Reachability in Two-Clock Timed Automata is PSPACE-complete ${ }^{\text {KTh }}$

John Fearnley ${ }^{\text {a,* }}$, Marcin Jurdziński ${ }^{\text {b }}$

Abstract

Recently, Haase, Ouaknine, and Worrell have shown that reachability in two-clock timed automata is log-space equivalent to reachability in bounded one-counter automata. We show that reachability in bounded one-counter automata is PSPACE-complete.

Keywords: Timed automata, counter automata, PSPACE-complete.

1. Introduction

Timed automata [1] are a successful and widely used formalism, which are used in the analysis and verification of real time systems. A timed automaton is a non-deterministic finite automaton that is equipped with a number of real-valued clocks, which allow the automaton to measure the passage of time.

Perhaps the most fundamental problem for timed automata is the reachability problem: given an initial state, can we perform a sequence of transitions in order to reach a specified target state? In their foundational paper on timed automata [1], Alur and Dill showed that this problem is PSPACEcomplete. To show hardness for PSPACE, their proof starts with a linear bounded automaton (LBA), which is a non-deterministic Turing machine with a finite tape of length n. They produced a timed automaton with $2 n+1$ clocks, and showed that the timed automaton can reach a specified state if and only if the LBA halts.

[^0]However, the work of Alur and Dill did not address the case where the number of clocks is small. This was rectified by Courcoubetis and Yannakakis [2], who showed that reachability in timed automata with only three clocks is still PSPACE-complete. Their proof cleverly encodes the tape of an LBA in a single clock, and then uses the two additional clocks to perform all necessary operations on the encoded tape. In contrast to this, Laroussinie et al. have shown that reachability in one-clock timed automata is complete for NLOGSPACE, and therefore no more difficult than computing reachability in directed graphs [3].

The complexity of reachability in two-clock timed automata has been left open. So far, the best lower bound was given by Laroussinie et al., who gave a proof that the problem is NP-hard via a very natural reduction from subset-sum [3]. Moreover, the problem lies in PSPACE, because reachability in two-clock timed automata is no harder than reachability in three-clock timed automata. However, the PSPACE-hardness proof of Courcoubetis and Yannakakis seems to fundamentally require three clocks, and does not naturally extend to the two-clock case. Naves [4] has shown that several extensions to two-clock timed automata lead to PSPACE-completeness, but his work does not advance upon the NP-hardness result for unextended twoclock timed automata.

In a recent paper, Haase et al. have shown a link between reachability in timed automata and reachability in bounded counter automata [5]. A bounded counter automaton is a non-deterministic finite automaton equipped with a set of counters, and the transitions of the automaton may add or subtract arbitrary integer constants to the counters. The state space of each counter is bounded by some natural number b, so the counter may only take values in the range $[0, b]$. Moreover, transitions may only be taken if they do not increase or decrease a counter beyond the allowable bounds. This gives these seemingly simple automata a surprising amount of power, because the bounds can be used to implement inequality tests against the counters.

Haase et al. show that reachability in two-clock timed automata is logspace equivalent to reachability in bounded one-counter automata. Reachability in bounded one-counter automata has also been studied in the context of one-clock timed automata with energy constraints [6], where it was shown that the problem lies in PSPACE and is NP-hard. It has also been shown that the reachability problem for unbounded one-counter automata is NPcomplete [7], but the NP membership proof does not seem to generalise to bounded one-counter automata. Haase et al. also showed that reachability
in bounded two-counter automata is log-space equivalent to reachability in three-clock timed automata, and that therefore, for any $k>1$, reachability in bounded k-counter automata is PSPACE-complete [5].

Our contribution. We show that reachability in bounded one-counter automata is PSPACE-complete. Therefore, we resolve the complexity of reachability in two-clock timed automata. Our reduction uses two intermediate steps: subset-sum games and safe counter-stack automata.

Counter automata are naturally suited for solving subset-sum problems, so our reduction starts with a quantified version of subset-sum, which we call subset-sum games. One interpretation of satisfiability for quantified boolean formulas is to view the problem as a game between an existential player and a universal player. The players take turns to set their propositions to true or false, and the existential player wins if and only if the boolean formula is satisfied. Subset-sum games follow the same pattern, but apply it to subset-sum: the two players alternate in choosing numbers from sets, and the existential player wins if and only if the chosen numbers sum to a given target. Previous work by Travers can be applied to show that subset-sum games are PSPACE-complete [8].

We reduce subset-sum games to reachability in bounded one-counter automata. However, we will not do this directly. Instead, we introduce safe counter-stack automata, which are able to store multiple counters, but have a stack-like restriction on how these counters may be accessed. These automata are a convenient intermediate step, because having access to multiple counters makes it easier for us to implement subset-sum games. Moreover, the stack based restrictions mean that it is relatively straightforward to show that reachability in safe counter-stack automata is reducible, in logarithmic space, to reachability in bounded one-counter automata, which completes our result.

2. Subset-sum games

A subset-sum game is played between an existential player and a universal player. The game is specified by a pair (ψ, T), where $T \in \mathbb{N}$, and ψ is a list:

$$
\forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \ldots \forall\left\{A_{n}, B_{n}\right\} \exists\left\{E_{n}, F_{n}\right\},
$$

where A_{i}, B_{i}, E_{i}, and F_{i}, are all natural numbers encoded in binary.

The game is played in rounds. In the first round, the universal player chooses an element from $\left\{A_{1}, B_{1}\right\}$, and the existential player responds by choosing an element from $\left\{E_{1}, F_{1}\right\}$. In the second round, the universal player chooses an element from $\left\{A_{2}, B_{2}\right\}$, and the existential player responds by choosing an element from $\left\{E_{2}, F_{2}\right\}$. This pattern repeats for rounds 3 through n. Thus, at the end of the game, the players will have constructed a sequence of numbers, and the existential player wins if and only if the sum of these numbers is T.

Formally, the set of plays of the game is the set:

$$
\mathcal{P}=\prod_{1 \leq j \leq n}\left\{A_{j}, B_{j}\right\} \times\left\{E_{j}, F_{j}\right\}
$$

A play $P \in \mathcal{P}$ is winning for the existential player if and only if $\sum P=T$.
A strategy for the existential player consists of a list of functions $\mathrm{s}=$ $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, where each function s_{i} dictates how the existential player should play in the i th round of the game. Thus, each function s_{i} is of the form:

$$
s_{i}: \prod_{1 \leq j \leq i}\left\{A_{j}, B_{j}\right\} \rightarrow\left\{E_{i}, F_{i}\right\} .
$$

This means that the function s_{i} maps the first i moves of the universal player to a decision for the existential player in the i th round. Note that the function s_{i} does not need to take the previous moves of existential player as inputs, because these moves are entirely determined by the previous moves of the universal player and the functions s_{j} with $j<i$.

A play P conforms to a strategy s if the decisions made by the existential player in P always agree with s. More formally, if $P=p_{1} p_{2} \ldots p_{2 n}$ is a play, and $\boldsymbol{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is a strategy, then P conforms to \boldsymbol{s} if and only if we have $s_{i}\left(p_{1}, p_{3}, \ldots, p_{2 i-1}\right)=p_{2 i}$ for all i. Given a strategy s, we define Plays(s) be the set of plays that conform to s. A strategy s is winning if every play $P \in \operatorname{Plays}(\mathrm{~s})$ is winning for the existential player. The subset-sum game problem is to decide, for a given SSG instance (ψ, T), whether the existential player has a winning strategy for (ψ, T). Travers has shown that this problem is PSPACE-complete [8].

Lemma 1 ([8], Sec. 3). The subset-sum game problem is PSPACE-complete.

3. Bounded one-counter automata

Outline. A bounded one-counter automaton has a single counter that can store values between 0 and some bound $b \in \mathbb{N}$. The automaton may add or subtract values from the counter, so long as the bounds of 0 and b are not overstepped. This property can be used to test inequalities against the counter. For example, let $n \in \mathbb{N}$ be a number, and suppose that we want to test whether the counter is smaller-than or equal to n. We first attempt to add $b-n$ to the counter, then, if that works, we subtract $b-n$ from the counter. This creates a sequence of two transitions which can be taken if and only if the counter is smaller-than or equal to n. A similar construction can be given for greater-than tests. For the sake of convenience, we will include explicit inequality testing in our formal definition, with the understanding that this is not actually necessary.

Formal definition. For two integers $a, b \in \mathbb{Z}$ we define $[a, b]=\{n \in \mathbb{Z}$: $a \leq n \leq b\}$ to be the subset of integers between a and b. A bounded one-counter automaton is defined by a tuple $\left(L, b, \Delta, l_{0}\right)$, where L is a finite set of locations, $b \in \mathbb{N}$ is a global counter bound, Δ specifies the set of transitions, and $l_{0} \in L$ is the initial location. Each transition in Δ has the form $\left(l, p, g_{1}, g_{2}, l^{\prime}\right)$, where l and l^{\prime} are locations, $p \in[-b, b]$ specifies how the counter should be modified, and $g_{1}, g_{2} \in[0, b]$ give lower and upper guards for the transition. All numbers used in the specification of a bounded onecounter automaton are encoded in binary.

Each state of the automaton consists of a location $l \in L$ along with a counter value c. Thus, we define the set of states S to be $L \times[0, b]$. A transition exists between a state $(l, c) \in S$, and a state $\left(l^{\prime}, c^{\prime}\right) \in S$ if there is a transition $\left(l, p, g_{1}, g_{2}, l^{\prime}\right) \in \Delta$, where $g_{1} \leq c \leq g_{2}$, and $c^{\prime}=c+p$.

The reachability problem for bounded one-counter automata is specified as follows. An input to the problem is a pair (\mathcal{B}, t), where \mathcal{B} is a bounded one-counter automaton, and t is a target location. To solve the problem, we must decide whether there is a sequence of transitions between state $\left(l_{0}, 0\right)$ and the state $(t, 0)$. In a recent result, Haase, Ouaknine, and Worrell have shown that the reachability problem for bounded one-counter automata is equivalent to the reachability problem for two-clock timed automata.

Theorem 2 ([5]). Reachability in bounded one-counter automata is log-space equivalent to reachability in two-clock timed automata.

4. Counter-Stack Automata

Outline. In this section we consider the following question: can we use a bounded one-counter automaton to store multiple counters? The answer is yes, but doing so forces some interesting restrictions on the way in which the counters are modified. By the end of this section, we will have formalised these restrictions as counter-stack automata.

Suppose that we have a bounded one-counter automaton with counter c and bound $b=15$. Hence, the width of the counter is 4 bits. Now suppose that we wish to store two 2-bit counters c_{1} and c_{2} in c. We can do this as follows:

We allocate the top two bits of c to store c_{2}, and the bottom two bits to store c_{1}. We can write to both counters: if we want to increment c_{2} then we add 4 to c, and if we want to increment c_{1} then we add 1 to c. However, note that if we increment c_{1} too many times, then we will eventually cause an overflow, which will inadvertently modify the value of c_{2}. To deal with this issue, we will introduce the notion of safe counter-stack automata, which never overflow in this way.

If we want to test equality, then things become more interesting. It is easy to test equality against c_{2} : if we want to test whether $c_{2}=2$, then we test whether $8 \leq c \leq 11$ holds. But, we cannot easily test whether $c_{1}=2$ because we would have to test whether c is $2,6,10$, or 14 , and this list grows exponentially as the counters get wider. However, if we know that $c_{2}=1$, then we only need to test whether $c=6$. Thus, we arrive at the following guiding principle: if you want to test equality against c_{i}, then you must know the values of c_{j} for all $j>i$. Counter-stack automata are a formalisation of this principle.

Counter-stack automata. A counter-stack automaton has a set of k distinct counters, which are referred to as c_{1} through c_{k}. In contrast to our definitions for bounded one-counter automata, we will allow the counters to take all values from \mathbb{N}. Later, this will be refined by the concept of safe counter-stack automata. The defining feature of a counter-stack automaton is that the counters are arranged in a stack-like fashion:

- All counters may be increased at any time.
- c_{i} may only be tested for equality if the values of c_{i+1} through c_{k} are known.
- c_{i} may only be reset if the values of c_{i} through c_{k} are known.

When the automaton increases a counter, it adds a specified number $n \in \mathbb{N}$ to that counter. The automaton has the ability to perform equality tests against a counter, but the stack-based restrictions must be respected. An example of a valid equality test is $c_{k}=3 \wedge c_{k-1}=10$, because we are only required to test whether $c_{k-1}=10$ in the case where $c_{k}=3$ is known to hold. Conversely, the test $c_{k-1}=10$ by itself is invalid, because it places no restrictions on the value of c_{k}.

The automaton may also reset a counter, but the stack-based restrictions still apply. Counter c_{i} may only be reset by a transition if that transition tests equality against the values of c_{i} through c_{k}. For example, c_{k-1} may only be reset if the transition is guarded by a test of the form $c_{k-1}=n_{1} \wedge c_{k-2}=n_{2}$.

Formal definition. A counter-stack automaton is defined by a four-tuple $\left(L, C, \Delta, l_{0}\right)$, where L is a finite set of locations, $C=[1, k]$ is a set of counter indexes, $l_{0} \in L$ is an initial location, and Δ specifies the transition relation. Each transition in Δ has the form $\left(l, E, I, R, l^{\prime}\right)$ where:

- $l, l^{\prime} \in L$ is a pair of locations.
- E is a partial function from C to \mathbb{N} which specifies the equality tests. If $E(i)$ is defined for some i, then $E(j)$ must be defined for all $j \in C$ with $j>i$.
- $I \in \mathbb{N}^{k}$ specifies how the counters must be increased.
- $R \subseteq C$ specifies the set of counters that must be reset. It is required that $E(r)$ is defined for every $r \in R$.

All numbers used in the specification of a counter-stack automaton are encoded in binary.

Each state of the automaton is a location annotated with values for each of the k counters. That is, the state space of the automaton is $L \times \mathbb{N}^{k}$. A state $\left(l, c_{1}, c_{2}, \ldots, c_{k}\right)$ can transition to a state $\left(l^{\prime}, c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{k}^{\prime}\right)$ if and only if there exists a transition $\left(l, E, I, R, l^{\prime}\right) \in \Delta$, where the following conditions hold:

- For every i for which $E(i)$ is defined, we must have $c_{i}=E(i)$.
- For every $i \in R$, we must have $c_{i}^{\prime}=0$.
- For every $i \notin R$, we must have $c_{i}^{\prime}=c_{i}+I_{i}$.

A run is a sequence of states $s_{0}, s_{1}, \ldots, s_{n}$, where each s_{i} can transition to s_{i+1}.

Safe counter-stack automata. So far, we have allowed the counters to take any value from \mathbb{N}, but we now refine this by introducing the concept of safety. A counter-stack automaton is b-safe, for some $b \in \mathbb{N}$, if it is impossible for the automaton to increase a counter beyond b. Formally, this condition requires that, for every state $\left(l, c_{1}, c_{2}, \ldots, c_{k}\right)$ that can be reached by a run from $\left(l_{0}, 0,0, \ldots, 0\right)$, we have $c_{i} \leq b$ for all i. If a counter-stack automaton is b-safe for some $b \in \mathbb{N}$, then we say that it is safe.

Note that the notion of safety is fundamentally different from the notion of boundedness that we used in bounded one-counter automata. In a bounded one-counter automaton, the bound b is given as part of the input, and the transitions of the automaton ensure that the counter is never increased beyond b. In contrast to this, it is easy to construct a counter-stack automaton that allows some counter to be increased arbitrarily many times, and therefore not all counter-stack automata are safe. Instead, safety is a property that some counter-stack automata happen to possess. In this paper, we will only consider reachability in counter-stack automata that are known to be b-safe for some b. In formal terms, this means that we are considering a promise problem. Goldreich's survey paper [9] provides an excellent introduction on the topic of promise problems, although no prior knowledge should be necessary in order to understand our result.

The reachability problem for safe counter-stack automata takes, as input, a triple (\mathcal{S}, b, t), where \mathcal{S} is a counter-stack automaton, $b \in \mathbb{N}$ is a natural number, and t is a target location. The promise is that \mathcal{S} is a b-safe counterstack automaton. To solve this problem, we must decide whether there is a sequence of transitions from $\left(l_{0}, 0,0, \ldots, 0\right)$ to $(t, 0,0, \ldots, 0)$ in \mathcal{S}.

Reduction to bounded one-counter automata. We now show that the reachability problem for safe counter-stack automata can be reduced, in logarithmic space, to the reachability problem in bounded one-counter automata. Let (\mathcal{S}, b, t) be an instance of the reachability problem for safe counter stack
automata, and suppose that \mathcal{S} is b-safe. Our reduction will produce an instance (\mathcal{B}, t) of the reachability problem for bounded one-counter automata.

Note that since \mathcal{S} is b-safe, it must also be b^{\prime} safe for every $b^{\prime} \geq b$. Therefore, we can assume without loss of generality that $b=2^{n}-1$, for some $n \in \mathbb{N}$. This means that each counter in \mathcal{S} is exactly n bits wide. We will construct a bounded one-counter automaton $\mathcal{B}=\left(L^{\prime}, b^{\prime}, \Delta^{\prime}, l_{0}^{\prime}\right)$ that simulates \mathcal{S}. We will refer to the counters of \mathcal{S} as c_{1} through c_{k}, and the counter of \mathcal{B} as c.

We follow the approach laid out at the start of this section. That is, we will set the bound $b^{\prime}=2^{k \cdot n}-1$ so that c is $k \cdot n$ bits wide. We then partition these bits in order to implement the counters c_{1} through c_{k}. The counter c_{k} will use the n most significant bits, the counter c_{k-1} will use the next n most significant bits, and so on.

We introduce some notation to formalise this encoding. Let $x \in[0, b]$ be a counter value for counter c_{i}. We define $\operatorname{Enc}(x, i)=x \cdot 2^{(i-1) \cdot n}$. To understand this definition, note that for $i=1$, we have $\operatorname{Enc}(x, i)=x$. Then, for $i=2$, we have that $\operatorname{Enc}(x, i)$ is the value of x bit-shifted to the left n times. Thus, this definition simply translates x to the correct position in c.

We can now define the translation. We set $L^{\prime}=L$ and $l_{0}^{\prime}=l_{0}$, which means that both automata have the same set of locations, and the same start location. We will use the transitions in Δ^{\prime} to simulate S. For each transition $\delta=\left(l, E, I, R, l^{\prime}\right) \in \Delta$, we construct a transition $\delta^{\prime}=\left(l, p, g_{1}, g_{2}, l^{\prime}\right) \in \Delta^{\prime}$ between the same pair of locations. We will show the following property: if δ can be used to move from $\left(l, c_{1}, c_{2}, \ldots, c_{k}\right)$ to $\left(l^{\prime}, c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{k}^{\prime}\right)$, then δ^{\prime} can be used to move from $\left(l, \sum_{i} \operatorname{Enc}\left(c_{i}, i\right)\right)$ to $\left(l^{\prime}, \sum_{i} \operatorname{Enc}\left(c_{i}^{\prime}, i\right)\right)$.

We begin by defining p. We set:

$$
p=\sum_{i \notin R} \operatorname{Enc}\left(I_{i}, i\right)-\sum_{i \in R} \operatorname{Enc}(E(i), i)
$$

In other words, for each counter $i \notin R$ that is not to be reset, we add $\operatorname{Enc}\left(I_{i}, i\right)$ to c, which correctly adds I_{i} to c_{i}. The assumption that \mathcal{S} is b-safe is crucial here, because it ensures that the counters can never overflow their alloted space. For the counters $i \in R$, we subtract $E(i)$ from c_{i}. Recall that $E(i)$ must always be defined for the indices $i \in R$. This means that the transition may only be taken if $c_{i}=E(i)$. Thus, subtracting $E(i)$ from c_{i} will correctly set it to 0 . These properties ensure that, if δ can be used to move from $\left(l, c_{1}, c_{2}, \ldots, c_{k}\right)$ to $\left(l^{\prime}, c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{k}^{\prime}\right)$, then $\sum_{i} \operatorname{Enc}\left(c_{i}, i\right)+p=\sum_{i} \operatorname{Enc}\left(c_{i}^{\prime}, i\right)$.

Next we define the inequality tests. Let j be the smallest index for which $E(j)$ is defined, and recall that, by definition, $E_{j^{\prime}}$ must be defined for every $j^{\prime} \geq j$. Our guards are:

$$
\begin{aligned}
g_{1} & =\sum_{i \geq j} \operatorname{Enc}(E(i), i) \\
g_{2} & =\sum_{i \geq j} \operatorname{Enc}(E(i), i)+\operatorname{Enc}(1, j)-1 .
\end{aligned}
$$

It is straightforward to show that, if $c=\sum_{i} \operatorname{Enc}\left(c_{i}, i\right)$, then we have $c_{i}=E(i)$ for all $i \geq j$ if and only if $g_{1} \leq c \leq g_{2}$. This completes the argument that if δ can be used to move from $\left(l, c_{1}, c_{2}, \ldots, c_{k}\right)$ to $\left(l^{\prime}, c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{k}^{\prime}\right)$, then δ^{\prime} can be used to move from $\left(l, \sum_{i} \operatorname{Enc}\left(c_{i}, i\right)\right)$ to $\left(l^{\prime}, \sum_{i} \operatorname{Enc}\left(c_{i}^{\prime}, i\right)\right)$. We can now use this property to argue that $(t, 0,0, \ldots, 0)$ can be reached from $\left(l_{0}, 0,0, \ldots, 0\right)$ in \mathcal{S} if and only if $(t, 0)$ can be reached from $\left(l_{0}^{\prime}, 0\right)$ in \mathcal{B}. It is also clear that this reduction can be carried out in logarithmic space. Thus, we have shown the following lemma.

Lemma 3. Let \mathcal{S} be a counter-stack automaton. If \mathcal{S} is b-safe, then each reachability problem (\mathcal{S}, b, t) for \mathcal{S}, can be reduced, in logarithmic space, to a bounded one-counter reachability problem (\mathcal{B}, t).

5. Reachability in counter-stack automata is PSPACE-complete: outline

Our goal is to show that solving subset-sum games can be reduced to reachability in safe counter-stack automata. In Section 6, we will give a formal proof of the result, but in this section, we give an overview of the ideas behind our construction using the following two-round subset-sum game.

$$
\left(\forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \forall\left\{A_{2}, B_{2}\right\} \exists\left\{E_{2}, F_{2}\right\}, T\right) .
$$

For brevity, we will refer to this instance as (ψ, T) for the rest of this section. The construction is split into two parts: the play gadget and the reset gadget.

The play gadget. The play gadget is shown in Figure 1. The construction uses nine counters. The locations are represented by circles and the transitions are represented by edges. The annotations on the transitions describe the increments, resets, and equality tests: the notation $c_{i}+n$ indicates that

Figure 1: The play gadget
n is added to counter i, the notation $R\left(c_{i}\right)$ indicates that counter i is reset to 0 , and the notation $c_{i}=n$ indicates that the transition may only be taken when $c_{i}=n$ is satisfied.

This gadget allows the automaton to implement a play of the SSG. The locations u_{1} and u_{2} allow the automaton to choose the first and second moves of the universal player, while the locations e_{1} and e_{2} allow the automaton to choose the first and second moves for the existential player. As the play is constructed, a running total is stored in c_{9}, which is the top counter on the stack. The final transition between w_{1} and w_{2} checks whether the existential player wins the play, and then resets c_{9}. Thus, the set of runs between u_{1} and w_{2} corresponds precisely to the set of plays won by the existential player in the SSG.

In addition to this, each outgoing transition from u_{i} or e_{i} comes equipped with its own counter. This counter is incremented if and only if the corresponding edge is used during the play, and this allows us to check precisely which play was chosen. These counters will be used by the reset gadget. The idea behind our construction is to force the automaton to pass through the play gadget multiple times. Each time we pass through the play gadget, we will check a different play, and our goal is to check a set of plays that verify whether the existential player has a winning strategy for the SSG.

The set of plays that must be checked. In our example, we must check four plays. The format of these plays is shown in Table 1. The table shows four different plays, which cover every possible strategy choice of the universal player. Clearly, if the existential player does have a winning strategy, then that strategy should be able to win against all strategy choices of the universal player. The plays are given in a very particular order: the first two plays contain A_{1}, while the second two plays contain B_{1}. Moreover, we always check A_{2}, before moving on to B_{2}.

We want to force the decisions made at e_{1} and e_{2} to form a consistent

Play	u_{1}	e_{1}	u_{2}	e_{2}
1	A_{1}	E_{1} or F_{1}	A_{2}	E_{2} or F_{2}
2	A_{1}	Unchanged	B_{2}	E_{2} or F_{2}
3	B_{1}	E_{1} or F_{1}	A_{2}	E_{2} or F_{2}
4	B_{1}	Unchanged	B_{2}	E_{2} or F_{2}

Table 1: The set of plays that the automaton will check

Figure 2: The reset gadget
strategy for the existential player. In this game, a strategy for the existential player is a pair $\mathbf{s}=\left(s_{1}, s_{2}\right)$, where s_{i} describes the move that should be made at e_{i}. It is critical to note that s_{1} only knows whether A_{1} or B_{1} was chosen at u_{1}. This restriction is shown in the table: the automaton may choose freely between E_{1} and F_{1} in the first play. However, in the second play, the automaton must make the same choice as it did in the first play. The same relationship holds between the third and fourth plays. These restrictions ensure that the plays shown in Table 1 are a description of a strategy for the existential player.

The reset gadget. The reset gadget, shown in Figure 2, enforces the constraints shown in Table 1. The locations w_{2} and u_{1} represent the same locations as they did in Figure 1. To simplify the diagram, we have only included non-trivial equality tests. Whenever we omit a required equality test, it should be assumed that the counter is 0 . For example, the outgoing
transitions from r_{2} implicitly include the requirement that c_{7}, c_{8}, and c_{9} are all 0 .

We consider the following reachability problem: can $(t, 0,0, \ldots, 0)$ be reached from $\left(u_{1}, 0,0, \ldots, 0\right)$? The structure of the reset gadget places restrictions on the runs that reach t. All such runs pass through the reset gadget exactly four times, and the following table describes each pass:

Pass	Path
1	$w_{2} \rightarrow r_{2}^{\prime} \rightarrow r_{2} \rightarrow u_{1}$
2	$w_{2} \rightarrow r_{2}^{\prime} \rightarrow r_{2} \rightarrow r_{1}^{\prime} \rightarrow r_{1} \rightarrow u_{1}$
3	$w_{2} \rightarrow r_{2}^{\prime} \rightarrow r_{2} \rightarrow u_{1}$
4	$w_{2} \rightarrow r_{2}^{\prime} \rightarrow r_{2} \rightarrow r_{1}^{\prime} \rightarrow r_{1} \rightarrow t$

To see why these paths must be taken, observe that, for every $i \in\{1,3,5,7\}$, each pass through the play gadget increments either c_{i} or c_{i+1}, but not both. So, the first time that we arrive at r_{2}, we must take the transition directly to u_{1}, because the guard on the transition to r_{1}^{\prime} cannot possibly be satisfied after a single pass through the play gadget. When we arrive at r_{2} on the second pass, we are forced to take the transition to r_{1}^{\prime}, because we cannot have $c_{5}=1$ and $c_{6}=0$ after two passes through the play gadget. This transition resets both c_{5} and c_{6}, so the pattern can repeat again on the third and fourth visits to r_{2}. The location r_{1} behaves in the same way as r_{2}, but the equality tests are scaled up, because r_{1} is only visited on every second pass through the reset gadget.

This explains why all strategies of the universal player must be considered. The transition between r_{2} and u_{1} forces the play gadget to increment c_{5}, and therefore the first and third plays must include A_{2}. Similarly, the transition between r_{2} and r_{1}^{\prime} forces the second and fourth plays to include B_{2}. Meanwhile, the transition between r_{1} and u_{1} forces the first and second plays to include A_{1}, and the transition between r_{1} and t forces the third and fourth plays to include B_{1}. Thus, we select the universal player strategies exactly as Table 1 prescribes.

The transitions between r_{1}^{\prime} and r_{1} check that the existential player is playing a consistent strategy. When the automaton arrives at r_{1}^{\prime} during the second pass, it verifies that either E_{1} was included in the first and second plays, or that F_{1} was included in the first and second plays. If this is not the case, then the automaton gets stuck. The counters c_{3} and c_{4} are reset when moving to r_{1}, which allows the same check to occur during the fourth pass. For the sake of completeness, we have included the transitions between
r_{2}^{\prime} and r_{2}, which perform the same check for E_{2} and F_{2}. However, since the existential player is allowed to change this decision on every pass, the automaton can never get stuck at r_{2}^{\prime}.

These properties ensure that location t can be reached if and only if the existential player has a winning strategy for (ψ, T). As we will show in the next section, the construction extends to arbitrarily large SSGs, which then leads to a proof that the problem of solving subset-sum games can be reduced to reachability in counter-stack automata. Moreover, our counterstack automata are guaranteed to be safe: c_{9} may never exceed the maximum value that can be achieved by a play of the SSG, and reset gadget ensures that no other counter may exceed 4 . Thus, we will then be able to apply Lemma 3 to prove PSPACE-hardness of reachability in bounded one-counter automata, and we can then invoke Theorem 2 to prove PSPACE-hardness of reachability in two-clock timed automata.

6. Reachability in counter-stack automata is PSPACE-complete: formal proof

In this section, we give a formal description of our reduction from subsetsum games to reachability in safe counter-stack automata.

Sequential strategies for SSGs. We start by formalising the ideas behind Table 1. Recall that the table gives a strategy for the existential player in the form of a list of plays. Moreover, the table gave a very specific ordering in which these plays must appear. We now formalise this ordering.

We start by dividing the integers in the interval $\left[1,2^{n}\right]$ into i-blocks. The 1 -blocks partition the interval into two equally sized blocks. The first 1 -block consists of the range $\left[1,2^{n-1}\right]$, and the second 1-block consists of the range $\left[2^{n-1}+1,2^{n}\right]$. There are four 2-blocks, which partition the 1-blocks into two equally sized sub-ranges. This pattern continues until we reach the n-blocks.

Formally, for each $i \in\{1,2, \ldots, n\}$, there are 2^{i} distinct i-blocks. The set of i-blocks can be generated by considering the intervals $\left[k+1, k+2^{n-i}\right]$ for the first 2^{i} numbers $k \geq 0$ that satisfy $k \bmod 2^{n-i}=0$. An i-block is even if k is an even multiple of 2^{n-i}, and it is odd if k is an odd multiple of 2^{n-i}.

The ordering of the plays in Table 1 can be described using blocks. There are four 2-blocks, and A_{2} appears only in even 2-blocks, while B_{2} only appears in odd 2-blocks. Similarly, A_{1} only appears in the even 1-block, while B_{1} only appears in the odd 1-block. The restrictions on the existential player can also
be described using blocks: the existential player's strategy may not change between E_{i} and F_{i} during an i-block. We formalise this idea in the following definition.

Definition 4 (Sequential strategy). A sequential strategy for the existential player in (ψ, T) is a list of 2^{n} plays $\mathcal{S}=P_{1}, P_{2}, \ldots, P_{2^{n}}$, where for every i in the range $1 \leq i \leq n$, and every i-block L we have:

- If L is an even i-block, then P_{j} must contain A_{i} for all $j \in L$.
- If L is an odd i-block, then P_{j} must contain B_{i} for all $j \in L$.
- We either have $E_{i} \in P_{j}$ for all $j \in L$, or we have $F_{i} \in P_{j}$ for all $j \in L$.

An alternative way of viewing this definition is by inspecting the bits used to represent j. The first two conditions state that P_{j} must contain A_{i} if the i th bit of j is 0 , and it must contain B_{i} if the i th bit of j is 1 . The third condition states that if the first i bits of j are the same as the first i bits of k, then P_{j} and P_{k} must agree on the first i choices for the existential player.

We say that \mathcal{S} is winning for the existential player if $\sum P_{j}=T$ for every $P_{j} \in \mathcal{S}$. The following lemma shows an equivalence between strategies and sequential strategies. This property is fairly obvious, because one can always turn a strategy into a sequential strategy by listing all plays that conform to that strategy, and one can always turn a sequential strategy into a strategy because, by the third condition of Definition 4, in each round of the game all plays that are consistent with the moves made so far have the same strategy choice for the existential player. Nevertheless, for the sake of completeness, we give a formal proof this fact below.
Lemma 5. The existential player has a winning strategy if and only if the existential player has a sequential winning strategy.

Proof. Let $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be a winning strategy for the existential player. We define a sequential winning strategy as follows. Note that, since the universal player makes n different choices, we have that Plays(s) contains exactly 2^{n} plays ${ }^{1}$. We argue that these plays can be ordered so that they

[^1]form a sequential strategy. We give an iterative procedure that achieves this task: the first step of the procedure will ensure that the 1-blocks contain the correct plays, the second step will ensure that the 2-blocks contain the correct plays, and so on. In the first step, we observe that exactly 2^{n-1} of the plays contain A_{1}, while exactly 2^{n-1} of the plays contain B_{1}, so we can order the plays so that the even 1-block contains all plays containing A_{1}.

Now suppose that we have finished processing the i-blocks. We observe that each i-block L has exactly $2^{n-(i+1)}$ plays that contain A_{i+1}. Therefore, for each i-block L, we can order the plays in L so that the even $(i+1)$-block has all plays that contain A_{i+1}, and the odd $(i+1)$-block has all plays that contain B_{i+1}.

After we have finished processing the n-blocks, we will have a list of plays $\mathcal{S}=P_{1}, P_{2}, \ldots, P_{2^{n}}$ where:

- P_{j} contains A_{i} whenever j is in an even i-block.
- P_{j} contains B_{i} whenever j is in an odd i-block.

So \mathcal{S} satisfies the first two conditions of Definition 4. We argue that \mathcal{S} also satisfies the third condition. Let L_{i} be an i-block. By definition, for every $j \leq i$, there is a unique j-block L_{j} such that $L_{i} \subseteq L_{j}$. We define a play prefix $F \in \Pi_{1 \leq j \leq i}\left\{A_{i}, B_{i}\right\}$ so that for each $j \leq i$ we have $A_{j} \in F$ if and only if $A_{j} \in P$ for all $P \in L_{j}$. Note that, by construction, for each play $P \in L_{i}$, we have $F \subseteq P$. Since \mathcal{S} is a reordering of Plays(s), we must have $s_{i}(F) \in P$ for every $P \in L_{i}$. Hence, \mathcal{S} satisfies Definition 4. Moreover, since s is winning, we have that every play in Plays(s) is winning, and therefore \mathcal{S} is a winning sequential strategy.

Now let $\mathcal{S}=P_{1}, P_{2}, \ldots, P_{2^{n}}$ be a winning sequential strategy. We give a high level description of a winning strategy for the SSG. At the start of the strategy we set $L_{0}=\left[1,2^{n}\right]$. In each round i of the game, let $D_{i} \in\left\{A_{i}, B_{i}\right\}$ be the decision made by the universal player. We select L_{i} to be the unique i-block in L_{i-1} such that $D_{i} \in P_{j}$ for all $j \in L_{i}$. We play E_{i} if $E_{i} \in P_{j}$ for all $j \in L_{i}$, and we play F_{i} if $F_{i} \in P_{j}$ for all $j \in L_{i}$. It is straightforward to encode this strategy in the form $\mathrm{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$. By construction, when we play s, the outcome of the game will be some play P_{j} from \mathcal{S}. Since every play P_{j} in \mathcal{S} is winning for the existential player, we have that s is a winning strategy.

The base automaton. We will describe our construction in two steps. Recall, from Figures 1 and 2, that the top counter is used by the play gadget
to store the value of the play, and to test whether the play is winning. We begin by constructing a version of the automaton that omits the top counter. That is, if c_{k} is the top counter, we modify the play gadget by removing all increases to c_{k}, and the equality test for c_{k} between w_{1} and w_{2}. We call this the base automaton. Later, we will add the constraints for c_{k} back in, to construct the full automaton.

We now give a formal definition of the base automaton. The location and counter names are consistent with, and extensions of, those used in Figures 1 and 2 . For each natural number n, we define a counter-stack automaton \mathcal{A}_{n}. The automaton has the following set of locations:

- locations u_{i} and e_{i} for each $i \in[1, n]$,
- locations w_{1} and w_{2},
- reset locations r_{i} and r_{i}^{\prime} for each $i \in[1, n]$, and
- the goal location t.

The automaton uses $k=2 n+1$ counters. The top counter c_{k} is reserved for the full automaton, and will not be used in this construction. We introduce shorthands for the counters 1 through $2 n$: for each integer i we define $a_{i}=$ $c_{4(i-1)+1}, b_{i}=c_{4(i-1)+2}, e_{i}=c_{4(i-1)+3}$, and $f_{i}=c_{4(i-1)+4}$. For example, in Figure 1, we have $a_{1}=c_{1}$ and $a_{2}=c_{5}$, and these are precisely the counters associated with A_{1} and A_{2}, respectively. The same relationship holds between b_{1} and B_{1}, between b_{2} and B_{2}, and so on.

The transitions of the automaton are defined as follows. Whenever we omit a required equality test against a counter c_{i}, it should be assumed that the transition includes the test $c_{i}=0$.

- Each location u_{i} has two transitions to e_{i} : a transition that adds 1 to a_{i}, and a transition that adds 1 to b_{i}.
- Each location e_{i} has two outgoing transitions: a transition that adds 1 to e_{i}, and transition that adds 1 to f_{i}. For the locations e_{i} with $i<n$ these transitions go to u_{i+1}, and for the location e_{n} the transitions go to w_{1}.
- Location w_{1} has a transition to w_{2}, and w_{2} has a transition to r_{n}^{\prime}. These transitions do not increase any counter, and do not test any equalities.
- Each location r_{i}^{\prime} has two outgoing transitions to r_{i}. Firstly, there is a transition that tests $e_{i}=2^{n-i}$ and $f_{i}=0$, and then resets e_{i} and f_{i}. Secondly, there is a transition that tests $e_{i}=0$ and $f_{i}=2^{n-i}$, and then resets both e_{i} and f_{i}.
- Each location r_{i} has two outgoing transitions. Firstly, there is a transition to u_{1} that tests $a_{i}=2^{n-i}$ and $b_{i}=0$. Secondly, there is a transition that tests $a_{i}=2^{n-i}$ and $b_{i}=2^{n-i}$ and then resets both a_{i} and b_{i}. For locations r_{i} with $i>1$, this transition goes to to r_{i-1}^{\prime}. For the location r_{1}, this transition goes to location t.

Runs in the base automaton. We now describe the set of runs that are possible in the base automaton. We decompose every run of the automaton into segments, such that each segment contains a single pass through the play gadget. More formally, we decompose R into segments R_{1}, R_{2}, \ldots, where each segment R_{i} starts at u_{1}, and ends at the next visit to u_{1}. We say that a run gets stuck if the run does not end at $(t, 0,0, \ldots, 0)$, and if the final state of the run has no outgoing transitions. We say that a run R gets stuck during an i-block L if there exists a $j \in L$ such that R_{j} gets stuck. Let R be a run in \mathcal{A}_{n}. The following lemma describes the set of reset states that each segment of R must pass through.

Lemma 6. Let R be a run in \mathcal{A}_{n}. Either:

- R_{j} visits precisely the reset locations $\left\{r_{i}^{\prime}, r_{i}\right\}$ for which $j \bmod 2^{n-i}=0$, or
- R_{j} gets stuck.

Proof. We will prove this lemma by induction over i. The base case, where $i=n$, is trivial because $j \bmod 2^{n-n}$ is always equal to 0 , and it is clear from the construction that every segment R_{j} must always visit both r_{n}^{\prime} and r_{n}.

For the inductive step, we suppose that the lemma has been shown for $i+1$, and we will show that the lemma holds for i. We know that, in order to reach r_{i}^{\prime} or r_{i}, a segment must first visit r_{i+1}^{\prime}. By the inductive hypothesis, we know that only segments R_{j} with $j \bmod 2^{n-(i+1)}$ visit r_{i+1}. At the start of R, we have $a_{i}=b_{i}=0$. On the first visit to r_{i+1}, we clearly cannot take the transition to r_{i}^{\prime}, because we have $a_{i}+b_{i}=2^{n-(i+1)}$, and the transition to r_{i}^{\prime} requires $a_{i}+b_{i}=2^{n-i}$. Thus, we either have to take the transition to u_{1}, or we get stuck. On the second visit to r_{i+1}, we cannot take the transition
to u_{1}, because we have $a_{i}+b_{i}=2^{n-i}$, and the transition to u_{1} requires $a_{i}+b_{i}=2^{n-(i+1)}$. Thus, either we get stuck, or we take the transition to r_{i}^{\prime}. The transition between r_{i+1} and r_{i}^{\prime} resets both a_{i} and b_{i} to 0 . Thus, we can repeat the argument, and conclude that locations r_{i}^{\prime} and r_{i} are visited by exactly the segments R_{j} where $j \bmod 2^{n-i}=0$.

We now apply Lemma 6 to give the following characterisation of the runs in \mathcal{A}_{n}.

Lemma 7. A run R in \mathcal{A}_{n} does not get stuck if and only if, for every i-block L, all of the following hold.

- If L is an even i-block, then R_{j} must increment a_{i} for every $j \in L$.
- If L is an odd i-block, then R_{j} must increment b_{i} for every $j \in L$.
- Either R_{j} increments e_{i} for every $j \in L$, or R_{j} increments f_{i} for every $j \in L$.

Proof. Let R be a run of \mathcal{A}_{n}. For the counters a_{i} and b_{i}, we have the following facts:

- At the start of the first i-block, we have $a_{i}=b_{i}=0$.
- Each i-block contains exactly 2^{n-i} segments. Each segment must increment one of a_{i} or b_{i}, but not both.
- At the end of each odd i-block, we must take the transition from r_{i} to u_{1} to avoid getting stuck. This transition requires $a_{i}=2^{n-i}$ and $b_{i}=0$.
- At the end of each even i-block, we must take the transition from r_{i} to r_{i-1}^{\prime} to avoid getting stuck. This transition requires $a_{i}=2^{n-i}$ and $b_{i}=2^{n-i}$, and resets a_{i} and b_{i} to 0 .

These facts imply that a_{i} must be incremented during every run in an odd i-block to prevent the automaton getting stuck, and b_{i} must be incremented during every run in an even i-block to prevent the automaton getting stuck. It can also be verified that, if a_{i} is incremented during every run in an odd i-block, and b_{i} is incremented during every run in an even i-block, then the automaton will never get stuck at r_{i}.

Similarly, for the counters e_{i} and f_{i} we have the following facts.

- At the start of the first i-block, we have $e_{i}=f_{i}=0$.
- Each i-block contains exactly 2^{n-i} runs. Each run must increment one of e_{i} or f_{i}, but not both.
- At the end of each i-block, we must take one of the two transitions from r_{i}^{\prime} to r_{i} to avoid getting stuck. These transitions require that $e_{i}=2^{n-i}$ and $f_{i}=0$, or $e_{i}=0$ and $f_{i}=2^{n-i}$.

These facts imply that either e_{i} is incremented during every run in an i block, or f_{i} is incremented during every run in an i-block, or the automaton will get stuck when moving from r_{i}^{\prime} to r_{i} at the end of the i-block. It can also be verified that, if the automaton increases e_{i} during every run in an i-block, then the automaton will not get stuck moving from r_{i}^{\prime} to r_{i}, and if the automaton increases f_{i} during every run in an i-block, then the automaton will not get stuck moving from r_{i}^{\prime} to r_{i}.

Note that, in \mathcal{A}_{n}, it is only possible for R to get stuck at the locations r_{i}^{\prime} and r_{i}. Therefore, we have shown that R does not get stuck if and only if the three conditions of this lemma hold for R.

We say that a run is successful if it eventually reaches $(t, 0,0, \ldots, 0)$. The next lemma shows that every run is either successful or eventually gets stuck, by showing that there are no infinite runs in the base automaton.

Lemma 8. Every run is either successful or gets stuck.
Proof. We show that a run is successful if and only if it does not get stuck. By definition, if a run gets stuck, then it never reaches location t, and it is therefore not successful. Conversely, let R be a run that does not get stuck. By Lemma 6, we know that the segment $R_{2^{n}}$ must visit the location r_{1}. Furthermore, by Lemma 7, we know that when $R_{2^{n}}$ visits r_{1}, we must have $a_{1}=2^{n-1}$ and $b_{1}=2^{n-1}$. Thus, $R_{2^{n}}$ must take the transition from r_{1} to t to avoid getting stuck. Therefore, R is successful.

Note that every successful run must have exactly 2^{n} segments. If we compare Lemma 7 with Definition 4, then we can see that the set of successful runs in \mathcal{A}_{n} corresponds exactly to the set of sequential strategies for the existential player in the SSG.

Since we eventually want to implement \mathcal{A}_{n} as a safe one-counter automaton, it is important to prove that \mathcal{A}_{n} is b-safe for some $b \in \mathbb{N}$. In the following lemma, we show that \mathcal{A}_{n} is 2^{n}-safe.

Lemma 9. Along every run of \mathcal{A}_{n} we have that counters a_{i} and b_{i} never exceed 2^{n-i+1}, and counters e_{i} and f_{i} never exceed 2^{n-i}.

Proof. This lemma follows from Lemma 6. Let R be a run. Lemma 6 implies that the transition from r_{i} to r_{i-1}^{\prime} is taken in every segment R_{j} such that $j \bmod 2^{n-(i-1)}$. This transition resets both a_{i} and b_{i} to 0 . Therefore, neither of these counters may exceed $2^{n-(i-1)}$. Similarly, Lemma 6 implies that every segment R_{j} such that $j \bmod 2^{n-i}=0$ must move from r_{i}^{\prime} to r_{i}. Both of the transitions between r_{i}^{\prime} and r_{i} reset e_{i} and f_{i}, and therefore neither of these counters may exceed 2^{n-i}.

The full automaton. Let (ψ, T) be an SSG instance, where ψ is:

$$
\forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \ldots \forall\left\{A_{n}, B_{n}\right\} \exists\left\{E_{n}, F_{n}\right\} .
$$

We will construct a counter-stack automaton \mathcal{A}_{ψ} from \mathcal{A}_{n}. Recall that the top counter c_{k} is unused in \mathcal{A}_{n}. We modify the transitions of \mathcal{A}_{n} as follows. Let δ be a transition. If δ increments a_{i} then it also adds A_{i} to c_{k}, if δ increments b_{i} then it also adds B_{i} to c_{k}, if δ increments e_{i} then it also adds E_{i} to c_{k}, and if δ increments f_{i} then it also adds F_{i} to c_{k}. We also modify the transition between w_{1} and w_{2}, so that it checks whether $c_{k}=T$, and resets c_{k}.

Since we only add extra constraints to \mathcal{A}_{n}, the set of successful runs in \mathcal{A}_{ψ} is contained in the set of successful runs of \mathcal{A}_{n}. Recall that the set of successful runs in \mathcal{A}_{n} encodes the set of sequential strategies for the existential player in (ψ, T). In \mathcal{A}_{ψ}, we simply check whether each play in the sequential strategy is winning for the existential player. Thus, we have shown the following lemma.

Lemma 10. The set of successful runs in \mathcal{A}_{ψ} corresponds precisely to the set of winning sequential strategies for the existential player in (ψ, T).

We also have that \mathcal{A}_{ψ} is b-safe for some $b \in \mathbb{N}$, such that b has polynomially many bits in the size of (ψ, T). Bounds for counters c_{1} through c_{k-1} are shown in Lemma 9 , and counter c_{k} may never exceed $\sum\left\{A_{i}, B_{i}, E_{i}, F_{i}: 1 \leq\right.$ $i \leq n\}$. This completes the reduction from subset-sum games to reachability in safe counter-stack automata, and gives us our main result.

Theorem 11. There exists a family of safe counter-stack automata for which the reachability problem is PSPACE-hard.

Since our construction always produces safe counter-stack automata, we can apply Lemma 3 and Theorem 2 to obtain the following corollaries.

Corollary 12.

- Reachability in bounded one-counter automata is PSPACE-complete.
- Reachability in two-clock timed automata is PSPACE-complete.

References

[1] R. Alur, D. L. Dill, A theory of timed automata, Theoretical Computer Science 126 (2) (1994) 183-235.
[2] C. Courcoubetis, M. Yannakakis, Minimum and maximum delay problems in real-time systems, Formal Methods in System Design 1 (4) (1992) 385-415.
[3] F. Laroussinie, N. Markey, P. Schnoebelen, Model checking timed automata with one or two clocks, in: Proc. of CONCUR, Vol. 3170 of Lecture Notes in Computer Science, 2004, pp. 387-401.
[4] G. Naves, Accessibilité dans les automates temporisé à deux horloges, Rapport de Master, MPRI, Paris, France (2006).
[5] C. Haase, J. Ouaknine, J. Worrell, On the relationship between reachability problems in timed and counter automata, in: Proc. of RP, Vol. 7550 of Lecture Notes in Computer Science, 2012, pp. 54-65.
[6] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, J. Srba, Infinite runs in weighted timed automata with energy constraints, in: Proc. of FORMATS, Vol. 5215 of Lecture Notes in Computer Science, 2008, pp. 33-47.
[7] C. Haase, S. Kreutzer, J. Ouaknine, J. Worrell, Reachability in succinct and parametric one-counter automata, in: Proc. of CONCUR, Vol. 5710 of Lecture Notes in Computer Science, 2009, pp. 369-383.
[8] S. Travers, The complexity of membership problems for circuits over sets of integers, Theoretical Computer Science 369 (13) (2006) 211-229.
[9] O. Goldreich, On promise problems: A survey, in: Essays in Memory of Shimon Even, 2006, pp. 254-290.

[^0]: *This work was supported by EPSRC grants EP/H046623/1 Synthesis and Verification in Markov Game Structures, EP/L011018/1 Algorithms for Finding Approximate Nash Equilibria, and EP/D063191/1 The Centre for Discrete Mathematics and its Applications (DIMAP).

 Email addresses: john.fearnley@liv.ac.uk (John Fearnley), marcin.jurdzinski@dcs.warwick.ac.uk (Marcin Jurdziński)

[^1]: ${ }^{1}$ If there exists an i such that $A_{i}=B_{i}$ or $E_{i}=F_{i}$, then Plays(s) may actually contain fewer than 2^{n} plays, because some plays will be repeated. In this case, we annotate each play with the corresponding strategy choices, and we define Plays(s) to be the set of annotated plays. This ensures that Plays(s) contains exactly 2^{n} plays. This technical detail does not affect our argument

