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Abstract

We describe a new technique (published in [1]) to determine the contribution to the anomalous magnetic moment
of the muon coming from the hadronic vacuum polarisation using lattice QCD. Our method uses Padé approximants
to reconstruct the Adler function from its derivatives at q2 = 0. These are obtained simply and accurately from
time-moments of the vector current-current correlator at zero spatial momentum. We test the method using strange
quark correlators calculated on MILC Collaboration’s n f = 2 + 1 + 1 HISQ ensembles at multiple values of the
lattice spacing, multiple volumes and multiple light sea quark masses (including physical pion mass configurations).
We find the (connected) contribution to the anomalous moment from the strange quark vacuum polarisation to be
as
µ = 53.41(59) × 10−10, and the contribution from charm quarks to be ac

µ = 14.42(39) × 10−10 - 1% accuracy is
achieved for the strange quark contribution. The extension of our method to the light quark contribution and to that
from the quark-line disconnected diagram is straightforward.
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1. Motivation

The magnetic moment of the muon can be determined
extremely accurately in experiment and the anomaly,
aµ = (gµ − 2)/2, is known to 0.5 ppm (Brookhaven
E821, [2]). Theoretical calculation of aµ in the Standard
Model shows a discrepancy with the experimental result
of about 25(9) × 10−10, which could be an indication
of new virtual particles. Improvements of a factor of
4 in the experimental uncertainty are expected in 2017-
18 (Fermilab E989 experiment) — improvements in the
theoretical determination would make the discrepancy
(if it remains) really compelling.

The theoretical uncertainty is dominated by that from
the hadronic vacuum polarisation (HVP) contribution
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Figure 1: Diagrammatic representation of the hadronic vacuum polar-
isation contribution to the muon anomalous magnetic moment. The
wavy lines are photons and the shaded blob is the hadronic vacuum
polarisation contribution with all the quark and gluon interactions.
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(Fig. 1). At the moment the most accurate determination
of HVP contribution comes from experiment: disper-
sion relation + cross section for e+e− (and τ)→ hadrons
gives ∼ 700×10−10 with a 1% error [3, 4]. Higher order
contributions from QCD processes have larger percent-
age uncertainty but make an order of magnitude smaller
contribution, so we set out to calculate the lowest order
HVP contribution and aim at 1 − 2% accuracy.

2. Method

We express the aµ HVP contribution in terms of a
small number of derivatives of the hadronic vacuum po-
larisation function Π evaluated at zero momentum and
use lattice current-current correlators to calculate the
derivatives [1].

The HVP contribution to the anomalous magnetic
moment for quark flavour f is

a(f)
µ,HVP =

α

π

∫ ∞

0
dq2 f (q2)

(
4παQ2

f
)
Π̂f(q2), (1)

where

f (q2) ≡
m2
µq2A3(1 − q2A)

1 + m2
µq2A2 ,

A ≡

√
q4 + 4m2

µq2 − q2

2m2
µq2

(2)

and α = αQED. The integrand peaks at q2 ∼ O(m2
µ). Pre-

vious methods calculated Π̂(q2) at larger q2 and extrap-
olated to zero, which leads to model uncertainties, and
calculating directly at small q2 using “twisted boundary
conditions” produces noisy results. We avoid this by
working, in effect, from q2 = 0 upwards.

The vacuum polarisation function is a Fourier trans-
form of the lattice current-current correlator:

Πii = q2Π(q2) = a4
∑

t

eiqt
∑
~x

〈 ji(~x, t) ji(0)〉. (3)

We calculate the derivatives of the renormalised vacuum
polarisation function Π̂(q2) ≡ Π(q2) − Π(0) from the
time moments of the correlator:

G2n ≡ a4
∑

t

∑
~x

t2nZ2
V〈 j

i(~x, t) ji(0)〉

= (−1)n ∂
2n

∂q2n q2Π̂(q2)
∣∣∣∣
q2=0

.

(4)

Here the correlator 〈 ji(~x, t) ji(0)〉 is a local spatial vector
current at zero spatial momentum.

We define Π̂(q2) through the series expansion

Π̂(q2) =

∞∑
J=1

q2Π j, Π j = (−1) j+1 G2 j+2

(2 j + 2)!
(5)

and use Padé approximants for Π̂(q2) to control the
high-q2 region. High-order Padé approximants con-
verge to the exact result [1]. We use 4th, 6th, 8th and
10th time moments (i.e. j = 1, 2, 3 and 4). Only quark-
line connected contributions to the lowest order HPV
are considered here — disconnected contributions will
need to be addressed separately.

3. Lattice configurations

We use lattice ensembles made by MILC collabora-
tion [5, 6] that have u/d, s and c quarks in the sea (i.e.
n f = 2 + 1 + 1). The lattice spacings are a ≈ 0.15 fm
(very coarse), 0.12 fm (coarse) and 0.09 fm (fine), de-
termined using the Wilson flow parameter w0 [7]. We
use Highly Improved Staggered Quark (HISQ) action,
which is known for very small discretisation errors.
We use ensembles that have different light sea quark
masses, including ensembles with physical light quark
mass. The strange valence quark is tuned using the ηs

meson mass mηs = 688.5 MeV [7]. We also test tun-
ing effects by deliberately mistuning the strange quark
by 5% (set 6). We use large volumes, (5.6 fm)3 on the
finest lattices, and have ensembles with different vol-
umes for testing finite volume effects. Details of the
lattice ensembles are listed in Table 1.

The local current used here is not the conserved vec-
tor current for this quark action and must be normalised.
Renormalisation constant ZV,s̄s is calculated completely
nonperturbatively by demanding that the vector form
factor for this current be 1 between two equal mass
mesons at rest (q2 = 0) [8]. Accurate normalisation is
crucial if the target is total uncertainty at the 1% level.

4. Meson correlators

The 2-point correlators used in this study are the φ
meson correlators made using a local spatial vector op-
erator. As a cross-check and illustration of the accuracy
of the correlators we plot the mass difference of the ss̄
vector and pseudoscalar mesons, mφ−mηs , in Fig. 2, and
also plot the φ meson decay constant in Fig. 3. Both fig-
ures show that the discretisation errors are indeed small
and also emphasize the importance of working at the
physical light quark masses (here sea quarks, but even
more important in the case of light valence quarks).
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Figure 2: Mass difference mφ − mηs as a function of a2. Comparing
results on ensembles that have different light sea quark masses shows
the advantage of working at the physical point.
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Figure 3: φ meson decay constant as a function of a2, comparing
results on ensembles that have different light sea quark masses (mlat

l =

ms/5 and mlat
l = mphys

l ).
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Figure 4: Continuum extrapolation fit. Here we compare results from
ensembles with mlat

l = ms/5 (blue points) to results from ensembles
with physical light quark mass (red points). The shaded error band is
our final result.

5. Fitting the data

We use the [2,2] Padé approximant for each configu-
ration set and then fit these results to a function of the
form

as
µ,lat = as

µ

(
1 + ca2

(aΛQCD

π

)2
+ cseaδsea + cvalδval

)
, (6)

where ΛQCD = 0.5 GeV and

δsea ≡
∑

q=u,d,s

msea
q − mphys

q

mphys
s

, δval ≡
mval

s − mphys
s

mphys
s

. (7)

Here the fit parameter ca2 takes care of the (small) dis-
cretisation effects and csea and cval take care of the de-
pendence on the sea and valence quark masses. The fit
results along with lattice data are shown in Fig. 4. More
details of the fit can be found in [1].

6. Results

Our result for the leading order HVP contribution
to the muon anomalous magnetic moment from the
strange quarks is as

µ = 53.41(59) × 10−10 (connected
pieces only). We also used time moments we calcu-
lated in [9, 10] to get the charm quark contribution to
aµ: ac

µ = 14.42(39) × 10−10 (again, connected pieces
only). A preliminary estimate of total light, strange and
charm quark connected piece contributions (averaging
alight
µ on very coarse and coarse physical ml ensembles)

is aHVP,LO
µ = alight

µ + as
µ + ac

µ ∼ 662(35) × 10−10. This is
to be compared with the dispersion relation + e+e− →
hadrons cross section result of ∼ 700×10−10 [3, 4] men-
tioned earlier. Note that our result does not include the
disconnected diagrams.

The error budget for both strange and charm quark
connected contributions is given in Table 2. The domi-
nant error in as

µ is, by far, that coming from the uncer-
tainty in the physical value of the Wilson flow param-
eter w0, which we use to set the lattice spacings. The
next largest contribution comes from the uncertainty in
the renormalisation factor ZV . For the charm quark con-
tribution this is the dominant error, because a different
method for calculating ZV was used in that calculation.
This could be improved by using the same method that
was used here for the strange quark contribution. More
details about the error budget are in [1].

Comparing our results with other lattice QCD re-
sults shows good agreement: Fig. 5 shows our results
(HPQCD) and European Twisted Mass Collaboration’s
results plotted against a2. This again highlights the fact
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Figure 5: Comparison with other lattice results: as
µ as a function of

a2. ETMC results are from [11].

that HISQ action has very small discretisation errors
compared to other lattice actions. RBC/UKQCD have
also calculated as

µ and agree well with other determina-
tions — see Table 3 for a list of the results.

7. Connected contribution to alight
µ

The signal-to-noise ratio at large t is much worse for
light quarks than for strange or charm quarks, which
means we will need better statistics and improvements
in the fitting method to get the error down to the 1%
level. We can get better accuracy by calculating mo-
ments from best fit parameters instead of using raw lat-
tice data. 5-6% precision is already achieved using 1000
configurations × 12 time sources (very coarse ensem-
ble) and 400 configurations × 4 time sources (coarse
ensemble) on physical light quark mass ensembles. 1%
precision can be achieved by adding more time sources
(need 4 times nsrc) and up to 10 × configurations.

8. Conclusions

We have demonstrated in [1] that 1% precision can
be achieved for the leading order HVP contribution to
as
µ from the connected pieces. The error on ac

µ could
be pushed down to 1% by using the same method to
calculate the renormalisation factor ZV that was used
here for the strange quark. However, the charm quark
contribution to the total leading order HVP contribution
aHVP,LO
µ is small compared to contributions from strange

and light quarks so this is not a top priority. The main
task now is to push down the error coming from the light

quark contribution al
µ. We can get good enough statis-

tics to achieve this: we can use more time sources, plus
more very coarse and coarse configurations can be made
relatively cheaply. Disconnected contributions need to
be included in the future.
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Set amsea
l amsea

s amηs ZV,s̄s L/a × T/a ncfg × nsrc

1 0.01300 0.0650 0.54024(15) 0.9887(20) 16 × 48 1020 × 12
2 0.00235 0.0647 0.52680(8) 0.9887(20) 32 × 48 1000 × 12
3 0.01020 0.0509 0.43138(12) 0.9938(17) 24 × 64 526 × 16
4 0.00507 0.0507 0.42664(9) 0.9938(17) 24 × 64 1019 × 16
5 0.00507 0.0507 0.42637(6) 0.9938(17) 32 × 64 988 × 16
6 0.00507 0.0507 0.41572(14) 0.9938(17) 32 × 64 300 × 16
7 0.00507 0.0507 0.42617(9) 0.9938(17) 40 × 64 313 × 16
8 0.00184 0.0507 0.42310(3) 0.9938(17) 48 × 64 1000 × 16
9 0.00740 0.0370 0.31384(9) 0.9944(10) 32 × 48 504 × 16

10 0.00120 0.0363 0.30480(4) 0.9944(10) 64 × 96 621 × 16

Table 1: Lattice ensembles used in this study, made by MILC collaboration [5, 6]. The first two sets are “very coarse” (lattice spacing a ∼ 0.15 fm),
sets 3− 8 are “coarse” (a ∼ 0.12 fm) and sets 9− 10 are “fine” (a ∼ 0.09 fm) ensembles. amsea

l and amsea
s are the sea light and strange quark masses

in lattice units and amηs is the ηs meson mass. ZV,s̄s is the vector current renormalisation constant. L and T are the spatial and temporal extents of
the lattice. ncfg is the number of configurations and nsrc is the number of time sources used in this study.

as
µ ac

µ

Uncertainty in lattice spacing (w0, r1): 1.0% 0.6%
Uncertainty in ZV : 0.4% 2.5%

Monte Carlo statistics: 0.1% 0.1%
a2 → 0 extrapolation: 0.1% 0.4%

QED corrections: 0.1% 0.3%
Quark mass tuning: 0.0% 0.4%

Finite lattice volume: < 0.1% 0.0%
Padé approximants: < 0.1% 0.0%

Total: 1.1% 2.7%

Table 2: Error budgets for connected contributions to the muon anomaly aµ from vacuum polarization of s and c quarks. See [1] for more detailed
discussion on the estimation of the errors.

as/c
µ dispersion HPQCD ETMC RBC/UKQCD

+ expt (prelim.) (prelim.)
as
µ × 1010 55.3(8) 53.4(6) 53(3) 52.4(2.1)

ac
µ × 1010 14.4(1) 14.4(4) 14.1(6) –

Table 3: Comparison with other results. The dispersion relation + experiment results are from [3] and [12]; HPQCD results are from [1] (moments
used for ac

µ were calculated in [9, 10]); ETMC results are from [11]; RBC/UKQCD results are from [13].
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