total distance travelled, needed to correctly report any initial con�guration. We show that the algorithm
RingBounce is the optimal one, i.e. that the time moment, at which the robot can be sure that the positions
of all other robots have been reported, is the time when the robot stops executing RingBounce. Observe
that algorithm RingBounce has cost at least 1, i.e. a robot executing it must travel at least distance 1.
Indeed, the loop from lines 4-5 continues unless robot's walk distance in each direction totals at least half
the size of the ring. On the other hand, the example from Fig. 1 shows, that if the number of robots starting
their walks in one direction is di�erent from the number of robots starting walking in the opposite direction,
the total cost of RingBounce may be higher. We have

Theorem 2. Consider a collection of n robots on the ring, such that k of them, 1 ≤ k ≤ n/2, have one
initial direction and the remaining n−k robots have the other initial direction. Then the cost of RingBounce
is CRB(n, k) ≤ 1

2dnk e.
Proof. If there are more robots starting in one direction, say positive direction dir, than in direction −dir

then ri gets more frequently dir-moving batons (cf. Fig. 1). Since the route of ri, intersects the trajectory
of each baton only once, ri must meet copies of batons originating from other segments than [0, 1] of line L.
By counting we show that the last such segment is [d(n− k)/ke − 1, d(n− k)/ke]. Hence, in the worst case,
ri walks distance 1/2 in direction dir and distance d(n− k)/2ke in direction −dir.

By Lemma 1, we can translate the collection of robots and start their enumeration so that any of them
is at the point 0 of line L and, w.l.o.g., it is su�cient to consider the total walk length of r0. By symmetry
we assume that r0 starts walking counterclockwise on the ring.

Consider �rst the case when n− k robots from the claim of the theorem start walking counterclockwise
and k robots start walking clockwise on the ring, with k ≤ n − k. Note that r0 alternately changes its
direction of walk and, according to lines 4-5 of algorithm RingBounce, it has to travel a distance of at least
1/2 in each direction. At the conclusion of each segment of the clockwise walk around the ring (i.e. left
walk along line L), r0 bounces against rn−1, collecting one of the n − k batons traveling counterclockwise.
Denote by t2i, for i = 1, . . . , n−k the sequence of the consecutive time moments of all bounces of r0 against
robot rn−1 (recall that time equals the total distance travelled up to that moment). Suppose that r0 starts
executing algorithm RingBounce at time t0 = 0 and denote by t2i+1, for i = 0, . . . , n− k− 1 the sequence of
the consecutive time moments of all bounces of r0 against robot r1. At time t2(n−k), r0 gets the originally
held baton b0 and the total length of its clockwise travel becomes exactly 1/2 (i.e. the value of variable left
becomes 1/2). Since t1 < t2 < . . . < t2(n−k), before time t2(n−k) r0 bounced also n−k times against r1, each
time getting a baton, which is traveling clockwise. If k = n/2, there are k = n−k lines of slope 1 originating
from segment [0, 1) of L, which are trajectories of k batons traveling clockwise, see Fig. 2. Therefore, the
loop from lines 4-5 of algorithm RingBounce continues until variable right equals 1/2 and algorithm �nishes
through the exit condition at line 6. In this case the total walk time equals to left+right = 1 and 1

2dnk e = 1
so the claim of the theorem holds.

In the case k < n/2 there are only k batons traveling clockwise (k < n − k), so some of them are
received more than once by r0 during the bounces at times t1, t3, . . . , t2(n−k)−1. Therefore, only k copies of
batons traveling clockwise originate from each integer segment [i, i+ 1) on line L. Consequently, r0 obtains
batons whose trajectories originate from segments other than [0, 1) and its total traveling distance in the

8

/ Information and Computation 00 (2015) 1�16 9

r
(0)
0

t1

t2

t3

−1 0 1

kn− k

t2(n−k)

...

...
...

time

r
(−1)
0 r

(1)
0

...
...

Figure 2. n − k batons travel in counterclockwise direction while k batons travel in clockwise direction, the trajectory of r0
appears in red. By time t2(n−k), robot r0 has discovered all n − k batons traveling in counterclockwise direction as well as
those traveling in clockwise direction

counterclockwise direction exceeds 1/2. More precisely, the (n− k)-th consecutive copy of a baton traveling
clockwise, obtained at time t2(n−k)−1 must originate from the segment [i∗ − 1, i∗], where i∗ = dn−kk e. The
distance from the initial position of r0 and the initial position of the baton met at time t2(n−k)−1 does not

exceed the value of dn−kk e. Since robot r0 has to travel counterclockwise at most half of this distance (the
other half being covered by the moving baton), the total time spend by r0 in both directions does not exceed

1/2 +
1

2

⌈
n− k
k

⌉
=

1

2

⌈n
k

⌉
Consider now the second case in which n−k robots from the claim of the theorem start walking clockwise

and k robots start walking counterclockwise on the ring, with k < n − k. As in the previous case we can
denote by t1 < t2 < . . . < t2(n−k)−1 the consecutive bounce times, where ti for odd values of i denote the
times of the bounces of r0 against r1 and those for even values of i denote the times of the bounces against
rn−1. By symmetry to the �rst case, the bounce at time t2(n−k)−1, when r0 moves counterclockwise, arises
when the variable right does not exceed the value of 1/2 (i.e. the total distance travelled counterclockwise
by r0) and the value of left is already greater than 1/2. At this time moment, robot r0 goes clockwise
and after the last bounce at time t2(n−k) continues counterclockwise and exits algorithm RingBounce where
variable right becomes equal to 1/2. Indeed, since only n − k batons travel clockwise, the next bounce of
robot r0 would imply getting a baton whose trajectory originates at segment [1, 2] of line L, but this would
make variable right exceed �rst the value of 1/2 and cause the exit in line 6 of RingBounce.

Similarly to the previous case, as k < n − k, at some of the bounces at times t2, t4, . . . , t2(n−k), robot
r0 obtains the same batons. More precisely, during the bounce at time t2(n−k) r0 obtains the baton whose

trajectory originates at segment [−dn−kk e,−dn−kk e+1] of line L. Hence the total clockwise distance travelled

by r0 does not exceed 1
2dn−kk e and the total distance travelled in both directions does not exceed 1/2 +

1
2dn−kk e = 1

2dnk e proving the claim of the theorem.

From Theorem 2 we immediately have the following corollary, which bounds the worst-case walking time
for a robot.

Corollary 1. Assuming that the collection of n robots admits robots starting their movements in both
directions around the ring, Then the cost of RingBounce is CRB(n) ≤ n−1

2 .

The algorithm RingBounce continues until the total lengths of walks in both directions reach the values
of at least 1/2, since this guarantees that the presence of each robot is eventually detected. The following

9

/ Information and Computation 00 (2015) 1�16 10

theorem proves that the cost of RingBounce algorithm is optimal even if the (a priori) knowledge of the
number of robots is assumed.

Theorem 3. Suppose that there is a collection of n robots on the ring, such that k of them, 1 ≤ k < n/2,
have one initial direction and the remaining n−k robots have the other initial direction. Then for every ε > 0
there exists a distribution of such robots on the ring with their initial positions 0 ≤ r0 < r1 < . . . < rn−1 < 1,
so that a position detection algorithm terminating at time 1

2dnk e− ε cannot determine the initial positions of
all robots on the ring, even if the values of n and k are known in advance.

Proof. Consider the following collection of n robots r0, r1, . . . , rk−1, rk, . . . , rn−1 on the ring, where
each ri has a counterclockwise starting direction for 0 ≤ i < k and the clockwise starting direction for
k ≤ i ≤ n− 1, with the initial positions of the robots

r0 = 0, r1 =
ε

2k−1
, r2 =

ε

2k−2
, . . . , rk−1 =

ε

2
,

rk = 1− ε

2
, . . . , rn−1 = 1− ε

2n−k

Suppose, by contradiction, that a position detection algorithm executed by robot r0 can determine the
positions of all other robots with the total walking distance of r0 at most 1

2dnk e − ε. Robot r0, in order to
determine positions of all other robots, has to obtain each baton b1, . . . , bn−1. Robot r0 gets the clockwise-
traveling batons bk, bk+1, . . . , bn−1 in this order at the moments of its bounces against r1. On the other
hand, the remaining batons are obtained by r0 in order bk−1, bk−2, . . . , b1 at the moments of its bounces
against rn−1. However, since k < n, at least some of the batons bk−1, bk−2, . . . , b1 are obtained repeatedly
(in the same cyclic order) because the left and right bounces are alternated. More precisely, baton bk−1 is
obtained d(n− k)/ke times by b0, hence this sequence of batons is

←−
bk ,
−−→
bk−1,

←−−
bk+1,

−−→
bk−2, . . . ,

←−−−
b2k−1,

−→
b0 ,
←−
b2k,
−−→
bk−1,

←−−−
b2k+1,

−−→
bk−2, . . . ,

←−−−
b3k−1,

−→
b0 , . . . ,

←−−
bn−1,

−→
bf

where f = k(dn/ke+ 1)− (n+ 1) and
←−
bi denotes baton bi traveling clockwise and

−→
bj denotes baton bj

traveling counterclockwise. The copies of the last two batons of this sequence are the most distant from

r0 on line L. The trajectory of baton
←−−
bn−1 originates in segment [0, 1) of line L and dist(r00(0), b0n−1(0)) =

1− ε
2n−k . On the other hand, the trajectory of baton

−−−−−−−−−−−−→
bk(dn/ke+1)−(n+1) obtained by b0 starts in the segment

[−d(n− k)/ke,−d(n− k)/ke+ 1] and its original distance to b0 is

dist(b
(−d(n−k)/ke)
f (0), b

(0)
0 (0)) > d(n− k)/ke − ε

2

As in order to meet each of these batons, r0 has to travel half of its original distance to each of them (the
other half is covered by the corresponding baton itself) the total travel time by r0 is bound by

1

2
(1− ε

2n−k
) +

1

2
(d(n− k)/ke − ε

2
) >

1

2
(1 + d(n− k)/ke − ε) > 1

2
(dn/ke)− ε

which contradicts the assumed claim and proves the theorem.

Clearly each con�guration of robots with the same initial direction of all robots is infeasible, because no
robot ever bounces. Consequently from Theorem 2 and Theorem 3 follows

Corollary 2. The family of infeasible initial con�gurations of robots on the ring contains all con�gurations
with the same initial direction of all robots. RingBounce is the optimal position detection algorithm for all
feasible initial con�gurations of robots on the ring. This algorithm assumes constant-size memory of the
robot running it.

Clearly, we can easily adapt algorithm RingBounce, so for infeasible initial con�guration the algorithm
stops and reports the infeasibility. It is su�cient to test whether the very �rst walk of the robot ends with
a bounce before the robot traverses the distance of 1/2.

10

/ Information and Computation 00 (2015) 1�16 11

5. Bouncing on the Line Segment

In this section we show how the algorithm for bouncing robots may be used for the case of a segment. We
suppose that each robot walks along the unit segment changing its direction when bouncing from another
robot or from an endpoint of the segment. Robots have the same capabilities as in the case of the ring and
they cannot distinguish between bouncing from another robot and bouncing from a segment endpoint.

We consider the segment [0, 1) containing n robots, initially deployed at positions

0 ≤ r0(0) < r1(0), . . . , rn−1(0) < 1.

Each robot ri, 0 ≤ i ≤ n − 1 is given an initial direction diri, such that diri = 1 denotes the left to right
initial movement and diri = −1 denotes initial movement from right to left on segment [0, 1). The robots
start moving with unit speed at the same time moment t = 0 at the prede�ned directions and they change
direction upon meeting another robot or bumping at the segment endpoint. The main di�culty of the
segment case is that the robot r executing the position detection algorithm for the ring has to report the
relative locations of other robots, i.e. their distances to its own initial position r(0), while in the segment
case the absolute distance from r(0) to the segment endpoint has to be found.

We show in this section that the bouncing problem is feasible for all initial robot con�gurations except a
small set of symmetric ones. Intuitively, an initial con�guration of robots is symmetric if the unit segment
may be partitioned into k subsegments S0, S1, . . . , Sk−1, such that the positions and directions of robots in
each subsegment form a re�ected copy of positions and directions of robots in a neighboring subsegment
(see Fig. 3). More formally we have the following

De�nition 1. A con�guration C = ((r0(0), dir0), . . . , (rn−1(0), dirn−1)) is symmetric if there exists a
positive integer k < n, such that n mod k = 0 and the partition of segment S = [0, 1) into subsegments
S0 = [0, 1k), S1 = [1k ,

2
k), . . . , S1 = [k−1k , 1) with the following property. For each robot ri, 0 ≤ i < n, if

ri(0) = p
n + x, for 0 ≤ x < 1

k , (i.e. ri(0) ∈ Sp), 0 ≤ p < n, then, if p > 0, there exists a robot ri′ , such that

ri′(0) = p
n − x and diri′ = 1 − diri and, if p < n − 1, there exists a robot ri′′ , such that ri′′(0) = p+2

n − x
and diri′′ = 1− diri.

S0 S1 S2

10 r0 r1 r2 r3 r8 r9 r10 r11r4 r6r5 r7
1
3

2
3

time

Figure 3. Example of a symmetric initial con�guration of n = 12 robots containing k = 3 subsegments

Theorem 4. Every symmetric initial con�guration of robots is infeasible.
11

/ Information and Computation 00 (2015) 1�16 12

Proof. Let C1 = ((r0(0), dir0), . . . , (rn−1(0), dirn−1)) be a symmetric con�guration and k the number
of consecutive subsegments, each one being the re�ected copy of its neighbor. Construct now con�guration
C2 = ((r′0(0), dir′0), . . . , (r′n−1(0), dir′n−1)) of n robots considering also a sequence of n equal size intervals
and swapping the roles of odd-numbered and even-numbered robots of C1. More precisely for each robot ri,
such that ri(0) ∈ Sp = [pn ,

p+1
n) there exists a robot r′j such that r′j(0) = 2p+1

n − ri(0) and dir′j = 1 − diri.
Observe that, no robot ever crosses the boundary of any subsegment Sp, i.e. ri(0) ∈ Sp implies ri(t) ∈ Sp,
for any t ≥ 0. Indeed, by construction, for any robot reaching and endpoint of Sp, di�erent from points
0 and 1, at the same time moment there is another robot approaching this endpoint from the other side
within the re�ected copy of Sp provoking a bounce (cf. Fig. 4). Therefore, within each even-numbered
subsegment S2n of a symmetric con�guration the relative positions of robots and their directions are the
same (similarly within each odd-numbered subsegment). Consequently, no robot can distinguish whether it
is, say, in an even-numbered segment of C1 or in an odd-numbered segment of C2 so its position in segment
[0, 1) is unknown.

We show now how the position detection algorithm for the ring may be used in the case of the segment.
Let S be a unit segment containing n robots at initial positions r0(0) < r1(0) < . . . < rn−1(0) and the

initial directions dir0, . . . , dirn−1. Suppose that a segment SR ⊂ [1, 2] is the re�ected copy of S containing
n robots rRn , . . . , r

R
2n−1 at the initial positions

rRn (0) = 2− rn(0) < rRn−1(0) = 2− rn−1(0) < . . . < rR0 (0) = 2− r0(0).

The initial directions of each robot rRi is 1− diri for 0 ≤ i < n. Let R2 be the ring of perimeter 2 composed
of segment S concatenated with segment SR, with points 0 and 2 identi�ed.

0
1

r0 rR2 rR0r1 r2 r3 rR1rR3rR4r4

2

t = 2

Figure 4. Five robots on a segment [0, 1) and their re�ected copy

Consider the walk of robots ri, for 0 ≤ i < n, within segment S and ring R2. Let t0 = 0 and 0 ≤ t1 < t2 . . .
be the sequence of time moments during which some bounces occur. Each such bounce takes place either
between some pair of robots or when some robot bounces from an endpoint of S. It is easy to see by
induction on i that at any time moment t ∈ [ti, ti+1] each robot rj has the same positions in S and R2 as

12

/ Information and Computation 00 (2015) 1�16 13

well as the same direction of movement and that the SR part of R2 is a re�ected copy of S. Indeed, by
construction, this condition is true for the interval [t0, t1]. If robots rj , rj+1 bounce against each other in S
at time ti, at the same time robots rj , rj+1 bounce in R2, as well as, by symmetry rRj bounces against rRj+1.
If in time ti robot r0 (or rn−1) bounce from an endpoint of S, by inductive hypothesis r0 bounces against
rR0 at point 0 ∈ R2 (or rn−1 bounces against rRn−1 at point 1 ∈ R2). In each case, the inductive condition
holds. We just showed

0 1

r′0

r′1 r′2
r′3

r0

r1 r2

r3

0 1
r0 r1 r2 r3

R2

S

Figure 5. Example of the corresponding ring, R2, of a segment, S, of lenght 1 wherein RingBounce may be used to �nd the
initial positions of the robots on S

Lemma 4. The bounce sequence of any robot ri on segment S is the same as the bounce sequence of ri on
ring R2.

To prove that only symmetric con�gurations of robots on the segment are infeasible we need the following
lemma.

Lemma 5. Suppose that the initial con�guration of robots C = ((r0(0), dir0), . . . , (rn−1(0), dirn−1)) on a
unit segment is not symmetric. Then no internal robot ri, for 1 ≤ i ≤ n − 2, may have all its left bounces
or all right bounces at the same point of the unit segment.

Proof. Suppose, by contradiction that there exists an internal robot having all its left bounces at the
same point (the proof in the case of all right bounces falling at the same point is similar, by symmetry).
Let i be the smallest index 1 ≤ i ≤ n− 2 of a robot with this property and point x, 0 < x < 1, be the point
of all left bounces of ri. We show �rst that the initial con�guration of robots belonging to segment [0, x]
is the re�ected copy of the initial con�guration of robots belonging to segment [x, 2x] Then robot ri−1 has
all its right bounces also at point x. Consequently, at each moment of time after the �rst such bounce, the
position and the direction of robot ri−1 is a symmetric (re�ected) copy of robot ri with respect to point x.
Then, if i ≥ 2, the trajectory of ri−2 is a re�ected copy of the trajectory of ri+1. By induction on i, for any
q ≥ 0 the trajectory of rq is the re�ected copy of the trajectory of r2i−q−1 and �nally the trajectory of r0
is the re�ected copy of the trajectory of r2i−1. Therefore, all right bounces of robot r2i−1 are at point 2x
of the unit segment, so initial con�guration of robots belonging to segment [0, x] is the re�ected copy of the
initial con�guration of robots belonging to segment [x, 2x], as needed.

By induction on j we prove that each subsegment [(j−1)x, jx] is a re�ected copy of subsegment [jx, (j+
1)x]. By minimality of x, no such subsegment contains a point which is never crossed by any robot, hence,
for some value of j, we have jx = 1, concluding the proof.

We can show now, that the set of con�gurations on the unit segment for which no position detection
algorithm exists is exactly the set of symmetric con�gurations. For all other con�gurations we propose an
optimal position detection algorithm. We suppose that the robot assumes that its initial direction on the
segment is positive. Otherwise, the robot needs to be chirality aware, i.e. capable of identifying the positive
direction of the segment.

13

/ Information and Computation 00 (2015) 1�16 14

Theorem 5. For any collection of n robots not in a symmetric initial con�guration on the unit segment
there exist a position detection algorithm A with cost CA(n) = 2. For any ε > 0 there exist collections of
robots, such that some of them cannot terminate the execution of any position detection algorithm before
time 2− ε.

Proof.
To construct algorithm A adapt algorithm RingBounce in the following way. The constant of 1/2 used

in lines 5, 6, 9 and 13 is changed to 1. Moreover, the values of original positions output in lines 10 and
14 are multiplied by a factor of 2 and put in the list C instead of being directly output. By Lemma 4 the
algorithm �nds the positions of 2n robots of ring R2 constructed from segment S. Note that, as ring R2 has
size 2, we needed to scale up the time and distance constants of the algorithm by the factor of 2.

Since the robots of S are not in a symmetric initial con�guration, by Lemma 5, only the endpoints of
S are the points which are never crossed by any robot in S. Consequently there are only two points in
R2, which are never crossed by any robot. This unique pair of (antipodal) points split ring R2 into two
segments, segment S, and it re�ected copy SR. Since the positions of all robots are stored in list C, it is
possible to perform in algorithm A the generation of the bounce sequence of each robot of C, in order to
�nd which two robots bounce in one direction against the same positions of the ring. This way, the �rst and
the last robot on the unit segment as well as its left and right endpoints may be identi�ed, which permits
to determine the rank and the absolute initial position of the robot running the algorithm, as well as those
of all other robots.

In order to analyze the cost of such algorithm, observe that, since exactly half of 2n robots in R2 have
the same initial direction, by Theorem 2, robot ri terminates its walk at time 1

2d 2nn e · c = 2, where c = 2 is
the scaling factor.

We prove now the second part of the claim of the theorem. For any ε > 0 we construct two di�erent
con�gurations of robots C1, C2 on the unit segment, such that for some robots from C1 and C2 the bounce
sequence until time 2 − ε is the same. Consequently, the robot observing such bounce sequence cannot
unambiguously report positions of other robots.

Let C1 be the con�guration of two robots r0, r1, such that dir0 = dir1 = 1 and r0(0) = ε
5 , r1(0) = 2ε

5 .
We �nd below the �rst two values t1, t2 of the bounce sequence of robot r0. Robot r1 reaches point 1 of
the segment and bounces at time t∗ = 1 − 2ε

5 , while robot r0 is at point 1 − ε
5 of the segment. Since at

time t∗ the robots start to approach, they meet after additional time ε
10 , so t1 = 1− 2ε

5 + ε
10 = 1− 3ε

10 and
r0(t1) = 1− ε

5 + ε
10 = 1− ε

10 . At time t1 robot r0 starts moving left on the segment until it bounces at its
endpoint 0. This takes time 1− ε

10 , so t2 = t1 + 1− ε
10 = 2− 2ε

5 > 2− ε.
Consider now con�guration C2, containing two robots r0, r1, such that dir0 = dir1 = 1 and r0(0) =

ε
10 , r1(0) = ε

2 . The similar analysis reveals that t∗ = 1 − ε
2 , r1(t∗) = 1, and r0(t∗) = 1 − 2ε

5 . At time t∗, r0
and r1 start approaching and meet at time t1 = t∗ + ε

5 = 1− 3ε
10 , while r0(t1) = 1− ε

5 . After the bounce at
time t1, r0 walks left until it bounces at endpoint 0 at time t2 = t1 + 1− ε

5 = 2− ε
2 > 2− ε.

Since for both con�gurations C1, C2 we have t1 = 1 − 3ε
10 and t2 > 2 − ε, hence robot r0 cannot

unambiguously output the initial robots' positions before time 2− ε.
As the algorithm for the segment, presented in the proof of Theorem 5 assumes storing in robot's memory

the positions of all robots, from Theorems 4 and 5 follows

Corollary 3. The family of infeasible initial con�gurations of robots on the segment contains all symmetric
initial con�gurations of robots. There exists an optimal position detection algorithm for all feasible initial
con�gurations of robots on the segment. This algorithm assumes O(n)-size memory of the robot executing
it.

6. Conclusion

The algorithms of the paper may be extended to the case when only one robot r0 starts moving initially
(while all other robot movements are triggered by bounces) and r0 must report other robots' initial positions.
Indeed, observe that all robots must be moving at no later than time 1 for the ring and at no later than time

14

/ Information and Computation 00 (2015) 1�16 15

2 for the segment. Robot r0 may then compute the trajectories of all other robots as if they started moving
simultaneously and then successively compute the sequence of motion triggering bounces of all robots. Other
types of asynchrony would also be interesting to consider and analyze.

There are several interesting open problems resulting from our study. One is to determine whether there
exists an optimal position detection algorithm for the segment using a constant size memory. Another is
whether the bouncing problem may be solved for the case of robots having di�erent initial speeds. If we
assume the momentum conservation principle, so that the bouncing robots exchange their speeds, the baton
trajectories still remain semi-lines of constant slopes. Therefore, if each robot is always aware of its current
speed, perhaps it might be possible, that, after a �nite time, it learns the starting positions and initial speeds
of all other robots.

Another class of interesting open problems concerns extenions of our model to more general domains,
robots as well as dynamics. It would be interesting to know whether our analysis can be extended to more
general geometric graphs or even in 2D. In the latter case, one may ask whether it is possible to analyze
the dynamics of the bouncing robots when they have physical constraints such as dimensionality (e.g., they
are represented as discs), they can travel with not-necessarily identical speeds, and their bouncing dynamics
obey laws of elasticity in classical and non-classical mechanics.

We also note that the location discovery performed by the collection of robots, presented in this paper,
may be used for the equally-spaced self-deployment of the robots around the environment (e.g. to perform
optimal patrolling) or for some other pattern formation task. However, such a task would require an addi-
tional robot capacity besides passive mobility the way it is assumed in this paper. Once the positions of the
entire collection is known, the robots need to synchronize their movements, e.g. by adding waiting periods.
In addition, the problem of information transmission and message passing between robots to maintain net-
work connectivity and implement communication primimitives such as broadcasting and gossiping has been
studied in the forthcoming publication [33].

Acknowledgements 1. Research of J. Czyzowicz and E. Kranakis supported in part by NSERC grants,
L. G¡sieniec was sponsored by the Royal Society Grant IJP - 2010/R2 , O. Morales by MITACS grant and
E. Pacheco by CONACyT and NSERC grant.

References

[1] I. Suzuki, M. Yamashita, Distributed anonymous mobile robots: Formation of geometric patterns, SIAM Journal on
Computing 28 (4) (1999) 1347�1363.

[2] S. Das, P. Flocchini, N. Santoro, M. Yamashita, On the computational power of oblivious robots: forming a series of
geometric patterns, in: Proceedings of the 29th ACM symposium on Principles of distributed computing, ACM, 2010, pp.
267�276.

[3] P. Flocchini, G.Prencipe, N. Santoro, P. Widmayer, Arbitrary pattern formation by asynchronous, anonymous, oblivious
robots, Theoretical Computer Science 407 (1) (2008) 412�447.

[4] P. Flocchini, G. Prencipe, N. Santoro, Self-deployment of mobile sensors on a ring, Theoretical Computer Science 402 (1)
(2008) 67�80.

[5] Y. Elor, A. M. Bruckstein, Uniform multi-agent deployment on a ring, Theoretical Computer Science 412 (8) (2011)
783�795.

[6] P. Flocchini, Uniform covering of rings and lines by memoryless mobile sensors, in: Encyclopedia of Algorithms, Springer,
2015.

[7] R. Kurazume, S. Nagata, S. Hirose, Cooperative positioning with multiple robots, in: Robotics and Automation, 1994.
Proceedings., 1994 IEEE International Conference on, IEEE, 1994, pp. 1250�1257.

[8] D. Fox, W. Burgard, H. Kruppa, S. Thrun, A probabilistic approach to collaborative multi-robot localization, Autonomous
robots 8 (3) (2000) 325�344.

[9] R. Kurazume, S. Hirose, An experimental study of a cooperative positioning system, Autonomous Robots 8 (1) (2000)
43�52.

[10] S. I. Roumeliotis, G. A. Bekey, Distributed multirobot localization, Robotics and Automation, IEEE Transactions on
18 (5) (2002) 781�795.

[11] A. I. Mourikis, S. I. Roumeliotis, Performance analysis of multirobot cooperative localization, Robotics, IEEE Transactions
on 22 (4) (2006) 666�681.

[12] A. Bahr, M. R. Walter, J. J. Leonard, Consistent cooperative localization, in: Robotics and Automation, 2009. ICRA'09.
IEEE International Conference on, IEEE, 2009, pp. 3415�3422.

[13] K. Y. K. Leung, T. D. Barfoot, H. H. T. Liu, Decentralized localization of sparsely-communicating robot networks: A
centralized-equivalent approach, Robotics, IEEE Transactions on 26 (1) (2010) 62�77.

15

/ Information and Computation 00 (2015) 1�16 16

[14] S. Thrun, Robotic mapping: A survey, Exploring arti�cial intelligence in the new millennium (2002) 1�35.
[15] S. Kraus, O. Shehory, G. Taase, Coalition formation with uncertain heterogeneous information, in: Proceedings of the

second international joint conference on Autonomous agents and multiagent systems, ACM, 2003, pp. 1�8.
[16] Y. Altshuler, A. M. Bruckstein, Static and expanding grid coverage with ant robots: Complexity results, Theoretical

Computer Science 412 (35) (2011) 4661�4674.
[17] Y. Altshuler, V. Yanovski, I. A. Wagner, A. M. Bruckstein, Multi-agent cooperative cleaning of expanding domains, The

International Journal of Robotics Research 30 (8) (2011) 1037�1071.
[18] I. Harmatia, K. Skrzypczyk, Robot team coordination for target tracking using fuzzy logic controller in game theoretic

framework, Robotics and Autonomous Systems 57 (1) (2009) 75�86.
[19] G. Hollinger, S. Singh, J. Djugash, A. Kehagias, E�cient multi-robot search for a moving target, The International Journal

of Robotics Research 28 (2) (2009) 201�219.
[20] J. Svennebring, S. Koenig, Building terrain-covering ant robots: A feasibility study, Autonomous Robots 16 (3) (2004)

313�332.
[21] S. Koenig, B. Szymanski, Y. Liu, E�cient and ine�cient ant coverage methods, Annals of Mathematics and Arti�cial

Intelligence 31 (1-4) (2001) 41�76.
[22] K. Sugihara, I. Suzuki, Distributed algorithms for formation of geometric patterns with many mobile robots, Journal of

Robotic Systems 13 (3) (1996) 127�139.
[23] M. Yamashita, I. Suzuki, Characterizing geometric patterns formable by oblivious anonymous mobile robots, Theoretical

Computer Science 411 (26) (2010) 2433�2453.
[24] R. Cohen, D. Peleg, Convergence properties of the gravitational algorithm in asynchronous robot systems, SIAM Journal

on Computing 34 (6) (2005) 1516�1528.
[25] P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer, Gathering of asynchronous robots with limited visibility, Theoretical

Computer Science 337 (1) (2005) 147�168.
[26] R. Cohen, D. Peleg, Local spreading algorithms for autonomous robot systems, Theoretical Computer Science 399 (1)

(2008) 71�82.
[27] H. Ando, Y. Oasa, I. Suzuki, M. Yamashita., Distributed memoryless point convergence algorithm for mobile robots with

limited visibility, IEEE Transactions on Robotics and Automation 15 (5) (1999) 818�828.
[28] D. Angluin, J. Aspnes, Z. Diamadi, M. Fischer, R. Peralta, Computation in networks of passively mobile �nite-state

sensors, Distributed computing 18 (4) (2006) 235�253.
[29] D. Angluin, J. Aspnes, D. Eisenstat, Stably computable predicates are semilinear, in: Proceedings of the twenty-�fth

annual ACM symposium on Principles of distributed computing, ACM, 2006, pp. 292�299.
[30] T. Friedetzky, L. Gasieniec, T. Gorry, R. Martin, Observe and remain silent (communication-less agent location discovery),

in: Mathematical Foundations of Computer Science 2012, Springer, 2012, pp. 407�418.
[31] J. Czyzowicz, L. G¡sieniec, A. Kosowski, E. Kranakis, Boundary patrolling by mobile agents with distinct maximal speeds,

in: Algorithms�ESA 2011, Springer, 2011, pp. 701�712.
[32] E. W. Dijkstra, Selected writings on computing: a Personal Perspective, Springer-Verlag New York, Inc., 1982.
[33] J. Czyzowicz, E. Kranakis, E. Pacheco, D. Pajak, Information spreading by mobile particles on a line (submitted for

publication) (2015).

16

