
Schema.org as a Description Logic

Andre Hernich1, Carsten Lutz2, Ana Ozaki1 and Frank Wolter1
1University of Liverpool, UK 2University of Bremen, Germany

{andre.hernich, anaozaki, wolter}@liverpool.ac.uk clu@informatik.uni-bremen.de

Abstract
Schema.org is an initiative by the major search en-
gine providers Bing, Google, Yahoo!, and Yandex
that provides a collection of ontologies which web-
masters can use to mark up their pages. Schema.org
comes without a formal language definition and
without a clear semantics. We formalize the lan-
guage of Schema.org as a Description Logic (DL)
and study the complexity of querying data using
(unions of) conjunctive queries in the presence of
ontologies formulated in this DL (from several per-
spectives). While querying is intractable in general,
we identify various cases in which it is tractable and
where queries are even rewritable into FO queries
or datalog programs.

1 Introduction
The Schema.org initiative was launched in 2011 and is sup-
ported today by Bing, Google, Yahoo!, and Yandex. In the
spirit of the Semantic Web, it provides a collection of ontolo-
gies that establish a standard vocabulary to mark up website
content with metadata (https://schema.org/). In particular, web
content that is generated from structured data as found in rela-
tional databases is often difficult to recover for search engines
and Schema.org markup elegantly solves this problem. The
markup is used by search engines to more precisely identify
relevant pages, to provide richer search results, and to enable
new applications. Schema.org is experiencing very rapid adop-
tion and is used today by more than 15 million webpages
including all major ones [Guha, 2013].

Schema.org does neither formally specify the language in
which its ontologies are formulated nor does it provide a for-
mal semantics for the published ontologies. However, the pro-
vided ontologies are extended and updated frequently and fol-
low an underlying language pattern. This pattern and its mean-
ing is described informally in natural language. Schema.org
adopts a class-centric representation enriched with binary re-
lations and datatypes, similar in spirit to description logics
(DLs) and to the OWL family of ontology languages; the cur-
rent version includes 622 classes and 891 binary relations.
Partial translations into RDF and into OWL are provided by
the linked data community. Based on the informal descrip-
tions at https://schema.org/ and on the mentioned translations,

Patel-Schneider [2014] develops an ontology language for
Schema.org with a formal syntax and semantics that, apart
from some details, can be regarded as a fragment of OWL DL.

In this paper, we abstract slightly further and view the
Schema.org ontology language as a DL, in line with the for-
malization by Patel-Schneider. Thus, what Schema.org calls a
type becomes a concept name and a property becomes a role
name. The main characteristics of the resulting ‘Schema.org
DL’ are that (i) the language is very restricted, allowing only
inclusions between concept and role names, domain and range
restrictions, nominals, and datatypes; (ii) ranges and domains
of roles can be restricted to disjunctions of concept names (pos-
sibly mixed with datatypes in range restrictions) and nominals
are used in ‘one-of enumerations’ which also constitute a form
of disjunction. While Point (i) suggests that the Schema.org
DL is closely related to the tractable profiles of OWL2, be-
cause of Point (ii) it does actually not fall into any of them.
There is a close connection to the DL-Lite family of DLs
[Calvanese et al., 2007], and in particular to the DL-LiteHbool
variant [Artale et al., 2009]. However, DL-LiteHbool admits
existential restriction, negation, conjunction, and free use of
disjunction whereas the Schema.org DL allows no existential
quantification and includes nominals and datatypes. We use
the term schema.org-ontology to refer to ontologies formu-
lated in the Schema.org DL; in contrast, ‘Schema.org 2015’
refers to the concrete collection of ontologies provided at
https://schema.org/ as of end of April, 2015.

Our main aim is to investigate the complexity of query-
ing data in the presence of schema.org-ontologies, where the
data is the markup that was extracted from webpages. While
answering queries over such data is the main reasoning task
that arises in Schema.org applications and the Schema.org
initiative specifies a format for the data in terms of so-called
items, no information is given on what form of querying is
used. We consider conjunctive queries (CQs) and unions
of conjunctive queries (UCQ), a basic querying mechanism
that is ubiquitous in relational database systems and research,
and that also can be viewed as a core of the Semantic Web
query language SPARQL. In particular, we also consider CQs
and UCQs without quantified variables since these are not
allowed in the relevant SPARQL entailment regimes [Glimm
and Krötzsch, 2010]. We often view a pair (O, q) that consists
of a schema.org-ontology and an actual query as a compound
query called an ontology-mediated query (OMQ).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80780065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We start with the observation that evaluating OMQs is in-
tractable in general, namely Πp

2-complete in combined com-
plexity and CONP-complete in data complexity. In the main
part of the paper, we therefore have two aims: (i) identify large
and practically useful classes of OMQs with lower combined
and data complexity, and (ii) investigate in how far it is possi-
ble to obtain a full classification of each schema.org ontology
or each OMQ according to its data complexity. While the
utility of aim (i) is obvious, we note that aim (ii) is also most
useful from a user’s perspective as it clarifies the complexity
of every concrete ontology or OMQ that might be used in an
actual application. Apart from classical tractability (that is,
PTIME), we are particularly interested in the rewritability of
OMQs into first-order (FO) queries (actually: UCQs) and into
datalog programs. One reason is that this allows to implement
querying based on relational database systems and datalog en-
gines, taking advantage of those systems’ efficiency and matu-
rity. Another reason is that there is significant research on how
to efficiently answer UCQs and datalog queries in cluster com-
puting models such as MapReduce [Afrati and Ullman, 2011;
2012], a natural framework when processing web-scale data.

For both aims (i) and (ii) above, we start with analyzing
basic schema.org ontologies in which enumeration definitions
(‘one of’ expressions) and datatypes are disallowed. Regard-
ing aim (i), we show that all OMQs which consist of a basic
schema.org-ontology and a CQ q of qvar-size two (the restric-
tion of q to quantified variables is a disjoint union of queries
with at most two variables each) are datalog-rewritable in
polynomial time and can be evaluated in PTime in combined
complexity. This result trivially extends to basic schema.org-
ontologies with datatypes, but does not hold for unrestricted
schema.org-ontologies. In the latter case, we establish the
same tractability results for OMQs with CQs that do not con-
tain any quantified variables.

Regarding aim (ii), we start with classifying each single
schema.org-ontology O according to the data complexity of
all OMQs (O, q) with q a UCQ. We establish a dichotomy
between AC0 and CONP in the sense that for each ontol-
ogy O, either all these OMQs are in AC0 or there is one
OMQ that is CONP-hard. The dichotomy comes with a trans-
parent syntactic characterization and is decidable in PTIME.
Though beautiful, however, it is of limited use in practice
since most interesting ontologies are of the intractable kind.
Therefore, we also consider an even more fine-grained classi-
fication on the level of OMQs, establishing a useful connec-
tion to constraint satisfaction problems (CSPs) in the spirit
of [Bienvenu et al., 2014b]. It turns out that even for ba-
sic schema.org-ontologies and for ontologies that consist ex-
clusively of enumeration definitions, a complexity classifica-
tion of OMQs implies a solution to the dichotomy conjecture
for CSPs, a famous open problem [Feder and Vardi, 1998;
Bulatov, 2011]. However, the CSP connection can also be
used to obtain positive results. In particular, we show that
it is decidable in NEXPTIME whether an OMQ based on a
schema.org-ontology and a restricted form of UCQ is FO-
rewritable and, respectively, datalog-rewritable. We also es-
tablish a PSpace lower bound for this problem.

Detailed proofs are provided in the full version at
http://cgi.csc.liv.ac.uk/∼frank/publ/publ.html.

2 Preliminaries
Let NC, NR, and NI be countably infinite and mutually disjoint
sets of concept names, role names, and individual names.
Throughout the paper, concepts names will be denoted by
A,B,C, . . ., role names by r, s, t, . . ., and individual names
by a, b, c,

A schema.org-ontology consists of concept inclusions of
different forms, role inclusions, and enumeration definitions.
A concept inclusion takes the form A v B (atomic concept
inclusion), ran(r) v A1 t · · · t An (range restriction), or
dom(r) v A1t· · ·tAn (domain restriction). A role inclusion
takes the form r v s.
Example 1. The following are examples of concept inclusions
and role inclusions (last line) in Schema.org 2015:

MovievCreativeWork

ran(musicBy)vPerson tMusicGroup

dom(musicBy)vEpisode tMovie t RadioSeries t TVSeries

siblingv relatedTo

We now define enumeration definitions. Fix a set NE ⊆ NI

of enumeration individuals such that both NE and NI \ NE

are infinite. An enumeration definition takes the form A ≡
{a1, . . . , an} with A ∈ NC and a1, . . . , an ∈ NE.

Example 2. An enumeration definition in Schema.org 2015
is Booktype ≡ {ebook, hardcover, paperback}.
A datatype D = (D,∆D) consists of a datatype name D and
a non-empty set of data values ∆D. Examples of datatypes in
Schema.org 2015 are Boolean, Integer, and Text. We assume
that datatype names and data values are distinct from the
symbols in NC ∪ NR ∪ NI and that there is an arbitrary but
fixed set DT of datatypes such that ∆D1 ∩∆D2 = ∅ for all
D1 6= D2 ∈ DT.

To accommodate datatypes in ontologies, we generalize
range restrictions to range restrictions with datatypes, which
are inclusions of the form ran(r) v A1 t · · · t An with
A1, . . . , An concept names or datatype names from DT.

Example 3. A range restriction with datatypes in Schema.org
2015 is ran(acceptsReservation) v Boolean t Text

A schema.org-ontology O is a finite set of concept inclu-
sions (including range restrictions with datatypes), role inclu-
sions, and enumeration definitions. We denote by NC(O) the
set of concept names in O, by NR(O) the set of role names
in O, and by NE(O) the set of enumeration individuals in O.

A data instance A is a finite set of

• concept assertions A(a) where A ∈ NC and a ∈ NI;

• role assertions r(a, b) where r ∈ NR, a ∈ NI and b ∈
NI ∪

⋃
D∈DT ∆D.

We say that A is a data instance for the ontology O if A
contains no enumeration individuals except those in NE(O).
We use Ind(A) to denote the set of all individuals (including
datatype elements) in A.

Example 4. Examples for assertions are Movie(a),
name(a, ‘avatar’), director(a, b), name(b, ‘Cam’).

Let O be a schema.org-ontology. An interpretation I =
(∆I , ·I) for O consists of a non-empty set ∆I disjoint from⋃
D∈DT ∆D and with ∆I ∩ NE = NE(O), and a function ·I

that maps
• every concept name A to a subset AI of ∆I ,
• every role name r to a subset rI of ∆I ×∆I,DT, where

∆I,DT = ∆I ∪
⋃
D∈DT ∆D;

• every individual name a ∈ (NI \ NE) ∪ NE(O) to some
aI ∈ ∆I such that aI = a for all a ∈ NE(O).

Note that we make the standard name assumption (and, there-
fore, unique name assumption) for individuals in NE. Individ-
ual names from NE that do not occur in O are not interpreted
by I to avoid enforcing infinite domains.

For an interpretation I and role name r, set dom(r)I =
{d | (d, d′) ∈ rI} and ran(r)I = {d′ | (d, d′) ∈ rI}. To
achieve uniform notation, set DI = ∆D for every datatype
(D,∆D) in DT and dI = d for every d ∈ ∆D, D ∈ DT.
For concept or datatype names A1, . . . , An, set (A1 t · · · t
An)I = AI1 ∪· · ·∪AIn. An interpretation I for an ontologyO
satisfies a (concept or role) inclusion X1 v X2 ∈ O if XI1 ⊆
XI2 , an enumeration definition A ≡ {a1, . . . , an} if AI =
{a1, . . . , an}, a concept assertion A(a) if aI ∈ AI , and a
role assertion r(a, b) if (aI , bI) ∈ rI . These satisfaction
relationships are denoted with “|=”, as in I |= X1 v X2.

An interpretation I for O is a model of O if it satisfies
all inclusions and definitions in O and a model of a data in-
stance A for O if it satisfies all assertions in A. We say thatA
is satisfiable w.r.t. O if O and A have a common model. Let
α be a concept or role inclusion, or an enumeration definition.
We say that α follows from O, in symbols O |= α, if every
model of O satisfies α.

We introduce the query languages considered in this pa-
per. A term t is either a member of NI ∪

⋃
D∈DT ∆D or

an individual variable taken from an infinite set NV of such
variables. A first-order query (FOQ) consist of a (domain-
independent) first-order formula ϕ(~x) that uses unary predi-
cates from NC ∪ {D | (D,D) ∈ DT}, binary predicates from
NR, and only terms as introduced above. The unary datatype
predicates are built-ins that identify the elements of the respec-
tive datatype. We call ~x the answer variables of ϕ(~x), the
remaining variables are called quantified. A query without
answer variables is Boolean. A conjunctive query (CQ) is a
FOQ of the form ∃~y ϕ(~x, ~y) where ϕ(~x, ~y) is a conjunction
of atoms such that every answer variable x occurs in an atom
that uses a symbol from NC ∪NR, that is, an answer variable x
is not allowed to occur exclusively in atoms of the form D(x)
with D a datatype name (to ensure domain independence). A
union of conjunctive queries (UCQ) is a disjunction of CQs.
A CQ q can be regarded as a directed graph Gq with vertices
{t | t term in q} and edges {(t, t′) | r(t, t′) in q}. If Gq is
acyclic and r(t1, t2), s(t1, t2) ∈ q implies r = s, then q is an
acyclic CQ. A UCQ is acyclic if all CQs in it are.

We are interested in querying data instances A using a
UCQ q(~x) taking into account the knowledge provided by an
ontology O. A certain answer to q(~x) in A under O is a tuple
~a of elements of Ind(A) of the same length as ~x such that for
every model I of O and A, we have I |= q[~a]. In this case,
we write O,A |= q(~a).

Query evaluation is the problem to decide whether
O,A |= q(~a). For the combined complexity of this problem,
all of O,A, q, and ~a are the input. For the data complexity,
only A and ~a are the input while O and q are fixed. It of-
ten makes sense to combine the ontology O and actual query
q(~x) into an ontology-mediated query (OMQ) Q = (O, q(~x)),
which can be thought of as a compound overall query. We
show the following by adapting techniques from [Eiter et al.,
1997] and [Bienvenu et al., 2014b].

Theorem 5. Query evaluation of CQs and UCQs under
schema.org-ontologies is Πp

2-complete in combined complex-
ity. In data complexity, each OMQ (O, q) from this class can
be evaluated in CONP; moreover, there is such a OMQ (with
q a CQ) that is CONP-complete in data complexity.

An OMQ (O, q(~x)) is FO-rewritable if there is a FOQ Q(~x)
(called an FO-rewriting of (O, q(~x))) such that for every data
instance A for O and all ~a ∈ Ind(A), we have O,A |= q(~a)
iff IA |= Q(~a) where IA is the interpretation that corre-
sponds to A (in the obvious way). We also consider datalog-
rewritability, defined in the same way as FO-rewritability,
but using datalog programs in place of FOQs. Using Ross-
man’s homomorphism preservation theorem [Rossman, 2008],
one can show that an OMQ (O, q(~x)) with O a schema.org-
ontology and q(~x) a UCQ is FO-rewritable iff it has a UCQ-
rewriting iff it has a non-recursive datalog rewriting, see [Bi-
envenu et al., 2014b] for more details. Since non-recursive
datalog-rewritings can be more succinct than UCQ-rewritings,
we will generally prefer the former.

3 Basic schema.org-Ontologies
We start with considering basic schema.org-ontologies, which
are not allowed to contain enumeration definitions and
datatypes. The results obtained for basic schema.org-
ontologies can be easily extended to basic schema.org-
ontologies with datatypes but do not hold for ontologies with
enumeration definitions (as will be shown in the next section).
In Schema.org 2015, 45 concept names from a total of 622
are defined using enumeration definitions, and hence are not
covered by the results presented in this section.

We start with noting that the entailment problem for ba-
sic schema.org-ontologies is decidable in polynomial time.
This problem is to check whether O |= α for a given basic
schema.org-ontology O and a given inclusion α of the form
allowed in such ontologies. In fact, the algorithm is straightfor-
ward. For example, O |= ran(r) v A1 t · · · tAn if there is a
role name s and a range restriction ran(s) v B1t · · ·tBm ∈
O such that OR |= r v s and OC |= Bj v A1 t · · · t An
for all 1 ≤ j ≤ m, where OR and OC denote the set of role
inclusions and atomic concept inclusions in O.

Theorem 6. The entailment problem for basic schema.org-
ontologies is in PTIME.

The hardness results reported in Theorem 5 crucially rely on
existential quantification in the actual query. In fact, it follows
from results in [Grau et al., 2013; Kaminski et al., 2014b] that
given an OMQ Q = (O, q(~x)) with O a basic schema.org-
ontology and q(~x) a CQ without quantified variables, it is
possible to construct a non-recursive datalog rewriting of Q

A r Br

s

r rr

sss s

· · ·b0 bm

a

Figure 1: Data instance Am.

in polynomial time, and thus such OMQs can be evaluated in
PTIME in combined complexity. We aim to push this bound
further by admitting restricted forms of quantification.

A CQ q has qvar-size n if the restriction of q to quantified
variables is a disjoint union of queries with at most n variables
each. For example, quantifier-free CQs have qvar-size 0 and
the following query q(x, y) has qvar-size 1:

∃z1∃z2

∧
v∈{x,y}

(producedBy(z1, v) ∧musicBy(v, z2))

The above consequences of the work by Grau, Kaminski, et al.
can easily be extended to OMQs where queries have qvar-size
one. In what follows, we consider qvar-size two, which is
more subtle and where, in contrast to qvar-size one, reasoning
by case distinction is required. The following example shows
that there are CQs of qvar-size two for which no non-recursive
datalog rewriting exists.
Example 7. Let O = {ran(s) v A t B} and consider the
following CQ of qvar-size two:

q(x) = ∃x1∃x2(s(x, x1) ∧A(x1) ∧ r(x1, x2) ∧B(x2))

It is easy to see that O,Am |= q(a) for every data instance
Am with m ≥ 2 as defined in Figure 1.
By applying locality arguments and using the data instances
Am, one can in fact show that (O, q(x)) is not FO-rewritable
(note that removing one r(bi, bi+1) from Am results in q(a)
being no longer entailed).
Theorem 8. For every OMQ (O, q(~x)) with O a basic
schema.org-ontology and q(~x) a CQ of qvar-size at most two,
one can construct a datalog-rewriting in polynomial time.
Moreover, evaluating OMQs from this class is in PTIME in
combined complexity.
Applied to Example 7, the proof of Theorem 8 yields a datalog
rewriting that consists of the rules

P (x1, x2, x)← s(x, x1) ∧X1(x1) ∧ r(x1, x2) ∧X2(x2)

where the Xi range over A, B, and ∃y r(y, ·), plus

IA(x1, x)← P (x1, x2, x) ∧A(x1)

IB(x2, x)← P (x1, x2, x) ∧B(x2)

IA(x2, x)← P (x1, x2, x) ∧ IA(x1, x)

IB(x1, x)← P (x1, x2, x) ∧ IB(x2, x)

goal(x)← s(x, x1) ∧ IA(x1, x) ∧ r(x1, x2) ∧ IB(x2, x).

The recursive rule for IA (the one for IB is dual) says that if
the only option to possibly avoid a match for (x1, x2, x) is to
color (x1, x) with IA, then the only way to possibly avoid a
match for (x1, x2, x) is to color (x2, x) with IA (otherwise,
since ran(s) v A tB ∈ O, it would have to be colored with
IB which gives a match).

Theorem 8 can easily be extended to basic schema.org-
ontologies enriched with datatypes. For schema.org-
ontologies O that also contain enumeration definitions, the
rewriting is sound but not necessarily complete, and can thus
be used to compute approximate query answers.

Interestingly, Theorem 8 cannot be generalized to UCQs.
This follows from the result shown in the full version that for
basic schema.org-ontologies O and quantifier-free UCQs q(x)
(even without role atoms), the problem O,A |= q(a) is coNP-
hard regarding combined complexity for data instancesA with
a single individual a. We also note that it is not difficult to
show (and follows from FO-rewritability of instance queries in
DL-LiteHbool [Artale et al., 2009]) that given an OMQ (O, q(~x))
withO a basic schema.org-ontology and q(~x) a quantifier-free
UCQ, one can construct an FO-rewriting in exponential time,
and thus query evaluation is in AC0 in data complexity.

We now classify basic schema.org-ontologies O according
to the data complexity of evaluating OMQs (O, q) with q
a UCQ (or CQ). It is convenient to work with minimized
ontologies where for all inclusions F v A1 t · · · tAn ∈ O
and all i ≤ n, there is a model I of O and a d ∈ ∆Isuch that
d satisfies F uAi u u

j 6=i
¬Aj (defined in the usual way). Every

schema.org-ontology can be rewritten in polynomial time into
an equivalent minimized one. We establish the following
dichotomy theorem.

Theorem 9. LetO be a minimized basic schema.org-ontology.
If there exists F v A1 t · · · tAn ∈ O with n ≥ 2, then there
is a Boolean CQ q that uses only concept and role names
fromO and such that (O, q) is CONP-hard in data complexity.
Otherwise, a given OMQ (O, q) with q a UCQ can be rewritten
into a non-recursive datalog-program in polynomial time (and
is thus in AC0 in data complexity).

The proof of the second part of Theorem 9 is easy: if there are
no F v A1 t · · · tAn ∈ O with n ≥ 2, then O essentially is
already a non-recursive datalog program and the construction
is straightforward. The proof of the hardness part is obtained
by extending the corresponding part of a dichotomy theorem
for ALC-ontologies of depth one [Lutz and Wolter, 2012].
The main differences between the two theorems are that (i) for
basic schema.org-ontologies, the dichotomy is decidable in
PTIME (whereas decidability is open for ALC), (ii) the CQs
in CONP-hard OMQs use only concept and role names from
O (this is not possible in ALC), and (iii) the dichotomy is
between AC0 and CONP whereas for ALC OMQs can be
complete for PTIME, NL, etc.

By Theorem 9, disjunctions in domain and range restrictions
are the (only!) reason that query answering is non-tractable
for basic schema.org-ontologies. In Schema.org 2015, 14%
of all range restrictions and 20% of all domain restrictions
contain disjunctions.

In Theorem 9, we have classified the data complexity of on-
tologies, quantifying over the actual queries. In what follows,
we aim to classify the data complexity of every OMQ. This
problem turns out to be much harder and, in fact, we show that
a classification of the data complexity of OMQs based on basic
schema.org-ontologies and UCQs implies a classification of
constraint satisfaction problems according to their complexity

(up to FO-reductions), a famous open problem that is the sub-
ject of significant ongoing research [Feder and Vardi, 1998;
Bulatov, 2011].

A signature is a set of concept and role names (also called
symbols). Let B be a finite interpretation that interprets only
the symbols from a finite signature Σ. The constraint satis-
faction problem CSP(B) is to decide, given a data instance A
over Σ, whether there is a homomorphism from A to B. In
this context, B is called the template of CSP(B).
Theorem 10. For every template B, one can construct in
polynomial time an OMQ (O, q) with O a basic schema.org-
ontology and q a Boolean acyclic UCQ such that the comple-
ment of CSP(B) and (O, q) are mutually FO-reducible.
Theorem 18 below establishes the converse direction of The-
orem 10 for unrestricted schema.org-ontologies and a large
class of (acyclic) UCQs. From Theorem 18, we obtain a
NEXPTIME-upper bound for deciding FO-rewritability and
datalog-rewritability of a large class of OMQs (Theorem 19
below). It remains open whether this bound is tight, but we
can show a PSPACE lower bound for FO-rewritability using a
reduction of the word problem of PSPACE Turing machines.
The proof uses the ontology O and data instances Am from
Example 7 and is similar to a PSPACE lower bound proof
for FO-rewritability in consistent query answering [Lutz and
Wolter, 2015] which is, in turn, based on a construction from
[Cosmadakis et al., 1988].
Theorem 11. It is PSPACE-hard to decide whether a given
OMQ (O, q) with O a basic schema.org-ontology and q a
Boolean acyclic UCQ is FO-rewritable.

4 Incoherence and Unsatisfiability
In the subsequent section, we consider unrestricted schema.org
ontologies instead of basic ones, that is, we add back enumer-
ation definitions and datatypes. The purpose of this section is
to deal with a complication that arises from this step, namely
the potential presence of inconsistencies.

A symbol X ∈ NC ∪ NR is incoherent in an ontology O if
XI = ∅ for all models I ofO. An ontologyO is incoherent if
some symbol is incoherent inO. The problem with incoherent
ontologies O is that there are clearly data instances A that are
unsatisfiable w.r.t. O. Incoherent ontologies can result from
the UNA for enumeration individuals such as in O = {A ≡
{a}, B ≡ {b}, A v B}, which has no model (if a 6= b) and
thus any symbol is incoherent in O; they can also arise from
interactions between concept names and datatypes such as in
O′ = {ran(r) v Integer, ran(s) v A, r v s} with A ∈ NC,
in which r is incoherent since ∆I ∩∆Integer = ∅ in any model
I of O′. Using Theorem 6, one can show the following.
Theorem 12. Incoherence of schema.org-ontologies can be
decided in PTime.
We now turn to inconsistencies that arise from combining
an ontology O with a particular data instance A for O. As
an example, consider O = {A ≡ {a}, B ≡ {b}} and A =
{A(c), B(c)}. Although O is coherent, A is unsatisfiable
w.r.t. O. Like incoherence, unsatisfiability is decidable in
polynomial time. In fact, we can even show the following
stronger result.

rr r rr
· · ·

a1 a2

A A A

b1 b2

A

bmbm−1

Figure 2: Data instance A′m.

Theorem 13. Given a schema.org-ontology O, one can com-
pute in polynomial time a non-recursive datalog program Π
such that for any data instance A for O, A is unsatisfiable
w.r.t. O iff Π(A) 6= ∅.
In typical schema.org applications, the data is collected from
the web and it is usually not acceptable to simply report back
an inconsistency and stop processing the query. Instead, one
would like to take maximum advantage of the data despite the
presence of an inconsistency. There are many semantics for
inconsistent query answering that can be used for this purpose.
As efficiency is paramount in schema.org applications, our
choice is the pragmatic intersection repair (IAR) semantics
which avoids CONP-hardness in data complexity [Lembo et
al., 2010; Rosati, 2011; Bienvenu et al., 2014a]. A repair of
a data instance A w.r.t. an ontology O is a maximal subset
A′ ⊆ A that is satisfiable w.r.t. O. We use repO(A) to denote
the set of all repairs of A w.r.t. O. The idea of IAR semantics
is then to replace A with

⋂
A′∈repO(A)A′. In other words,

we have to remove from A all assertions that occur in some
minimal subset A′ ⊆ A that is unsatisfiable w.r.t. O. We call
such an assertion a conflict assertion.
Theorem 14. Given a schema.org-ontology O and concept
name A (resp. role name r), one can compute a non-recursive
datalog program Π such that for any data instance A for O,
Π(A) is the set of all a ∈ Ind(A) (resp. (a, b) ∈ Ind(A)2)
such that A(a) (resp. r(a, b)) is a conflict assertion in A.
By Theorem 14, we can adopt the IAR semantics by simply
removing all conflict assertions from the data instance before
processing the query. Programs from Theorem 14 become
exponential in the worst case, but we expect them to be small
in practical cases. In the remainder of the paper, we assume
that ontologies are coherent and that A is satisfiable w.r.t. O if
we query a data instance A using an ontology O.

5 Unrestricted schema.org-Ontologies
We aim to lift the results from Section 3 to unrestricted
schema.org-ontologies. Regarding Theorem 8, it turns out
that quantified variables in CQs are computationally much
more problematic when there are enumeration definitions in
the ontology. In fact, one can expect positive results only for
quantifier-free CQs, and even then the required constructions
are quite subtle.
Theorem 15. Given an OMQ Q = (O, q) with O a
schema.org-ontology and q a quantifier-free CQ, one can con-
struct in polynomial time a datalog-rewriting of Q. Moreover,
evaluating OMQs in this class is in PTIME in combined com-
plexity. The rewriting is non-recursive if q = A(x).
The following example illustrates the construction of the data-
log program. Let O = {A ≡ {a1, a2}} and q() = r(a1, a2).
Observe that O,A′m |= q() for every data instance A′m de-
fined in Figure 2. Similarly to Example 7, one can use the data
instances A′m to show that (O, q()) is not FO-rewritable.

A datalog-rewriting of (O, q()) is given by the program
Πa1,a2 which contains the rules

goal() ← r(a1, a2)

goal() ← r(a1, x) ∧ pathA(x, y) ∧ r(y, a2)

pathA(x, y) ← r(x, y) ∧A(x) ∧A(y)

pathA(x, y) ← pathA(x, z) ∧ pathA(z, y).

Given a data instance A, the program checks whether there
is an r-path from a1 to a2 in A with inner nodes in A. If
b0, b1, . . . , bn is such a path, then in all models I of O and A
there is an i < n with (bIi−1, b

I
i) = (a1, a2), hence I |= q().

Otherwise, we obtain a model I with I 6|= q() by assigning
a1 to all individual names b with A(b) ∈ A that are reachable
from a1 by a path with inner nodes in A, and an individual
6= a1 to all other individual names in A.

We now modify the datalog program to obtain a rewriting
of the OMQ (O, q′(x, y)) with q(x, y) = r(x, y). First, we
include in Πr the rules A(a1)← true, A(a2)← true, and

goal(x, y) ← r(x, y)

goal(x, y) ← A(x) ∧A(y) ∧
∧

1≤i,j≤2Rai,aj (x, y)

We want to use the latter rule to check that (1) in every model,
x and y have to be identified with an individual in {a1, a2},
and (2) for all i, j ∈ {1, 2}, all models that identify x and y
with ai and aj satisfy r(ai, aj). Notice that r(x, y) is false in
a model of O and A iff A does not contain r(x, y) and (1) or
(2) is violated. To implement (2), we add the rules:

Rai,aj (x, y) ← neq(x, ai) Rai,aj (x, y) ← neq(y, aj)

Rai,aj (x, y) ← goal(ai, aj)

neq(a1, a2) ← true neq(a2, a1) ← true.

The first row checks admissibility of the assignment x, y 7→
ai, aj : if x is one of the enumeration individuals in {a1, a2}
and ai 6= x, then there is no model that identifies x with ai,
hence the statement (2) above is trivially true. Similarly for y
and aj . It remains to add rules 3 and 4 from Πa1,a2 and

goal(ai, aj) ← r(ai, x) ∧ pathA(x, y) ∧ r(y, aj)

for 1 ≤ i, j ≤ 2 and i 6= j.
Theorem 15 is tight in the sense that evaluating CQs with a

single atom and a single existentially quantified variable, as
well as quantifier-free UCQs, is coNP-hard in data complexity.
For instance, let O = {dom(e) v A, ran(e) v A, A ≡
{r, g, b}}. Then, an undirected graph G = (V,E) is 3-
colorable iff O, {e(v, w) | (v, w) ∈ E} 6|= ∃x e(x, x). Alter-
natively, one may replace the query by r(r, r)∨r(g, g)∨r(b, b).
In fact, one can prove the following variant of Theorem 10
which shows that classifying OMQs with ontologies using only
enumeration definitions and quantifier-free UCQs according
to their complexity is as hard as CSP.

Theorem 16. Given a template B, one can construct in poly-
nomial time an OMQ (O, q) where O only contains enumer-
ation definitions and q is a Boolean variable-free UCQ such
that the complement of CSP(B) and (O, q) are mutually FO-
reducible.

We now turn to classifying the complexity of ontologies and
of OMQs, starting with a generalization of Theorem 9 to
unrestricted schema.org-ontologies.
Theorem 17. LetO be a coherent and minimized schema.org-
ontology. If O contains an enumeration definition A ≡
{a1, . . . , an} with n ≥ 2 or contains an inclusion F v
A1 t · · · tAn such that there are at least two concept names
in {A1, . . . , An} and O 6|= F v A t t

(D,∆D)∈DT
D for any

A with A ≡ {a} ∈ O, then (O, q) is coNP-hard for some
Boolean CQ q. Otherwise every (O, q) with q a UCQ is FO-
rewritable (and thus in AC0 in data complexity).
Note that, in contrast to Theorem 9, being in AC0 does not
mean that no ‘real disjunction’ is available. For example,
for O = {ran(r) v A t B,A v C,B v C,C ≡ {c}} and
A = {r(a, b)} we haveO,A |= A(b)∨B(b) and neitherA(b)
nor B(b) are entailed. This type of choice does not effect FO-
rewritability, since it is restricted to individuals that must be
identified with a unique individual in NE(O). Note that, for the
hardness proof, we now need to use a role name that possibly
does not occur in O. For example, for O = {A ≡ {a1, a2}}
there exists a Boolean CQ q such that (O, q) is NP-hard, but a
fresh role name is required to construct q.

We now consider the complexity of single OMQs and show
a converse of Theorems 10 and 16 for schema.org-ontologies
and UCQs that are qvar-acyclic, that is, when all atoms r(t, t′)
with neither of t, t′ a quantified variable are dropped, then all
CQs in it are acyclic. We use generalized CSPs with marked
elements in which instead of a single template B, one considers
a finite set Γ of templates whose signature contains, in addition
to concept and role names, a finite set of individual names.
Homomorphisms have to respect also the individual names
and the problem is to decide whether there is a homomorphism
from the input interpretation to some B ∈ Γ. It is proved in
[Bienvenu et al., 2014b] that there is a dichotomy between
PTIME and NP for standard CSPs if, and only if, there is such
a dichotomy for generalized CSPs with marked elements.
Theorem 18. Given an OMQ (O, q) with O a schema.org-
ontology and q a qvar-acyclic UCQ, one can compute in ex-
ponential time a generalized CSP with marked elements Γ
such that (O, q) and the complement of CSP(Γ) are mutually
FO-reducible.
The proof uses an encoding of qvar-acyclic queries into con-
cepts in the description logic ALCIUO that extends ALC
by inverse roles, the universal role, and nominals. It extends
the the template constructions of [Bienvenu et al., 2014b] to
description logics with nominals. It is shown in [Bienvenu et
al., 2014b] that FO-definability and datalog definability of the
complement of generalized CSPs with marked elements are
NP-complete problems. Thus, we obtain the following result
as a particularly interesting consequence of Theorem 18.
Theorem 19. FO-rewritability and datalog-rewritability of
OMQs (O, q) with O a schema.org-ontology and q a qvar-
acyclic UCQ are decidable in NEXPTIME.

6 Practical Considerations
In this paper, we have introduced a novel description logic
motivated by Schema.org and studied the complexity of the

resulting querying problems from various angles. From a
practical perspective, a central observation is that intractability
is caused by the combination of disjunction in the ontology
(in domain/range restrictions and, with {a, b} ≡ {a} t {b},
in enumeration definitions) and quantification in the query.
For practical feasibility, one thus has to tame the interaction
between these features.

One may speculate that professional users of Schema.org
such as the major search engine providers take a pragmatic ap-
proach and essentially ignore disjunction. However, the results
in this paper show that one can do better without compromis-
ing tractability when the query contains no quantified variables
(Theorem 15). For basic ontologies, it is even possible to han-
dle some queries with quantified variables (Theorem 8); in
fact, we believe that the restriction to qvar-size 2 is a mild one
from a practical perspective. It is also interesting to observe
that the datalog-rewritings constructed in the proofs of these
two theorems are sound if applied to unrestricted CQs and
can be seen as tractable approximations that go beyond simply
ignoring disjunction.

Another practically interesting way to address intractabil-
ity is to require suitable forms of completeness of the data.
For example, whenever the data contains an assertion r(a, b)
and there is a range restriction ran(r) v A1 t · · · t An in
the ontology, one could require that Ai(b) is also in the data,
for some i. This could be easily implemented in existing
Schema.org validators that webpage developers use to ver-
ify their annotations. If all disjunctions are ‘disabled’ in the
described way, tractability is regained.

References
[Afrati and Ullman, 2011] F.N. Afrati and J.D. Ullman. Opti-

mizing multiway joins in a map-reduce environment. IEEE
Trans. Knowl. Data Eng., 23(9):1282–1298, 2011.

[Afrati and Ullman, 2012] F.N. Afrati and J.D. Ullman. Tran-
sitive closure and recursive datalog implemented on clus-
ters. In EDBT, pages 132–143, 2012.

[Artale et al., 2009] A. Artale, D. Calvanese, R. Kontchakov,
and M. Zakharyaschev. The DL-Lite family and relations.
JAIR, 36:1–69, 2009.

[Bienvenu et al., 2013] M. Bienvenu, C. Lutz, and F. Wolter.
First-order rewritability of atomic queries in Horn descrip-
tion logics. In Proc. of IJCAI, 2013.

[Bienvenu et al., 2014a] M. Bienvenu, C. Bourgaux, and F.
Goasdoué. Querying inconsistent description logic knowl-
edge bases under preferred repair semantics. In AAAI, pages
996–1002, 2014.

[Bienvenu et al., 2014b] M. Bienvenu, B. ten Cate, C. Lutz,
and F. Wolter. Ontology-based data access: A study
through disjunctive datalog, CSP, and MMSNP. ACM Trans.
Database Syst., 39(4):33, 2014.

[Bulatov, 2011] A.A. Bulatov. On the CSP dichotomy con-
jecture. In CSR, pages 331–344, 2011.

[Calvanese et al., 2007] D. Calvanese, G. De Giacomo, D.
Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning

and efficient query answering in description logics: The DL-
Lite family. J. Autom. Reasoning, 39(3):385–429, 2007.

[Cohen and Jeavons, 2006] D. Cohen and P. Jeavons. The
complexity of constraint languages, Ch. 8. Elsevier, 2006.

[Cosmadakis et al., 1988] S.S. Cosmadakis, H. Gaifman, P.C.
Kanellakis, and M.Y. Vardi. Decidable optimization prob-
lems for database logic programs (preliminary report). In
STOC, pages 477–490, 1988.

[Eiter et al., 1997] T. Eiter, G. Gottlob, and H. Mannila. Dis-
junctive datalog. ACM Trans. Database Syst., 22(3):364–
418, 1997.

[Feder and Vardi, 1998] T. Feder and M.Y. Vardi. The compu-
tational structure of monotone monadic SNP and constraint
satisfaction: A study through datalog and group theory.
SIAM J. Comput., 28(1):57–104, 1998.

[Glimm and Krötzsch, 2010] B. Glimm and M. Krötzsch.
SPARQL beyond subgraph matching. In ISWC, volume
6496 of LNCS, pages 241–256. Springer, 2010.

[Grau et al., 2013] B. Cuenca Grau, B. Motik, G. Stoilos, and
I. Horrocks. Computing datalog rewritings beyond horn
ontologies. In IJCAI, 2013.

[Guha, 2013] R.V. Guha. Light at the end of
the tunnel? Invited Talk at ISWC 2013,
https://www.youtube.com/watch?v=oFY-0QoxBi8.

[Kaminski et al., 2014a] M. Kaminski, Y. Nenov, and
B. Cuenca Grau. Computing datalog rewritings for dis-
junctive datalog programs and description logic ontologies.
In RR, pages 76–91, 2014.

[Kaminski et al., 2014b] M. Kaminski, Y. Nenov, and B.
Cuenca Grau. Datalog rewritability of disjunctive data-
log programs and its applications to ontology reasoning. In
AAAI, pages 1077–1083, 2014.

[Larose and Tesson, 2009] B. Larose and P. Tesson. Univer-
sal algebra and hardness results for constraint satisfaction
problems. Theor. Comput. Sci., 410(18):1629–1647, 2009.

[Lembo et al., 2010] D. Lembo, M. Lenzerini, R. Rosati, M.
Ruzzi, and D. Fabio Savo. Inconsistency-tolerant semantics
for description logics. In RR, pages 103–117, 2010.

[Lutz and Wolter, 2012] C. Lutz and F. Wolter. Non-uniform
data complexity of query answering in description logics.
In KR, 2012.

[Lutz and Wolter, 2015] C. Lutz and F. Wolter. On the rela-
tionship between consistent query answering and constraint
satisfaction problems. In ICDT, 2015.

[Patel-Schneider, 2014] P.F. Patel-Schneider. Analyzing
schema.org. In ISWC, pages 261–276, 2014.

[Rosati, 2011] R. Rosati. On the complexity of dealing with
inconsistency in description logic ontologies. In IJCAI,
pages 1057–1062, 2011.

[Rossman, 2008] B. Rossman. Homomorphism preservation
theorems. J. ACM, 55(3), 2008.

[Schaerf, 1993] A. Schaerf. On the complexity of the instance
checking problem in concept languages with existential
quantification. J. of Int. Infor. Sys., 689:508, 1993.

Appendix

A Proofs for Section 2

Theorem 5 Query evaluation of CQs and UCQs under
schema.org-ontologies is Πp

2-complete in combined complex-
ity. In data complexity, each OMQ (O, q) from this class can
be evaluated in CONP; moreover, there is such a OMQ (with
q a CQ) that is CONP-complete in data complexity.

Proof. The upper bounds are straightforward. For example,
for the Πp

2-upper bound regarding combined complexity, given
a data instanceA forO and q(~a), guess a model I with domain
Ind(A), check in polynomial time whether I is a model of O
and A and call an NP-oracle to check I 6|= q(~a).

For the Πp
2-lower bound, we give a reduction from

2QBF validity. Consider a 2QBF ∀x1 . . . xm∃y1 . . . yn ϕ,
where ϕ is a 3CNF over clauses c1, . . . , ck. We con-
struct a schema.org-ontology O and Boolean CQ q with
concept names X1, . . . , Xm, and C1, . . . , Ck, role names
V1, V2, V3, r1, . . . , rm, and enumeration individuals {0, 1}.
For each clause ci, we denote by vji (1 ≤ j ≤ 3) the vari-
able appearing in the jth literal of ci, and we let Si denote
the set of tuples in {0, 1}3 representing the seven truth assign-
ments for (v1

i , v
2
i , v

3
i) which satisfy ci. Define the ontology O

by setting

O = {ran(ri) v E,E ≡ {0, 1} | 1 ≤ i ≤ m} ∪
{ran(ri) v Xi | 1 ≤ i ≤ m}

The ontology ensures that for any data instance A containing
ri(fi, di) in any model I of O and A we have 0 ∈ XIi or
1 ∈ XIi . Thus, intuitively, O ensures that a truth assignment
is selected for variable xi. We encode ϕ using the data instance
Aϕ defined as follows:

Aϕ = {Vj(abi , bj) | b = (b1, b2, b3) ∈ Si, j = 1, 2, 3} ∪
{Ci(abi) | b = (b1, b2, b3) ∈ Si} ∪
{ri(fi, di) | 1 ≤ i ≤ m}

Now the CQ q checks whether the selected truth assignment
can be extended to a model of ϕ. q is defined as the conjunc-
tion of∧

1≤i≤k

(Ci(zi) ∧ V1(zi, v
1
i) ∧ V2(zi, v

2
i) ∧ V3(zi, v

3
i))

and ∧
1≤`≤m

X`(x`)

It is straightforward to show that ∀x1 . . . xm∃y1 . . . yn ϕ is
valid iff O,A |= q. The NP lower bound regarding data
complexity is proved, for example, in the CSP encoding of
Theorem 10. o

B Proofs for Section 3
Theorem 6 The entailment problem for basic schema.org-
ontologies is in PTIME.

Proof. We show that O |= ran(r) v A1 t · · · t An iff (∗)
there exists a role name s such that OR |= r v s and a
range restriction ran(s) v B1 t · · · t Bm ∈ O such that
OC |= Bj v A1 t · · · t An for all 1 ≤ j ≤ m, where
OC is the set of atomic concept inclusions in O. Other basic
schema.org-inclusions are consider similarly.

Clear, if (∗) holds, thenO |= ran(r) v A1t · · ·tAn. Con-
versely, assume that (∗) does not hold. Define an interpretation
I with ∆I = {a, b} by setting
• (c, d) ∈ sI iff c = a and d = b and OR |= r v s;
• c ∈ AI for all concept names A;
• for every s with OR |= r v s and ran(s) v B1 t · · · t
Bm ∈ O pick Bj such that OC 6|= Bj v A1 t · · · tAn.
Let b ∈ BI for all concept names B with OC |= Bj v
B.

It is readily checked that I is a model of O with b ∈ ran(r)I

and b 6∈ AI1 ∪ · · · ∪AIn. o

We use the following notation. A match π for a quantifier-free
CQ q = q(~x,~a) in an interpretation I is a mapping from the
set of terms term(q) of q to ∆I such that the following holds:
• π(a) = aI for all a ∈ NI;
• If A(t) ∈ q, then π(t) ∈ AI ;
• If r(t, t′) ∈ q, then (π(t), π(t′) ∈ rI .

If this is the case, we write I |=π q.
Given a data instance A and datalog program Π, we denote

by IΠ,A the minimal interpretation that is a model of A and
satisfies all rules in Π. Note that ∆IΠ,A = Ind(A).

We prove the following result as a preparation for the proof
of Theorem 8.
Proposition 20. For every ontology-mediated query
(O, q(~x)) with O a basic schema.org-ontology and q a CQ of
qvar-size at most one, one can construct in polynomial time a
non-recursive datalog-rewriting of (O, q(~x)).

Proof. Let q(~x) = ∃~yq0(~x, ~y,~b), Let ~x = x1 . . . xk, ~y =

y1, . . . , ym, and~b = b1, . . . , bn. Let IA and Ir be IDB predi-
cates for any concept nameA and role name r in q, and include
in ΠO,basic the following rules:
• IA(x)← B(x), for all B with OC |= B v A;
• IA(x)← r(y, x), for all r with O |= ran(r) v A;
• IA(x)← r(x, y), for all r with O |= dom(r) v A;
• Ir(x, y)← s(x, y), for all s with OR |= s v r.

Now let q′0(~x, ~y) result from q0(~x, ~y) by replacing every A(t)
in q0 by IA(t) and every r(t, t′) in q0 by Ir(t, t′). Define Π
by adding to ΠO,basic the rule goal(~x) ← q′0(~x, ~y). We show
that Π is a rewriting of (O, q(~x)).

To prove this, we require some preparation. LetO be a basic
schema.org-ontology and Π be a datalog program containing
all ΠO,basic. LetA be a data instance and consider IΠ,A. Then
we consider the following variant JΠ,A of IΠ,A in which we
transfer the extensions of IA and Ir to the concept names A
and role names r, respectively:
• ∆JΠ,A = ∆IΠ,A ;

• rJΠ,A = I
IΠ,A
r for all role names r;

• AJΠ,A = I
IΠ,A
A for all concept names A.

Observation 1 Let O be a basic schema.org-ontology and Π
be a program containing ΠO,basic. Let A be a data instance.
For a set X ⊆ Ind(A) let Aa, a ∈ X , be concept names such
that a 6∈ AJΠ,A for all a ∈ X . Then there exists a model J of
O and A with
• ∆J = ∆JΠ,A ;
• rJ = rJΠ,A for all role names r;
• AJ ⊇ AJΠ,A for all concept names A;

such that a 6∈ AJa for all a ∈ X .

Using Observation 1, we now show that Π is a rewriting of
(O, q(~x)).

Clearly, if ~a ∈ Π(A), then O,A |= q(~a). Conversely,
assume that ~a 6∈ Π(A). Let ~a = a1, . . . , ak. Consider the
minimal model IΠ,A of A. We have IΠ,A 6|= goal(~a). Let
q−0 be the result of removing from q0 all atoms A(t) with A
a concept name. Let H be the set of all matches π of q−0 in
JΠ,A with π(xi) = ai for 1 ≤ i ≤ k.

IfH is empty then expand JΠ,A to a model J ofO by leav-
ing the interpretation of role names fixed and setting AJ =

Ind(A) for all concept names A. Then J 6|= ∃~y q−0 (~a,~b) and
so J 6|= q(~a). Thus, O,A 6|= q(~a), as required.

If H is not empty, let H(t) = {π(t) | π ∈ H} for any term
t in q. Note that H(t) is a singleton {tI} if t = ai or t = bi.

Claim 1. There exists a term t in q such that for all a ∈ H(t)
there exists a concept name A with A(t) ∈ q0 and a 6∈ AJΠ,A .

Proof of Claim 1. Assume no such t exists. Then choose for
every term t in q a member at of H(t) such that at ∈ AJΠ,A

for all A(t) in q0. Define a mapping π0 from the set of terms
of t to JΠ,A by setting π0(t) = at. Using the condition that q
has qvar-size at most 1, it is readily checked that π0 is a match
for q in JΠ,A with π(xi) = ai for 1 ≤ i ≤ k. It follows that
IΠ,A |= q′0(~a) and so IΠ,A |= goal(~a). We have derived a
contradiction.

Consider now a term t from q0 such that for every a ∈ H(t)
there exists a concept name Aa with Aa(t) ∈ q0 and a 6∈
A
JΠ,A
a . By Observation 1 there exists a model J of O and A

with
• ∆J = ∆JΠ,A ;
• rJ = rJΠ,A for all role names r;
• AJ ⊇ AJΠ,A for all concept names A;

such that a 6∈ AJa for all a ∈ X . It follows that J 6|= q(~a) and
so O,A 6|= q(~a), as required. o

Theorem 8 For every ontology-mediated query (O, q(~x))
with O a basic schema.org-ontology and q a CQ of qvar-size
at most 2 one can construct in polynomial time a datalog-
rewriting of (O, q(~x)).

Proof. Assume O and q(~x) = ∃~yq0(~x, ~y,~b). We employ
the program ΠO,basic from the proof of Proposition 20. Also,

for two sets X1 and X2 of concept names we use a program
ΠX1tX2 with intensional predicate IX1tX2(x) such that for
any data instance A and a ∈ Ind(A),

O,A |=
∧

A∈X1

A(a)∨
∧

A∈X2

A(a)⇔ ΠX1tX2 |= IX1tX2(a).

Denote by mCC the set of maximal connected components
{v, w} of quantified variables v 6= w in q. We assume
a fixed ordering v, w of any member of mCC. For any
quantified variable v in q we set Xv = {A | A(v) ∈
q0}. Let ~zv,w be the variable in ~x ∪ ~y without v, w and
take, for each {v, w} ∈ mCC, the IDBs Pv,w(v, w, ~zv,w,~b),
Xv,w(v, ~zv,w,~b), and Yv,w(w, ~zv,w,~b). Insert in the rewriting
Π the program ΠO,basic as well as all rules

Pv,w(v, w, ~zv,w,~b)← q′0 ∧ IXvtXw
(v) ∧ IXvtXw

(w)

where q′0 results from q0 by removing all unary atoms
A(t) from q0, replacing all r(t, t′) by Ir(t, t

′), and where
{v, w} ∈ mCC. Intuitively, Pv,w(v, w, ~zv,w,~b) collects the
potential matches for v, w. If, in addition, Xv(v, ~zv,w,~b)

and Yv,w(w, ~zv,w,~b) hold, then one has actually found a
match for v, w. We model the propagation of the ‘colors’
Xv,w(v, ~zv,w,~b) and Yv,w(w, ~zv,w,~b) by inserting in Π for
any {v, w} ∈ mCC

Xv,w(v, ~zv,w,~b) ← Pv,w(v, w, ~zv,w,~b) ∧
∧

A∈Xv

IO,A(v)

Yv,w(w, ~zv,w,~b) ← Pv,w(v, w, ~zv,w,~b) ∧
∧

A∈Xw

IO,A(w)

Xv,w(w, ~zv,w,~b) ← Pv,w(v, w, ~zv,w,~b) ∧Xv,w(v, ~zv,w,~b)

Yv,w(v, ~zv,w,~b) ← Pv,w(v, w, ~zv,w,~b) ∧ Yv,w(w, ~zv,w,~b)

The first of the two recursive rules says that if the only op-
tion to possibly avoid a match for v, w is to color (v, ~zv,w,~b)
with Xv,w, then the only way to possibly avoid a match for
v, w is to color (w, ~zv,w,~b) with Xv,w (because otherwise
one would have to color (w, ~xv,w,~b) with Yv,w). The sec-
ond recursive rule can be understood analogously with X and
Y swapped. Finally we insert in Π the following goal-rule
goal(~x) ← q′′0 , where q′′0 is obtained from q0 by replacing
all r(t, t′) by Ir(t, t′), all A(t) that do not participate in any
{v, w} ∈ mCC by IA(t), and for all {v, w} ∈ mCC all A(v)

by Xv,w(v, ~zv,w,~b) and all A(w) by Yv,w(w, ~zv,w,~b), respec-
tively.

The program Π is as required. Assume q(~x) =

∃~y q0(~x, ~y,~b). Let ~x = x1 . . . xk, ~y = y1, . . . , ym, and
~b = b1, . . . , bn. It is straightforward to show that if ~a ∈ Π(A),
then O,A |= q(~a).

Conversely, assume that ~a 6∈ Π(A). Then IΠ,A 6|=
∃~yq′′0 (~a, ~y,~b). Let H be the set of all matches π of q′0 in
JΠ,A with π(xi) = ai for 1 ≤ i ≤ k and such that for any
{v, w} ∈ mCC we have (π(v), π(w), π(~x),~b) ∈ P IΠ,A

v,w . If H
is empty then one can show similarly to the proof of Proposi-
tion 20 that O,A 6|= q(~a), as required.

If H is not empty, let for any connected component
{v, w} ∈ mCC, H(v, w) = {(π(v), π(w) | π ∈ H} and let
for any term t that does not participate in any {v, w} ∈ mCC,
H(t) = {π(t) | π ∈ H}.

Claim 1. (a) there exists a term t in q that does not participate
in any {v, w} ∈ mCC such that for all a ∈ H(t) there exists
a concept name A with A(t) ∈ q0 and a 6∈ IIΠ,A

A or (b) there
exists {v, w} ∈ mCC such that for all (a, b) ∈ H(v, w) either
(a,~a,~b) 6∈ XIΠ,A

v,w or (b,~a,~b) 6∈ Y IΠ,A
v,w .

The proof is similar of Claim 1 is similar to the proof of
Claim 1 in Proposition 20.

Now, if (a) holds we can proceed similarly to the proof
of Proposition 20 and construct a model I of O and A such
that I 6|= q(~a). If (b) holds, then we can construct a model
I of O and A with I 6|= q(~a) by picking {v, w} ∈ mCC

such that for all (a, b) ∈ H(v, w) either (a,~a,~b) 6∈ XIΠ,A
v,w or

(b,~a,~b) 6∈ Y IΠ,A
v,w and ensuring that for every (a, b) ∈ H(v, w)

we either have a 6∈ AI for some A ∈ Xv or b 6∈ AI for some
A ∈ Xw. o

B.1 Proofs for Rewritings of UCQs
Proposition 21. For basic schema.org-ontologies O and
quantifier-free UCQs q(x) with one variable it is coNP-hard
to decideO,A |= q(a) even for instance dataA with only one
individual a.

Proof. The proof is by reduction of satisfiability of proposi-
tional formulas in CNF. Let ϕ =

∧
i≤n ci be a conjunction of

propositional clauses in variables v1, . . . , vm. We represent
the formula ϕ in a basic schema.org-ontology O as follows:

• the concept namesAj andAj , j ≤ m, are used to encode
a positive or a negative literal, respectively, on variable
vj ;

• to represent the clauses c1, . . . , cn we use role names
r1, . . . , rn and define a range restriction for each role
with the concept names corresponding to the literals of
the clause. For example, if c1 = v1 ∨¬v2 then we define
ran(r1) v A1 tA2.

Then, for a data instance A = {r1(a, a), . . . , rn(a, a)} and
q(x) = (A1(x)∧A1(x))∨ · · · ∨ (Am(x)∧Am(x)) we have
that O,A |= q(a) iff ϕ is unsatisfiable. We constructed O and
q over a single variable x such that, on data instances with a
single individual a, deciding O,A |= q(a) is coNP-hard.

o

Evaluating a datalog rewriting over a data instance with a sin-
gle individual is tractable. Thus, if there is a datalog rewriting
of (O, q(x)), then it cannot be constructed in polynomial time.

B.2 Proof of Theorem 9
We show the following result.

Theorem 9 Let O be a basic minimized schema.org-ontology.
Then there exists a Boolean CQ q in the language of O such
that (O, q) is coNP-hard in data complexity iff there exists

F v A1 t · · · tAn ∈ O with n ≥ 2. Otherwise every (O, q)
with q a UCQ is FO-rewritable in polynomial time.

Observe that if there exists no F v A1 t · · · tAn ∈ O with
n ≥ 2, when we can rewrite every (O, q) with q a UCQ using
the rewriting given in Proposition 20.

In the converse direction we modify a hardness proof given
in [Lutz and Wolter, 2012]. The modification is required since
we want to show that q can be chosen in such a way that only
concept and role names in O are used. This is not the case in
the proof given in [Lutz and Wolter, 2012].

Assume O is minimized and there exists F v A0 t · · · t
Ak ∈ O with k ≥ 1. Then F ∈ {dom(r), ran(r)} and
we assume w.l.o.g. that F = ran(r). We want to construct
a Boolean CQ q in the language of O such that (O, q) is
coNP-hard in data complexity. To this end, we first construct
a Boolean UCQ with these properties and then discuss the
modifications required to obtain a Boolean CQ.

The construction of the queries is based on a reduction
of the complement of 2 + 2-SAT, a variant of propositional
satisfiability introduced by Schaerf [Schaerf, 1993]. A 2 + 2
clause is of the form c = (u0 ∨ u1 ∨ ¬u2 ∨ ¬u3), where
each of ul, l ≤ 3, is a propositional letter or a truth constant
0, 1. A 2 + 2 formula is a finite conjunction of 2 + 2 clauses.
Now, 2 + 2-SAT is the problem of deciding whether a given
2 + 2 formula is satisfiable. It is shown in [Schaerf, 1993] that
2 + 2-SAT is an NP-complete problem.

Assume ϕ = c0∧· · ·∧ cn is a 2+2-formula in propositional
letters v0, . . . , vm and let ci = ui0∨ui1∨¬ui2∨¬ui3 for i ≤ n.
Our first aim is to define a data instance Aϕ and a Boolean
UCQ q such that ϕ is unsatisfiable iff O,Aϕ |= q. To start we
represent the formula ϕ in the data instance Aϕ as follows:

• the individual names v0, . . . , vm represent variables and
the individual names 0, 1 represent truth constants;

• the individual names cil and bil are used to encode the four
literals of each 2 + 2 clause ci, where i ≤ n and l ≤ 3;

• for i ≤ n and l ≤ 3 we use the assertions

r(cil, b
i
l), r(b

i
l, u

i
l), r(c

i
l, u

i
l)

and
r(ci0, c

i
1), r(ci1, c

i
2), r(ci2, c

i
3)

to associate the literals cil of a clause ci to the vari-
able/truth constant uil .

We further extendAϕ to enforce a truth value for each variable
vi, i ≤ m. To this end, add to Aϕ the data instances Ai =
{r(fi, ai)} for i ≤ m. Intuitively, Ai is used to generate a
truth value for the variable vi, where we interpret vi as true if
the query A0(ai) is satisfied and as false if any of the queries
Aj(ai), 1 ≤ j ≤ k, is satisfied. Finally we extend Aϕ by

• linking variables vi to ai by adding assertions r(vi, ai)
for all i ≤ m;

• to ensure that 0 and 1 have the expected truth values,
add the individuals 0′ and 1′ with the assertions A0(0′)
and A1(1′). Also, add to Aϕ the assertions r(1, 1′) and
r(0, 0′).

bi0 bi1 bi2 bi3

ci0 ci1 ci2 ci3

1′0′a1a0

v0 v1 0 1

A0 A1

A0 A1

Figure 3: Encoding of a clause ci = v0 ∨ v1 ∨ ¬0 ∨ ¬1.

Figure 3 illustrates the encoding of a clause ci = v0 ∨ v1 ∨
¬0 ∨ ¬1. Consider the Boolean UCQ (we omit existential
quantifiers and do not distribute conjunctions over disjunc-
tions)

q0 =
∧

0≤i≤2

r(xi, xi+1) ∧
∧

0≤i≤3

ψi

where
• ψi = r(xi, zi)∧r(zi, yi)∧r(xi, yi)∧ffi(yi) for i = 0, 1

and
• ψi = r(xi, zi)∧r(zi, yi)∧r(xi, yi)∧tti(yi) for i = 2, 3

and
where

tti(yi) = r(yi, wi) ∧A0(wi)

ffi(yi) = r(yi, wi) ∧ (
∨

1≤j≤k

Aj(wi))

Then O,Aϕ |= q0 iff q0 is not satisfiable, as required. Note
that the ‘triangles’ using bil inAϕ and using zi in q0 are used to
ensure that in a match for q0 in Aϕ the only possible matches
for (w0, w1, w2, w3) are (ai0, a

i
1, a

i
2, a

i
3) with r(uij , a

i
j) ∈ Aϕ,

j ≤ 3, i ≤ n. In the equivalence proof this is required since
we can have inclusions such as dom(r) v Ai ∈ O for i ≤ n
in O which force all Ai to be true in every individual in the
domain of Ai.

We now show how to improve the result from Boolean
UCQs to CQs. To this end we change the encoding of ‘false’
from ffi(yi) to

ff ′i(yi) =
∧

1≤l≤k

r(yi, y
′
i) ∧ r(y′i, wil) ∧Al(wil)

To ensure the match condition discussed above we also modify
tti(yi) to

tt′i(yi) = r(yi, y
′
i) ∧ r(y′i, wi) ∧A0(wi)

We modify Aϕ correspondingly:
• for i ≤ m, remove from Aϕ the assertions r(vi, ai);
• remove from Aϕ the assertions A0(0′) and A1(1′);
• add toAϕ the assertions r(0′, 0′′), r(1′, 1′′), A0(0′′) and
A1(1′′);
• for 1 ≤ j ≤ k, add to Aϕ the assertion Aj(ej) for fresh

individual names ej ;

v0

A0

a0

d0
1 d0

j d0
k

ekeje1
A1 Aj Ak

.

.
d0

0

Figure 4: Modified encoding of v0 occurring in a clause ci =
v0 ∨ v1 ∨ ¬0 ∨ ¬1.

• for i ≤ m and j ≤ k, add to Aϕ the assertions r(vi, dij)
for fresh individual names dij ;

• for i ≤ m and 1 ≤ j ≤ k, add to Aϕ the assertions
r(di0, ai), r(dij , ai) and

r(dij , e1), . . . , r(dij , ej−1), r(dij , ej+1), . . . , r(dij , ek).

This finishes the modified construction. Figure 4 illustrates
the modified encoding of v0 in a clause ci = v0∨v1∨¬0∨¬1.

B.3 Proof of Theorem 10
When studying the complexity of CSP(B) one can assume
w.l.o.g. that B is a core, that is, every automorphism is an
isomorphism. It is useful to further assume that the template
B admits precoloring, that is, for each b ∈ ∆B there is a
concept name Pb such that d ∈ PBb iff d = b [Cohen and
Jeavons, 2006]. It is known that for every template B, there
is a template B′ that admits precoloring such that CSP(B)
and CSP(B) are mutually FO-reducible [Larose and Tesson,
2009].

Theorem 10 For every template B there exists a OMQ (O, q)
where O is a basic schema.org-ontology O and q a Boolean
acyclic UCQ such that the complement of CSP(B) and (O, q)
are mutually FO-reducible.

Proof. Assume a template B over signature Σ of concept
and role names is given such that for each b ∈ ∆B there is a
concept name Pb such that d ∈ PBb iff d = b. Take a fresh
role name s and the concept names Pb, b ∈ ∆B, and set

O = {ran(s) v t
b∈∆B

Pb}

Define a UCQ q as the disjunction of (we omit existential
quantifiers)

• Pa(x) ∧ r(x, y) ∧ Pb(y) for all r ∈ Σ such that (a, b) 6∈
rB;

• Pa(x) ∧B(x) for all B ∈ Σ such that a 6∈ BB;

• Pa(x) ∧ Pb(x) for all a 6= b.

We show that (O, q) and coCSP(B) (the complement of
CSP(B)) are mutually FO-reducible.

(⇒) Assume a data instance A containing assertions using
symbols in Σ only is given. Let A′ be the union of A and all
s(a, b) such that a, b ∈ Ind(A). We show:

Claim 1. A → B iff O,A′ 6|= q.

Assume h is a homomorphism from A to B. Define a model
I by setting
• ∆I = Ind(A);
• a ∈ P Ib iff h(a) = b;

• (a, b) ∈ rI iff r(a, b) ∈ A, for all r ∈ Σ;
• a ∈ BI iff B(a) ∈ A, for all B ∈ Σ \ {Pb | b ∈ ∆B};
• (a, b) ∈ sI for all a, b ∈ Ind(A).

It is readily checked that I is a model of O and A′ such that
I 6|= q. Thus, O,A′ 6|= q, as required.

Now assume that O,A′ 6|= q. Let I be a model of O and
A′ such that I 6|= q. Define h(a) = b if a ∈ P Ib . Using the
condition that I 6|= q one can show that h is well defined and
a Σ-homomorphism from A to B.

(⇐) Assume a data instanceA forO is given. Remove fromA
all assertions involving individuals a such that neither Pb(a) ∈
A for any b ∈ ∆B nor s(a′, a) ∈ A for any a′ and add the
assertions s(a, a) for the remaining individuals a. Clearly we
have O,A |= q iff O,A′ |= q for the resulting data instance
A′. Let A′′ be the restriction of A′ to Σ. One can show that
O,A′ |= q iff A′′ 6→ B, as required. o

B.4 Proof of Theorem 11
We show the PSPACE lower bound for FO-rewritability in ba-
sic schema.org-ontologies using a reduction of the word prob-
lem of polynomially space-bounded Turing machines. Similar
reductions have been used to establish PSPACE-hardness of
boundedness in linear monadic datalog [Cosmadakis et al.,
1988], of certain FO-rewritability problems in ontology-based
data access [Bienvenu et al., 2013], and of FO-rewritability
problems in consistent query answering [Lutz and Wolter,
2015]. Let M = (Q,Ω,Γ, δ, q0, qacc, qrej) be a DTM that
solves a PSPACE-complete problem and p(·) its polynomial
space bound. Here, Q is the set of states, Ω is the input alpha-
bet, Γ the tape alphabet, δ : (Q× Γ)→ {L,N,R} ×Q× Γ
the transition function, q0 ∈ Q the initial state, and qacc qrej
the accepting and rejecting state, respectively. We assume that
the transition function is total except on qacc and qrej where
it is undefined for every tape symbol. The tape is assumed
to be two-side infinite. We make the following additional as-
sumptions on M . We assume that M never writes the blank
symbol and with the left (resp. right) end of the tape we mean
the first tape cell to the left (resp. right) of the head labeled
with a blank. We also assume that M always terminates with
the head on the right-most tape cell and that it never attempts
to move left on the left-most end of the tape. Finally and
most importantly, we assume that, when started in any (not
necessarily initial) configuration C, then the computation of
M terminates (this assumption is justified in [Lutz and Wolter,
2015]).

Now let M be a TM that satisfies the conditions above
and let x ∈ Ω∗ be an input to M of length n. Our aim is to

construct a basic schema.org-ontology O and Boolean UCQ q
such that (O, q) is not FO-rewritable iff M accepts x.

A fundamental idea of the reduction is that whenM accepts
x, then (O, q) is not FO-rewritable because any FO-rewriting
would have to query for longer and longer paths that represent
the accepting computation of M on x, repeated over and over
again; this clearly contradicts the locality of an FO-query. In
the reduction, we use a very simple ontology

O = {ran(s0) v B tB′}

where B,B′ are concept names. To understand the source
for non-FO-rewritability that we build on, consider the OMQ
(O, q) with q̂ = B(x) ∧ r(x, y) ∧ B′(y) (see also Exam-
ple 7). Non-FO-rewritability is witnessed by path-shaped data
instances of the form

Am := {r(b1, b0), r(b2, b1), . . . , r(bm, bm−1)} ∪
{B′(b0), B(bm)} ∪
{s0(ai, bi) | 0 < i < m}.

In fact, it can be verified that T ,Am |= q̂ for all m > 0,
but whenever we drop an assertion from Am resulting in data
instance A′m, then T ,A′m 6|= q̂. We are going to modify the
above paths so that they describe a (repeated) accepting com-
putation of M on x. To this end, the tape contents, the current
state, and the head position are represented using the elements
of Γ ∪ (Γ×Q) as monadic relation symbols. Each constant
on the path represents one tape cell of one configuration, the
binary relation R is used to move between consecutive tape
cells, the binary relation S is used to move between successor
configurations inside the same computation, and the binary
relation T is used to separate computations. To illustrate,
suppose the computation of M on x = ab consists of the
two configurations qab and aq′b.1 The corresponding path of
length m that describes this computation (repeatedly) is

B′(b0), r(b1, b0), s(b2, b1), r(b3, b2), t(b4, b3),
r(b5, b4), . . . , r(bm, bm−1), B(bm)

with the additional assertions (a, q)(c) for c =
b0, b4, b8, . . . , b(c) for c = b1, b5, b9, . . . , a(c) for c =
b2, b6, b10, . . . , and (b, q′)(c) for c = b3, b7, b11, We now
assemble the UCQ q. To ensure that every individual on the
path is labeled with at least one symbol from Γ∪ (Γ×Q) (and
since we now have three relations r, s, t instead of only a sin-
gle one), we modify the query q̂ from above. While doing this,
we also ensure that t-steps can only occur exactly after the
accepting state was reached (we omit existential quantifiers):

(r-pr) B(x) ∧ A(x) ∧ r(x, y) ∧ A′(y) ∧ B′(y), for all A ∈
Γ ∪ (Γ×Q) and all A′ ∈ Γ ∪ (Γ× (Q \ {qacc, qrej}));

(s-pr) B(x) ∧ A(x) ∧ s(s, y) ∧ A′(y) ∧ B′(y), for all A ∈
Γ ∪ (Γ×Q) and all A′ ∈ Γ ∪ (Γ× (Q \ {qacc, qrej}));

(t-pr) B(x) ∧ A(x) ∧ t(x, y) ∧ A′(y) ∧ B′(y) for all A ∈
Γ ∪ (Γ×Q) and all A′ ∈ Γ× {qacc}.

1uqv ∈ Γ∗QΓ∗ means that M is in state q, the tape left of
the head is labeled with u, and starting from the head position, the
remaining tape is labeled with v.

If we simply use the disjunction of the above three queries as
the UCQ in our query evaluation problem, then that problem
is not FO-rewritable. This is witnessed by paths as above in
which every element is labeled with some role symbol from
Γ ∪ (Γ×Q). However, these labeled witness paths need not
represent proper computations of M on x since the transition
relation need not be satisfied, there need not be any state, etc.
We fix these problems by including additional CQs in the UCQ
q that discover ‘defects’ in the computation. These queries
rule out labeled path that do not describe proper computations
as witnesses for non-FO-rewritability of the defined query
evaluation problem: paths with defects are ‘yes’-instances,
but can be identified by an FO-query. In fact, the following
queries do not mention B and B′ and thus are derived from
O∪A if and only if they have a match inA. They thus do not
require any rewriting. The first set of additional CQs ensures
that every tape cell has a unique label.

(uni) A(x) ∧A′(x) for all distinct A,A′ ∈ Γ ∪ (Γ×Q).

The next CQ enforces that there is not more than one head
position per configuration:

(h1)
∧

0≤l<i{r(xl, xl+1)}∧(a, q)(xi)∧
∧

0≤l<j r(yl, yl+1)∧
(a′, q′)(yj), for all i < j < p(n), (a, q), (a′, q′) ∈ Γ×Q,
and x0 = y0.

and that there is at least one head position per configuration:

(h2) r(x0, x1) ∧ . . . ∧ r(xp(n)−2, xp(n)−1) ∧ a1(x0) ∧ . . . ∧
ap(n)−1(xp(n)−1), for all sequences a0, . . . , ap(n)−1 ∈
Γ.

We ensure that configurations have at most length p(n) using
the CQ

(l1) r(x0, x1) ∧ . . . ∧ r(xp(n)−1, xp(n)).

We also ensure that configurations are not shorter than p(n)
(with the possible exception of the first configuration, which
can be shorter):

(l2) ρ(x0, x1)∧r(x1, x2)∧ . . .∧r(xi, xi+1)∧ρ′(xi+1, xi+2)
for all i < p(n)− 1 and ρ, ρ′ ∈ {s, t}.

We now enforce that the transition function is respected and
that the content of tape cells which are not under the head
does not change. Let forbid denote the set of all tuples
(A1, A2, A3, A) with Ai ∈ Γ ∪ (Γ ×Q) such that whenever
three consecutive tape cells in a configuration c are labeled
with A1, A2, A3, then in the successor configuration c′ of c,
the tape cell corresponding to the middle cell cannot be labeled
with A:

(con) r(x0) ∧ r(x0, x1) ∧ . . . ∧ r(xi−1, xi) ∧ s(xi, y0) ∧
t(y0, y1) ∧ . . .∧

r(yp(n)−i−3, yp(n)−i−2) ∧ A3(yp(n)−i−2) ∧
r(yp(n)−i−2, yp(n)−i−1)∧

A2(yp(n)−i−1) ∧ r(yp(n)−i−1, yp(n)−i) ∧
A1(yp(n)−i)
for all 0 ≤ i < p(n) and (A1, A2, A3, A) ∈ forbid.

It remains to set up the initial configuration. Recall that wit-
ness instances consist of repeated computations of M , which
ideally we would all like to start in the initial configuration
for input x. It does not seem possible to enforce this for the
first computation in the instance, so we live with this com-
putation starting in some unknown configuration, relying on
our assumption that M terminates also when started in an
arbitrary configuration. Then, we utilize the final states qacc
and qrej to enforce that all computations in the instance ex-
cept the first one must start with the initial configuration for
x. Let A(0)

0 , . . . , A
(0)
p(n)−1 be the monadic relation symbols

that describe the initial configuration, i.e., when the input x is
x0 · · ·xn−1, then A(0)

0 = (x0, q0), A(0)
i = xi for 1 ≤ i < n,

and A(0)
i = xi is the blank symbol for n ≤ i < p(n). Now

take

(in)
∧

0≤l<i r(xl, xl+1)∧t(xi, xi+1)∧A(x0) for all 0 ≤ i <
p(n) and A 6= A

(0)
i .

The query q is the UCQ defined by taking the union of all
Boolean CQs given above. The following lemma establishes
the correctness of our reduction.

Lemma 22. (O, q) is not FO-rewritable iff M accepts x.

Proof. “if”. Assume that M accepts x. By using standard
locality arguments (e.g., Hanf’s Theorem), it is enough to
show that there exist arbitrary large k and instances Ak with
domain {a0, b0, . . . , ak, bk} such that

• for all i, j ≤ k: if ρ(bi, bj) ∈ Ik for some ρ ∈ {r, s, t},
then i = j + 1 or j = i+ 1;

• The assertions involving s0 in Ak are exactly s0(ai, bi)
for 0 < i < m;

• O,Ak |= q;

• O,A 6|= q, where A is the disjoint union of the data
instances A0

k and Akk, where A0
k is obtained from Ak by

removing all facts involving b0 and Akk is obtained from
Ak by removing all facts involving bk.

Assume k > 0 is given. Let C1, . . . , Cm be a sequence
of configurations of length p(n) obtained by sufficiently of-
ten repeating the accepting computation of M on x so that
|C1|+ · · ·+ |Cm| ≥ k. We can convert C1, . . . , Cm into the
desired witness data instance Ak in a straightforward way:
introduce one individual name for each tape cell in each con-
figuration and computation, use r to connect cells within the
same configuration, s to connect configurations, and t to con-
nect computations, and the symbols from Γ∪ (Γ×Q) to indi-
cate the tape inscription, current state, and head position. We
obtain instance data satisfying the conditions above by identi-
fying the individuals with b0, . . . , bk assuming that b0 stands
for the first cell of the first configuration of C1. Finally add the
assertions {B′(b0)}∪ {B(bk))}∪ {s0(ai, bi) | 0 < i < k} to
obtainAk. It can be verified thatAk is as required. To see that
O,Ak |= q observe that in any model I ′k of Ak there is some
i with 0 ≤ i < k such that B′(bi) ∈ I ′k and B(bi+1) ∈ I ′k.
To see that O,A 6|= q for the disjoint union A of A0

k and
Akk, observe that one obtains a model of A by satisfying B′

everywhere in the interpretation corresponding to A0
k and B

everywhere in the interpretation corresponding to Akk.

“only if”. Assume that (O, q) is not FO-rewritable. Note
that all CQs in q that are distinct from (r-pr), (s-pr), and (t-pr)
have a match in A iff they they are entailed by O,A. Thus,
they are FO-rewritable. Now consider the following

Observation. Assume A is a data instance such that no CQ in
q distinct from the CQs (r-pr), (s-pr), and (t-pr) has a match
in A. Then O,A |= q iff there exists k > 0 such that the
following condition (∗k) holds: there are

ρ0(b1, b0), . . . , ρk−1(bk, bk−1), A0(b0), . . . , Ak(bk) ∈ A

with ρi ∈ {r, s, t} for all i < k and Ai ∈ Γ ∪ (Γ×Q) for all
i ≤ k such that

• B′(b0) ∈ A, B(b0) 6∈ A,

• B(bk) ∈ Ak, B′(bk) 6∈ A,

• for all 0 < i < k there exists a such that s0(a, bi) ∈ A,

• if ρi+1 ∈ {r, s}, then Ai ∈ Γ ∪ (Γ× (Q \ {qacc, qrej})),

• if ρi+1 = t, then Ai ∈ Γ ∪ (Γ× {qacc}).

Clearly, for every k > 0 condition (∗k) can be expressed
in FO. Thus, if (O, q) is not FO-rewritable, then for every
k > 0 there exists a data instance A satisfying (∗k). Now
let m0 be the maximum number of steps M makes starting
from any configuration of length p(n) before entering the
final state. One can prove that any A satifying (∗k) for k ≥
2m0(p(n) + 1) + 1 encodes an accepting computation of M
for input x, as required. o

C Proofs for Section 4
In this section, we provide proofs of Theorems 12–14 from
Section 4. Some of the results presented here also form the
basis for the next section.

Let O be a schema.org-ontology. By Obasic we will always
denote the basic schema.org-ontology obtained from O by
dropping all enumeration definitions and viewing all datatype
names as concept names.

A basic concept B is a concept name, an expression of the
form dom(r) or ran(r) with r a role name, or a datatype name
in DT. Let BC(O) be the set of all basic concepts constructed
from concept names and role names in O, and datatype names
in DT.

An item type over O (or item type if O is understood) is

• an enumeration individual in NE(O),

• a datatype in DT, or

• the symbol ?.

Given an interpretation I, an a ∈ ∆I,DT, and an item type t
over O, we say that a has type t (alternatively, t is the type of
a, or a realizes t) if

• t ∈ NE(O) and a = t,

• t ∈ DT and a ∈ ∆t, or

• t = ? and a ∈ ∆I \ NE.

For all B ∈ BC(O), let ITO(B) be the set of all item types t
over O that satisfy the following conditions:
• if B ∈ NC, then t /∈ DT, and t ∈ X for all C ≡ X ∈ O

with Obasic |= B v C;
• if B is the name of a datatype D ∈ DT, then t = D;
• if B = f(r) for some r ∈ NR and f ∈ {dom, ran}, then

the following are true:
– if f = dom, then t /∈ DT; and
– for all f(s) v C1 t · · · t Ck ∈ O with Obasic |=
r v s there is i ∈ {1, . . . , k} with t ∈ ITO(Ci).

It is straightforward to check that ITO(B) can be computed in
polynomial time fromO andB. For this, recall from Section 3
that the entailment problem for basic schema.org-ontologies
is decidable in polynomial time.

We are now ready to prove Theorem 12.

Theorem 12 (restated). Incoherence of schema.org-
ontologies can be decided in PTime.

Proof. Observe that O is incoherent iff ITO(B) = ∅ for
some B ∈ BC(O). Furthermore, ITO(B) can be computed in
polynomial time for each basic concept B. o

Let A be a data instance for O. For each a ∈ Ind(A), let
ITO,A(a) be the set of all item types t over O such that
• for all B ∈ BC(O) with IA |= B(a) we have t ∈

ITO(B); and
• if a ∈ NE, then t = a.

The following lemma shows that ITO,A(a) consists of pre-
cisely those item types that are realizable by aI in some model
I of O ∪A.
Lemma 23. Let O be a schema.org-ontology, and let A be a
data instance for O.

1. Let I be a model of O ∪A, let a ∈ Ind(A), and let t be
the item type of aI . Then, t ∈ ITO,A(a).

2. Let ta ∈ ITO,A(a) for each a ∈ Ind(A). Then, there is a
model I of O ∪A such that ta is the item type of aI for
each a ∈ Ind(A). Furthermore, if ta = ?, then aI 6= bI

for all b ∈ Ind(A) with a 6= b.
Proof. Ad 1: To prove t ∈ ITO,A(a), we have to show that
for all B ∈ BC(O) with IA |= B(a) we have t ∈ ITO(B);
and if a ∈ NE, then t = a.

First of all, since aI has the item type t, we have that a ∈ NE

implies t = aI = a.
Next, let B ∈ BC(O) be such that IA |= B(a). We have

to show that t ∈ ITO(B). To this end, we distinguish the
following three cases:
• Case 1: B ∈ NC. Since IA |= B(a) and datatype

values are not allowed to occur in concepts, we have a /∈⋃
D∈DT ∆D and hence t /∈ DT. Now, let C ≡ X ∈ O be

such that Obasic |= B v C. Since I is a model of O ∪A
and IA |= B(a), we have I |= C(a). Hence, aI ∈ X ,
which implies t = aI ∈ X .
• Case 2: B is a datatype name in DT. Let D ∈ DT be

such that D = (B,∆D). Since IA |= B(a), we have
that a ∈ ∆D. Hence, t = D.

• Case 3: B = f(r) for some r ∈ NR, f ∈ {dom, ran}.
First of all, if f = dom, then by IA |= B(a) and the
definition of interpretation, we have a /∈

⋃
D∈DT ∆D and

hence t /∈ DT. Next, let f(s) v C1 t · · · t Ck ∈ O
be such that Obasic |= r v s. From IA |= B(a) and
Obasic |= r v s, we obtain aI ∈ f(s)I . Hence, there is
an i ∈ {1, . . . , k} with I |= Ci(a). We can now prove
t ∈ ITO(Ci) similarly to cases 1 and 2 above.

Ad 2: For all a ∈ Ind(A), let θa be the smallest set of basic
concepts over O such that for all B ∈ BC(O),

• if IA |= B(a), then B ∈ θa;

• if B ∈ θa and Obasic |= B v C1 t · · · t Ck, then θa
contains all Ci with ta ∈ ITO(Ci).

Since t ∈ ITO,A(a), we have t ∈ X for all B ≡ X ∈ O
with B ∈ θa, and t ∈ DT iff t = (B,∆t) and B ∈ θa. It is
straightforward to construct a model I of O ∪A such that for
each a ∈ Ind(A),

• aI = ta if ta ∈ NE, aI ∈ ∆ta if ta ∈ DT, and aI = a
if ta = ?;

• for all B ∈ BC(O), we have I |= B(a) iff B ∈ θa.

In particular, ta is the item type of aI . Furthermore, if ta = ?,
then aI 6= bI for all b ∈ Ind(A) with a 6= b. o

It follows that A is unsatisfiable w.r.t O iff ITO,A(a) is
empty for some a ∈ Ind(A). Since for each B ∈ BC(O),
ITO(B) is computable in polynomial time from O, we have
that ITO,A(a) is computable in polynomial time from O and
A for each a ∈ Ind(A). Hence, unsatisfiability of A w.r.t. O
is decidable in PTime. Even stronger, the following lemma
implies that unsatisfiability is definable in non-recursive data-
log. For every concept B ∈ BC(O), define a relational atom
atB(x) as follows: if B = A ∈ NC, then atB(x) = A(x);
if B = dom(r), then atB(x) = r(x, z); and if B = ran(r),
then atB(x) = r(z, x).

Lemma 24. For any schema.org-ontology O and item type t
over O, one can compute in polynomial time a non-recursive
datalog program Πt such that for any data instance A for O,
Πt(A) is the set of all a ∈ Ind(A) with t /∈ ITO,A(a).

Proof. Let Πt be the datalog program containing the rules

• goal(x)← atB(x) for B ∈ BC(O) with t /∈ ITO(B);

• goal(x)← x = a for all a ∈ NE(O) with t 6= a;

• goal(x) ← r(y, x) ∧D(x) for all D = (D,∆D) ∈ DT
with D 6= t.

It it easy to verify that if b ∈ Ind(A) satisfies the body of a
rule in Πt, then t /∈ ITO,A(b). Hence, Πt(A) has the desired
property. Since ITO(·) can be computed in polynomial time,
Πt can be computed in polynomial time. o

It is now easy to prove Theorem 13 using Lemma 24.

Theorem 13 (restated). Given a schema.org-ontology O,
one can compute in polynomial time a non-recursive datalog
program Π such that for any data instance A for O, A is
unsatisfiable w.r.t. O iff Π(A) 6= ∅.

Proof. The program Π can be obtained from the programs Πt

in Lemma 24 as follows. Let goalt(x) be the goal predicate
of Πt. Then, Π contains the program Πt for each item type t,
and the following additional rule

goal()←
∧
t

goalt(x),

where t ranges over all the items types over O. Then, Π(A) is
non-empty iff ITO,A(a) = ∅ for some a ∈ Ind(A). The latter
holds precisely if A is unsatisfiable w.r.t. O. o

We conclude this section by proving Theorem 14. Recall
the notion of a conflict assertion from Section 4.

Theorem 14 (restated). Given a schema.org-ontology O and
concept name A (resp. role name r), one can compute a non-
recursive datalog program Π such that for any data instance
A for O, Π(A) is the set of all a ∈ Ind(A) (resp. (a, b) ∈
Ind(A)2) such that A(a) (resp. r(a, b)) is a conflict assertion
in A.

Proof. For concept names A, Π contains the following rules:
• for all minimal S ⊆ BC(O) such that A ∈ S and⋂

C∈S ITO(C) = ∅, the rule goal(x)←
∧
C∈S atC(x);

• goal(x) ← A(x) ∧ x = a for all a ∈ NE(O) with a /∈
ITO(A).

For role names r, Π contains the following rules:
• for all minimal S ⊆ BC(O) such that dom(r) ∈ S and⋂

C∈S ITO(C) = ∅, the rule goal(x, y) ← r(x, y) ∧∧
C∈S atC(x);

• for all minimal S ⊆ BC(O) such that ran(r) ∈ S and⋂
C∈S ITO(C) = ∅, the rule goal(x, y) ← r(x, y) ∧∧
C∈S atC(y);

• goal(x, y) ← r(x, y) ∧ x = a for all a ∈ NE(O) with
a /∈ ITO(dom(r));
• goal(x, y) ← r(x, y) ∧ y = a for all a ∈ NE(O) with
a /∈ ITO(ran(r));
• goal(x, y) ← r(x, y) ∧ D(y) if D = (D,∆D) ∈ DT

and D /∈ ITO(ran(r)).
It is easy to verify that Π has the desired properties. o

D Proof of Theorem 15
This section provides a detailed proof of Theorem 15. We first
show that over schema.org-ontologies, quantifier-free CQs can
be polynomially rewritten into datalog-programs. Polynomial
time combined complexity of answering quantifier-free CQs
q w.r.t. schema.org-ontologies O will then follow from the
structure of the rewriting of (O, q).

To simplify technical constructions, we assume that
NE(O) ⊆ ∆IA and ai ∈ AIA wheneverA ≡ {a1, . . . , an} ∈
O, 1 ≤ i ≤ n. All results in this section also hold without
this assumption. For instance, in the datalog programs con-
structed in Lemmas 26 and 29 below, we can “simulate” this
by adding rules A(ai)← true for all A ≡ {a1, . . . , ak} ∈ O
and 1 ≤ i ≤ k; the resulting programs are non-recursive iff
the original programs are. For the definitions of Obasic, the

set BC(O) of basic concepts of a schema.org-ontology O, the
concept of an item type, and the set ITO,A(·), we refer the
reader to Section C.

We start by considering queries of the form A(x). Note
that rewritings as constructed in Section 3 do not work here,
because enumeration types in the ontology might force us
to map an individual to an enumeration individual for which
we can derive A. For example, let O = {B ≡ {b1, b2}}
and A = {B(a), A(b1), A(b2)}. Then, O,A |= A(a) holds,
although A(a) is not true in A (i.e., A(a) is not true after
removing the enumeration definition from O). Nevertheless,
there is a simple non-recursive datalog rewriting of A(x):2

goal(x)← A(x),

goal(x)← B(x) ∧ goal1(x) ∧ goal2(x),

goali(x)← neq(x, bi)

goali(x)← A(bi).

Here, goali(a) checks that if a can have the item type bi (i.e.,
if it is not the case that a ∈ {b1, b2} and a 6= bi), then A(bi)
holds. Thus, goal(a) is true iff the data instance containsA(a),
or a cannot have the item type ? and for the remaining item
types t ∈ {b1, b2} that are possible for a the data instance
contains A(t). It is easy to check that the latter is equivalent
to O,A |= A(a).

We now describe the construction for arbitrary schema.org-
ontologies. Before doing this, we show under which condi-
tions one can derive an atom A(a) from a data instance A and
a schema.org-ontology O.

Lemma 25. Let A be a data instance for O, A ∈ NC, and
a ∈ NI. Suppose thatO∪A is satisfiable. Then,O,A |= A(a)
iff one of the following applies:

1. Obasic,A |= A(a); or

2. ? /∈ ITO,A(a), and for all t ∈ ITO,A(a) there exists a
b ∈ Ind(A) with Obasic,A |= A(b) and ITO,A(b) ⊆ {t}.

Proof. “Only if” We prove the contrapositive. Suppose that
Obasic,A 6|= A(a), and that one of the following applies:

1. ? ∈ ITO,A(a); or

2. there exists a t ∈ ITO,A(a) such that for all b ∈ Ind(A)
with Obasic,A |= A(b) we have ITO,A(b) 6⊆ {t}.

We show that O,A 6|= A(a). To this end, we show that there
is a model I of O ∪A with I 6|= A(a).

First, assume that ? ∈ ITO,A(a). SinceO∪A is satisfiable,
we can pick an element tb ∈ ITO,A(b) for each b ∈ Ind(A).
By Lemma 23, there is a model I ofO∪A such that aI 6= bI

for all b ∈ Ind(A) \ {a}. Together with Obasic,A 6|= A(a),
this implies I 6|= A(a).

Next, assume that there exists a t ∈ ITO,A(a) such that for
all b ∈ Ind(A) with Obasic,A |= A(b) we have ITO,A(b) 6⊆
{t}. By Lemma 23, there is a model I of O ∪A such that aI
has item type t, and each b ∈ Ind(A) with Obasic,A |= A(b)
has an item type distinct from t. In particular, each b ∈ Ind(A)
with Obasic,A |= A(b) is assigned to an individual distinct

2To simplify the presentation, we omit the straightforward rules
for deriving neq(b1, b2), neq(b2, b1) as well as B(b1) and B(b2).

from aI . Together with Obasic,A 6|= A(a), this implies I 6|=
A(a).

“If” Clearly,Obasic,A |= A(a) impliesO,A |= A(a). Assume
now that ? /∈ ITO,A(a), and that for all t ∈ ITO,A(a) there
exists a b ∈ Ind(A) with Obasic,A |= A(b) and ITO,A(b) ⊆
{t}. We show thatO,A |= A(a). To this end, let I be a model
of O ∪ A, and let t be the item type of aI . By Lemma 23,
we have t ∈ ITO,A(a). Hence, by our assumption, there is a
b ∈ Ind(A) with Obasic,A |= A(b) and ITO,A(b) ⊆ {t}. Fix
such a b. Since ITO,A(b) ⊆ {t} and t 6= ?, we have aI = bI .
Together with Obasic,A |= A(b), this implies I |= A(a).

o

We are now ready for giving the construction of a non-
recursive datalog rewriting of atomic queries A(x) w.r.t. arbi-
trary schema.org-ontologies.
Lemma 26. For every schema.org-ontologyO and every A ∈
NC, one can construct in polynomial time a non-recursive
datalog-rewriting of (O, A(x)).
Proof. As mentioned at the end of Section 4 it suffices to
construct a rewriting that works for data instances A such
that O ∪A is satisfiable. Let A be a data instance for O and
a ∈ Ind(A). By Lemma 25 we have O,A |= A(a) iff one of
the following applies:

1. Obasic,A |= A(a); or
2. ? /∈ ITO,A(a), and for all t ∈ ITO,A(a) there exists a
b ∈ Ind(A) with Obasic,A |= A(b) and ITO,A(b) ⊆ {t}.

The datalog program constructed below implements the above
checks.

By Proposition 20, we can compute in polynomial time a
non-recursive datalog rewriting ΠA of (Obasic, A(x)). Let
certainA be the goal predicate of ΠA. Furthermore, by
Lemma 24, for every item type t over O we can compute
in polynomial time a non-recursive datalog program Πt such
that for any data instance A for O, Πt(A) is the set of all
a ∈ Ind(A) with t /∈ ITO,A(a). Let itt be the goal predicate
of Πt.

Now, consider the non-recursive datalog program Π con-
taining ΠA and Πt, for every item type t over O, and the
following additional rules:

1. goal(x)← certainA(x);
2. goal(x)←

∧
t∈NE(O)∪{?}Rt(x);

3. Rt(x)← itt(x) for all item types t over O;

4. Rt(x)← certainA(y)∧
∧
t′∈NE(O)\{t} itt′(y) for all item

types t ∈ NE(O).3

Here, goal andRt, for each item type t overO, are fresh unary
IDB predicates. Clearly, Π can be computed in polynomial
time from O. The characterisation of O,A |= A(a) at the
beginning of the proof implies that for every data instance A
for O and every a ∈ Ind(A), we have a ∈ Π(A) iff O,A |=
A(a). o

3Technically, we would have to add atoms to the body to “cover”
the variable x. We can easily do this by first adding rules that define
the unary predicate of all individual names in A, and then using this
unary predicate to “cover” x.

Next, we deal with atomic role queries. We first prove
an auxiliary lemma, Lemma 28, which states under which
conditions one can derive an atom r(a, b) from a data instance
A and a schema.org-ontology O. The lemma is based on the
following notion of path.

Definition 27. Let O be a schema.org-ontology, A a data
instance for O, a, b ∈ Ind(A), and ta, tb item types over O.
An (r, a, b, ta, tb)-path in O,A is a sequence c0, c1, . . . , cn ∈
Ind(A), for some n ≥ 1, such that

• Obasic,A |= r(ci−1, ci) for each i ∈ {1, . . . , n},
• IT′O,A(c0) ⊆ {ta},

• IT′O,A(ci) ⊆ {ta, tb} for each i ∈ {1, . . . , n− 1}, and

• IT′O,A(cn) ⊆ {tb}.

Here, we let IT′O,A(c) := ITO,A(c) for c ∈ Ind(A) \ {a, b},
and IT′O,A(c) := {tc} for c ∈ {a, b}.

Lemma 28. Let A be a data instance for O such that O ∪A
is satisfiable. Let r ∈ NR, a ∈ NI, and b ∈ NI ∪

⋃
D∈DT ∆D.

Then, O,A |= r(a, b) iff one of the following applies:

1. Obasic,A |= r(a, b); or

2. ITO,A(a) ⊆ NE(O), ITO,A(b) ⊆ NE(O), and for all
ta ∈ ITO,A(a) and tb ∈ ITO,A(b) there exists an
(r, a, b, ta, tb)-path in O,A.

Proof. “If” If Obasic,A |= r(a, b), then O,A |= r(a, b). In
the following, we assume that ITO,A(a), ITO,A(b) ⊆ NE(O),
and that for all ta ∈ ITO,A(a) and tb ∈ ITO,A(b) there exists
an (r, a, b, ta, tb)-path in O,A.

To show that O,A |= r(a, b), let I be a model of O ∪ A.
For each c ∈ Ind(A), let tc be the item type realized by cI .
By Lemma 23, we have tc ∈ ITO,A(c).

Now, let c0, c1, . . . , cn be an (r, a, b, ta, tb)-path in O,A.
Then, I |= r(ci, ci+1) for all i < n, IT′O,A(c0) ⊆ {ta},
IT′O,A(cn) ⊆ {tb}, and IT′O,A(ci) ⊆ {ta, tb} for each i ≤
n. Let i be the smallest index ≤ n with tci = tb. Then,
tci−1

= ta, and hence (aI , bI) = (ta, tb) = (cIi−1, c
I
i). Since

I |= r(ci−1, ci), this implies I |= r(a, b).
This shows that r(a, b) is true in every model of O ∪ A,

hence O,A |= r(a, b).

“Only if” We prove the contrapositive. Suppose that
Obasic,A 6|= r(a, b), and that one of the following applies:

• Case 1: ITO,A(a) * NE(O).

• Case 2: ITO,A(b) * NE(O).

• Case 3: Cases 1 and 2 do not apply, and there are
ta ∈ ITO,A(a) and tb ∈ ITO,A(b) such that there is
no (r, a, b, ta, tb)-path in O,A.

Case 1: In this case, there is a ta ∈ ITO,A(a) with ta /∈ NE.
Note that this implies ta = ?. Since O ∪A is satisfiable, we
can pick an element tc ∈ ITO,A(c) for each c ∈ Ind(A) \ {a}.
By Lemma 23, there is a model I of O ∪A such that

1. aI realizes t, and

2. if ta = ?, then aI 6= cI for all c ∈ Ind(A) with a 6= c.

Without loss of generality, we may assume that I is an
inclusion-minimal model. In such a model, we have I |=
r(a, b) iff Obasic,A |= r(c, d) for c, d ∈ Ind(A) with
(aI , bI) = (cI , dI). Since ta = ?, and by the properties
of I stated above, there is no c ∈ Ind(A) with cI = aI , and
therefore I 6|= r(a, b). As I is a model of O ∪A, this implies
O,A 6|= r(a, b).

Case 2: Similar to case 1.

Case 3: Let ta ∈ ITO,A(a) ⊆ NE(O) and tb ∈ ITO,A(b) ⊆
NE(O) such that there is no (r, a, b, ta, tb)-path in O,A. Con-
sider the directed graph G = (V,E) defined as follows:

• the vertex set V consists of all the elements c ∈ Ind(A)
with IT′O,A(c) ⊆ {ta, tb};

• the edge set E consists of all pairs (c, d) ∈ V × V with
Obasic,A |= r(c, d).

Here, IT′O,A(c) is defined as in Definition 27. Let S ⊆ V

consist of all those c ∈ V with IT′O,A(c) ⊆ {ta}, and let S∗
be the set of all c ∈ V that are reachable from S in G. Since
there is no (r, a, b, ta, tb)-path in O,A, we have

ta ∈ IT′O,A(c) for all c ∈ S∗. (1)

Since all those c ∈ V with tb /∈ IT′O,A(c) occur in S ⊆ S∗,
we also have

tb ∈ IT′O,A(c) for all c ∈ V \ S∗. (2)

Also note that a ∈ S ⊆ S∗ and b ∈ V \ S∗ (for the latter,
recall that IT′O,A(b) = {tb}, hence the presence of b in S∗

would imply an (r, a, b, ta, tb)-path in O,A, contradicting our
assumption). For each c ∈ Ind(A), let

• tc = ta if c ∈ S∗,
• tc = tb if c ∈ V \ S∗,
• tc ∈ ITO,A(c) \ {ta, tb} if c ∈ Ind(A) \ V .

Notice that there is no edge (c, d) in G with (tc, td) = (ta, tb),
because by the definition of the tc every such edge (c, d) must
have the property that c ∈ S∗ and d ∈ V \ S∗, but by the
definition of S∗ there is no edge from S∗ to V \ S∗.

By Lemma 23, there is a model I of O ∪ A such that for
each c ∈ Ind(A),

• cI realizes tc, and

• if tc = ?, then cI 6= dI for all d ∈ Ind(A) with c 6= d.

Without loss of generality, we may assume that I is an
inclusion-minimal such model. In such a model, we have
I |= r(a, b) iff there is an edge (c, d) in G with (cI , dI) =
(aI , bI) = (ta, tb). But from our construction of the tc and
the properties of I it follows that there is no edge (c, d) in G
with (cI , dI) = (ta, tb). Consequently, I 6|= r(a, b), which
implies O,A 6|= r(a, b), as desired. o

Lemma 29. For every schema.org-ontology O and every r ∈
NR, one can construct in polynomial time a datalog-rewriting
of (O, r(x, y)).

Proof. As mentioned at the end of Section 4 it suffices to
construct a rewriting that works for data instances A such that
O ∪A is satisfiable. Clearly, if Obasic,A |= r(a, b) for a data
instance A for O and a, b ∈ Ind(A), then O,A |= r(a, b).
On the other hand, if Obasic,A 6|= r(a, b), then we need to
check that there always exists an assertion r(c, d) ∈ A such
that c and d are forced onto the same individuals as a and b,
respectively. By Lemma 28 we have that O,A |= r(a, b) iff
one of the following applies:

1. Obasic,A |= r(a, b); or

2. ITO,A(a) ⊆ NE(O), ITO,A(b) ⊆ NE(O), and for all
ta ∈ ITO,A(a) and tb ∈ ITO,A(b) there exists an
(r, a, b, ta, tb)-path in O,A.

We now construct a datalog program implementing these
checks. As in Lemma 26, we start by computing a non-
recursive datalog rewriting of (Obasic, r(x, y)), and non-
recursive datalog programs Πt, for each item type t overO, as
guaranteed by Lemma 24. By Proposition 20 and Lemma 24,
this is possible in polynomial time. Let certainr and itt be the
goal predicates of ΠA and Πt, respectively.

Now, let Π be the datalog program containing Πr and Πt,
for each item type t over O, and the following additional sets
of rules. First, for all t, t′ ∈ NE(O), we include the following
rules to check the existence of an (r, x, y, t, t′)-path in O,A:4

1. St,t′(x, u)←
∧
t′′ 6=t itt′′(u);

St,t′(x, u)← x = u;

2. Vt,t′(x, y, u)←
∧
t′′ /∈{t,t′} itt′′(u);

Vt,t′(x, y, u)← x = u;
Vt,t′(x, y, u)← y = u;

3. Pt,t′(x, y, u) ← St,t′(x, v) ∧ certainr(v, u) ∧
Vt,t′(x, y, u);

4. Pt,t′(x, y, u) ← Pt,t′(x, y, v) ∧ certainr(v, u) ∧
Vt,t′(x, y, u);

5. goalt,t′(x, y)← Pt,t′(x, y, u) ∧
∧
t′′ 6=t′ itt′′(u);

6. goalt,t′(x, y)← Pt,t′(x, y, u) ∧ u = y.

The rules in 1 add to St,t′(x, ·) all uwith IT′O,A(u) ⊆ {t} (i.e.,
ITO,A(u) ⊆ {t} or u = x). Similarly, the rules in 2 add to
Vt,t′(x, y, ·) all u with IT′O,A(u) ⊆ {t, t′} (i.e., ITO,A(u) ⊆
{t, t′} or u ∈ {x, y}). The rules in 3 and 4 add to Pt,t′(x, y, ·)
all u such that there is an r-path starting in an element in
St,t′(x, ·), ending in u, and having all its intermediate vertices
in Vt,t′(x, y, ·). Finally, rules 5 and 6 check whether some
element in Pt,t′(x, y, ·) is the endpoint of a (r, x, y, t, t′)-path.
In particular, goalt,t′(x, y) is true iff there is an (r, x, y, t, t′)-
path in O,A.

We now use the above rules to construct the final rewriting.
To this end, we add the following rules:

• goal(x, y)← certainr(x, y);

4To simplify the presentation, we sometimes omit covering vari-
ables that occur in the head of a rule, but as before we can easily
do this by first adding rules that define the unary predicate of all
individual names in A, and then using this unary predicate to “cover”
the variables that occur in the head but not in the body of a rule.

• goal(x, y)←
∧
t,t′∈NE(O)Rt,t′(x, y);

• Rt,t′(x, y) ← itt(x) and Rt,t′(x, y) ← itt′(y) for all
item types t, t′ over O;

• Rt,t′(x, y)← goalt,t′(x, y) for all t, t′ ∈ NE(O).

This finishes the construction of the program. Clearly, Π
can be computed in polynomial time. The characterization
of O,A |= r(a, b) at the beginning of the proof implies that
(a, b) ∈ Π(A) iff O,A |= r(a, b). o

We obtain Theorem 15 as a corollary of Lemmas 26 and 29.

Theorem 15 (restated). Given an OMQ Q = (O, q) with O
a schema.org-ontology and q a quantifier-free CQ, one can
construct in polynomial time a datalog-rewriting of Q; the
rewriting is non-recursive if q = A(x). Moreover, evaluating
OMQs from this class is in PTIME in combined complexity.

Proof. Let O be a schema.org-ontology, and q(x̄) a quantifier-
free CQ. For each concept name A and role name r in q(x̄),
let ΠA and Πr be datalog rewritings of A(x) and r(x, y) with
goal predicates goalA and goalr, respectively. By Lemmas 26
and 29, such rewritings can be computed in polynomial time.
Now, a datalog rewriting of (O, q) is obtained as the datalog
program containing ΠA and Πr for each concept name A and
role name r in q(x̄), and the rule

goal(x̄)← φ, (3)

where φ is obtained from q(x̄) by replacing each concept name
A by goalA, and each role name r by goalr.

Next, we argue that evaluating OMQs (O, q) with O a
schema.org-ontology and q a quantifier-free query has PTime
combined complexity. Given a schema.org-ontology O, a data
instance A for O, a quantifier-free query q, and a tuple ā,
we first construct the datalog program Π as described above.
We then construct a new program Πā obtained from Π by
substituting ā for x̄ in (3), and replacing goal(ā) with the unary
goal predicate goal(). Then, O,A |= q(ā) iff Πā(A) 6= ∅.
Inspecting the constructions of the programs ΠA and Πr, we
observe that each rule in Πā has at most three variables. It
follows that Πā can be evaluated in polynomial time.

Note that, if q = A(x), then Lemma 26 states that a non-
recursive datalog rewriting of (O, q) can be computed in poly-
nomial time. o

E Proof of Theorem 16

Theorem 16 For every template B one can construct in polyno-
mial time an OMQ (O, q) whereO only contains enumeration
definitions and q is a Boolean variable-free UCQ such that the
complement of CSP(B) and (O, q) are mutually FO-reducible.

Proof. As in the proof of Theorem 10, assume a template B
over signature Σ of concept and role names is given such that
for each b ∈ ∆B there is a concept name Pb such that d ∈ PBb
iff d = b.

Take a fresh concept name A, set O = {A ≡ {b | b ∈
∆B}}, and define the UCQ q as the disjunction of

• r(b, b′) for all r ∈ Σ and (b, b′) 6∈ rB;

• B(b) for all B ∈ Σ and b 6∈ BB.

We show that the complement of CSP(B) and (O, q) are mu-
tually FO-reducible.

(⇒) Assume a data instance A over Σ is given. We may
assume that the individuals b, b ∈ ∆B, do not occur in A. If
there exist Pb(a), Pb′(a) ∈ A with b 6= b′ then outputA 6→ B.
Otherwise replace exhaustively

• B(a) byB(b) if Pb(a) ∈ A andB ∈ Σ\{Pb | b ∈ ∆B};
• r(a1, a2) by r(b, a2) if Pb(a1) ∈ A;

• r(a1, a2) by r(a1, b) if Pb(a2) ∈ A;

and remove all assertions involving some Pb from A and
add A(a) for all remaining individuals a. Denote by A′ the
resulting data instance. It is readily checked that O,A′ |= q
iff A 6→ B.

(⇐) Assume a data instanceA is given. Remove fromA all
assertions involving individuals a distinct from b with b ∈ ∆B

such that A(a) 6∈ A. Clearly O,A |= q iff O,A′ |= q for
the resulting data instance A′. Now add Pb(b) to A′ for all
b ∈ ∆B and remove all assertions with concept or role names
not in Σ. Denote the resulting data instance by A′′. One can
show that O,A′ |= q iff A′′ 6→ B. o

F Proof of Theorem 17
Theorem 17 Let O be a coherent and minimized schema.org-
ontology. If O contains an enumeration definition A ≡
{a1, . . . , an} with n ≥ 2 or contains an inclusion F v
A1 t · · · tAn such that there are at least two concept names
in {A1, . . . , An} and O 6|= F v A t t

(D,∆D)∈DT
D for any

A with A ≡ {a} ∈ O, then (O, q) is coNP-hard for some
Boolean CQ q. Otherwise every (O, q) with q a UCQ is FO-
rewritable (and thus in AC0 in data complexity).

Proof. Assume O is coherent and minimized and the con-
ditions for NP-hardness are satisfied. If O contains an enu-
meration definition A ≡ {a1, . . . , an} with n ≥ 2 we prove
NP-hardness similarly to the hardness proof in Theorem 9.
Differences are that in this case we do not attempt to work
within the language of the given ontology O and that we use
enumeration individuals in the query instead of existentially
quantified variables.

For simplicity, we consider the case in which A ≡
{a0, a1} ∈ O. The generalization to arbitrarily many enu-
meration individuals is straightforward using the ideas from
the proof of Theorem 9.

Assume ϕ = c0∧· · ·∧ cn is a 2+2-formula in propositional
letters v0, . . . , vm and let ci = ui0∨ui1∨¬ui2∨¬ui3 for i ≤ n.
Our aim is to define an data instance Aϕ and a Boolean CQ
q such that ϕ is unsatisfiable iff O,Aϕ |= q. We represent
the formula ϕ in the data instance Aϕ as follows. We use
two enumeration individuals, a0, a1, all remaining individual
names are from NI \ NE. In addition we use one fresh role
name r. Now we take as in the proof of Theorem 9

• the individual names v0, . . . , vm represent variables and
the individual names 0, 1 represent truth constants;

• the individual names cil and bil are used to encode the four
literals of each 2 + 2 clause ci, where i ≤ n and l ≤ 3;
• for i ≤ n and l ≤ 3, the assertions

r(cil, b
i
l), r(b

i
l, u

i
l), r(c

i
l, u

i
l)

and
r(ci0, c

i
1), r(ci1, c

i
2), r(ci2, c

i
3)

to associate the literals cil of a clause ci to the vari-
able/truth constant uil .

We further extendAϕ to enforce a truth value for each variable
vi, i ≤ m. Intuitively, assertions A(a′i) are used to generate a
truth value (a0 or a1) for vi, where we identify a0 with true and
a1 with false. Thus add toAϕ the assertionsA(a′0), . . . , A(a′k)
and
• to link variables vi to a′i the assertions r(vi, a′i) for all
i ≤ m;
• to ensure that 0 and 1 have the expected truth values, add

to Aϕ the assertions r(1, a0) and r(0, a1).
Consider the Boolean UCQ (we omit existential quantifiers):

q0 =
∧

0≤i≤2

r(xi, xi+1) ∧
∧

0≤i≤3

ψi

where
• ψi = r(xi, zi)∧ r(zi, yi)∧ r(xi, yi)∧ff(yi) for i = 0, 1

and
• ψi = r(xi, zi)∧ r(zi, yi)∧ r(xi, yi)∧ tt(yi) for i = 2, 3

and
where

tt(yi) = r(yi, a1)

ff(yi) = r(yi, a0)

Then one can show that O,Aϕ |= q0 iff q0 is not satisfiable.

Assume now that no enumeration definition A ≡
{a1, . . . , an} with n ≥ 2 is in O. Set NE

C(O) = {C |
C ≡ {c} ∈ O} and set D0 = t

(D,∆D)∈DT
D. We prove the

following

Claim 1. There exist F0 ∈ {dom(r), ran(r)} and
C1, . . . , Ck ∈ NE

C(O)∪NC(O), k ≥ 2, such thatO |= F0 v
C1 t · · · t Ck tD0 and for A = {r(a1, b1), . . . , r(ak, bk)},
where ai, bi ∈ NI \NE there exists a model I ofA andO such
that
• if F0 = ran(r), then bi ∈ CIi \

⋃
i 6=j C

I
j for 1 ≤ i ≤ k

and
• if F0 = dom(r), then ai ∈ CIi \

⋃
i6=j C

I
j for 1 ≤ i ≤ k.

Proof of Claim 1. Consider the following Condition (∗): there
exist F ′ ∈ {dom(s), ran(s)} andX ⊆ NE

C(O) of cardinality
at least two, such that

• O |= F ′ v (t
C∈X

C) tD0 and

• F ′ u C is satisfiable relative to O for all C ∈ X .

Clearly, if (∗) holds, then Claim 1 follows immediately. Now
assume (∗) does not hold. Consider F v A1 t · · · tAn ∈ O
such that there are at least two concept names in {A1, . . . , An}
and O 6|= F v {a} t D0 for any enumeration individual a.
Assume w.l.o.g. that F = ran(r) and that A1, . . . , Ak are
concept names and Ak+1, . . . , An are datatype names. We
have

O |= F v (t
C∈NE

C(O)
C) tA1 t · · · tAk tD0

By removing ‘redundant’ concepts starting with Ak and mov-
ing C ∈ NE

C(O) vie A1 we find X1 ⊆ NE
C(O) and

X2 ⊆ {A1, . . . , Ak} such that

• O |= F v (t
C∈X1

C) t (t
A∈X2

A) tD0;

• ran(r) u A u ¬(t
C∈NE

C(O)
C) u ¬(t

B∈X2,B 6=A
B) is sat-

isfiable relative to O for all A ∈ X2;

• ran(r) u C u ¬(t
A∈X2

A) is satisfiable relative to O for

all C ∈ X1.
It follows from the conditions for NP-hardness in Theorem 17
that we have |X1 ∪ X2| ≥ 2: if |X1| = 1 and X2 = ∅,
then we have found an enumeration individual a with O 6|=
F v {a} t t

(D,∆D)∈DT
D. If |X2| = 1 and X1 = ∅, then

O |= Ai t t
(D,∆D)∈DT

D which contradicts the condition that

O is minimized, and that F v A1 t · · · t An ∈ O with at
least two concept names in {A1, . . . , An}.

Next observe that we cannot have both, O |= dom(r) v C
for some C ∈ X1 and O |= dom(r) v t

A∈X2

A. Moreover,

since (∗) does not hold, O 6|= dom(r) v (t
C∈X1

C) does not

hold unless O |= dom(r) v C for some C ∈ X1. Thus, we
find models IA,A ∈ X1∪X2, ofO andAA = {rA(aA, bA)}
such that ∆IA ⊆ {aIAA , bIAA } ∪ NE(O) and

• sIA = ∅ for all roles s with O 6|= r v s and all A ∈
X1 ∪X2;
• rIA = sIA = {(aIAA , bIAA)}, for all s with O |= r v s

and all A ∈ X1 ∪X2;
• aIAA ∈ AIA \ (

⋃
C∈NE

C(O) C
IA ∪

⋃
B 6=A,B∈X2

BIA),
for all A ∈ X2.
• aIAA ∈ AIA \

⋃
B∈X2

BIA), for all A ∈ X1;

• For all C ∈ X1, CIB∩ ∈ AIB = ∅ for all A,B ∈ X2.
It follows that we can take the union I of the models IA,
A ∈ X1 ∪X2, and factorize through the equivalence relation
∼ defined by d1 ∼ d2 if d1 = d2 or there exists C ∈ NE

C(O)
such that d1, d2 ∈ CI . The resulting model I/ ∼ is as
required. This finishes the proof of Claim 1.

Using Claim 1 we prove NP-hardness similarly to the hard-
ness proof in Theorem 9 and above. Again we do not attempt
to work within the language of the given ontology O. For
simplicity, we consider the following case:

(∗) There are C1, C2 ∈ NE
C(O) ∪ NC(O) such that O |=

F0 v C1 t C2 and for A = {r(a1, b1), r(a2, b2)}, where
ai, bi ∈ NI \ NE there exists a model I of A and O such that
bi ∈ CIi \

⋃
i 6=j C

I
j for i = 1, 2.

The generalization to arbitrarily many disjuncts and datatype
names as disjuncts is straightforward using the ideas from the
proof of Theorem 9.

Assume ϕ = c0∧· · ·∧ cn is a 2+2-formula in propositional
letters v0, . . . , vm and let ci = ui0∨ui1∨¬ui2∨¬ui3 for i ≤ n.
Our aim is to define an data instance Aϕ and a Boolean CQ q
such that ϕ is unsatisfiable iff O,Aϕ |= q. We represent the
formula ϕ in the data instance Aϕ as follows. We use only
two enumeration individuals, a0, a1, all remaining individual
names are from NI \ NE. In addition we use one fresh role
name r. Now we take
• the individual names v0, . . . , vm represent variables and

the individual names 0, 1 represent truth constants;
• the individual names cil and bil are used to encode the four

literals of each 2 + 2 clause ci, where i ≤ n and l ≤ 3;
• for i ≤ n and l ≤ 3, the assertions

r(cil, b
i
l), r(b

i
l, u

i
l), r(c

i
l, u

i
l)

and
r(ci0, c

i
1), r(ci1, c

i
2), r(ci2, c

i
3)

to associate the literals cil of a clause ci to the vari-
able/truth constant uil .

We further extendAϕ to enforce a truth value for each variable
vi, i ≤ m. Now C1(a) stands for true and C2(a) stands for
false. We thus add to Aϕ the assertions r(fi, ai) for i ≤ m
and
• to link variables vi to ai we add the assertions r(vi, ai)

for all i ≤ m;
• to ensure that 0 and 1 have the expected truth values, add

toAϕ the assertions r(1, 1′), C1(1′) and r(0, 0′), C2(0′).
Consider the Boolean UCQ (we omit existential quantifiers):

q0 =
∧

0≤i≤2

r(xi, xi+1) ∧
∧

0≤i≤3

ψi

where
• ψi = r(xi, zi)∧r(zi, yi)∧r(xi, yi)∧ffi(yi) for i = 0, 1

and
• ψi = r(xi, zi)∧r(zi, yi)∧r(xi, yi)∧tti(yi) for i = 2, 3

and
where

tti(yi) = r(yi, wi) ∧ C1(wi)

ffi(yi) = r(yi, w1) ∧ C2(wi)

Then O,Aϕ |= q0 iff q0 is not satisfiable.

Now assume that the conditions for non-tractability are not
satisfied. Assume a UCQ q =

∨
i∈I qi is given and assume

w.l.o.g. that q does not contain any individual names. We
assume that quantified variables in q are all distinct. Let m
be the number of variables in q and let X be the set of all

pairs (A, π) of data instances A with at most m individuals
and mappings π from answer variables of q into Ind(A) such
that O,A |= q(π(~x)). We can regard every such A as a
quantifier-free CQ qA.

We again use the following notation. Set NE
C(O) = {Cc |

Cc ≡ {c} ∈ O} and set D0 = t
(D,∆D)∈DT

D. Let for c ∈

NE(O),

ϕc(x) = (x = c) ∨
∨

O|=AvCc

A(x) ∨

∨
O|=ran(r)vCctD0

∃y r(y, x)

∨
O|=dom(r)vCc

∃y r(x, y)

and

ϕ∼(x, x′) = (x = x′) ∨
∨

c∈NE(O)

ϕc(x) ∧ ϕc(x′)

Obtain from qA the query q′A by replacing
• every atom A(y) by ∃y′(ϕ∼(y, y′) ∧A(y′)) and
• every r(y1, y2) by

∃y′1∃y′2(ϕ∼(y1, y
′
1) ∧ ϕ∼(y2, y

′
2) ∧ r(y′1, y′2))

Now let Q be the disjunction over all

QA,π =
∧

π(xi)=y

(xi = y) ∧ qA′

with (A, π) ∈ X . It is readily checked that Q is a rewriting of
q. o

G Proof of Theorem 18

Theorem 18 Given an OMQ (O, q) with O a schema.org-
ontology and q a qvar-acyclic UCQ, one can compute in ex-
ponential time a generalized CSP with marked elements Γ
such that (O, q) and the complement of CSP(Γ) are mutually
FO-reducible.

Proof. We consider O without datatypes. The extension
required to include datatypes is straightforward. Let Σ be a
finite signature of concept names, role names, and individual
names. A Σ-interpretation I is an interpretation in which
XI = ∅ for all concept and role names not in Σ and in which
exactly the individuals a in Σ are interpreted as aI ∈ ∆I .
Given Σ-interpretations I and J we say that a mapping h
from ∆I to ∆J is a homomorphism if
• h(aI) = aJ for all a ∈ Σ;
• d ∈ AI implies h(d) ∈ AJ for all A ∈ Σ;
• (d, d′) ∈ rI implies (h(a), h(b)) ∈ rJ , for all r ∈ Σ.

We write I → J iff there exists a homomorphism from I to
J .

Now assume O and q(~x,~b) are given, where ~x =
x1, . . . , xk. Let ~a = a1 · · · ak. Let Σ be the set of all concept

and role names inO and q together with the individuals in ~a,~b
and all {c} for c ∈ NE(O). In what follows we assume w.l.o.g.
that data instance A contain the individuals in Σ.

Since q is qvar-acyclic we can construct in polynomial time
a conceptCq in the description logicALCIUO which extends
ALC with inverse roles, the universal role u and nominals
{a1}, . . . , {ak}, {b1}, . . . , bk}, and {c} for c ∈ NE(O) such
that for every data instance A for O (and with ~a, ~b, and c in
Ind(A) for c ∈ NE(O)), O,A |= q(~a,~b) iff CI 6= ∅ for all
models I of O and A. In what follows we regard ran(r) and
dom(r) as the ALCI concepts ∃r.> and ∃r−.>, respectively.
We are going to construct a set Γ of templates B as follows:
denote by sub(O, q) the closure under single negation of the
set of (subconcepts of) concepts that occur in O or Cq. A O-
type t is a subset of sub(O, q) such that there exists a model
I of O (in particular, cI = c for all c ∈ NE(O)) and d ∈ ∆I

such that

t = tpI(d) := {D ∈ sub(O, q) | d ∈ DI}

We call tpI(d) the O-type of d. For O-types t1, t2 and role
r we set t1 ;r t2 iff there exists a model I of O such that
tpI(d1) = t1, tpI(d2) = t2, and (d1, d2) ∈ rI . A set T of
O-types is complete if there exists a model I of O such that

T = {tpI(d) | d ∈ ∆I}.

From each complete set T of O-types T we construct a Σ-
template BT as follows: let ∆BT = T and
• aBT = t for the unique t with a ∈ t, for all a ∈ Σ;
• t ∈ ABT if A ∈ t, for all A ∈ Σ;
• (t, t′) ∈ rBT if t;r t

′, for all r ∈ Σ.
Now let Γ be the set of all BT with T a maximal complete
T such that CBT

q = ∅. Γ contains at most exponentially
many distinct templates of at most exponential size and can
be constructed in exponential time. Thus, it remains to prove
that (O, q(~x)) and the complement of CSP(Γ) are mutually
FO-reducible. For a data instanceA with ~a,~b, and c in Ind(A)
for all c ∈ NE(O) we denote by JA the Σ-interpretation with
• ∆JA = Ind(A);
• aJA = a, for all a ∈ Σ;
• AJA = {a ∈ Ind(A) | A(a) ∈ A}, for A ∈ Σ;
• rJA = {(a, b) ∈ Ind(A)2 | r(a, b) ∈ A}, for r ∈ Σ.

Now one can show the following.

Claim 1. For any data instance A for O: O,A |= q(~a) iff
JA 6→ B for any B ∈ Γ.

For a Σ-interpretation I, we denote by AI the ABox corre-
sponding to I. One can show the following:

Claim 2. For any Σ-interpretation I , I 6→ B for any B ∈ Γ iff
O,AI |= q(~a). o

