
Bounded-Rate Multi-Mode Systems Based Motion Planning

Devendra Bhave
IIT Bombay

devendra@cse.iitb.ac.in

Sagar Jha
IIT Bombay

sagarjha@cse.iitb.ac.in

Shankara Narayanan Krishna
IIT Bombay

krishnas@cse.iitb.ac.in

Sven Schewe
University of Liverpool

sven.schewe@liverpool.ac.uk

Ashutosh Trivedi
IIT Bombay

trivedi@cse.iitb.ac.in

ABSTRACT
Bounded-rate multi-mode systems are hybrid systems that
can switch among a finite set of modes. Its dynamics is spec-
ified by a finite number of real-valued variables with mode-
dependent rates that can vary within given bounded sets.
Given an arbitrary piecewise linear trajectory, we study the
problem of following the trajectory with arbitrary precision,
using motion primitives given as bounded-rate multi-mode
systems. We give an algorithm to solve the problem and
show that the problem is co-NP complete. We further prove
that the problem can be solved in polynomial time for multi-
mode systems with fixed dimension. We study the problem
with dwell-time requirement and show the decidability of
the problem under certain positivity restriction on the rate
vectors. Finally, we show that introducing structure to the
multi-mode systems leads to undecidability, even when using
only a single clock variable.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Real-time systems and
embedded systems; B.5.2 [Design Aids]: Verification

General Terms
Theory, Verification

Keywords
Switched Systems, Motion Planning, Hybrid Automata

1. INTRODUCTION
Hybrid automata [2] are a natural and expressive formal-

ism to model systems that exhibit both discrete and con-
tinuous behavior. Intuitively, hybrid automata extend the
discrete system modeling framework of extended finite state
machines with continuous variables modeled along contin-
uous dynamical systems such that the flow of continuous
variables in each state is modeled as a system of first-order

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

ordinary differential equations. Discrete jumps in the val-
ues of the variables are modeled via resets on the transi-
tions of the automata. However, the applications of hybrid
automata in analyzing cyber-physical systems have been
rather limited due to undecidability [9] of simple verifica-
tion problems such as reachability. This drawback of hybrid
automata has fueled the investigation of the so-called com-
positional methodology [8, 12] to design complex system by
sequentially composing well-understood lower-level compo-
nents. This methodology has, for example, been used in the
context of the motion planning problem for mobile robots,
where the task is to move a robot along a pre-specified tra-
jectory with arbitrary precision by sequentially composing a
set of well-studied simple motion primitives, such as “move
left”, “move right” and “go straight”. In this paper, we in-
vestigate the motion planning problem for systems, whose
motion primitives are given as constant-rate vectors with
uncertainties.

We consider bounded-rate multi-mode systems [4] that
can be considered as constant-rate multi-mode systems [5]
with uncertainties. These systems consist of a finite set
of continuous variables, whose dynamics is given by mode-
dependent constant-rates that can vary within given bounded
sets. In such systems, the dynamics of the system can be
viewed as a two-player game between a controller and the
environment. In each step, the controller chooses a mode
and time duration and the environment chooses a rate vec-
tor for that mode from the given bounded set. The system
evolves with that rate for the chosen time. The game con-
tinues in this fashion from the resulting state. Alur, Trivedi,
and Wojtczak [5] considered constant-rate multi-mode sys-
tems and showed that the reachability problem—deciding
the reachability of a specified state while staying in a given
safety set—and the schedulability problem—deciding the ex-
istence of a non-Zeno control so that the system always stays
in a given bounded and convex safety set—for this class of
systems can be solved in polynomial time. Alur et al. [4]
showed that the existence of robust control for the schedu-
lability problem for bounded-rate multi-mode systems is, al-
though intractable (co-NP-complete), decidable. However,
they left the decidability of the robust reachability problem
for this class of systems open.

The robust reachability problem for bounded-rate multi-
mode system is defined as follows: given a bounded-rate
multi-mode system, a starting state, and a target state, de-
cide whether it is possible to reach the target state from the
starting state with arbitrary precision. The key result of this
paper is the decidability of the robust reachability problem

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Liverpool Repository

https://core.ac.uk/display/80780061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(-1, -1) (1, -1)

(−6
5
, 8

5
) ( 6

5
, 8

5
)

m1 = {~r1} m2 = {~r2}

~r3 ~r4

m3

x0

xt

Figure 1: Bounded-rate multi-mode system with
three modes and two variables.

for bounded-rate multi-mode systems. We show that the
problem is co-NP complete. Moreover, we show that it is
fixed parameter tractable, i.e., if the number of dimensions
is fixed, then the robust reachability problem can be solved
in polynomial time.

Our existence proofs are constructive: in case of a positive
answer, we can also give a dynamic schedule that, given a
tolerance level ε>0, guarantees reachability of an open ball
of ε radius around the target state in finitely many steps.
It is then simple to extend these results to different path
planning problems. We discuss the extension of the robust
reachability problem to motion planning, and exploit our
results to provide an alternative and simpler proof for the
decidability of the robust schedulability problem. We also
show that this problem can be solved in polynomial time
for systems with fixed dimension, improving the result [4]
where authors only give a polynomial algorithm to decide
2-dimensional systems. We notice that these results can be
combined to stable reachability, where the goal is to first
reach an ε ball around a target, and then stay in this ball
for ever.

Example 1. An example of a bounded-rate multi-mode
system with two variables, say x and y, and three modes
m1, m2, and m3, is given in the Figure 1. Modes m1 and
m2 are precise, while mode m3 is uncertain, and environ-
ment can give any rate vector that is a convex combination
of rate vectors ~r3 and ~r4. The safety set is given as the
blue rectangle. The reachability problem here is to decide
whether, for every ε > 0, controller has a sequence of time
delays and choice of modes such that no matter what rate
is given by the environment the system reaches a state in ε-
neighborhood of xt. The schedulability problem asks whether
the scheduler has an infinite non-Zeno sequence of choices
of modes and time delays such that the system always stays
within the safety set, while stable reachability problem asks
for a strategy to first reach an ε-neighborhood of xt and then
to stay in that neighborhood using a non-Zeno strategy.

We also consider the reachability problem with minimum
dwell-time requirement and show that in the absence of the
safety set the problem is undecidable for arbitrary bounded-
rate multi-mode systems, but turns out to be decidable for

systems with non-negative rates. We also study the prob-
lem of the existence of discrete control where controller is re-
quired to choose modes at times multiple of a given sampling
rate. We show that the reachability problem is EXPTIME-
complete for this class of controllers. Finally, we show that
adding very simple structure to bounded-rate multi-mode
systems by introducing clock variables (variables with pre-
cise uniform rates in each mode)—that appear as guards on
the transitions and can be reset on the discrete transitions—
leads to undecidability of the robust reachability problem.

Our algorithm can be combined with algorithms to ex-
plore non-convex high-dimensional spaces, such as rapidly
exploring random tree (RRT) algorithm [11], to yield robust
control for such systems. Intuitively, RRT algorithm can
return a path from the source to the destination by random
exploration of the state space, which can be robustly fol-
lowed by repeated applications of our algorithm in context
of systems modeled as bounded-rate multi-mode systems.

For a review of related work on constant-rate multi-mode
systems we refer the reader to [4, 5]. Le Ny and Pappas [12]
initiated work on the sequential composition of robust con-
troller specifications. In this light, our results can be under-
stood as an effort to analyze complexity of this problem for
the system of relatively simple dynamics. There is a huge
body of work on path-following and trajectory tracking of
autonomous robots under uncertainty. For a detailed sur-
vey we refer the reader to [1]. There is a vast literature on
decidable subclasses of hybrid automata [2, 7]. Most no-
table among these classes are initialized rectangular hybrid
automata [9], two-dimensional piecewise-constant derivative
systems [6], and timed automata [3].

The paper is organized as follows. We begin by formal def-
inition of the problem in the next section, followed by the
proof of our key result in Section 3. We present some appli-
cations of our main algorithm to solve schedulability, stable
reachability, and path following problems in Section 4. In
Section 5 we present results regarding bounded-rate multi-
mode systems with discrete controller and dwell-time re-
quirements. We conclude the paper by discussing results on
generalized model in Section 6.

2. ROBUST REACHABILITY PROBLEM
Prior to formally introducing the robust reachability prob-

lem for multi-mode systems, we set the notation used in the
rest of the paper and recall some standard results.

2.1 Preliminaries
Points and Vectors. Let R be the set of real numbers.

We represent the states in our system as points in Rn that
is equipped with the standard Euclidean norm ‖ · ‖. We
denote points in this state space by x, y, vectors by ~r,~v, and
the i-th coordinate of point x and vector ~r by x(i) and ~r(i),

respectively. We write ~0 for a vector with all its coordinates
equal to 0; its dimension is often clear from the context. The
distance ‖x, y‖ between points x and y is defined as ‖x−y‖.
Boundedness and Interior. We denote an open ball of

radius d ∈ R≥0 centered at x asBd(x)= {y∈Rn : ‖x, y‖ < d}.
We denote a closed ball of radius d ∈ R≥0 centered at x as

Bd(x). We say that a set S ⊆ Rn is bounded if there exists
d ∈ R≥0 such that, for all x, y ∈ S, we have ‖x, y‖ ≤ d. The
interior of a set S, int(S), is the set of all points x ∈ S, for
which there exists d > 0 s.t. Bd(x) ⊆ S.



Convexity. A point x is a convex combination of a finite
set of pointsX = {x1, x2, . . . , xk} if there are λ1, λ2, . . . , λk ∈
[0, 1] such that

∑k
i=1 λi = 1 and x =

∑k
i=1 λi·xi. The convex

hull of X is the set of all points that are convex combina-
tions of points in X. We say that S ⊆ Rn is convex iff, for
all x, y ∈ S and all λ ∈ [0, 1], we have λx+ (1−λ)y ∈ S and
moreover, S is a convex polytope if it is bounded and there

exists k ∈ N, a matrix A of size k × n and a vector ~b ∈ Rk

such that x ∈ S iff Ax ≤ ~b.
A point x is a vertex of a convex polytope P if it is not a

convex combination of two distinct (other than x) points in
P . For a convex polytope P we write vert(P ) for the finite
set of points that correspond to the vertices of P . Each point
in P can be written as a convex combination of the points
in vert(P ). In other words, P is the convex hull of vert(P ).

2.2 Multi-Mode Systems
A multi-mode system is a hybrid system, or rather a

switched system, equipped with finitely many modes and
finitely many real-valued variables. A configuration is de-
scribed by the values of the variables. These values change
as time elapses at the rates determined by the modes be-
ing used. The choice of the rates is nondeterministic, which
introduces a notion of adversarial behavior.

Definition 1 (Multi-Mode Systems). A multi-mode
system is a tuple H = (M,n,R) where: M is the finite
nonempty set of modes, n is the number of continuous vari-
ables, and R : M → 2Rn

is the rate-set function that, for
each mode m ∈ M , gives a set of vectors. We often write
~r ∈ m for ~r ∈ R(m) when R is clear from the context.

A finite run of a multi-mode system H is a finite se-
quence of states, timed moves, and rate vector choices % =
〈x0, (m1, t1), ~r1, x1, . . . , (mk, tk), ~rk, xk〉 s.t., for all 1 ≤ i ≤
k, we have ~ri ∈ R(mi) and xi = xi−1 + ti · ~ri. For such a
run % we say that x0 is the starting state, while xk is its last
state. An infinite run is defined in a similar manner. We
write Runs and FRuns for the set of infinite and finite runs
of H, and Runs(x) and FRuns(x) for the set of infinite and
finite runs of H that start from x.

An infinite run 〈x0, (m1, t1), ~r1, x1, (m2, t2), ~r2, . . .〉 is Zeno
if
∑∞
i=1 ti < ∞. Given a set S ⊆ Rn of safe states, we say

that a run 〈x0, (m1, t1), ~r1, x1, (m2, t2), ~r2, . . . , (mk, tk), ~rk, xk〉
is S-safe if xi ∈ S for all 0≤i≤k; and for all 0≤i<k we have
that xi + t · ~ri+1 ∈ S for all t ∈ [0, ti+1], assuming t0 = 0.
Notice that, if S is a convex set and xi ∈ S for all i ≥ 0, then
this holds iff xi ∈ S for all 0≤i≤k. Sometimes we simply
call a run safe when the safety set is clear from the context.

We formally give the semantics of a multi-mode system H
as a turn-based two-player game between two players, sched-
uler and environment, who choose their moves to construct
a run of the system. The system starts in a given starting
state x0 ∈ Rn. At each turn, the scheduler chooses a timed
move, a pair (m, t) ∈ M × R>0 consisting of a mode and
a time duration, and the environment chooses a rate vector
~r ∈ m and as a result the system changes its state from x0

to the state x1 = x0 + t · ~r in t time units following the
linear trajectory according to the rate vector ~r. From the
next state, x1, the scheduler again chooses a timed move
and the environment an allowable rate vector, and the game
continues forever in this fashion. The focus of this paper is
on robust reachability problem where, given a starting state
x0, a target vertex xt, a bounded and convex safety set S

and tolerance ε > 0, the goal of the scheduler is to visit a
state in an open ball of radius ε centered at xt via an S-safe
run. The goal of the environment is the opposite.

Given a bounded and convex safety set S and tolerance
ε>0, we define the robust reachability objective WS

Reach(xt, ε)
as the set of infinite runs of H that visit a state in Bε(xt). In
a reachability game the winning objective of the scheduler is
to make sure that the constructed run of a system belongs
to WS

Reach(xt, ε), while the goal of the environment is the
opposite. The choice selection mechanism of the players is
typically defined as strategies. A strategy σ of the scheduler
is function σ:FRuns→M×R≥0 that gives a timed move for
every history of the game. A strategy π of the environment
is a function π : FRuns× (M ×R≥0)→ Rn that chooses an
allowable rate for a given history of the game and choice of
the scheduler. We write Σ and Π for the set of strategies of
the scheduler and the environment, respectively.

Given a starting state x0 and a strategy pair (σ, π) ∈ Σ×Π
we define the unique run Run(x0, σ, π) starting from x0 as

Run(x0, σ, π) = 〈x0, (m1, t1), ~r1, x1, (m2, t2), ~r2, . . .〉

where, for all i≥1, (mi, ti) = σ(〈x0, (m1, t1), ~r1, x1, . . . , xi−1〉)
and ~ri = π(〈x0, (m1, t1), ~r1, x1, . . . , xi−1,mi, ti〉) and xi =
xi−1 + ti · ~ri. The scheduler wins the game if there is a
σ ∈ Σ such that, for all π ∈ Π, we get Run(x0, σ, π) ∈
WS

Reach(xt, ε). Such a strategy σ is winning. Similarly, the
environment wins the game if there is π ∈ Π such that for
all σ ∈ Σ we have Run(x0, σ, π) 6∈ WS

Reach(xt, ε). Again,
π is called winning in this case. If a winning strategy for
scheduler exists, we say that the state xt is ε-reachable from
the state x0 for given safety set S and tolerance ε. We also
say that the state xt is robustly reachable from x0 if it is ε-
reachable for all ε > 0. The following is the main algorithmic
problem studied in this paper.

Definition 2 (Robust Reachability). Given a multi-
mode system H, a convex safety set S, a starting state x0 ∈
int(S), and a target state xt ∈ int(S), decide whether xt is
robustly reachable from x0.

To algorithmically decide the robust reachability problem,
we need to restrict the range of R and the domain of the
safety set S in a robust reachability game on a multi-mode
system. The most general model that we consider is the
bounded-rate multi-mode systems (BMS).

Definition 3 (Bounded-Rate Systems). A bounded-
rate multi-mode system (BMS)is multi-mode system H =
(M,n,R) such that R(m) is a convex polytope for every
m ∈M . We also assume that the safety set S is specified as
a convex polytope.

For every mode mi ∈M of a BMS we assume an arbitrary
but fixed ordering on the vertices of R(m). By exploiting
the notations slightly, it allows us to write R(mi)(j) for the
rate vector corresponding to j-th vertex of mode mi. When
there is no confusion, we also write R(i)(j) for R(mi)(j).

In our proofs we often refer to another variant of multi-
mode systems, in which there are only a fixed number of
different rates in each mode (i.e., R(m) is finite for all m ∈
M). We call such a multi-mode system multi-rate multi-
mode systems (MMS). Finally, a special form of MMS are
constant-rate multi-mode systems (CMS) [5], in which R(m)
is a singleton for all m ∈ M . We sometimes use R(m)



m0,0

m0,1

m1,0

(a) Constant-Rate

m0,0

m0,1

m1,0

(b) Bounded-Rate

m0,0

m0,1

m1,0

(c) Multi-Rate

Figure 2: Restricted Multi-mode Systems

to refer to the unique element of the set R(m) in a CMS.
The concepts related to the robust reachability games for
BMS and MMS are already defined for multi-mode systems.
Similar concepts also hold for CMS but with no real choice
for the environment. Examples of CMS, BMS, and MMS are
shown in Figure 2.

We say that a CMS H = (M,n,R) is an instance of a
multi-mode system H = (M,n,R) if for every m ∈ M we
have that R(m) ∈ R(m). For example, the CMS shown
in Figure 2.(a) is an instance of BMS in Figure 2.(b). We
denote the set of instances of a multi-mode system H by
[[H]]. Notice that for a BMS H, the set [[H]] of its instances is
uncountable (unless the BMS is a CMS), while for an MMSH
the set [[H]] is finite, and exponential in the size ofH. We say
that an MMS (M,n,R′) is the extreme-rate MMS of a BMS
(M,n,R) if R′(m) = vert(R(m)). The MMS in Figure 2.(c)
is the extreme-rate MMS for the BMS in Figure 2.(b) We
write Ext(H) for the extreme-rate MMS of the BMS H.

The following theorem is the key observation of the paper.

Theorem 1. Given a BMS H = (M,n,R), convex safety
set S, starting state x0 ∈ int(S) and target state xt ∈ int(S),
the target state xt is robustly reachable if and only if for every
CMS in [[Ext(H)]] the state xt is reachable from x0.

Alur et al. [5] presented a polynomial-time algorithm to
decide if a state xt is reachable from a starting state x0

for CMS. In particular, for starting and target states in the
interior of the safety set, they characterized a necessary and
sufficient condition.

Theorem 2 ([5]). The scheduler has a winning strat-
egy in a CMS (M,n,R), with convex safety set S and start-
ing state x0 ∈ int(S) and target state xt ∈ int(S), if and

only if there is ~t ∈ R|M|≥0 satisfying:

x0 +

|M|∑
i=1

R(i)(j) · ~t(i) = xt for 1 ≤ j ≤ n. (1)

Notice that in such a case controller has a strategy to reach
the target state precisely. The intuition behind Theorem 2
is that the scheduler has a winning strategy if and only if it
is possible to reach the target state from the starting state
in using a combination of the rate vectors.

Using Theorems 1 and 2 it follows that the robust reach-
ability problem is in co-NP. By reducing the validity check-
ing problem of propositional logic formulas in DNF, we show
that the robust reachability problem for BMS is indeed com-
plete the class co-NP. On a positive side, we show that the
robust reachability problem for BMS and CMS is fixed pa-
rameter tractable, i.e. it is polynomial for fixed number of
variables. It brings us to our next key result.

Theorem 3 (Complexity). The robust reachability prob-
lems for BMS and CMS are co-NP complete. However, it is
fixed parameter tractable with fixed number of variables.

3. DECIDABILITY AND COMPLEXITY
This section is dedicated to the proofs of Theorem 1 and

Theorem 3.

3.1 Proof of Theorem 1
We prove Theorem 1 by showing that the condition is

necessary and sufficient in the following two lemmas.

Lemma 4. Given a BMS H, safety set S, starting state
x0 ∈ int(S) and target state xt ∈ int(S), the target state
is not robustly reachable if there exists a CMS (M,n,R) in
[[Ext(H)]] for which xt is not reachable from x0.

Proof. From Theorem 2, we have that an interior point
xt of S is reachable iff it is in the conical hull of rates in the
CMS. Let K denote this connical hull. Note that K is closed
and that, by our assumption, xt /∈ K. This implies that the
distance ε = infx∈K ‖xt, x‖ between xt and K is positive.
Consequently, Bε(xt) and K are disjoint. It follows that
when the environment follows the strategy to choose the rate
R(m) when presented with a mode m, then the controller
cannot reach an ε ball around xt.

Lemma 5. Given a BMS H, safety set S, starting state
x0 ∈ int(S) and target state xt ∈ int(S), the target state is
robustly reachable if for all CMS (M,n,R) in [[Ext(H)]] the
state xt is reachable from x0.

We give a constructive proof of this lemma by constructing
an algorithm (Algorithm 1) giving a strategy of the player
to reach Bε(xt) for a given ε > 0.

Before we elaborate on the working of the algorithm, we
need to explain the idea of projections. In our algorithms we
sometimes represent a point x ∈ Rn by explicitly defining
its projection towards the direction vector ~v = xt − x0 and
(small) projections towards extreme rate vectors of various
modes.

Definition 4 (Projection). Given a BMS (M,n,R)
we say that a tuple (λ, π) is a projection of a point x, where
λ ∈ R≥0 is the projection towards ~v and π : N × N →
R≥0 is the projection towards extreme rate-vectors of var-
ious modes, such that π(i, j) is the projection towards j-th
vertex of the rate polytope R(mi), if:

x = λ · ~v +

|M|∑
i=1

|vert(R(mi))|∑
j=1

π(i, j) · R(i, j).

Notice that such projections are often not unique. We write
the (λ0, π0) for the projection such that λ0 = 0 and π0(i, j) =
0 for all i, j. Given a projection P = (λ, π) of a state x we
say that π(i, j) is the contribution of the jth vertex of the
rate polytope of mode mi. We also say that a vertex R(i, j)
does not contribute in a projection P if π(i, j) = 0, while
we say that a mode does not contribute in a projection P if
π(i, j) = 0 holds for all corners j of R(mi).

Given a tolerance level of ε, the strategy for the player
to reach Bε(xt) is given by Algorithm 1. A feature of the
algorithm is that the player selects time τ at every step. It
calls function nextMode described in Algorithm 2 to get



the mode that the player chooses. Depending on the choice
of the environment, the current point is updated. This pro-
cess goes on until an ε ball around xt is reached.

Algorithm 1: Dynamic reachability algorithm

Input: BMMS H, starting state x0, tolerance level ε
Output: Reachability Algorithm

1 B := max
m∈M

max
~r∈R(m)

‖~r‖;

2 x := x0, the current point;
3 ~v := xt − x0, the reachability direction;
4 γ1 := the shortest distance of x0 from borders of S;
5 γ2 := the shortest distance of xt from borders of S;
6 τ := min(ε/2, γ1, γ2)/(B|M |);
7 σ := an array, one element for each CMS F in [[Ext(H)]]

s.t σ(F) = ~t s.t. ~t is a solution for the CMS F for
reachability to ~v;

8 Projection P = (λ0, π0) ;
9 while ‖x− xt‖ > ε do

10 P , m = nextMode(P , ~v, σ);
11 ~r = senseCurrentRate(x, m, τ);
12 x = x+ τ~r;
13 P = updateProjection(P , m, ~r);

Algorithm 2: nextMode(P , ~v, σ)

Input: Projection P , reachability direction ~v,
reachability solution array σ

Output: Projection P , mode m
1 while true do
2 if there exists mode mi having zero contribution to

Projection P then
3 return P , mi;

4 else
5 R(mi) := vert(R(mi))(j) such that

vert(R(mi))(j) has non-zero contribution to P
for each i;

6 CMS F := (M,n,R) is the corresponding
instance of H;

7 P = reduceComp(F , σ(F), P );

The job of nextMode function is to nullify the contri-
bution of a mode m by expressing the point in a different
way. It calls upon reduceComp function described in Algo-
rithm 3 to achieve this. The correctness of the Algorithm 3
follows from the following proposition.

Proposition 6. Every non-negative linear combination
of rates of a CMS F = (M,n,R) ∈ [[Ext(H)]] that is reach-
able to ~v can be written as the sum of a non-negative com-
ponent along ~v and a non-negative linear combination of the
rates where contribution of one of the rates is 0.

Proof. Given a CMS F = (M,n,R) as an instance of
[[Ext(H)]], we have

~v =

|M|∑
i=1

σ(F)(i).R(mi) (2)

Given any non-negative linear combination of vectors in R,∑|M|
i=1 ciR(mi), ci ≥ 0, let k = arg mini,σ(F)(i)>0(ci/σ(F)(i)).

Algorithm 3: reduceComp(F , σ(F), P )

Input: CMS F = (M,n,R), solution time vector for
the CMS σ(F), current Projection P = (λ, π)

Output: Projection P ′ = (λ′, π′) s.t. contribution of
one of the rates in F has been nullified

1 (λ′, π′) = (λ, π);
2 k := arg min

i,σ(F)(i)>0

(π(i, R(i))/σ(F)(i));

3 λ′ = λ+ π(k,R(mk))/σ(F)(k);
4 for i in {1, 2, . . . , |M |} do
5 π′(i, R(i)) =

π(i, R(i))− (π(k,R(k)) ∗ σ(F)(i))/σ(F)(k);

6 return (λ′, π′);

Algorithm 4: updateProjection(P,m,~r)

Input: current Projection P = (λ, π), mode mi, rate ~r
Output: Projection P = (λ′, π′) with rate r taken for

time τ
1 (λ′, π′) = (λ, π);

2 ~r =
∑|vert(R(mi))|
j=1 θjvert(R(mi))(j), the convex

combination of vertex of the rate polytope of mode mi;
3 for j in {1, 2, . . . , |vert(R(mi))|} do
4 π′(i, j) = θj ∗ τ ;

5 return (λ′, π′);

The following calculations show that every non-negative lin-
ear combination of rates of a CMS F = (M,n,R) that is
reachable to ~v can be written as the sum of a non-negative
component along ~v and a non-negative linear combination
of the rates where contribution of one of the rates is 0. For
clarity, σ(F)(i) has been written as σi below.

|M|∑
i=1

ciR(mi) =

|M|∑
i=1

(ci −
ckσi
σk

+
ckσi
σk

)R(mi)

=

|M|∑
i=1

(ci −
ckσi
σk

)R(mi) +

|M|∑
i=1

ckσi
σk

R(mi)

=

|M|∑
i=1

(ci −
ckσi
σk

)R(mi) +
ck
σk

|M|∑
i=1

σiR(mi)

=

|M|∑
i=1

(ci −
ckσi
σk

)R(mi) +
ck
σk
~v

The last step follows from Equation 2. Note that, since
k = arg mini,σi>0(ci/σi), we have that ci − ckσi

σk
≥ 0 holds

for each i and = 0 holds for i = k.

This explains the working of Algorithm 3. We say that the
contribution of R(mk) is consumed in this process. Every
invocation of Algorithm 3 consumes at least one corner of
one of the modes in M . Hence, it guarantees that after some
finite iterations, some mode will be consumed in the process.
This proves the termination of Algorithm 2.

Proposition 7 (Safety). All the states visited during
an execution of Algorithm 1 are strictly inside the safety set.

Proof. We will demonstrate that all the point visits dur-
ing a run belong to the safety set. We first claim that the



point reached at any step in the algorithm, x, can be written
as the sum of a non-negative component along ~v and small
components along some rate in each of the modes. Formally,

x = λ~v +

|M|∑
i=1

ti~ri, (3)

where λ ≥ 0, ~ri ∈ R(mi), 0 ≤ ti ≤ τ for all modes mi ∈M .
We prove this by induction on the number of steps. The
initial point x0 = 0 is trivially written in the above form
with λ = 0, ti = 0 and ri, any rate vector in mode mi for

all i. If, after j steps, x = λ~v+
∑|M|
i=1 ti~ri with λ ≥ 0, ti ≥ 0

for all i, then Algorithm 2 ensures that x can be written
in an alternative way such that the contribution of some
mode mk is 0 in x. In this process, λ is non-decreasing
and the contribution of other modes is non-increasing but
always ≥ 0. This provides x = λ1~v +

∑
i∈[|M|]\{k} t

′
i~r
′
i with

λ1 ≥ λ, 0 ≤ t′i ≤ ti. The mode chosen by the player in this
step is mk and the time chosen is τ , the new point reached

is x′ = x+
∑|M|
i=1 t

′
i~r
′
i, where t′k = τ and ~r′k is the rate chosen

by the environment in mode mk. So, we again have x′ in
the form specified by Equation 3.

|x− λ~v| = |
|M|∑
i=1

tiri| ≤
|M|∑
i=1

|tiri|

≤
|M|∑
i=1

τB ≤
|M|∑
i=1

min(ε/2, γ1, γ2)

|M | = min(ε/2, γ1, γ2).

We have used the value of τ defined in Algorithm 1. The
last equation also shows that the current point is inside a
ball of radius ε/2 from the point λ~v.

We now prove that λ ≤ 1 + ε/(2‖~v‖). We prove this
by induction on the number of steps. Initially, λ = 0 ≤
1 + ε/(2‖~v‖). Let xj and xj+1 be the point reached after
j and j + 1 steps, respectively. After j steps, if λj ≤ 1 +
ε/(2‖~v‖) and we are not inside an ε ball around xt, then
by geometry, λj ≤ 1 − ε/(2‖~v‖). Let λj and λj+1 be the
respective projection along direction ~v. Suppose, some rate
~r is taken for time τ . Then,

‖xj+1 − xj‖ = ‖τr‖ ≤ τ‖r‖ ≤ τB ≤ ε

2|M |

So, successive points differ by a distance of at most ε/2|M | ≤
ε/2 and they are centered around λj~v and λj+1~v in a ball of
radius ε/2. Since ‖λj+1~v − λj~v‖ ≤ ε we have that

λj+1 ≤ λj +
ε

‖~v‖ ≤ 1 +
ε

(2‖~v‖)

The last step follows from λj ≤ 1 − ε/(2‖~v‖) as argued
already. So, we have proved by induction that λ ≤ 1 +
ε/(2‖~v‖). Therefore, at any step in the algorithm, λ~v is a
convex combination of x0 and xt + ε~v/(2‖~v‖). Therefore,
a ball of radius min(ε/2, γ1, γ2) lies completely inside the
safety set S. This follows from the definition of γ1 and γ2.
So, the algorithm is safe.

Proposition 8 (Termination). The Algorithm 1 al-
ways terminates.

Proof. We show that the algorithm terminates in finitely
many steps by demonstrating the progress towards the tar-
get state. We say that τ of mode m is pumped in Projection

P at step j of the algorithm, if the player chooses mode m
at step j. We show that there exists δ > 0 such that, in
every |M | + 1 steps of the algorithm, the variable λ of the
current point P increases by at least δ. Consider |M | + 1
consecutive runs of the algorithm. Since we pump a mode at
every step of the algorithm, there is a mode mi, which was
chosen twice for pumping. This implies that at least τ of mi

was consumed in n steps. So, at least τ/|vert(R(mi))| was
consumed by some vertex R(mi)(j) of R(mi). Every CMS
with R(mi) = R(mi)(j) guarantees a fixed increase δ1 in
λ for τ/|vert(R(mi))| consumed of corner R(mi)(j), since
the solution vector σ(F) for every CMS F is fixed. Hence, δ
equals the mininum of δ1 over all vertices of all modes is the
least increase in λ. This is the minimum increase in n + 1
steps of the algorithm. Hence, progress is proved.

Now, we show termination. Progress of δ in every |M |+ 1
iterations along with the condition λ ≤ 1 + ε/(2‖~v‖) and
increase in λ bounded by ε in every step guarantee that,
after some finite iterations, 1− ε/(2‖~v‖) ≤ λ ≤ 1+ ε/(2‖~v‖),
in which case ‖x− λ~v‖ ≤ ε/2 implies x ∈ Bε(xt).

The proof of Lemma 5 is now complete.

3.2 Proof of Theorem 3
With the two lemmas in place, we can proceed with prov-

ing the main complexity results. We start with the positive
result that states that the problem is tractable in practice.

Theorem 9. The reachability problem for BMS and MMS
is fixed parameter tractable, where the parameter is the num-
ber of variables. In particular, it is polynomial for BMS and
MMS with fixed dimension d.

Proof. We first observe that, for fixed dimensions, the
number of extreme points per mode is polynomial in the size
of the defining matrix. Thus, Ext(H) is polynomial in H for
BMS H.

For the sake of simplicity assume that the starting point
is the origin and we wish to reach position p.

From Lemmas 4 and 5, we can infer that the existence
of a CMS ∈ [[Ext(H)]] for which p is not reachable from
the origin is a necessary and sufficient criterion for refuting
reachability. By Theorem 2, for a CMS C the state p is not
reachable from the origin iff it is not in the conical hull of its
vertices. This is the case, iff there is a hyperplane through
the origin that does not contain p, such that the half-space
without p it defines contains all vertices of C.

Let k ≤ d be the dimension of the hull of vert(C).
We now distinguish two cases. First, assume that p is not

in the hull of vert(C). In order to validate this, we can simply
take k < d vectors of C and validate that they are a basis of
vert(C).

Now we assume that p is in the hull of vert(C). We now
work in vert(C). There are k − 1 vectors in vert(C) that
define a hyperplane in this hull, s.t. the half-space without
p it defines contains all vertices of C. 1

The next observation we make is that

1We can start with projecting the the hyperplane we started
with into the hull of vert(C), and then stepwise move the
hyperplane and reduce its dimension. If the space we are
left with has more than one dimension, it is clear that we
can at least change it to include one vertex. We can change
the hyperplane to include one vector, project everything to
the subspace orthogonal to this vector, and continue. The
modes selected can be use to define a suitable hyperplane.



– the k < d spanning vectors used from extreme points
of different modes are sufficient to establish the first
case in polynomial time for the MMS, because one can
cheaply check that all other modes contain a vector in
the space they span, while p is not a linear combination
of them, and

– the k − 1 spanning vectors used from extreme points
of different modes are sufficient to establish the second
case in polynomial time for the MMS, because one can
cheaply check that p is not a linear combination of
them, and all other modes contain a vector in the k
dimensional space spanned by them and p, and p does
not enter positively in the linear combination.

Thus, it suffices to perform cheap (polynomial) tests for
sets of less than d vectors. The number of these sets is
polynomial for fixed d.

Theorem 10. The reachability problem for BMS and MMS
are co-NP complete.

Proof. The inclusion in co-NP is implied by Lemma 4:
to refute reachability, it is enough to guess a CMS C from
[[H]] of an MMS or [[Ext(H)]] from a BMS H and to verify
that the target is not reachable from C. The verification can
be performed in polynomial time from Theorem 2.

We show co-NP hardness by reducing the validity checking
of propositional logic formulas in DNF, where each clause
is a conjunction of three literals, which refer to different
propositions. We give a full proof for BMS.

Given such a formula ϕ with m clauses D1, . . . , Dm and
n ≥ 3 variables x1, . . . , xn, we construct a BMS with less
than 7m + 2n + 3 modes and n + 3 variables. We name
n of these variables the propositions, x1, . . . , xn, and there
are three further variables, y1, y2, y3, which are intuitively
manipulated in three different stages of a game. Initially,
all variables are 0, and the goal is to reach a state, where
y1 = y2 = 1, y3 = n − 3, and x1 = x2 = · · · = xn = 0. The
safety set for all variables is the interval [-1,1].

Given ϕ = D1∨D2∨· · ·∨Dm, where each Di has 3 literals,
we consider subclauses of D1, . . . , Dm. Each Di has 6 non-
empty subclauses. Considering the empty clause as well, we
obtain l ≤ 7m+ 1 clauses D1, . . . , Dm, Dm+1, . . . , Dl. Note
that we do not change ϕ, we only need the new clauses for
technical reasons. Let N(Di) = {j | xj or ¬xj occurs in Di}
for all i = 1, . . . , l.

The BMS has only one nondeterministic mode, me, which
is also the initial mode. Intuitively, the environment chooses
the valuation of the variables in this mode. Our BMS allows
all rate vectors with R(me)(xi) ∈ [−1, 1] for 1 ≤ i ≤ n,
R(me)(y1) = 1, and R(me)(y2) = R(me)(y3) = 0. Intu-
itively, the environment tries to select a valuation of the
variables x1, . . . , xn that does not satisfy ϕ in this mode,
where the value 1 refers to ‘true’ and −1 refers to ‘false’.
me is the only mode with y1 6= 0. Given the goal, the con-
troller must be in the mode me for exactly one time unit.

For each clause in the extended set of clauses (i.e., for
i = 1, . . . , l), our BMS has a clause mode, mi. We have:

– R(mi)(xj) = 1 if ¬xj occurs in Di,

– R(mi)(xj) = −1 if xj occurs in Di,

– R(mi)(xj) = 0 for all j /∈ N(Di), and

– R(mi)(y1) = R(mi)(y3) = 0, and R(mi)(y2) = 1.

Intuitively, the scheduler selects a clause from D1, . . . , Dm,
and resets the values of the three variable occurring in the
clause to 0. The role of the additional l − m clauses is to
account for the capability of the environment to select values
different from −1 and 1. The clause modes are the only
modes with y2 6= 0. Given the goal, the scheduler must be
in clause modes for exactly 1 time unit.

For each of variable xi, our BMS has two correction modes,
m+
i and m−i , and one empty correction node m0. We have:

– R(m+
i )(xi) = 1, R(m+

i )(xj) = 0 for all j 6= i,

R(m+
i )(y1) = R(m+

i )(y2) = 0, and R(m+
i )(y3) = 1,

– R(m0)(xi) = 0, for all i = 1, . . . , n, R(m0)(y1) =
R(m0)(y2) = 0, and R(m0)(y3) = 1, and

– R(m−i )(xi) = −1, R(m−i )(xj) = 0 for all j 6= i,

R(m−i )(y1) = R(m+
i )(y2) = 0, and R(m−i )(y3) = 1.

Intuitively, the scheduler resets the values of the remaining
n − 3 variables, not covered by the clause, to 0 using these
correction modes. The correction modes are the only modes
with y3 6= 0. Given the goal, the scheduler must be in
correction modes for exactly n− 3 time units.

We first observe that the reachability problem is poly-
nomial in ϕ. Next, we convince ourselves that the goal is
reachable if ϕ is valid.

In this case, the scheduler first stays in mode me for one
time unit. It then identifies an i ∈ {1, . . . ,m} such that,
for all j ∈ N(Di), if xj > 0 then xj is a literal of Di and
if xj < 0 then ¬xj is a literal of Di. The scheduler can
then apply the clause modes for Di and/or its subclauses
for together one time unit such that, after this time unit,
xj = 0 holds for all j ∈ N(Di).

Next, the scheduler can apply, for all j /∈ N(Di) the
correction mode m+

j for xj time units if xj > 0 or m−j
for −xj time units if xj < 0. Given a clause Di,

∣∣{j ∈
{1, . . . , n} | j /∈ N(Di)

}∣∣ = n − 3, this brings us to a point
with x1 = . . . = xn = 0, y1 = y2 = 1, and y3 ∈ [0, n − 3].
From there, we can apply m0 for y3 + 3 − n time units to
reach the goal.

Finally, we have to check that, if ϕ is not valid, then the
goal is not reachable. To see this, note that the me must be
scheduled for exactly one time unit. The environment can
therefore select a configuration that does not satisfy ϕ and
choose rates −1 for ‘false’ and 1 for ‘true’ for this configu-
ration each time m0 is scheduled.

Now let us assume that the environment follows this pol-
icy, but the goal is reached. First we observe that the sys-
tem must be for 1 time unit in me, for 1 time unit in clause
modes, and for n−3 time units in correction modes. Clearly,
some clause mode mi is used for t time units, with t ∈ [0, 1].
Note that, if Di refers to a clause that is satisfied by the
configuration, then Di has at most two literals. Now we
observe that

– when considering the effect of the 1 time unit in me,
we have

∑n
j=1 |xj | = n,

– when considering the 1 + t time units the system is in
me or a clause mode mi, we have

∑n
j=1 |xj | ≥ n− 2t,



– when considering the 2 time units the system is in me

or a clause mode mi, we have
∑n
j=1 |xj | ≥ n+t−3 (no

Di exists satisfying the chosen assignment, thus t > 0)

– after the complete n−1 time units of the run, we have∑n
j=1 |xj | ≥ t > 0.

This provides a contradiction to having reached the goal.
The proof can easily be extended to MMS, however we

have to overcome the exponential size of the extreme-rates
for me. In order to achieve this, we split y1 into n variables
y1

1 , . . . , y
n
1 and replace me by n modes m1

e, . . . ,m
n
e . R(mi

e)
has two points, where yi1 = 1, xi ∈ {−1, 1} and all other
y2 = y3 = xj = 0 for all j 6= i. For the goal, we require
y1

1 = . . . = yn1 = 1 instead of y1 = 1. The only change is
that the environment now selects the values for the atomic
propositions successively instead of concurrently.

4. APPLICATIONS
In this section, we show how to apply our results for

– robust schedulability—to decide if, for all ε > 0, there
is a non-Zeno control strategy, which guarantees that
the system stays in an ε ball around the starting point;

– robust stability—to decide if, for all ε > 0, there is a
non-Zeno control strategy, which guarantees that the
system reaches an ε ball around the target point and
then never leaves it again (possibly while staying in
a convex safety set where the starting vertex and the
target xt are inner points); and

– robust path following—to decide if, for all ε > 0, a
given path can be followed with ε precision.

4.1 Robust Schedulability
For ease of notation, we assume w.l.o.g. that this point is

the origin 0, and we assume w.l.o.g. that ε < 1. The problem
has been studied before in [4], but the proof we provide here
is much simpler.

Robust schedulability can be derived from robust reach-
ability by first tweaking the reachability problem slightly,
such that one execution guarantees to stay within a ε-ball
while consuming at least one time unit.

The central idea for adjusting a system with d variables
x1, . . . , xd is to add one variable, c, that serves as a clock.
In all rates of all modes, the rate in which this new vari-
able progresses is 1. Next, we define the safety set as S =
{(x1, . . . , xd, c) | ∀i ≤ d. 2d|xi| ≤ ε}, or any other convex
set that does not constrain the values of c and that con-
straints the values of the remaining variables to be in the
ε ball around 0. We now consider the problem of reaching
the point xt with x1 = . . . = xd = 0 and c = 1 with ε preci-
sion. First, when projecting away the clock c, the safety set
alone guarantees to be in an ε ball around 0, and second,
the value of c must be greater than 1−ε, which implies with
the constant rate 1 that at least 1− ε time units have past.

If xt is not robust reachable from 0, then there is an ε, for
which Bε(xt) cannot be reached. Thus, no strategy exists
to keep the system in an ε/d ball around 0 for one time
unit, as this control strategy could be applied to reach the
ε ball around xt. If, however, xt is robust reachable from
0, then we can repeatedly apply such a strategy, first for
ε1, then for ε2, and so forth, where εi = 2−iε. It is easy to

see that the resulting composed strategy is non-Zeno, as all
components are finite and at least one time unit passes in
each component. It is also easy to see that the error can at
most add up, such that one always stays in an ε ball around
the starting point.

4.2 Robust Stability
Obviously, reachability to xt and robust schedulability are

prerequisites for robust stability. To see that they are also
sufficient, we assuming w.l.o.g. that the ball Bε(xt) is con-
tained in the safety set S. It then suffices to reach an xt
with precision ε/2, and then to follow a robust reachability
strategy to stay in an ε/2 ball around the point reached.

4.3 Robust Path Following
To robustly follow a piecewise linear path with precision

ε, we can simply follow the first piece with precision ε1, the
second with ε2, and so forth, where εi = 2−iε. Following
a piecewise linear path is therefore possible with arbitrary
precision if each segment can be followed individually with
arbitrary precision. Conversely, if one of these segments can-
not be followed with arbitrary precision, then, obviously, the
complete path cannot be followed with arbitrary precision.
Note that the necessary and sufficient criterion extend to
infinite paths composed of an infinite sequence of segments.

Following a segment with arbitrary precision is essentially
a robust reachability problem. If the endpoint of the seg-
ment is robustly reachable from its starting point, then we
can, for a given ε, define an convex set, where each point
has distance at most ε to the segment, and that contains
the ε/2 ball around the goal. We then run Algorithm 1.

This can be extended to piecewise smooth (continuously
differentiable) paths that can be approximated arbitrarily
closely by a (possibly infinite) sequence of segments, where
the endpoint of each segment is reachable from its starting
point. This is the case iff the derivation satisfies everywhere
(where defined) the condition for robust reachability.

5. MINIMUM DWELL-TIME CONDITION
In this section, we consider an extension of robust reach-

ability to robust reachability with or without dwell-time or
discrete sampling. We assume w.l.o.g. that the minimal
dwell-time or the sampling rate, respectively, is 1.

Theorem 11. The robust reachability problem with dwell-
time requirement is decidable for BMS where all rate vectors
are positive.

Proof. W.l.o.g assume that the starting state in 0 and
the target state is xt. Notice that since all the rate vectors
are positive, and every mode should be taken for at least 1
time-unit, there is a bound K such that the target state is
not reachable is it is not reachable in K steps. (K is easy
to compute.)

For robust reachability under bounded steps one can write
a formula in first-order theory of reals. Now the decidability
of the robust reachability with dwell-time requirement for
BMS with positive rate vectors follows from the decidability
of the first-order theory of reals.

Theorem 12. The reachability problem is EXPTIME-hard
for MMS with dwell time requirements or discrete sampling.



Proof. We prove the result by a reduction from count-
down games [10]. A countdown game is a tuple G = (N,T,
(n0, B0)), where N is a finite set of nodes, T ⊆ N×N>0×N
a set of transitions, and (n0, B0) ∈ N × N>0 is the initial
configuration. The states of a countdown game, also called
its configurations, are N × {0, 1, . . . , B0}.

From any configuration (n,B), Player 1 chooses a num-
ber l ∈ N>0 such that there exists a transition (n, l, n′) ∈ T
with l ≤ C. Among all the available transitions of the
form (n, l, n′), Player 2 selects an appropriate transition
(n, l, n′′) ∈ T . The new configuration is then (n′′, C − l).

Player 1 wins when a configuration (n, 0) is reached, and
otherwise loses when a configuration (n,C) is reached where
Player 1 cannot move. This is the case when, for all outgoing
transitions (n, l, n′) ∈ T , we have l > C. W.l.o.g., we assume
that there are no transitions (n, l, n) ∈ T for any l ∈ N>0.

We now translate this game into a sampled robust reacha-
bility problem, where the scheduler takes the role of Player 1,
while the environment takes the role of Player 2.

The translation uses |N | + 1 variables, a variable B re-
flecting the remaining time budget and a variable n for each
element n ∈ N . Being in state (n,C) in the countdown
game is intuitively represented by B = C, n = 1, and n′ = 0
for all states n′ 6= n. The initial state is given by B = B0,
n0 = 1, and n = 0 for all states n 6= n0, i.e., by the state
representing the initial configuration (n0, B0). The target
is 0. The safety set is described by n ∈ [−0.5, 1.5] for all
n ∈ N and B ∈ [−0.5, B0 + 1].

The rates Player 1 selects become the modes of our MMS.
Thus, we have a mode l for each l ∈ N>0, for which a tran-
sition (n, l, n′) ∈ T exists. The selection of the concrete
transition by Player 2 becomes the choice of the mode by
the environment. We therefore have, for a given mode l,
one rate vector for each transition (n, l, n′) ∈ T , where the
rates are n = −1, n′ = 1, B = −l, and n′′ = 0 for all
n′′ ∈ N r {n, n′}.

Before we describe how to translate (winning) strategies,
we first note that, from each translation of a configuration,
the scheduler cannot make a move of length ≥ 2. We first
replace the target vertex by a the target region B = 0. For
this target region, there is a simple 1:1 translation between
the moves and states for the countdown game and the reach-
ability game, where each move l of Player 1 in the countdown
game corresponds to the move (l, 1) of the scheduler, while
every move (n, l, n′) of Player 2 corresponds to the environ-
ment selecting the corresponding rate.

To return to normal reachability, we add, for each node
n ∈ N , a mode n. This mode has only one rate, with B = 0,
n = −1, and n′ = 0 for all n′ 6= n. Note that such a mode
n can only be applied from states that encode (n,C), and it
can only be applied with duration 1. Once such a mode is
applied, no further mode (of either type) can be applied in
the future, as one variable n′′ ∈ N would afterwards have
the value −1.

Now, a winning for Player 1 corresponds to winning strat-
egy of the scheduler that ends by applying such a mode. This
closes the proof for discrete sampling.

To expand this to dwell time, we sharpen the bounds
for the safety set to n ∈ [−ε, 1 + ε] for all n ∈ N and
B ∈ [−ε,B0 + 1] for some ε < 1

8B0
. Now, if Player 1 wins,

then the scheduler wins with the same strategy as above. If
Player 2 wins, Player 1 is stuck in < B0 move pairs. When
the environment mimics such a strategy (until Player 1 is

stuck) then the game reaches a position, where each vari-
able value is in a 2(B0 − 1)ε < 1

4
range around the value

it would have, had the scheduler played a duration of 1 for
each move. Thus, the scheduler can, at most, play a “node
mode” n ∈ N once, but it cannot reduce the value of B
without leaving the safety region.

For discrete sampled controllers, we can easily show in-
clusion in EXPTIME by exploring the complete state-space.
To do this, we can proceed in two steps. In a first step,
we expand all values in the problem setting to integers by
multiplying every value with the least common multiple of
all denominators. (Note that this is a polynomial time re-
duction.) Then we can be sure that all values are at integer
points, and we can simply explore the complete state-space,
which is exponential in the setting. As the lower bound is
inherited from the previous proof, we get:

Corollary 13. The robust reachability problem with dis-
crete sampling is EXPTIME-complete.

6. GENERALIZED MODELS
In this section we consider generalization of the BMS by

adding structure to the model using Alur-Dill style [3] clock
variables, i.e. variables with rate 1 in every mode. In the
resulting model only clock variables can occur on the transi-
tions where they can be compared against natural numbers
or can be reset. All other non-clock variables will behave like
BMS. We show that for BMS with clock the robust reacha-
bility problem is undecidable for BMS with 2 variables and
1 clock, and BMS with 1 variable and 2 clocks.

We prove the undecidability of this problem by giving a re-
duction from the halting problem for two-counter machines.
Formally, a two-counter machine (Minsky machine) A is a
tuple (L,C) where: L = {`0, `1, . . . , `n} is the set of instruc-
tions. There is a distinguished terminal instruction `n called
HALT. C = {c1, c2} is the set of two counters; the instruc-
tions L are one of the following types:

1. (increment c) `i : c := c+ 1; goto `k,

2. (decrement c) `i : c := c− 1; goto `k,

3. (zero-check c) `i : if (c > 0) then goto `k else goto `m,

4. (Halt) `n : HALT.

where c ∈ C, `i, `k, `m ∈ L.
A configuration of a two-counter machine is a tuple (`, c, d)

where ` ∈ L is an instruction, and c, d are natural numbers
that specify the value of counters c1 and c2, respectively.
The initial configuration is (`0, 0, 0). A run of a two-counter
machine is a (finite or infinite) sequence of configurations
〈k0, k1, . . .〉 where k0 is the initial configuration, and the
relation between subsequent configurations is governed by
transitions between respective instructions. The run is a
finite sequence if and only if the last configuration is the
terminal instruction `n. Note that a two-counter machine
has exactly one run starting from the initial configuration.
The halting problem for a two-counter machine asks whether
its unique run ends at the terminal instruction `n. It is well
known that the halting problem for two-counter machines is
undecidable.

Theorem 14. The robust reachability problem is unde-
cidable for BMS with 2 variables and 1 clock.



`i
(0, 0)

NZ
{(0, 0), (0,−100)}

Z
{(0, 0), (0,−100)}

`2

`1

O
(0, 100)

N
(0,−1)

T
(−1, 0)C

h
k

1 x = 1?

x := 0

x = 1?

x := 0

x = 1?, x := 0 x = 1?, x := 0

O
(0, 100)

T
(−1, 0)

x = 1?, x := 0

x = 1?, x := 0

C
h
k

2

x = 1

x := 0

x = 1

x := 0

x = 1?, x := 0

x = 1?, x := 0

x = 1? x := 0

x = 1? x := 0

Figure 3: Simulation of Zero Check instruction

Proof. For the sake of simplicity of presentation we prove
the undecidability of the exact reachability problem. The
proof can be adapted to robust reachability case. Given a
Minsky machine we construct a structured BMS H with 2
variables and a single clock that is reset on every transi-
tion. The clock is used in a simple way just to ensue that
at each mode exactly 1 unit of time is spent by the con-
troller. We use two variables y and z to encode the values
of the two counters c1 and c2, and one mode corresponding
to each location of the Minsky machine. For each zero check
instruction we further use five extra modes and a special
target mode T depicted by a double circle. Our goal is to
reach mode T with y = z = 0.

The simulation of the increment and decrement instruc-
tion is straightforward. In an increment c1 location the rate
is given by (1, 0), while in decrement location the rate is give
by (−1, 0). Clock variables are used to ensure that exactly
one time unit is spent in each such mode.

The Zero Check Instruction is simulated using the wid-
get shown in Figure 3. The scheduler non-deterministically
guesses if c2 is zero or not, by going to one of the locations
Z,NZ. The values of variables y, z remain unchanged. As-
sume that scheduler chose NZ. The environment can now
allow the scheduler to continue his simulation by either giv-
ing the rate (0, 0), or check his guess by giving the rate
(0,−100). If the rate (0, 0) is obtained, the scheduler’s best
strategy is to goto `2, otherwise, the scheduler must go to
Chk1. The first thing that happens in the gadget Chk1 is
the variable z regaining its previous value by adding 100.
If the scheduler’s choice of c2 being non-zero was incorrect,
then when the location T is reached, we have z = −1. There
is then no way to reach the target mode T with valuation
y = 0, z = 0.

In a similar way, the environment can check if the sched-
uler guessed that the counter c2 is zero, by giving the rate
(0,−100) at the location Z. In this case, the best strategy
for scheduler is to goto the gadget Chk2. The first thing
that happens in Chk2 is for variable z to regain its previous
value by adding 100. If the guess of c2 being 0 was correct,
then the scheduler can reach T with y = z = 0. However, if

the guess was wrong, scheduler can obtain z = 0, and will
lose.

If the two counter machine halts, and the scheduler sim-
ulates all the instructions correctly, then it is possible to
reach a mode T ∈ T with y = z = 0, or the mode Halt is
reached. It is straightforward to see that the location Halt
is reached iff the two counter machine halts and scheduler
simulates all instructions correctly. From the Halt mode we
add an outgoing transition from where it is always possible
for the scheduler to reach a mode T ∈ T with y = z = 0.
The proof is now complete.

The proof of the following theorem is also via a reduction
from the Minsky machines and is slightly more involved than
the previous theorem. However, due to space limitation, we
have moved the proof to the appendix.

Theorem 15. The robust reachability problem is unde-
cidable for BMS with 1 variable and 2 clocks.

Acknowledgments
We thank Rajeev Alur, Salar Moarref and Vojtech Forejt for
the discussions related to some aspects of this work.

7. REFERENCES
[1] A.P. Aguiar and J.P. Hespanha. Trajectory-tracking

and path-following of underactuated autonomous
vehicles with parametric modeling uncertainty.
Automatic Control, 52(8):1362–1379, 2007.

[2] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-S.
Ho. Hybrid automata: An algorithmic approach to the
specification and verification of hybrid systems. In
Hybrid Systems, pages 209–229, 1992.

[3] R. Alur and D. Dill. A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.

[4] R. Alur, V. Forejt, S. Moarref, and A. Trivedi. Safe
schedulability of bounded-rate multi-mode systems. In
HSCC, pages 243–252, 2013.

[5] R. Alur, A. Trivedi, and D. Wojtczak. Optimal
scheduling for constant-rate multi-mode systems. In
HSCC, pages 75–84, 2012.

[6] E. Asarin, M. Oded, and A. Pnueli. Reachability
analysis of dynamical systems having
piecewise-constant derivatives. TCS, 138:35–66, 1995.

[7] Michael S Branicky, Vivek S Borkar, and Sanjoy K
Mitter. A unified framework for hybrid control: Model
and optimal control theory. Automatic Control,
43(1):31–45, 1998.

[8] Luca De Alfaro and Thomas A Henzinger. Interface
theories for component-based design. In Embedded
Software, pages 148–165. Springer, 2001.

[9] T. A. Henzinger, P. W. Kopke, A. Puri, and
P. Varaiya. What’s decidable about hybrid automata?
Journal of Comp. and Sys. Sciences, 57:94–124, 1998.

[10] M. Jurdziński, J. Sproston, and F. Laroussinie. Model
checking probabilistic timed automata with one or two
clocks. LMCS, 4(3), 2008.

[11] S. M. LaValle and J. J. Kuffner. Randomized
kinodynamic planning. In Robotics and Automation,
volume 1, pages 473–479. IEEE, 1999.

[12] J.L. Le Ny and G.J. Pappas. Sequential composition
of robust controller specifications. In Robotics and
Automation, pages 5190–5195, 2012.



APPENDIX
Proof of Theorem 15
We prove the undecidability by constructing a structured
BMS H with 2 clocks and one variable that simulates the
2 counter machine. We prove that the scheduler has a win-
ning strategy to reach x ∈ B∆(p) iff the two counter machine
halts. Our construction of H is such that we have a gadget
corresponding to each instruction in the two counter ma-
chine. We consider p = 7, and 0 < ∆ < 1 as given. Modes
in the target set T are denoted by a double circle.

Let the single variable be denoted z, and let x, y be the
clocks. On entry into any gadget, the value of the variable
z is 5− 1

2c13c2 where c1, c2 are the current values of the two
counters, and the clocks x, y are zero.

1. Simulation of an increment instruction `i : c1 := c1 +1;
goto `k.

The gadget simulating the increment c1 instruction can
be seen in Figure 4. The gadget is entered with z =
5 − 1

2c13c2 , x = y = 0. The locations in the gadget
contain the name of the location as well as the rate
(possibly a set of rates, or an interval of rates) of the
variable z, as the case may be. Let us denote by old
the value 1

2c13c2 . A non-deterministic amount of time is
spent at location `i. The ideal time to be spent here is
old
2

, so that z is updated from 5−old to 5− old
2

, reflecting
the correct new counter values. y is reset on going to
location A. A time of one unit is spent at location A.
The value of x is unchanged during this process due to
the self loop on A. There are three possible rates that
the environment can give to the scheduler, namely 100,
-100 or 0 at location A. The scheduler can go to any of
the gadgets C>, C< or to the location `k.

`i
1

A
{100,−100, 0}

C>

C<

`k

0 < x < 1?

y := 0

x = 1?

x := 0

y = 1? y := 0

y = 1? y := 0

y = 1? x, y := 0

Figure 4: Simulation of increment c1 instruction

Assume that the time spent at `i is old
2

+ ε for some

ε ≥ 0. In this case, x = old
2

+ε, y = 0 and z = 5− old
2

+ε.
The environment can force a check of the scheduler and
catch his mistake, by choosing a rate of 100 at location
A. This would make z = 105− old

2
+ ε. If the scheduler

wants to win, he must reach a mode in T , with the
value of z in B∆(7). The best thing for the scheduler
to do at this point is to choose C> as his next location,
since it allows the value of z to come back to 5− old

2
+ε.

If the scheduler chooses to go to C<, he will be worse
off, making z even bigger, and if he chooses `k, the
environment can make sure that the scheduler never
wins by choosing the rate 100 in all future gadgets.

Lets thus assume that the scheduler chooses to goto the
gadget C> in Figure 5. On entry, we have x = old

2
+ ε,

y = 0 and z = 105 − old
2

+ ε. At location O, the value
of x remains unchanged, y grows to 1 and is reset, and
z becomes z = 5 − old

2
+ ε. At location B, a time

1 − old
2
− ε is spent, obtaining x = 0, y = 1 − old

2
− ε

and z = 5 − old
2

+ ε − 1(1 − old
2
− ε) = 4 + 2ε. If

ε > 0 and 2ε > ∆, then the scheduler has already lost,
since adding 3 more to z at location C does not help.
Consider now the case that ε > 0 and ∆− 2ε = κ > 0.
At location D, a time of one unit is spent, and the
environment can choose a rate as close to ∆ as he wants
: in particular, he can choose a rate that is larger than
κ, making the value of z = 4+2ε+κ+ζ, for some ζ > 0.
This means the scheduler can never reach a point in the
ball B∆(7), even after adding 3 to z at location C.

If ε = 0, then irrespective of the rate κ ∈ (0,∆) chosen
by the environment, the value of z is 7 + κ ∈ B∆(7),
after adding 3 to z at location C. Thus, if the scheduler
made no mistake, he reaches a point inside the chosen
ball.

O
−100

x = 1?

x := 0

B
−1

y = 1?

y := 0

C
3

D
(0,∆)

T
0

x = 1?

x := 0

x = 1?

x := 0

x = 1?

x := 0

Figure 5: The gadget C>

Now consider the case when the scheduler spends an
amount of time old

2
− ε, for some ε ≥ 0 at location

li in Figure 4. Then we have x = old
2
− ε, y = 0 and

z = 5− old
2
−ε. At location A in Figure 4, as seen above,

the environment can assign any of the rates 100, -100 or
0 to the scheduler. If the environment wishes to catch
the scheduler’s mistake, a rate of -100 will be assigned.
The scheduler, if he chooses to goto C> or Go, will
surely lose, since the value of z will decrease further,
and will never reach a value in B∆(7); likewise, if the
scheduler chooses Go, the environment can forever give
a rate of -100. The best choice for scheduler is therefore,
to pick C<. The gadget C< is given in Figure 6.

On entry to C<, we have x = old
2
− ε, y = 0 and z =

−95 − old
2
− ε. At location O, the value of x remains

unchanged, y grows to 1 and is reset, and z becomes
z = 4 − old

2
− ε. At location B, a time 1 − old

2
+ ε is

spent, obtaining x = 0, y = 1− old
2

+ ε and z = 5− old.

A time old
2
− ε is spent at location C, obtaining z =

5− old+ 2( old
2
− ε) = 5− 2ε.

At location E, a time of one unit is spent, and the
environment can choose a rate in (−∆, 0). Consider
the case when ε > 0 and 5 − 2ε < 5 −∆. In this case,
scheduler has already lost the game, since spending one
unit at location D will only give z = 7 − 2ε < 7 − ∆.
However, if 7 − 2ε > 7 − ∆, let κ = ∆ − 2ε > 0.



Environment can then choose a rate −κ− ζ ∈ (−∆, 0),
for ζ > 0. Then z = 7 − 2ε − κ + ζ = 7 − ∆ − ζ <
7−∆. This would result in scheduler losing. However,
if ε = 0, then for any −κ ∈ (−∆, 0), the value of z is
7− κ ∈ B∆(7).

O
99

x = 1?

x := 0

B
1

y = 1?

y := 0

C
2

D
2

E
(−∆, 0)

T
0

x = 1?

x := 0

x = 1? x := 0

x = 1?

x := 0

x = 1?

x := 0

Figure 6: The gadget C<

The only remaining case is when the scheduler indeed
picks the correct delay of old

2
at location `i in Figure 4.

In this case, as seen above, the rates 100, -100 chosen
by the environment does not affect the scheduler. In
both these cases, scheduler has a winning strategy of
choosing to go to one of C<, C> and reach a value of z
in the chosen ball. If ε = 0, and the environment picks
the rate 0 at location A, then the best strategy for the
scheduler is to select `k, which marks the continuation
of the simulation of the two counter machine. As ex-
pected, we will indeed have on entry into lk, x = y = 0
and z = 5− old

2
, marking the correct simulation of the

increment c1 instruction.

2. Simulation of a decrement instruction `i : c1 := c1 − 1;
goto `k.

The construction of gadgets for the decrement instruc-
tion is similar to that of the increment instruction.

li
− 1

2

A
{100,−100, 0}

D>

D<

lk

0 < x ≤ 1?

y := 0

x = 1?

x := 0

y = 1? y := 0

y = 1? y := 0

y = 1? x, y := 0

Figure 7: Simulation of decrement c1 instruction

The ideal amount of time to be spent by scheduler at
`i is 2old. In this case, z = 5 − 2old, x = 2old, y = 0.
Assume that the time spent at `i is 2old + ε, for some
ε > 0. Then we have z = 5−2old− ε

2
. At location A, the

environment picks one of the 3 rates 100, -100, 0. If he
wants to force a check on the environment, he picks the
rate 100, making z = 105−2old− ε

2
, x = 2old+ε, y = 0.

As seen in the case of the increment gadget, the best
strategy for the scheduler is to pick the gadget D>.

O
−100

x = 1?

x := 0

B
−1

y = 1?

y := 0

C
3

D
(0,∆)

T
0

x = 1?

x := 0

x = 1?

x := 0

x = 1?

x := 0

Figure 8: The gadget D>

Entry into D> is made with z = 105 − 2old − ε
2
, x =

2old+ε, y = 0. One unit of time is spent at O, obtaining
z = 5 − 2old − ε

2
, x = 2old + ε, y = 0. At B a time

1−2old− ε is spent, obtaining z = 5−2old− ε
2
−1(1−

2old − ε) = 4 + ε
2
. A time of one unit is spent at C

obtaining z = 7 + ε
2
. Likewise, a time of one unit is

spent at D, obtaining z = 7 + ε
2

+ κ, where κ ∈ (0,∆).
If ε

2
> ∆, then clearly, scheduler has already lost the

game. If ∆ − ε
2
> 0, then κ ∈ (0,∆) can be chosen

such that κ > ∆− ε
2

such that the value of z /∈ B∆(7).
Note that if ε = 0, this is not possible, and scheduler
can indeed reach z ∈ B∆(7).

Now consider the case when scheduler spends a time
2old−ε, for some ε > 0 at `i in Figure 7. Then we have
z = 5 − 2old + ε

2
. Again, the environment can choose

the rate -100 at location A, and the scheduler’s best
strategy is to enter gadget D<. Entry into D< happens
with z = −95− 2old+ ε

2
, x = 2old− ε, y = 0. One unit

of time is spent at O obtaining z = 5 − 2old + ε
2
, x =

2old−ε, y = 0. A time 1−2old+ε is spent at location B
obtaining z = 5−2old+ ε

2
−1(1−2old+ε) = 4− ε

2
. One

unit of time is spent at C obtaining z = 7− ε
2
. Spending

one unit at location D with a rate −κ ∈ (−∆, 0) gives
z = 7− ε

2
−κ. If ε

2
> ∆, then the scheduler has already

lost. If ∆ − ε
2
> 0, then the environment can always

choose −κ ∈ (−∆, 0) such that z = 7− ε
2
− κ < 7−∆.

Clearly, if ε = 0, this is not possible. and scheduler
wins.

O
100

x = 1?

x := 0

B
−1

y = 1?

y := 0

C
3

D
(−∆, 0)

T
0

x = 1?

x := 0

x = 1? x := 0

x = 1?

x := 0

Figure 9: The gadget D<

3. Zero Check Instruction. `i: if c2 = 0 goto `1 else goto
`2.

Figure 10 describes the gadget for zero check of counter
c2. No time is spent at location `i, and the scheduler
makes a guess about the value of c2. If he guesses that
c2 is zero, then he will choose the location Z. The en-
vironment can either allow the scheduler to go ahead



with the simulation by choosing a rate 0, or could verify
the correctness of scheduler’s guess by choosing a rate
100. One unit of time has to be spent at the location
Z. Thus, if the scheduler decides to verify and chooses
the rate 100, the value of z will be 105− old. The en-
vironment will check if old = 1

2c1 , for some c1 ≥ 0. If
the environment chooses 100, the best strategy for the
scheduler is to choose the gadget Z?. Going to `1 does
not help the scheduler to win, since the environment
can pick the rate 100 in all future choice locations, en-
suring that the scheduler cannot win.

`i
0

NZ
{100, 0}

Z
{100, 0}

`2

NZ?

l1

Z?

x = 0?

x = 0?

x = 1?

x, y := 0

x = 1?

x := 0

x = 1?

x, y := 0

x = 1?

x := 0

Figure 10: Zero Check

The gadget Z? given in figure 11 is a check gadget which
checks if old = 1

2c1 , for some c1 ≥ 0. The gadget Z?
is entered with z = 105 − old, x = y = 0. A time of
unit is spent at location L, obtaining z = 5 − old and
x, y = 0. If indeed c2 = 0, and if in addition, c1 = 0,
then old = 1 and z = 4. In this case, the scheduler
can go to the location F , spend a unit of time at F
obtaining z = 7. This leads to the location G, where
the environment can pick any rate in (0,∆). One unit of
time is spent in G, and in this case, we reach the mode
T with z = 7 + κ ∈ B∆(7), for κ ∈ (0,∆). Clearly, the
scheduler wins here since his guess about c2 being zero
was correct.

In case old = 1
2c1 for c1 > 0, then from location M ,

the scheduler cannot win by choosing location F as
the next location, since the value of z on entry into
G will be 8 − old, where old = 1

2c1 for c1 > 0. If
8 − old > 7 + ∆, then the scheduler has already lost.
If 8− old ≤ 7 + ∆, let 8− old = (7 + ∆)− p, for some
p ≥ 0. Then p = ∆ + old − 1 < ∆, since old ≤ 1

2
.

Thus, the environment can pick a rate p + ζ ∈ (0,∆)
such that z = 8− old+ p+ ζ > 7 + ∆.

Thus, if c1 > 0, the best strategy for scheduler is to
goto location C. The subgraph consisting of locations
C,D and gadgets D< and D> simulates the decrement
c1 instruction. The ideal time to be spent at C is 2old
so that the value of c1 is decremented by one. At loca-
tion D, the environment can choose a rate 0 (in which
case, scheduler will go back to location C) or a rate
100 (in which case scheduler will go to D>) or a rate
-100 (in which case, scheduler will go to D<). In the
case scheduler goes back to C, the new value of z is
5−2old, x = y = 0. The ideal time to be spent at C now
is 4old, and so on. At some point of time when c1 = 0,

L
−100

M
0

C
− 1

2

F
3

G
(0,∆)

T

D
{100,−100, 0}

D<

D>

x = 1?

x, y := 0

x = 0?

x = 0? x = 0?

x = 1?

x := 0

x = 1? x := 0

0 < x ≤ 1? y := 0

y = 1? y := 0

y = 1? y := 0
x = 1?

x := 0

y = 1? x, y := 0

Figure 11: The gadget Z?

we will obtain z = 4. At this point, the scheduler can
take the transition to F from C, and as seen above can
reach T with z ∈ B∆(7). If the scheduler goes to F
from C when z = 5 − old for some 0 < old < 1, then
as seen above, on entry into G, z = 8 − old, and the
environment has a choice of rate in (0,∆) such that
scheduler loses.

The gadget NZ? is given in Figure 12. This is entered
into when the environment chooses a rate of 100 at
location NZ in Figure 10. The idea is to verify that
indeed c2 is non-zero. Scheduler has to go through the
locations C,E atleast once so that c2 is decremented
atleast once (hence, c2 6= 0). The time elapse at C
must be 3old, so that z = 5 − old − 2

3
(3old) = 5 −

3old, decrementing c2. The gadgets E< and E> can be
designed similar to the gadgets D< and D> to catch the
errors of the scheduler when the time elapse is 3old+ ε
and 3old− ε, ε > 0. The scheduler must visit the C,E
loop c2 times (provided the environment gives rate 0
at location E everytime). When the rate 0 is given
at location E, scheduler can move to location J when
c2 becomes 0. If c1 is zero, then we get z = 4 at the
end of the C,E loop. Then from J , scheduler can go
to location F spending no time at J , and reach T with
z ∈ B∆(7). However, if c1 > 0, then scheduler visits the
J,K loop until c1 = 0 (provided the environment gives
a rate 0 at location K). When c1 = 0, the scheduler can
move from J to F , and reach the target with z ∈ B∆(7).

4. The Halt location : The location labeled Halt has rate
1. The scheduler will reach here iff the two counter
machine halts, and when the scheduler has simulated all
the instructions correctly. The value of z will be 5−old,
where old = 1

2c13c2 , for c1, c2 ≥ 0. A non-deterministic
amount of time can be spent by the scheduler here so
that z will lie in B∆(7).

It can be proved that the scheduler has a winning strategy
to reach z ∈ B∆(7)) iff the two counter machine halts.



L
−100

M
0

C
− 2

3

F
3

G
(0,∆)

T

E
{100,−100, 0}

J
− 1

2

K
{100,−100, 0}

D<

D>

E<

E>

x = 1? x, y := 0

x = 0?

x = 0? x = 1?

x := 0

x = 1? x := 0

0 < x ≤ 1? y := 0

y = 1? y := 0

y = 1? y := 0

x = 1? x := 0

x = 1? x := 0

y = 1? x, y := 0

y = 1? x, y := 0

0 < x ≤ 1? y := 0
y = 1? x, y := 0

y = 1? y := 0

y = 1? y := 0

Figure 12: The gadget NZ?


	Introduction
	Robust Reachability Problem
	Preliminaries
	Multi-Mode Systems

	Decidability and Complexity
	Proof of Theorem 1
	Proof of Theorem 3

	Applications
	Robust Schedulability
	Robust Stability
	Robust Path Following

	Minimum Dwell-Time Condition
	Generalized Models
	References

