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Distributed Alarming in the On-Duty
and Off-Duty Models
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and Roger Wattenhofer

Abstract—Decentralized monitoring and alarming systems can
be an attractive alternative to centralized architectures. Dis-
tributed sensor nodes (e.g., in the smart grid’s distribution
network) are closer to an observed event than a global and remote
observer or controller. This improves the visibility and response
time of the system. Moreover, in a distributed system, local
problems may also be handled locally and without overloading
the communication network.

This article studies alarming from a distributed computing
perspective and for two fundamentally different scenarios: on-
duty and off-duty. We model the alarming system as a sensor
network consisting of a set of distributed nodes performing local
measurements to sense events. In order to avoid false alarms, the
sensor nodes cooperate and only escalate an event (i.e., raise an
alarm) if the number of sensor nodes sensing an event exceeds
a certain threshold. In the on-duty scenario, nodes not affected
by the event can actively help in the communication process,
while in the off-duty scenario non-event nodes are inactive.

This article presents and analyzes algorithms that minimize
the reaction time of the monitoring system while avoiding
unnecessary message transmissions. We investigate time and
message complexity tradeoffs in different settings, and also shed
light on the optimality of our algorithms by deriving cost lower
bounds for distributed alarming systems.

Index Terms—sensor networks, disaster detection, distributed
algorithms, distributed coordination, output-sensitive algorithms,
neighborhood covers.

I. INTRODUCTION

Distributed monitoring and alarming is an important
paradigm to detect harmful events early and robustly. In con-
trast to centralized monitoring systems, distributed solutions
do not rely on the presence of (or even the presence of a
functioning path to) a global and possibly remote controller.
There are several interesting applications.
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1) The Californian earthquake system Quake Catcher [1],
started in 2008 and still active in 2013, is a distributed
monitoring network which benefits from decentraliza-
tion. The network consists of normal Mac laptops that
work as seismic monitors. The laptops aggregate a
wealth of information on major quakes in order to alarm
in a few seconds’ notice of a devastating quake.

2) While traditionally, electricity grids were relatively
static, there is a trend [2] towards the integration of
renewable energies. The “smart” operation of such net-
works poses several new monitoring and control chal-
lenges to prevent instabilities or blackouts due to dynam-
ical patterns in energy demand and supply. Especially
in the low-voltage distribution networks consisting of
many sensors and smart meters, communication over-
head should be kept low. If network devices manage
to detect and locally resolve such problems (e.g., by
powerline communications), faults can be contained
locally and with good response times.

3) Distributed monitoring systems can also be used to
detect fast propagating Internet worms. [3]

This article attends to the distributed alarming problem from
an algorithmic point of view, and explores the possibilities and
limitations of distributed solutions. We model the problem
as a sensor network where (not necessarily wireless) sensor
nodes are distributed in space and perform local measurements
(e.g., of the temperature or humidity). When these devices
sense an event, an alarm must be raised as soon as possible
(e.g., to inform helpers in the local community). However, as
the measurement of a single sensor may be unreliable and
as a situation should only be escalated if the event is of
a certain magnitude, the nodes must cooperate in order to
avoid false alarms: nodes sensing an event should make sure
that there are other nodes in their vicinity that have sensed
the same event. Moreover, in order to save energy and avoid
interference or congestion, the number of messages transmitted
by a distributed alarming protocol should be minimized.

A. The Model

The distributed alarming problem studied in this article can
be formalized as follows. We are given a sensor network in
the form of an arbitrary undirected, unweighted graph G =
(V,E) where the n nodes form a set V with unique identifiers
and are connected via m = |E| communication edges E. We
assume that at time t0, an arbitrary subset of nodes S ⊆ V
senses an event. The nodes in S are called event nodes, and
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the nodes in V \ S are called non-event nodes. For ease of
presentation, in this paper, we will focus on a single connected
component S. In this case, we will often denote the subgraph
induced by S by G(S) and refer to this graph as the event
component. In Section V, we describe how our algorithms can
be modified to work for multiple event components (in most
cases the corresponding components can be simply explored
in parallel).

We assume that after an event hits the subset of nodes S
at time t0, at least one node from S is required to determine
the size of S, which is denoted by nS throughout the article.
(In fact, all our algorithms can be easily modified, without
changing their asymptotic performance, so that all nodes from
S learn the value of nS.) For convenience, we also define mS

as the number of edges in the component G(S) induced by S.
This article studies distributed algorithms that jointly minimize
the message and time complexities.

Our model divides time into two main phases. The time
before t0 is called the Preprocessing Phase: During this phase,
mechanisms can be set in place to be able to handle events
occurring at t0 more efficiently; the set of event nodes is
not known at this time. The time at and after t0 is called
the Runtime Phase: The set S is revealed and nodes need to
coordinate quickly to explore the component.

The preprocessing can be performed in a centralized fash-
ion, with a global knowledge of the network, and its resulting
structure can be reused for all future events. Hence, in this ar-
ticle, the complexity of the preprocessing phase plays a minor
role; we are rather interested in a fast and efficient reaction
during runtime. The complexities of all preprocessing phases
proposed in this article are moderate, though.

Definition 1.1 (The Distributed Alarming Problem): After
preprocessing the network, when an event hits the event
component G(S) at time t0, how can the nodes coordinate the
exploration of G(S), so that the time and message complexi-
ties are minimized? The time complexity is measured until at
least one event node learns the size of S (and is aware of this
fact), and the message complexity is measured until no more
new messages are sent.

We distinguish between two main scenarios:
• In the on-duty scenario, we allow non-event nodes to par-

ticipate in the runtime phase of the algorithm, for example
to serve as relay points for message transmissions of the
event nodes.

• In the off-duty scenario, only event nodes may participate
in the runtime phase.

The first scenario is suited for larger sensor nodes that are at-
tached to an energy supply, whereas the second one addresses
the situation of a (wireless) network where (battery-powered)
nodes are in a parsimonious sleeping mode until woken up by
the event.

This article assumes a synchronous environment, where
algorithms operate in communication rounds: we assume that
events are sensed by all nodes simultaneously at time t0
and there is an upper bound (known by all nodes) on the
time needed to transmit a message between two nodes. In
particular, the classic LOCAL model [4] is considered: in each
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Fig. 1. After hitting the event component (shaded), the event nodes S (dark)
need to determine the component size (here: 6). In the on-duty model, node u
may reach node v in two hops (via a non-event node); in the off-duty model,
these two nodes are at distance four.

round, a node can send a message to each of its neighbors,
receive messages from its neighbors, and depending on the
received information, perform local computations. No specific
constraints on the allowed message size are assumed.

While this model is simple and does not capture interference
and congestion aspects, it allows us to focus on the fundamen-
tal problem of distributed local event detection.

Figure 1 illustrates our model.

B. Preliminaries and Terminology

This article uses the following graph-theoretical concepts.
For any two nodes u, v from a connected component G(S),
we define distS(u, v) as the length of a shortest path between
u and v that uses only nodes from S as intermediate nodes. In
these terms, dist(u, v) := distV (u, v) is the standard distance
between u and v in the graph. (As our graph is unweighted,
the distance is simply the number of hops.) Furthermore, the t-
neighborhood of a node v is the set Nt(v) = {u | dist(u, v) ≤
t}. We also define two different types of diameters of node
sets: the weak and the strong one.

Definition 1.2 (Weak and Strong Diameters): For a set S ⊆
V of nodes of a graph G = (V,E), the weak diameter of G(S)
is diam(S) := maxu,v∈S{dist(u, v)} and the strong diameter
is Diam(S) := maxu,v∈S{distS(u, v)}.

In other words, the strong diameter is a diameter of a sub-
graph induced by a given subset of nodes. Clearly, for any set
S it holds that diam(S) ≤ Diam(S). Henceforth, when the set
S is clear from the context, we will just write d for diam(S)
and D for Diam(S).

In the preprocessing phase of our algorithms, we will often
use (k,t)-neighborhood covers [4]. In a nutshell, a neigh-
borhood cover covers all nodes by a collection of possibly
overlapping sets called clusters. In such a cover, the diameter
of each cluster is bounded by O(kt) and for each node there
exists a cluster containing the entire t-neighborhood of this
node. It turns out that such covers can be computed quite
efficiently.

Definition 1.3 (Neighborhood Cover [5]): A (k,t)-
neighborhood cover of a graph G = (V,E) is a collection
of clusters C1, ..., Cr ⊆ V with the following properties:
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1) for each cluster Ci, diam(Ci) ∈ O(kt), and
2) for any node v, there exists a cluster Ci, such that

Nt(v) ⊆ Ci.
The node with the largest ID in a given cluster Ci is called
the cluster head h of Ci. A (k,t)-neighborhood cover is sparse
(and denoted (k,t)-NC) if each node is in at most O(kn1/k)
clusters.

The following lemma is due to [5].

Lemma 1.4 ( [5]): Given a graph G = (V,E) and integers
k, t ≥ 1, there exists a deterministic distributed algorithm that
constructs a (k, t)-NC.

In this paper, we show that the complexity of local event
detection sometimes depends on the graph arboricity [6], [7],
which is defined as follows.

Definition 1.5 (Arboricity α(G)): The arboricity α(G) of
an arbitrary graph G is defined as the minimum number of
forests that are required to cover all edges in G.

For any graph G, it holds that 1 ≤ α(G) ≤ n.

C. Algorithmic Challenges

The distributed alarming problem considered in this paper
poses two main algorithmic challenges, and most of our
algorithms consist of two building blocks accordingly.

The first building block addresses an issue called neighbor-
hood problem: after a node has sensed an event, it does not
know which of its neighbors (if any) are also in S. Distributed
algorithms where event nodes simply ask all their neighbors
are costly: if G is a star network and the only node in S
is the star center, the message complexity is Θ(n) while the
size of the event component is one. The standard trick to let
nodes only ask the neighbors of higher degree does not work
either: while it would be a solution for the star graph, it fails
for dense graphs such as the clique graph. In fact, at first
glance it may seem that Ω(n) is a lower bound for the message
complexity of any algorithm for the clique as an event node has
no information about its neighbors. We will show, however,
that this intuition is incorrect in the on-duty scenario.

The second building block deals with the coordination of the
nodes during the exploration of the component. In a distributed
algorithm where all nodes start exploring the component inde-
pendently, much redundant information is collected, resulting
in a high number of messages. Clearly, the time required to
compute the event component size is at least linear in the
diameter of G(S), and the number of messages needed by
any distributed algorithm is at least linear in nS. We are hence
striving for distributed algorithms which are not very far from
these lower bounds.

D. Contribution and Novelty

Despite the fundamental nature of the distributed alarming
problem, to the best of our knowledge, this is the first paper to
study local algorithms whose time and message complexities
depend on the actual event component size, i.e., they are
output-sensitive. Accordingly, we cover the problem broadly,

and investigate different settings as well as different algo-
rithms, both deterministic and randomized ones, and shed light
on inherent lower bounds: what cannot be achieved efficiently
in a distributed setting.

We introduce the on-duty and off-duty models and show
that they are very different, both with respect to the applicable
algorithmic techniques as well as the achievable performance:
while in the on-duty scenario, structures (such as shortest paths
to coordinators) computed during the preprocessing phase are
also useful when the event occurs, the off-duty scenario can
hardly rely on the existence of such structures and needs to
coordinate almost from scratch.

Our model is also novel in the explicit distinction between
preprocessing and runtime phase. Classic algorithms designed
for ad-hoc and sensor networks typically need to start explor-
ing the topology from scratch. We argue that in the context
of event detection, we can often distinguish between two
very different time scales: (1) setting up a communication
infrastructure (before t0), and (2) handling the actual event.
The question of how to set up such infrastructures has hardly
been studied in the literature so far. Moreover, it turns out that
given the preprocessing phase (1), the event detection (2) can
often be done much more efficiently.

Our technical contribution is twofold. First, we show which
existing algorithmic techniques can be used and adapted for
the distributed alarming problem. Second, we also derive
new algorithmic techniques; for instance, we introduce a hi-
erarchical sparse neighborhood algorithm which may be of
independent interest.

E. Overview of Results

This article presents deterministic and randomized algo-
rithms for different settings, both in the on-duty and the off-
duty models, studies their optimality, and derives impossibility
results.

1) Clique Bounds: On-Duty vs Off-Duty. We first show that
there is a gap between on-duty and off-duty models, al-
ready in the simple complete network (the clique). While
in the on-duty model, the distributed alarming problem
can be solved in two rounds using O(nS) messages,
where nS is the event component size (Theorem 2.1),
for any deterministic algorithm ALG using TIME rounds
and MSG messages, it holds that TIME ·MSG = Ω(n ·
log log n), where n is the size of the whole network
(Theorem 2.4).

2) Clique Off-Duty Algorithms. We present a class of deter-
ministic algorithms GROUP that solves the problem in
the off-duty clique model. GROUP is parametrized with
a number k, and comes in two variants: PAR and SEQ.
The PAR variant of the algorithm GROUP uses O(logk n)
rounds and transmits O(min{k, nS} · n · logk n) mes-
sages. The SEQ variant uses O(k · logk n) rounds and
O(n · logk n) messages (Theorem 2.5). We also present
a randomized Las Vegas algorithm RAND. The algo-
rithm terminates in 2 log(n/nS)+O(1) rounds and uses
O(n) messages on expectation (Theorem 2.6).
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3) General On-Duty Algorithms. We present the random-
ized on-duty algorithm DECOMP that solves the alarm-
ing problem on general graph instances. It is based
on pre-computed sparse neighborhood covers where
information about the event is passed on via independent
sets, in order to reduce the message complexity. The
runtime of DECOMP is O(d · log2 n) rounds, using
O(nS · log3 n · log d) messages; it computes the correct
solution with high probability. Here, d is the weak di-
ameter of the event node set S (Theorem 4.1). DECOMP
is optimal up to polylogarithmic factors.

4) General Off-Duty Algorithms. We describe the determin-
istic algorithm MINID that solves the alarming problem
on general graphs. For a graph G with arboricity α,
the MINID finishes in O(nS · log nS) rounds using
O(mS · log nS + α · nS) messages, where mS is the
number of edges in the component G(S) induced by S
(Theorem 4.3).

5) Search-based Algorithms. Finally, we present the search-
based algorithms PARDFS, PARBFS and ONPARBFS.
These algorithms solve the problem, respectively, in time
O(nS), O(D) (where D is the strong diameter of the
event component), and O(d) (the weak diameter), using
respectively O(nS · (α + nS)), O(nS · (α + mS)), and
O(nS ·m·log d)) messages, where m is the total number
of edges. The first two algorithms can be used in both
scenarios, the third one in the on-duty scenario only
(Theorem 4.6). We generalize the search algorithms to
perform a graded start of the DFS procedures. Our algo-
rithm k-NWDFS, for any integer k ∈ {1, . . . , n}, solves
the problem in O(n2/k) rounds. In the off-duty sce-
nario, it uses O((α+ min{k, nS}) ·nS) messages while
in the on-duty scenario it uses O((min{α, log2 n} +
min{k, nS}) · nS) messages (Theorem 4.8).

F. Related Work

Local algorithms have been explored for many years al-
ready, especially in the context of ad-hoc and sensor networks.
Researchers in this field are particularly interested in the
question of what can and what cannot be computed locally [8],
i.e., given the knowledge of only a subset of the graph. For
a good overview of the field in general and the LOCAL in
particular, we refer the reader to the introductory book by
Peleg [4] and the survey by Suomela [9].

Pre-Processing and Output Sensitive Local Algorithms.
However, the distributed alarming model considered in this
paper is different from the classic ad-hoc network problems,
in that it distinguishes between two very different time scales:
(1) the network and infrastructure construction (in this pa-
per referred to as the pre-processing phase), and (2) the
actual distributed event exploration (referred to as the runtime
phase). As we will see, pre-computations can often help to
significantly speed up the execution of a local algorithm
during runtime, determining the event component at lower
time and message complexity. In this sense, our article also
assumes an interesting new position between local and global

distributed computations, as our algorithms aim at being as
local as possible and as global as necessary.

In our model, we require that the time and message com-
plexities depend on the actual problem instance size: the al-
gorithms should be output-sensitive. There already exist some
local solutions for other problems whose runtime depends on
the concrete problem input, for example [10], [11]: rather
than considering the worst-case over all possible inputs, if in
a special instance of a problem the input has certain properties,
a solution can be computed quickly. In this respect, our work
is also related to local algorithms which rely on proof labeling
schemes [12]–[14] and allow to locally and efficiently verify
global properties.

“Output-sensitive” algorithms have also been studied out-
side the field of distributed computing, e.g., for sorting algo-
rithms [15] (where the complexity of insertion sort or bubble
sort depends on the number of inversions). Our article is a new
incarnation of this philosophy as performance mostly depends
on nS, the event component size instead of n, the size of the
whole network.

Finally, we note that a new LOCAL model which explicitly
distinguishes between pre-processing and runtime has recently
also been introduced in the context of Software-Defined Net-
works (SDNs) with distributed control planes [16].

Algorithmic Techniques. In general, distributed alarming al-
gorithms can be built on the basis of several classic distributed
coordination primitives such as clustering [17] or spanning
trees [18] for aggregation [19].

In this paper, we show that maximal independent set algo-
rithms [20] can be used for the efficient graph exploration,
and also build upon sparse neighborhood covers [21], [22] to
solve the neighborhood problem in the on-duty model. For
our off-duty algorithms, the arboricity of the network plays
a central role, and there exist several results on the useful-
ness of Nash-Williams decompositions, e.g., for computing
distributed minimal dominating sets [23], matchings [24], or
coloring [25].

However, we not only adapt existing concepts to the new
problem, but also introduce new algorithmic techniques. In
particular, we introduce a hierarchical sparse neighborhood
cover to achieve the desired output-sensitive time and message
complexities.

Bibliographic Note. This article is based on two conference
papers that appeared as “Distributed Disaster Disclosure”
(SWAT 2008) and as “Event Extent Estimation” (SIROCCO
2010). This journal version extends the conference papers,
gives full proofs as well as pseudocodes and examples, and
also introduces a new variant of DECOMP algorithm. Finally,
we also correct some subtle mistakes.

G. Organization

The article is organized as follows. We first present algo-
rithms for the simple case of complete graphs (Section II).
We discuss on-duty and off-duty approaches as well as lower
bounds, and show that the distributed alarming problem al-
ready exhibits some interesting time and message complexity
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tradeoffs on the clique. Subsequently, we attend to the fun-
damental problem of neighborhood discovery (Section III).
Section IV then tackles general graphs. We show how to
extend our algorithms to scenarios with multiple components
in Section V, and finally conclude our work in Section VI.

II. ALGORITHMS FOR CLIQUES

To acquaint the reader with the problem definition and
— more importantly — to show the fundamental differences
between the on-duty and the off-duty scenarios, we consider
one of the simplest classes of graphs, namely cliques, i.e.,
complete graphs of n nodes.

A. On-Duty: The Optimal Solution

First, observe that solving the problem in the on-duty sce-
nario on cliques is quite trivial. We need just one coordinating
node v, chosen arbitrarily in the preprocessing phase. Then,
when the event occurs, each event node sends a message to
the coordinator v and v may reply with the number of event
nodes. This immediately yields the following result.

Theorem 2.1: For the on-duty scenario the distributed alarm-
ing problem on a clique can be solved in two rounds using
O(nS) messages.

Clearly, the message and time complexities are asymptoti-
cally optimal. In contrast to this result, in the following section,
we will show that for the off-duty scenario, the necessary
number of messages in a clique is Ω(n). Furthermore, we
show a tradeoff between the time and message complexity,
proving that their product is always Ω(n log log n) in the off-
duty model.

B. Off-Duty: Lower Bounds

We observe that if there is a set S of nS event nodes, the
necessary condition for termination is that at least one event
node sends a message to any other event node. Therefore, we
show that for any deterministic algorithm, we may choose the
set of event nodes, so that before there is any contact between
a pair of event nodes, the number of messages sent (to non-
event nodes) is Ω(n).

To this end, we introduce a concept of primary schedules.
We fix any deterministic algorithm ALG, and assume for
a while that only node i belongs to S. Then, node i transmits
messages in some particular order, which we call a primary
schedule for i. Note that for any starting set of event nodes,
ALG uses the primary schedule for i as long as i does not
receive a message from another node. For succinctness, we
say that ALG p-sends a message in round `, meaning that
the primary schedule of ALG assumes sending a message in
round `. Note that the choice of ALG determines the choices
of primary schedules of all nodes.

We say that two nodes p-contact each other if one of them
p-sends a message to the other. Using a counting argument,
we can find a pair of nodes that p-contact after transmitting
many messages.

Lemma 2.2: For any deterministic algorithm for the clique
and for any subset of k nodes A, there exists a pair of nodes
v, v′ ∈ A that contact only after one of them p-sends at least
k/2− 1 messages.

Proof: First, we observe that the total number of messages
in all primary schedules is at least

(
k
2

)
. Otherwise, there would

exist a pair of nodes that never p-contact. In effect, if the
algorithm is run on an instance where only these two nodes
belong to event component, it cannot solve the problem, as
neither of these nodes can distinguish between instances where
the second node is in S or not.

For simplicity of the description, we assume that messages
are p-sent sequentially. The j-th message of node i receives
label j. An edge between node i and i′ receives the label
which is the minimum of the labels of messages sent from
i to i′ and from i′ to i. To show the lemma, it is sufficient
to show the existence of an edge whose label is at least k/2.
Assume the contrary, i.e., all edges have labels k/2 − 1 or
smaller. Then, the label of any message would be at most
k/2 − 1, which would imply that the total number of p-sent
messages is k · (k2 − 1) <

(
k
2

)
.

Corollary 2.3: The number of messages sent by any deter-
ministic algorithm in a clique is at least Ω(n).

Proof: We apply Lemma 2.2 with set A containing all
n nodes of the clique and we choose the two nodes returned
by Lemma 2.2 to be in S. Before they contact, they together
transmit Ω(n) messages.

Theorem 2.4: Fix any deterministic algorithm ALG that
solves the distributed alarming problem in a clique using
TIME rounds and MSG messages. Then TIME · MSG =
Ω(n · log logn).

Proof: We assume that log log n ≥ 4. We consider the
first t rounds of the nodes’ primary schedules, where t =
log(log n/ log log log n) = Ω(log log n).

First, assume that there exists a subset A of n/2 nodes,
each p-sending fewer than n/4 messages in the first t steps.
By Lemma 2.2, there exists a pair of nodes v, v′ ∈ A that first
p-contact after one of them p-sends at least |A|/2−1 = n/4−1
messages. Thus, if we start ALG on a graph where only v and
v′ belong to S, it takes at least time t and uses at least n/4
messages, implying the lemma.

Hence, in the remaining part of the proof, we assume that
there exists a set B0 containing at least n/2 nodes, each p-
sending at least n/4 messages within the first t steps. We
create a sequence of sets {Bi}ti=0, where Bi is a maximum
subset of Bi−1 with the property that no two nodes of Bi
p-send a message to each other in round i. By induction, no
node from Bi p-sends a message to another node from Bi
within the first i steps. Let h = 1

2 · log log n. We consider two
cases.

1) There exists a round i ≤ t, in which nodes of Bi p-send
in total at least hn/4 messages. We run ALG on a graph
where only nodes of Bi are event nodes. The event nodes
do not contact each other in the first i−1 rounds and in
round i they transmit hn/4 = Ω(n log log n) messages,
implying the theorem.
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2) In each round i ≤ t, nodes of Bi p-send in total at most
hn/4 messages. In this case, we show that Bt contains
at least 2 nodes. Thus, if we run ALG on a graph where
only nodes of Bt are event nodes, they do not contact
in the first t− 1 rounds and, as Bt ⊆ B0, they transmit
at least n/4 messages in the first t rounds, which would
imply the theorem. To prove the bound |Bt| ≥ 2, it is
sufficient to show that for any i ≤ t, it holds that

|Bi| ≥
n

2 · (2h)2i−1
.

We show this relation inductively. The initial case of
i = 0 holds trivially. Assume that the bound holds for
i−1; we show it for i. Consider a graph on nodes from
Bi−1 with an edge connecting a pair of nodes if they
p-contact in round i − 1; the number of edges in such
a graph is at most hn/4. By Turán’s theorem [26], there
exists an independent set Bi ⊆ Bi−1 of size

|Bi| ≥
|Bi−1|

1 + h·n
2·|Bi−1|

≥ |Bi−1|
2

h · n

≥ n2

4 · (2h)2i−2 · h · n =
n

2 · (2h)2i−1

In our context, independence means that the nodes of
Bi do not p-contact each other in round i.

C. Off-Duty: A Deterministic Algorithm

Let us now investigate deterministic algorithms for the
clique problem in the off-duty scenario. Clearly, a broadcast
performed by all event nodes would be time-optimal, but
it requires nS · (n − 1) messages. We therefore propose
a natural class of algorithms called GROUP where nodes
organize themselves recursively into groups.

The algorithm GROUP uses an integer parameter k ∈
{2, . . . , n}. For simplicity of description, we assume that
logk n is an integer as well. We further assume that node
identifiers are written as (logk n)-digit strings, where each
digit is an integer between 0 and k − 1. This implicitly
creates the following hierarchical partitioning of all nodes into
clusters. The topmost cluster (on level logk n) contains all
nodes and is divided into k clusters, each consisting of n/k
nodes, where cluster i contains all the nodes whose first digit
is equal to i. Each of these clusters is also partitioned into k
clusters on the basis of the second digit of identifiers. This
partitioning proceeds to leaves, which are 0th level clusters,
each containing a single node. We call a cluster active if it
contains at least one event node.

GROUP works in logk n epochs; we assume that there is
an empty 0th epoch before the algorithm starts. We inductively
require that at the end of the ith epoch, there is a leader in each
ith level active cluster, the leader knows all the event nodes
within its cluster and all these nodes know the leader. Note that
this property holds trivially at the end of epoch 0. Furthermore,
this property implies that at the end of epoch logk n, all nodes
constitute a single cluster and its leader knows the set of all
event nodes.

To study what happens in the ith epoch, we concentrate
on a single ith level cluster A. (The procedure is performed
in all such clusters independently in parallel.) A consists of
k (i − 1)th level clusters, denoted A1, A2, . . . , Ak that will
be merged in this epoch. The leader of A will be chosen
as the node with the smallest ID amongst leaders of active
clusters Ai. The merging procedure comes in two flavors:
parallel (PAR) and sequential (SEQ).

In the PAR variant, an epoch lasts two rounds. In the first
round, the leaders of clusters Aj broadcast a hello message to
all nodes from these clusters. All the event nodes among them
answer with a message to a leader with the smallest identifier,
and this node becomes a leader of the ith level cluster A.

In the SEQ variant, the epoch lasts for k + 1 rounds. For
j ≤ k, in the jth round, the leader of cluster Aj broadcasts
a hello message to all nodes from A, provided such a message
was not sent already. The nodes that hear the message answer
in the next round, and the leader that transmitted the broadcast
becomes a leader of A.

Theorem 2.5: The PAR variant of the algorithm GROUP uses
O(logk n) rounds and transmits O(min{k, nS} · n · logk n)
messages. The SEQ variant uses O(k·logk n) rounds and O(n·
logk n) messages.

Proof: The time complexities for both variants are
straightforward, and thus we concentrate on bounding the
number of messages. In a single epoch of the PAR variant,
each node receives a hello message from at most min{k, nS}
leaders and sends a single reply. This implies the total number
of 2 ·min{k, nS}·n · logk n messages. In a single epoch of the
SEQ variant, each node gets at most one hello message and
answers at most once. Thus, the total number of transmitted
messages is at most 2 · n · logk n.

We observe that the best time-message product is achieved
for k = 2, in which case both variants of GROUP solve the
problem in time O(log n) using O(n log n) messages. Note
that GROUP can be regarded as a generalization of two graph
search techniques: the extreme cases require either one round
or n messages and correspond to the parallel or sequential
flooding of the graph by event nodes.

D. Off-Duty: A Las Vegas Algorithm

In this section, we extend our discussion to randomized
approaches. The idea behind our algorithm RAND is to approx-
imately “guess” the number of event nodes. For succinctness
of the description, we assume that n is a power of 2. RAND
proceeds in log n + 1 epochs, numbered from 0 to log n,
each consisting of two rounds. In the first round of the ith

epoch, each node — with probability pi = 2i/n — broadcasts
a hello message to all other nodes. In the second round
event nodes reply. After an epoch with a broadcast, the
algorithm terminates. The algorithm RAND eventually always
solves the problem, as in epoch log n each node performs
a broadcast with probability 1, i.e., RAND is a Las Vegas type
of an algorithm.

Theorem 2.6: In expectation, RAND terminates in
2 log(n/nS) +O(1) rounds and uses O(n) messages.
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Proof: Let k = dlog(n/nS)e, i.e., 2k−1 < n/nS ≤ 2k.
Then, epoch k is the first epoch in which the broadcast
probability of each node reaches 1/nS, i.e., pk ∈ [1/nS, 2/nS).
It is sufficient to show that the algorithm makes its first broad-
cast around epoch k and, in expectation, it makes a constant
number of broadcasts.

Let Ei denote an event that RAND does not finish till epoch i
(inclusive), i.e., there was no broadcast in epochs 1, 2, . . . , i.
Let τ be a random variable denoting the number of epochs of
RAND. Then, E[τ ] =

∑logn
i=1 Pr[τ ≥ i] =

∑logn−1
i=0 Pr[Ei] ≤∑k−1

i=0 1 +
∑logn−k−1
j=0 Pr[Ek+j ].

To bound the last term, we first observe that the necessary
condition for Ei is that no node transmits in epoch i. Hence,
Pr[Ei] ≤ (1− pi)nS , and thus for 0 ≤ j ≤ log n− k − 1,

Pr[Ek+j ] =

(
1− 2k+j

n

)nS

≤
(

1

e

) 2k+j

n ·nS

≤ e−2
j

.

Therefore, E[τ ] ≤ k +O(1).
Now, we upper-bound the number of transmitted messages.

Let Xi be a random variable denoting the number of nodes
transmitting in epoch i. Clearly, E[X0] = nS ·p0 and for i ≥ 1
it holds that E[Xi|Ei−1] = nS · pi and E[Xi|¬Ei−1] = 0. The
expected total number of broadcasts is then

E
[ logn∑
i=0

Xi

]
= E[X0] +

logn∑
i=1

E[Xi|Ei−1] · Pr[Ei−1]

= nS · p0 +

k∑
i=1

nS · pi · Pr[Ei−1]

+

logn∑
i=k+1

nS · pi · Pr[Ei−1]

≤
k∑
i=0

nS · pi +

logn−k−1∑
j=0

nS · pk+j+1 · Pr[Ek+j ]

≤ 2 · nS · pk +

logn−k−1∑
j=0

nS · pk · 2j+1 · e−2j

= O(nS · pk) = O(1) .

As the expected number of broadcasts is constant, the
expected number of messages is O(n).

III. THE NEIGHBORHOOD PROBLEM

Most of our algorithms for general graphs solve the neigh-
borhood problem in their first few rounds. In these rounds,
each node learns which of its immediate neighbors are event
nodes.

While for special classes of graphs, e.g., trees, there are
straightforward approaches, the situation for arbitrary graphs is
less obvious. In this section, we present two approaches for the
neighborhood problem. The first one, a network decomposition
approach [5] requires the cooperation of non-event nodes, and
hence works only in the on-duty scenario. The second one,
employing the concept of arboricity [6], [7] does not have
such a requirement, and thus can be used in both scenarios.

A. Sparse Neighborhood Covers

The first possible solution for the neighborhood problem is
based on network decomposition approach, concretely on the
(k,t)-neighborhood cover [4]. For solving the neighborhood
problem, in the preprocessing phase, we compute a (log n,1)-
NC. Additionally, each node computes and stores the shortest
paths to all corresponding cluster heads.

Lemma 3.1: Given the precomputed (log n, 1)-NC, it is
possible to solve the neighborhood problem in the on-duty
scenario, in time O(log n) and using O(nS · log2 n) messages.

Proof: In the runtime phase, the cluster heads serve as
local coordination points, where event nodes can learn which
of their neighbors sensed the event. This is executed in two
stages. In the first one, each event node v sends a message to
all cluster heads of the clusters it belongs to. All these cluster
heads reply in the second stage with the set of v’s neighbors
that contacted them.

The time complexity is due to the fact that messages have
to be routed to the cluster heads and back, and the diameter
of any cluster is at most O(log n).

For bounding the message complexity, observe that by
Definition 1.3, each of the nS nodes in the event component
belongs to at most O(log n · n1/ logn) = O(log n) clusters,
and hence contacts this number of cluster heads. This entails
O(log n) messages (the replies from cluster heads double this
amount) and each message is forwarded for O(log n) hops (as
the diameter of each cluster is at most O(log n)). Hence, the
total number of message transmissions is O(nS · log2 n).

B. Arboricity Based Discovery

In this section we show a neighborhood discovery algorithm
that works even in the restricted off-duty scenario. We show
how nodes can pre-compute a list of neighbors they will
contact if they get activated by the event.

During the preprocessing phase, we compute respec-
tive rooted spanning forests F = {F1, F2, .., Fα}.
Such a decomposition can be computed in polynomial
time [6], [7]. For any node v, we define a set Pv =
{w |w is a parent of v in some Fj}.

Lemma 3.2: Given the precomputed set F of α forests
covering G, it is possible to solve the neighborhood problem
in the off-duty scenario, in 2 rounds using O(nS ·α) messages.

Proof: In the first round, each event node v sends a hello
message to all its neighbors from Pv . At the same time it
receives similar messages from some of its event neighbors.
Those event nodes that receive hello messages reply in the
second round. We observe that each event node receives a hello
message or a reply from all neighbors that are event nodes,
and thus may effectively learn its neighborhood. As each event
node v sends |Pv| ≤ α messages in the first round and
they are followed by the same number of replies, the total
communication complexity is O(nS · α).

IV. ALGORITHMS FOR ARBITRARY GRAPHS

For general graphs, we present two solutions, one for the
on-duty and one for the off-duty scenario; both try to strike
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a balance between the time and message complexities. Further,
we study algorithms that are based on the breadth/depth first
search routines; these algorithms are useful primarily when we
want to optimize time or communication complexity alone.

A. On-Duty: Algorithm Decomp

We start with a description of a randomized distributed
algorithm DECOMP that requires on-duty scenario capabilities.
Its running time is linear in the weak diameter of the event
component S, and the message complexity is linear in the
component’s size, both up to polylogarithmic factors. This is
asymptotically optimal up to polylogarithmic factors since the
exploration of a graph requires at least time d = diam(S) and
nS messages.

Algorithm DECOMP builds on the knowledge passing
paradigm. Its execution consists of epochs in which only some
event nodes are in active state and the knowledge about event
components is stored only on them. In the beginning of this
process, all nodes are active and each of them is aware only
of itself, and in the end a single event node remains active and
it knows the entire subgraph G(S).

We emphasize that in our construction, even when executed
on a single event component, it can happen that the set of the
nodes active in epoch i+ 1 is not a subset of nodes active in
epoch i. Not even the cardinalities of active sets are required
to monotonically decrease during consecutive epochs.

The challenge is to organize the knowledge passing pro-
cess so that — on the one hand — no knowledge about S is
lost (i.e., the active nodes altogether always know all event
nodes) and — on the other hand — the number of active nodes
drops quickly (so that the number of transmitted messages
is minimized). In the following, we will first present the
preprocessing phase and subsequently discuss the runtime
phase of DECOMP.

DECOMP Preprocessing Phase. To use the neighborhood
discovery routines described in Section III-A, DECOMP has
to compute sparse covers (log n, 1)-NC in the preprocessing
phase. In addition, it also computes a hierarchy of sparse
neighborhood covers for exponentially increasing cover di-
ameters, i.e., the decompositions Di := (log n, 2i)-NC for
i ∈ {0, . . . , dlog (diam(V ))e + 1}. Each node also computes
the shortest paths to the cluster heads of all clusters it
belongs to (e.g., using Dijkstra’s single-source shortest path
algorithm [27]). These paths may contain nodes outside the
clusters. Additionally, each node stores shortest path distances
between all pairs of nodes.

Maximal Independent Sets. Besides pre-computed sparse
neighborhood covers, DECOMP relies on the concept of Max-
imal Independent Sets (MIS). DECOMP computes multiple
MIS during the runtime phase in a distributed manner. In our
application, we will compute maximal independent sets for the
subgraph induced by event nodes. Furthermore, we generalize
this notion: a k-MIS is a subset L of event nodes, such that
for each node v ∈ L its k-neighborhood does not contain any
other node from L. We require maximality: each event node
belongs to a k-neighborhood of some node from L. In these

Algorithm 1 Runtime phase of DECOMP

1: perform neighborhood discovery
2: for all v ∈ S do
3: v.active := true
4: R0(v) = {v}
5: i← 1
6: while ∃ active v s.t. Γ(Ri−1(v)) contains an event node
7: each active v computes δ(Ri(w)) for all w ∈ Ri−1(v)
8: (by simulating of Luby’s MIS algorithm)
9: for all active v in parallel

10: v sends δ(Ri(w)) to each w ∈ Ri−1(v)
11: for all v ∈ S
12: v.active ← (Ri(v) 6= ∅)
13: i← i+ 1

terms, 0-MIS is the set of all event nodes, whereas 1-MIS is
a regular MIS.

Alternatively, one could define k-MIS in the following way.
Fix an unweighted graph G. Let G≤k be a graph on the same
set of vertices, where two nodes are connected if there is a path
between them of length at most k in G. Then L is a k-MIS
of a given node set in graph G if and only if it is a MIS of
this set in graph G≤k.

For any set A, we define Γ(A) = {w′ /∈ A : w ∈
A ∧ (w,w′) ∈ E} as the set of A’s neighbors not in A.
Furthermore, we define δ(A) = (A,Γ(A)), i.e., δ(A) contains
information about A and its immediate neighbors.

DECOMP Runtime Phase: High-Level Description. The
execution of the algorithm DECOMP is split into epochs,
numbered from 1. With high probability, we will maintain the
following invariant at the end of each epoch i: the set of active
event nodes, denoted Li, constitutes a ti-MIS of event nodes,
where ti = 2i−1. More precisely, at the end of epoch i, each
event node v will know its responsibility area Ri(v) (a subset
of event nodes), such that all areas are disjoint, their union is
the set of event nodes, for an inactive node v, Ri(v) = ∅, and
for an active node v, {v} ⊆ Ri(v) ⊆ Nti(v). Furthermore,
any active node v knows which of the immediate neighbors
of Ri(v) are event nodes.

Algorithm 1 shows how this invariant can be preserved over
the consecutive epochs. At the beginning, we define L0 as the
set of all event nodes, all nodes are active, and R0(v) = {v}
for each event node v. Such an L0 is clearly (the unique)
0-MIS, and thus the invariant holds just before the first epoch.

In epoch i, for each node w, its new responsibility area
Ri(w) is computed along with its neighborhood Γ(Ri(w)).
These computations are however not performed by a node w it-
self, but by the active node v responsible for w, i.e., the node v
such that w ∈ Ri−1(v). The details of the corresponding lines
7–8 of Algorithm 1 are postponed to the next subsection.
Afterwards the knowledge about δ(Ri(w)) is propagated from
v to w. Thus, when this process ends, each node w learns its
new responsibility area Ri(w) and w is active if and only if
this area is nonempty.

We end this process when one active node recognizes
that it knows the entire event component (i.e., its immediate
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Event node w ∈ Ri−1(v) Node v ∈ Li−1 simulating w
w performs local computation
(e.g., chooses random variables)

v performs this local computation
on behalf of w.

w sends message to w′ ∈ Ri(v
′) v sends a message to all clus-

ter heads from Di+1; each clus-
ter head forwards this message to
all nodes from Li contained in its
cluster.

w becomes selected to be in
ti-MIS and each of its G≤ti -
neighbors (say, constituting set
W ′) become selected not to be in
ti-MIS.

v sets Ri(w) = W ′. For any node
w′ ∈ W ′, the node v′ responsible
for w′ sets Ri(w

′) = ∅.

TABLE I
EPOCH i OF DECOMP: NODES FROM Li−1 SIMULATE THE EXECUTION OF
LUBY’S ALGORITHM RUN ON ALL EVENT NODES FOR COMPUTING THEIR

ti-MIS.

neighborhood does not contain other event nodes).

Computing MIS in a single epoch. Now we explain in detail
what happens in the lines 7–8 of Algorithm 1. What we want
to compute is a ti-MIS of set S in graph G or, alternatively
speaking, a MIS of S in graph G≤ti . To this end, we will
simulate the standard, randomized Luby’s algorithm [20] for
finding a MIS in G≤ti . By the analysis of [20], there exists
a constant γ, such that after executing c · γ · log n rounds of
the algorithm, the algorithm correctly computes a maximal
independent set with probability at least 1 − n−c (for any
integer c). We emphasize that in each epoch a new MIS is
computed from scratch not taking into account the current
MIS, Li−1.

It remains to show how to simulate a single step of the
Luby’s algorithm. In such step, nodes perform local compu-
tations and communicate with their neighbors (note that these
are neighbors in G≤ti , i.e., nodes whose distance in G is
at most ti). Note that each node knows these neighbors, as
all-pairs distances were computed in the preprocessing phase.
Furthermore, in each round of the Luby’s algorithm, some
nodes may become selected to be in MIS, and their neighbors
(in G≤ti ) become selected to be outside of MIS.

All these actions that in Luby’s algorithm are performed
by a node w can be simulated by an active node v ∈ Li−1
responsible for w (the one for which it holds w ∈ Ri−1(v)),
as demonstrated in Table I. The only non-trivial part of the
simulation is the transmission of messages sent by w to its
G≤ti -neighbor w′. To simulate this, each node v ∈ Li−1 sends
gathered messages of all nodes from its responsibility area
Ri−1(v) to all the cluster heads from Di+1 it belongs to. If
there is no message transmission to be simulated, v sends
an empty message. In either case, each cluster head learns all
the active nodes belonging to its cluster. Afterwards all cluster
heads transmit all the received messages to all nodes from
Li−1 they are responsible for. If a node v′ ∈ Li−1 receives
a message and the intended recipient is not in its responsibility
area, it simply discards that message.

Thus, it remains to show that if a node w transmits message
to a node w′ and d(w,w′) ≤ ti, then this message is
successfully delivered. Let v and v′ be the nodes from Li−1
responsible for w and w′, respectively. Observe that d(v, v′) ≤
d(v, w) + d(w,w′) + d(w′, v′) ≤ ti−1 + ti + ti−1 ≤ 2i+1 − 3.

L1	  

L2	  

L3	  

CH	  

CH	  

CH	  

CH	  

CH	  

CH	  

(log	  n,4)-‐NC	  

(log	  n,2)-‐NC	  

Fig. 2. DECOMP constructs independent sets of larger and larger range (left)
with fewer active nodes (dark). Knowledge is transferred via the neighborhood
covers (right).

Then, by the property of neighborhood covers, there exists
a cluster C ∈ Di+1, such that both v and v′ belong to C, and
thus the message is successfully delivered to v′.

It is straightforward to guarantee that all nodes simulate
the same round of Luby’s algorithm, as there is an upper
bound on the number of rounds necessary for communicating
with cluster heads from Di+1. In the presented scheme, the
simulating nodes correctly compute the set Ri(w) for each
simulated node w. To additionally compute Γ(Ri(w)) it is
sufficient to always include the neighborhood of a transmitting
node in the transmitted message. Figure 2 illustrates the
algorithm.

Theorem 4.1: DECOMP terminates with a correct solution
with high probability, and requires O(d · log2 n) rounds and
O(nS · log3 n · log d) messages; d = diam(S) is the weak
diameter of the event set S.

Proof: First, we bound the number of nodes in Li. Nodes
from Li form a ti-MIS, and the responsibility area for any
node contains at least bti/2c event nodes. Thus, the number
of nodes in Li is O(nS/ti) = O(nS/2

i).
Termination and runtime: At latest after epoch dlog de,

we get a 1-node active set. Its only node recognizes this
situation and terminates. Epoch i takes O(log n) simulation
steps, where each step requires sending messages to cluster
heads (at the distance of at most O(2i · log n)) and receiving
responses. Knowledge passing at the end of an epoch requires
an additional time of O(2i). Altogether, the total number of
rounds is O(

∑dlog de
i=1 2i · log2 n) = O(d · log2 n).

Correctness: The correctness of the algorithm follows di-
rectly from the information passing mechanism: no informa-
tion about event nodes is lost at any epoch. Given that maximal
independent sets are computed in each epoch, DECOMP finds
the entire event component. Set Li is computed in epoch i
with probability 1−n−c provided that set Li−1 was computed
correctly in epoch i − 1. As the algorithm terminates after
dlog de ≤ n many rounds, it manages to compute a correct
maximal independent set in all epochs (and thus compute
a correct solution) with probability at least 1− n−c+1.

Message complexity: For a single round of the MIS sim-
ulation, each node from Li−1 communicates with O(log n)
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cluster heads, each at distance O(2i · log n). The responses
from cluster heads can be bounded analogously. The knowl-
edge passing complexity (at the end of an epoch) requires
sending |Li| messages along at most ti−1 hops. Thus, the
whole communication in epoch i, which has O(log n) rounds,
takes O(log n · (nS/2i) · 2i · log n · log n) = O(nS · log3 n)
messages. As there are at most dlog de epochs, the total
number of messages is O(nS · log3 n · log d).

Note that in the unlikely event that DECOMP does not
compute a correct solution, at least one node can locally detect
that the independent set is not maximal, and raise an alarm to
trigger a recomputation. Using fast and slow transmissions, the
algorithm can hence guarantee the correctness with probability
1 at the expense of increased runtime, which is then bound
with high probability.

B. The Off-Duty Scenario

Let us now turn our attention to the off-duty scenario where
only event nodes can participate in the distributed alarming.
In the remaining part of this section we use the neighborhood
discovery technique from Section III in an algorithm MINID.
This algorithm’s performance depends, besides nS, only on
the arboricity of the graph.

In the preprocessing phase of MINID, the algorithm com-
putes α trees {Fj}αj=1 covering the whole graph as described
in Section III-B. Then, at the beginning of the runtime
phase, MINID runs an arboricity-based neighborhood discov-
ery (cf. Section III-B).

First, we present the algorithm under the assumption that
nS is known; later we show that this assumption is not critical
for our analysis.

The discovery of the connected set of event nodes is
performed by leader election, where the node with the smallest
index distributes its index to everyone else in the event set.
The algorithm proceeds in 2 log nS epochs. Initially, each event
node v constitutes its own cluster Cv = {v}, with v acting as
the leader. In the course of an epoch, the number of clusters is
reduced, so that after at most 2 log nS epochs a single cluster
containing all event nodes in the set is formed. At any time
two clusters Ci and Cj are neighbors if there exists an edge
(v, w) connecting two event nodes v ∈ Ci and w ∈ Cj .

We also assume that before entering a new epoch each
cluster is supported by a spanning tree rooted at the leader.
Note that all nodes in the cluster can be visited in time at
most 2nS, e.g., by a DFS routine emulated with the help of
a token released by the leader. Each cluster Ci is visited by the
token three times. During the first visit at each node v ∈ Ci,
the token distributes the index of Ci’s leader to the entire Ci
and to all event neighbors of Ci in different clusters. During
the second visit, the token collects information about indices
of neighboring clusters and it picks the Cj with the smallest
index j. If j < i, during the third consecutive visit, the token
distributes j to all nodes in Ci to inform them that they are
now destined for Cj .

Let GC be a digraph in which the set of nodes is formed
of clusters Ci and where there is an arc from Cj to Ci iff
nodes of Ci are destined for Cj . A node Cw with in-degree 0
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Fig. 3. An illustration of algorithm MINID. An example graph with node
IDs is shown in (a). In (b), it is shown how nodes choose to which neighbors
they want to be destined, and we can also see what clusters are formed after
one loop if ñs is sufficiently large. In (c), we see that only node 3 succeeds
to spread its ID in the whole cluster, and the situation until ñs increases is
depicted. In (d), we see how the situation develops from (b) for ñs = 4:
nodes 0, 1, 3 manage to spread their IDs. Afterwards, the whole cluster 3 is
destined for cluster 1, and cluster 4 is destined for cluster 0 which is shown
in (e), however, only node 0 manages to spread its ID. The final situation for
this value of ñs is shown in (f ). In (g), we can see the situation after (e) for
ñs = 8, finishing the execution. In (h), we can see how the situation develops
if ñs = 16, i.e., for the first value that is actually larger than the number of
nodes.

in GC corresponds to a cluster that during this epoch spreads
its index to all other clusters reachable from Cw according
to the directed connections in GC . Note also that since the
maximum in-degree of nodes in GC is 1, each cluster with
in-degree 1 will receive a new index from exactly one cluster.
The process of reindexing is performed by a DFS procedure
initiated by the leader in each cluster Cw with in-degree 0 in
GC and it is extended to the nodes of all (not only directly
neighboring) clusters reachable from Cw (according to the
connections in GC).

Recall that the procedure presented above works under
the assumption that the value of nS is known in advance.
Since this is not the case, we take an exponentially increasing
sequence of upper bounds 2, 4, .., 2i, .., 2dlogne on nS, and
run our algorithm assuming these consecutive powers of two,
until the correct bound on nS is found. Note that when the
algorithm runs with a wrong assumption on the size of the
event set, the nodes eventually learn that the set is larger than
expected. The nodes in clusters that are about to expand too
much are informed by their leaders, and the nodes destined
for other clusters, if not contacted by the new leader on time,
also conclude that the bound on nS is inappropriate. Thus, the
process continues until the appropriate bound on nS is found
and then it is stopped.

An example execution of the algorithm MINID is given in
Figure 3.
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If we could show for a single epoch that each cluster either
delegates its index to at least one other cluster, or assumes the
index of another cluster, this would prove that the number of
clusters is reduced to at most half of their number from the
previous epoch.

However, there may exist clusters whose indices are local
minima, i.e., they have the smallest index in their neighbor-
hood in GC , but each of their neighbors has another neighbor
with yet a smaller index and chooses to accept that neighbor’s
index. Each such local minimum will have a neighbor with
a smaller index in the next epoch, as all its neighbors will
accept smaller indices. Thus, within two epochs each cluster
either grows or is removed, from which follows the following
lemma:

Lemma 4.2: During two consecutive epochs of MINID the
number of clusters is reduced by half as long as it is larger
than 1.

Theorem 4.3: In a graph G with arboricity α, the determin-
istic algorithm MINID finishes in O(nS · log nS) rounds using
O(mS · log nS + α · nS) messages.

Proof: For an assumed bound nS on the size of the
component and for a single epoch, the three visits along
an Euler tour followed by reindexing take time O(nS) and
incur total communication complexity of O(mS), since each
edge is traversed a constant number of times. According to
Lemma 4.2, after at most 2 log nS epochs there is exactly one
cluster. Hence, if the bound nS is correct, the total time is
O(nS · log nS) and the total communication O(mS · log nS).

Therefore in total the time complexity for an event
set of size nS is bounded by

∑dlognSe
i=1 O(2i · log 2i) =

O(nS · log nS). Similarly, the total communication is O(mS ·
log nS). By adding the complexity of neighborhood discovery
(cf. Lemma 3.2), the claim follows.

Note that arboricity of a planar graph is 3 [7]. Thus, MINID
runs in time O(nS · log nS) using O(nS · log nS) messages in
planar graphs as shown in Figure 6.

C. Search-Based Algorithms

To complement the results on general graphs from Sec-
tion IV-A and Section IV-B, we study algorithms for arbitrary
graphs based on depth/breadth first search routines. They are
inferior to the already presented results if we consider the
product of number of rounds and the number of messages
as the performance metric, but can be useful if one wants to
optimize the time or message complexity alone. We provide
a qualitative comparison in Figure 4 and Figure 5.

First, we note that it is possible to implement the DFS and
BFS routines in a distributed fashion in our environment.

Lemma 4.4: In both off-duty and on-duty scenarios, a dis-
tributed DFS procedure initiated at a single event node finishes
in time O(nS) using O(n) messages. If each event node knows
its event neighbors, the message complexity can be reduced
to O(nS).

Proof: First, we assume that nodes do not know their
event neighborhoods. We fix any starting event node. We say
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Fig. 4. Overview of formal results and comparison of different algorithms for
arbitrary graphs in the on-duty scenario. All the values are asymptotic ones.
The complexities of algorithm DECOMP are deterministic, but the algorithm
may err with some small, inversely polynomial probability.

that this node holds the “token”: the token indicates the node
that would be processed in the centralized DFS. This token
represents the current knowledge about all nodes: nodes are
either known to be event nodes, known to be non-event ones,
or are of unknown state; this knowledge is passed on with the
token. During our procedure, the token node tries to forward
the token to the neighbor that would be next in the DFS tree.
This is done as follows. First, the token node “pings” all its
neighbors with unknown state and event neighbors respond
immediately. Then, as in the centralized DFS algorithm the
token is passed to any unvisited event node, and if there is
none, the token is sent back to the node it came from. As
DFS proceeds along the DFS tree spanning all event nodes
in a single component, it takes time O(nS). In the process of
gaining knowledge each node changes its state just once, so
the number of messages is O(n).

Second, we observe that in case of a known neighborhood,
the part with pinging all neighbors can be omitted, and the
token can be passed to a non-visited event neighbor. This
reduces the number of messages to O(nS).

Lemma 4.5: In both off-duty and on-duty scenarios, a dis-
tributed BFS procedure uses O(D) rounds and O(m) mes-
sages. If each event node knows its event neighbors, the
messages complexity can be reduced to O(mS). Furthermore,
the time complexity can be reduced to O(d) in the on-duty
scenario, but the number of messages remains O(m · log d)
(even if each node knows its event neighborhood); the resulting
procedure is called ONBFS.

Proof: A BFS procedure is just a simple flooding oper-
ation and its time and message complexities are immediate.

The routine ONBFS operates in phases of exponentially
growing lengths: in phase i it executes the BFS routine to
depth 2i, flooding also non-event nodes, and gathers responses.
In each phase it uses O(m) messages and in phase dlog de it
learns the whole event component.

The DFS, BFS and ONBFS procedures are useful if there
is a predefined leader. In our setting, there is no such distin-
guished node, and hence we have to start this procedure at
multiple event nodes, in parallel, sequentially, or a mixture of
the two. If our primary goal is to optimize the runtime, we
should parallelize as many procedures as possible: in fact, we
may run independent DFS, BFS or ONBFS routines from each
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Fig. 5. Overview of results and comparison of different algorithms for
arbitrary graphs in the off-duty scenario. All the values are asymptotic ones.
The lower bound of Ω(n) on the number of messages holds, e.g., for cliques,
by Corollary 2.3. The lower bound of Ω(n log logn) on the time-message
product in cliques (cf. Theorem 2.4) is not depicted in this figure.

event node. The resulting algorithms will be called PARDFS,
PARBFS, and ONPARBFS, respectively.

If we run these algorithms without neighborhood discovery,
the total number of used messages for any of them will be Ω(n·
nS). Thus, we can run any neighborhood discovery beforehand
without increasing their asymptotic message complexity. We
choose arboricity based discovery as it is available in both
on-duty and off-duty scenarios and has a lower runtime.

Theorem 4.6: The algorithms PARDFS, PARBFS and ON-
PARBFS solve the problem in time O(nS), O(D), and O(d),
respectively, using O(nS · (α + nS)), O(nS · (α + mS)), and
O(nS ·m · log d)) messages. The first two algorithms can be
used in both the on-duty and the off-duty scenario, the third
is for the on-duty scenario only.

Proof: For all algorithms, we start with an arboricity
based neighborhood discovery as described in Section III-B
which takes two rounds and O(α · nS) messages. The time
complexity is simply the worst-case complexities of a single
DFS, BFS, or ONBFS procedure, respectively. On the other
hand, the total number of messages is the number of messages
used by these procedures, times the number of event nodes
nS. For the performance of ONPARBFS, we observe that
O(nS · (α+m · log d)) = O(nS ·m · log d) as α ≤ n ≤ m.

One way to reduce the number of messages is to have
a graded start of the DFS procedures. Of course, as we do
not know which nodes are event ones, we may need to wait
for potentially non-event nodes. Concretely, in our algorithm
k-WDFS (where k ∈ {1, . . . , n}), we divide time into dn/ke
epochs of length Θ(n). This length is chosen in such a way
that for any choice of event nodes, the worst-case execution
of a DFS initiated at any event node ends within one epoch.
In epoch i, we call event nodes with identifiers between
k ·(i−1)+1 and min{k · i, n} busy. All busy nodes start their
DFS procedures. The algorithm terminates in the first epoch,
in which there was any busy node.

Theorem 4.7: For any integer k ∈ {1, . . . , n}, the algo-
rithm k-WDFS solves the problem in O(n2/k) rounds using
O(min{k, nS} · n) messages.

Proof: The algorithm terminates in the first epoch, in
which there was any busy node. In the worst-case, the
algorithm finishes after dn/ke epochs, i.e., after O(n2/k)
rounds. In this epoch, all busy nodes (at most min{k, nS}

of them) start their DFS procedure, transmitting in total
O(min{k, nS} · n) messages.

Again, the message complexity can be reduced to
O(min{k, nS} · nS) if the algorithm is preceded by the
neighborhood discovery routine. As the runtime of the k-
WDFS is already Ω(n) for any k, we may choose either
of the two routines of Section III without increasing its
asymptotic runtime. Note that their message complexities are
O(nS ·log2 n) and O(nS ·α) and hence in the on-duty scenario,
we may choose the more efficient one, while in the off-duty
scenario, we have to use the latter one. We call the resulting
algorithm k-NWDFS, immediately obtaining the following
result.

Theorem 4.8: For any integer k ∈ {1, . . . , n}, the algorithm
k-NWDFS solves the problem in O(n2/k) rounds. In the off-
duty scenario, it uses O((α + min{k, nS}) · nS) messages
while in the on-duty scenario it uses O((min{α, log2 n} +
min{k, nS}) · nS) messages.

V. HANDLING MULTIPLE COMPONENTS

We conclude our technical contribution with a discussion of
scenarios where event nodes S constitute multiple connected
components. In this scenario, we aim to ensure that at least
one node in each component knows this entire component.
First, note that such an extension does not affect the off-
duty algorithms (even when run in on-duty scenarios) as event
nodes from two different components do not interact.

To make DECOMP work for multiple components, we can
insert a special cleanup stage at the end of each epoch i. The
general idea is that if it is possible to identify a whole event
component, the nodes of this component should be instructed
to switch to idle state; henceforth, they act as if they were non-
event nodes. Specifically, such a verification can be performed
in each epoch i, right after line 12 of Algorithm 1. To this
end, each active node v forwards its new responsibility areas
δ(Ri(v)) to heads of all clusters from Di+1 it belong to. Thus,
each cluster head has a complete picture of all nodes that are in
its cluster plus their immediate neighborhoods. For each event
component S′ ⊆ S that is contained entirely in the cluster,
the cluster head sends the description of S′ to all active nodes
(in its cluster) whose responsibility areas contain some nodes
of S′. Finally, each such active node v tells all nodes from
δ(Ri(v))∩S′ to switch to idle state and removes them from its
responsibility area. If, in effect, v’s responsibility area becomes
empty, it switches to inactive state. (Note that if v ∈ S′,
then it is possible that it remains active although it became
idle: it will play its usual role in choosing the independent set
Li+1 in the next epoch.) The introduced change also modifies
slightly the meaning of the main while loop condition (line 8
of Algorithm 1): the algorithm may now terminate because
there are no more active nodes.

VI. CONCLUSION

We consider our work as a first step to shed light onto the
important problem of distributed alarming. We identify two
main directions for future research. First, many of our results
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WDFS and PARDFS are superseded by others.

do not come with lower bounds, and it remains to study the
optimality of our solutions and to close possible gaps. That
said, our algorithms perform quite well, e.g., for the case of
planar graphs, cf. Figure 6.

Second, our models are still simple and — depending on
the application — additional aspects may have to be taken
into account. For instance, for wireless network scenarios,
our models need to be extended with an appropriate interfer-
ence model. However, to some extent, the design of efficient
medium access schemes is orthogonal to our approach, in the
sense that our algorithms can be combined with existing algo-
rithms, e.g., [28]: the resulting time and message complexities
must be multiplied by the medium access overhead. Finally,
our algorithms should be extended to be able to deal with
misbehaving or malfunctioning nodes that do not cooperate
despite having sensed an event.
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