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Abstract

The main goal is to find the Homfly polynomial of a link formed
by decorating each component of the Hopf link with the closure of a
directly oriented tangle. Such decorations are spanned in the Hom-
fly skein of the annulus by elements @)y, depending on partitions .
We show how the 2-variable Homfly invariant (A, u) of the Hopf link
arising from decorations @, and @, can be found from the Schur
symmetric function s, of an explicit power series depending on A. We
show also that the quantum invariant of the Hopf link coloured by
irreducible si(N), modules V) and V,,, which is a 1-variable speciali-
sation of (), ), can be expressed in terms of an N x N minor of the
Vandermonde matrix (¢%).

Keywords: skein theory; Hopf link; Homfly polynomial; quantum
sl(N) invariants; symmetric functions; Schur functions; annulus; Hecke
algebras.

Introduction.

The roots of this paper lie in the work of Morton and Strickland, [12], where
the central role of the Hopf link in studying the invariants of satellite knots
became clear in the context of the coloured Jones invariants. The Hopf link
invariants also play a crucial part in the construction of 3-manifold invariants
based on the Jones polynomial. As noted in [12], the behaviour of the Hopf
link invariants for quantum groups such as sl(NN), was anticipated to be at
the heart of constructions of corresponding 3-manifold invariants for other

values of N > 2, as borne out by subsequent work such as that of Kohno and
Takata [5].
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It is of considerable interest to find a general formula for the Homfly
polynomial of the Hopf link in which each component is decorated by, for
example, a closed braid. This will be a Laurent polynomial in the parameters
v and z, as used in [11], whose evaluation at the ‘sl/(N) specialisation’, with
v=s""and z = s — 57!, gives a Laurent polynomial in ¢ = s? which can be
viewed in terms of s/(V), invariants of the Hopf link.

In this paper we give a formula in theorem 4.5 to determine the Homfly
polynomial (A, ) of the Hopf link with components decorated by the closures
Qx, Q, of the Gyoja-Aiston idempotents, [2, 1], corresponding to any two
partitions A, p. Invariants determined using these decorations behave simply
under change of framing. The set {Q),} spans a large subspace in the Homfly
skein of the annulus, including all elements represented by closed braids
or more general closed tangles without reverse strings. Our calculations
therefore will find in principle the Homfly polynomial of satellites of the
Hopf link with any such decorations and any framing.

As a key step in establishing the formula we present an attractive ex-
pression in theorem 4.2 for the sli(NN) specialisation of (), u) as a Laurent
polynomial in the single variable ¢ in terms of an N x N minor of the Van-
dermonde matrix (¢”/), when A\ and u each have at most N parts. This
Laurent polynomial in ¢ also determines, up to an explicit power of ¢, the
sl(N), invariant of the Hopf link when its components are coloured by the
irreducible s/(N), modules V and V.

Much of our work was originally inspired by a similar expression for the
further specialisation of this determinant to ¢ = exp(27i/r) used by Kohno
and Takata [5]. Our proofs for generic v and s do not draw on their work
and hence give an alternative skein theoretic way to interpret their formulae.

To describe and analyse the invariants under consideration we apply Hom-
fly skein theory to the skein of the annulus and the Hecke algebras, coupled
with methods from the classical theory of symmetric functions. We start
with a brief review of this material before applying it to the Hopf link.

Much of the material in this paper appeared originally in the thesis of
Lukac, [6].

1 The skein models.

The account here largely follows those of [11], [6] and [10]. The framed
Homfly skein relations, in their simplest form, are
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The coefficient ring can be taken as A = Z[v*!, s*!] with monomials in
{s¥ —s7% : k > 0} admitted as denominators. The framed Homfly skein
S(F) of a planar surface F', with some designated input and output boundary
points, is defined to be A-linear combinations of oriented tangles in F', modulo
these two local relations, and Reidemeister moves IT and IIT.

The empty tangle is admitted when F' has no boundary points. We
include the local relation which allows the removal of a null-homotopic closed
curlve without crossings, at the expense of multiplication by the scalar 6 =
v —w

s—s 1
removing the curve leaves only the empty diagram.

This is in fact a consequence of the main relations, except when

1.1 The plane

When F' = R? every element can be represented uniquely as a scalar multiple
of the empty diagram. For a diagram D the resulting scalar x(D) € A is
the framed Homfly polynomial of D. Taking x*(D) = v*"")x(D), where
wr(D) is the writhe of the diagram, gives a scalar which is invariant under
all Reidemeister moves. It is the Homfly polynomial of D, as a function of v
and s, defined by the local relation

SR X e X

and normalised to have the value 1 on the empty diagram. Then x*(D) =
dP(D), except when D is empty, where P is the more traditional Homfly
polynomial defined as the ambient isotopy invariant which satisfies the local
relation above and takes the value 1 on the unknot .

1.2 The Hecke algebras

Write R} for the skein S(F) of n-tangles, where F'is a rectangle with n inputs
at the bottom and n outputs at the top. Composing n-tangles induces a
product which makes R} into an algebra. It has a linear basis of n! elements,
and is isomorphic to the Hecke algebra H,(z), with coefficients extended to
the ring A. This algebra has a presentation generated by the elementary
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subject to the braid relations

0,05 — 004, |Z —]| > 1,
0i0i+10; = 0i4+10i0i+1,
and the quadratic relations o = zo; + 1, with z = s — 5!, giving the

alternative form (o; — s)(0; + s71) = 0.

A simple adjustment of the skein relations, as in [11], allows for a skein
model of H,, whose parameters can be readily adapted to match any of the
different appearances of the algebra, [10].

1.3 The annulus.

The Homfly skein of the annulus, C, as discussed in [9] and originally in [14],
is defined to be linear combinations of diagrams in the annulus, modulo the
framed Homfly skein relations. An element X € C will be indicated on a

diagram as
Q)

The skein C has a product induced by placing one annulus outside another,
under which C becomes a commutative algebra;

There is an evaluation map () : C — A, induced by the inclusion of a
standard annulus in the plane, in which (X) is defined as the framed Homfly
polynomial of X when regarded as a diagram in the plane. Since the framed
Homfly polynomial with our normalisation is multiplicative on split diagrams,
the evaluation map ( ) is a ring homomorphism.

1.4 Partitions and Young diagrams

The skeins H,, and C contain important elements determined by partitions
A. We use here the terminology of Macdonald [8], where extensive algebraic
and combinatorial properties of partitions can be found.
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Definition. A partition A is a non-increasing sequence of positive integers,
AL > Ay > - > A > 0, called the parts of ).

Write [(A) = k for the number of parts of A and |\ = A} + -+ A, for
the sum of its parts. A partition A with |A| = n is called a partition of n.

Partitions are often pictured by Young diagrams. The diagram of ) is an
array of cells arranged in [(\) rows, with \; adjacent cells in row 4, starting
always with a cell in column 1.

Each partition A determines a conjugate partition A’ with \; parts whose
diagram is given by interchanging the rows and columns of the diagram of
A. The diagram of A thus has A} cells in column j.

Definition. The content c¢(z) of the cell z in row i and column j in the
diagram of \ is defined by c¢(z) = j — 1.

The hook-length h(x) of x is the total number of cells in the diagram of A
which lie to the right of z in row 4, or below x in column 7, including x itself.

Thus h(z) = X\ + N —i—j+ 1.

1.5 Interrelations

The best known relation of C with the Hecke algebra H,, is the closure map
R — C, induced by taking a tangle 7" to its closure 7" in the annulus, defined
by

This is a linear map, whose image we call C,,.

Elements of the skein C can be used to decorate closed curves in a framed
diagram in any F' to produce new skein elements of S(F'). We shall restrict
the decorations in our work to elements drawn from C,, for some n. We write
C; C C for the subspace spanned by U,>oC,.

A simple skein theory construction determines a natural linear map ¢ :
C — C, induced by taking a diagram X in the annulus and linking it once
with a simple loop to get



This construction can be interpreted as an example of the decoration
technique above, applied to one loop of the diagram

(-,

We can extend this by decorating the other loop with any Y € C to give a
linear map ¢y : C — C. Then

The map ¢ is then ¢., where ¢; € C is represented by a single closed curve
following the oriented core of the annulus.

Evaluation of py (X)) gives a scalar which we denote by (X, Y’), and which
forms the main focus of this paper.

The map 1, : C — H,, induced by decorating the closed curve in the dia-
gram below by an element X € C is readily seen to be a ring homomorphism,

whose image
- X

lies in the centre of H,.

There is a set of quasi-idempotent elements, ey € H,, one for each parti-
tion A of n, known as the Gyoja-Aiston idempotents. They were originally
described algebraically by Gyoja [2], while skein pictures of these based on the
Young diagram for A can be found in [1] or [11]. The skein theory version dis-
plays a nice ‘internal stability’ under multiplication which shows readily that
Ze, is a scalar multiple of e for any central element 7 € H,,. We can then
define a ring homomorphism ¢, : C — A by the formula ¢, (Y)e, = t\(Y)ey,
using the homomorphism ,, from C to the centre of H,,.

Define @, € C to be the closure of the genuine idempotent ieb where
e3 = ayey, as in [11] or [6]. Then clearly @, is an eigenvector of ¢y with
eigenvalue #,(Y') for every Y € C. We make extensive use of the elements
@), especially where the diagram of A is a single column or row. We write
¢; for @y where A is the partition with ¢ parts all equal to 1, and d; where
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A is the partition with one part j, and take ¢ = dy = 1 € C represented
by the empty diagram. It is shown in [1] that C, is the polynomial algebra
generated by the column elements {¢;}, or equally by the row elements {d;}.

1.6 The Hopf link

We consider the Hopf link with linking number 1 as shown here.

Q)

Let X and Y be any elements of the skein C of the annulus. We write
(X,Y) for the framed Homfly polynomial of the Hopf link with decorations
X and Y on its components, giving

(X7) = x @Y - { QY ) = tor(0)

Clearly (Y, X) = (X,Y).

Our aim is to determine (X,Y) for any X,Y € C,. Now C, is spanned
by the elements @), with |[A| = n, for each n > 0. It is then enough to find
(@Qx, Q) for all A, i. We make use of the homomorphism ¢, of the previous
section.

Lemma 1.1 We can write

0Y) =(QxrY)/(Qr) .

Proof: Suppose that A has n cells. Then v, (Y)e,x = t5(Y)es. Apply the
closure map "~ : H, — C to both sides. The left-hand side becomes ¢y (€é,).
Now apply the evaluation map () to both sides, using the fact that é, =

a @y, to get
(@, Y) = tA(Y) (an@n) -

This gives the expression for £, (Y"), since a,, # 0. O

Corollary 1.2 For any elements X and Y of C and any partition A we have

(Qx, X){Qx,Y) = (@) (Qx, XY).



Proof: Use the formula of lemma 1.1 and the fact that ¢, is a homomorphism.
O

Since any Y € C, can be written as a polynomial in the skein elements
{¢;} we only need to know the values of (Q,,¢;) for integers ¢ > 0 in order
to compute (@,,Y) for all Y € C,. In particular we can then compute all
invariants (Qy, Q,). Hence, it is useful to define a formal power series

io 1 W
E\(t) zgtx(ci)t =00 §<QA, it (1)

for any partition A\, which we study further in the next section.

2 Symmetric functions and the skein of the
annulus.

In this section we recall some explicit results about elements in the Hecke
algebras and their closure in C, and their interpretation in the context of
symmetric functions, following the methods of Macdonald [8].

2.1 Formal Schur functions

We follow Macdonald in defining the Schur functions of a formal power se-
ries E(t) = 1+ 2, e;t’ with coefficients e; in a commutative ring. When
E(t) is a polynomial with a formal factorisation as E(t) = II;_, (1 + z;t)
then any partition A of n determines the classical Schur symmetric function
sx(z1,...,2y) in terms of determinants whose entries are powers of {z;},
given explicitly by equation (14). This can be written as a polynomial in the
elementary symmetric functions {e;} of z1, ..., zy, which are the coefficients
of E(t), by means of the Jacobi-Trudy formula. So long as N > n this poly-
nomial in {e;} is independent of N. Macdonald defines the Schur function
sx(E(t)) for a formal power series to be this polynomial in the coefficients
{e;}, described explicitly in section 4.2.

The coefficient e; itself is the Schur function s)(E(t)) for the partition
A=1"=(1,...,1), represented by the Young diagram consisting of a single
column with 7 cells. Equally, when the diagram of A is a single row with
J cells then sy(E(t)) = hj, where h; is the complete symmetric function of
degree j in zy,...,xy in the case of the polynomial E(t) above. In any
case, the power series H(t) = 1+ Zhjtj satisfies the power series equation
E(-t)H(t) = 1.



Since s, (E(t)) is a polynomial in {e;} depending only on A it is clear that
if R and S are any commutative rings and we apply a ring homomorphism
p: R — S to the coefficients {e;} € R to get the power series p(E(t)) with
coefficients {p(e;)} € S then

sx(p(E(t)) = p(sx(E(1))),

for every \.
We make use later of the homogeneity of the Schur function s, in the
form

sx(E(at)) = aMsy(B(1)), (2)
where A has |A| cells.

2.2 Applications in the skein of the annulus

The elements (), have a very nice interpretation as Schur functions in C.
Lukac showed in [7] that ), can be identified with the Schur function

sx(O- cit?)

i>0

of the series 3 ¢;t* whose coefficients ¢; € C are the closures @, of the single
column idempotents where A has i parts all equal to 1, under the convention
that ¢ = 1 € C, represented by the empty diagram. This has been known
in principle for some time, but the proof in [1] was fairly circuitous and had
to refer at one point to quantum group work. Kawagoe [3] used these Schur
functions and proved that they were eigenvectors of ¢, but his proof too
was relatively complicated. Lukac [7] gives a much more satisfactory skein
proof, using a further skein-based algebra, coupled with the knowledge that
the eigenvalues of ¢|C, are distinct and the elements @, can essentially be
characterised as eigenvectors of ¢.

The fact that @, is also an eigenvector of every ¢y, which is not at
all clear at first sight for the Schur function s)(3 ¢;t'), is the feature that
allows us to complete our analysis here, using the consequence that ¢, is a
homomorphism.

For the sake of brevity of notation we write A in place of (0, as an element
of C. As Schur functions of a power series these elements multiply according
to the Littlewood-Richardson rules for Young diagrams. We make use of
this later when we calculate the product in C of the elements ¢; and d;
corresponding to a single row and column respectively.

From the series F)(t), defined in (1) above, we can find (), u) by calcu-
lating its Schur function s, (£ (t)) and using the following lemma.
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Lemma 2.1 We have 1

su(Ex(1))
for any partitions A and p.

Proof:  Applying the homomorphism ¢, to the power series 3 ¢;t' gives
E)\(t) == t)\(z Citi). Then

1

su(Balt) = (s et) = 1alp) = 7570
O
We also define
1 J — J
Hy\(t) = WZ‘;(A’ iyt = (3 dt!)

for any partition A, taking dy = 1.

Lemma 2.2 We have
E\(t)Hx(—t) =1

for any partition .

Proof: Apply the homomorphism ¢, to the two power series with coefficients

in C in the equation
Z Citi Z dj(—t)j =1
i>0 j>0

proved by direct skein theory in [1]. The equation follows alternatively from
the fact that the elements d; in C are the Schur functions corresponding to
single row diagrams. O

3 The Hopf link decorated with columns and
IrOWS

We now compute the series E,, (¢) for any integer £ > 0. To do this, we start
with a surprisingly simple formula for (¢;, d;).
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Lemma 3.1 We have

(ci,dj) = {ci) (dj)

for any integers © > 0 and j > 0.

v (s — 200 4 g2) oy

v —wp

Proof: We shall prove the lemma by expressing the Homfly polynomial of
a certain decorated link in two different ways and comparing the results.
The link in question is the 2-parallel of the unknot with framing 1 as shown
below, decorated with ¢; on one component and d; on the other component.
We denote its framed Homfly polynomial by R.

ci dj

The positive curl on n strings belongs to the centre of the Hecke algebra
H,, and so its product with any quasi-idempotent ey, |A\| = n, is a scalar
multiple f(A)ey. The scalar was calculated using skein theory in theorem 17
of [11] as

FON) = oM
where ny, = 2 ¢(z) is twice the sum of the contents of all cells in the

TEA
diagram of \. By removing the curls on the two components of the 2-parallel

we get

R = f(ci) f(d;)(ci, dj). (3)

The other way to calculate R is to regard it as the Homfly polynomial
of the unknot with framing 1 decorated by the product of ¢; and d;, as
elements of C. Since the elements Q) are Schur functions, by Lukac [7], they
multiply in C according to the Littlewood-Richardson rules. We can then
write ¢;d; = p; j41+ fit1,; where fi,p is the simple hook Young diagram with
a cells in the first column and b cells in the first row. Hence

R = f(piger) (igan) + f (i g) (pivrg) - (4)
From the formula for f(\) above we get

f(Cz) — ,Ufisfi(ifl)’ f(d]) — Ufjsj(jfl)’ f(Ma,b) — ,Uf(a-i—bfl)sb(bfl)fa(afl)’
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and hence

flean) = v s 2 f(e), fdjp) = v 's¥ f(dy), f(uiz) = vf(ci)f(dy).

The following relations were shown skein theoretically in [1].

v st — pst
(cit1) = W<0i>’

v lsd —ysTI
(i) = 1 ()

(5 = s79)(s' — 57)

<:ui,j> = (1)71 — U)(S’H»j*l — Sii*j‘l’l) <CZ> <d]> :

We can in fact deduce the product formula (10) for 3 (c;) ¢’ using only
the first of these, and hence the closed formula (12) for (\).
Using these relations equation (4) gives

R = f(,ui,j+1) </M,j+1> + f(fit ]) <Nz+1 ]>
(58 — s (v7tsd — vwsI)

= of(c)v ts¥ ) e d.
= o) s e (c:) (d;)

b ()N ) )

(8% — 2070 4 g72H) gy

= = () f(dg) (ei) (dj) - (5)

vl —w

Equations (3) and (5) then give

v (s — s 4 g7 H)

(ci,dj) = {ci) (dj)

vl —w
since f(c;) and f(d;) are non-zero. O
Using our notation above, we have
Corollary 3.2
1 — p—lg—2k+1y
H,(t) = Hy(t
() = — ()

for any integer k > 0.

Proof: Since Hy(t) = tg(H(t)) = ¥;50 (d;) / we must show that

(1—-v's <1 z>: Ck, d — v ts Y N (d) .

>0
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The constant terms of the power series in the above equation are equal to
1. To show that the coefficients of #/ on each side agree it is enough to show
that

1

1 o= ler di ) = (d;) — v ls 2 (g
@<ck: dj> -V S<Ck>< k> dg—1> <dy> <dJ— > : (6)

By lemma 3.1 the left hand side of equation (6) is

v (5% — §2G—k) 4 572y —
vl —w
v—1(82(j—1) _ g20-1-k) 4 572k —

(d;)

—1)_18 <dj,1>

Because

this can be rewritten as
(v‘lsj_l o ,Us—j—i-l)(v—l(SZj _ g26-k) 4 S—Zlc) —v)
(s7 —s77)(v=1 —v)
L p (20D L Q1R g2k oy
1 ( ) <dj—1>

(7)

—v s
v1—w

The right hand side of equation (6) is

vl — st
( B U—18—2k+1) (dj_1) . (8)

ol — g

It is straightforward to confirm that the expressions (7) and (8) are equal,
and thus equation (6) follows. O

An immediate consequence of corollary 3.2 and lemma 2.2 is

Corollary 3.3

B 1+ v tst
14w lg 2kt

E. (1) Ey(t)

for any integer k > 0.
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4 The Hopf link decorated with any Young
diagrams

We now in principle have a means of finding (¢, A) by calculating the Schur
function s)(E,,(t)). This in turn gives the coefficients for the series F)(t),
whose Schur function s, finally gives (A, y). The aim of this section is to give a
simple formula for the series E)(t) = >(\, ¢;)t"/ (\) as a product of the known
series Ey(t) = ¥ (c;) t* and a rational function of ¢, in theorem 4.5. To do this
we specialise the coefficients so that E., (¢) becomes a polynomial, and we can
apply the classical determinantal formulae for Schur functions. By comparing
the coefficients in F)(t) with those of our proposed product formula, and
showing that they agree under sufficiently many of the specialisations we are
able to deduce that they are identical.

The determinantal formulae which appear give us a very attractive ex-
pression for the specialised versions of the invariants (\, 1), which we describe
in theorem 4.2.

4.1 The sl(N) substitution

We use the substitution v = s~ to define a ring homomorphism from our
coefficient ring A to the ring of Laurent polynomials in s with denominators
s" — s7". Denote the image of (X,Y) by (X,Y)y, and the image of (X) by
(X),.

The element ¢,(Y) for Y € C is an element of A. Applying the homo-
morphism to the equation (A\)#,(Y) = (\,Y) from lemma 1.1 shows that if
(A) y =0 then (A, Y)n = 0 also, for any Y.

We make use of some results of Macdonald to help in our evaluations.
In exercise 1.3.3 of [8] Macdonald observes that when a power series can be

expressed as
2 1+ aq't
E(t) = .

1=0

then its Schur function s) is given in terms of the cells x in the diagram of A

by the formula
a — bg“®

n(A
= I )

TEX

where ¢(x) is the content of x, h(z) is its hook length, and n()) is given by

2n(\) = Z(h(x) —c(z) —1).

TEA
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The coefficients of the series (3" ¢,t") = > (c,) t" were shown by Aiston
in chapter 4 of [1] to satisfy the simple recursive relation

v lsTT —us”

<Cr+1> = W <Cr> )

leading to the product formula

I I
2 et =1l =y (10)
Applying Macdonald’s formula (9) gives

oy lggt(@)
B N\ a) vs — v sq
<)‘> - 8)\<Zcrt > =dq H 1— qh(‘”) (11)
TEX
taking ¢ = 5%, a = vs and b = v~!s. This can be rewritten in the form

,U—lsc(x) _ ,Us—c(x)
(A = sh(z) _ g h(z)

(12)

which can equally be derived by skein theory for (@) from [11], without
assuming that (), can be expressed as a Schur function.
It is clear that the specialisation v = s~V gives

(M)xy =0 <= some cell z € X has content — N
<= AXhas > N parts. (13)

Consequently when N > I(\) we can always write ¢5(Y )y

Lemma 4.1 Let A be a partition and let N > [(\). Then the specialisation
EX(t) is a polynomial in t of degree < N.

Proof: ~We must show that t)(¢,)y = 0 for > N. Since (\), # 0 it is
enough to show that (\,¢,)y =0 for r > N.
By (13) we know that (¢,), =0 for r > N, and so

(Crs My = e, (Vv () = 0.

The result follows since (A, ¢;) = (¢, A). O

We now find a factorisation of this polynomial Ey (¢) into linear factors in
lemma 4.3, and use the Schur function s,(EY (t)) to derive a determinantal
formula for (A, u)y in theorem 4.2.
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Recall first the determinantal description of the Schur function

N
sx(x1,...,xN) = Sy (H(l +:L“Z-t)> :
i=1
For fixed N > [(\) define the index set
I)\:{)\1+N—1,A2+N—2,,)\N}

consisting of N distinct integers > 0.
Number the columns of the N x oo matrix

1 x4 x%
1 zp 23
1 on x?v

starting with 0, so that its (7, j) entry is z7.
Write P (x) for the N x N minor determined by the columns ). The
leading minor is PjY(x), and the Schur function is given by

SA(xl,...,xN):P){V(x)/PQfV(X). (14)

The formula for (\, u)y can be found in terms of a function of ¢ = s?

defined similarly by N x N minors of the infinite Vandermonde matrix

—_

1 1

K=
w o A~ N
© o w

q
q
q

=W N

q12

el
LR QR
LR

with (7, 7) entry ¢“/, numbering both rows and columns from 0.

Definition. For partitions A, u with [(\),l(x) > N take index sets I, and
I,, as above and define P&M) to be the N x N minor of V with rows indexed
by I, and columns by I,.

Theorem 4.2

A\ )y = 3(1*N)(|>\|+\u\)p(1/\\’7u)/p(fq\)”@)_

16



Proof: Using formula (14) for the Schur function, applied to the rows I, of
V', we can write

) (H (1+ qit)) = P/ P (15)
iel,
In particular

N-1

N N .
Povoy/Plog) = x (H (1+q t)) ,

i=0

We first derive a formula for the polynomial EY (¢) in the next lemma.

Lemma 4.3

[[(+4't) = EX(s" ),
€1y
giving

EY(t) = T (1 + sNT2h 2y,

—

7j=1

To finish the proof of theorem 4.2 we use equation (15), lemma 4.3 and
lemma 2.1 to get

PO/ P = 5x (H (1+ qit)> = sx(BY(s" ')

i€,
= s(N’l)‘*‘sk(EfLV(t))
sV 1) v/ (1)

and
Poy/ Pl = sul By (s 1) = s () o

Multiply the two expressions to get
PO/ Pagy = s VNN, ).

The formula claimed in theorem 4.2 for (A, u)y in terms of the N x N
minors of the Vandermonde matrix follows at once. O

Proof of lemma 4.3:
We begin by establishing theorem 4.2 directly in the case u = c¢,. The
index set I, is

I, ={N,N—1,...,N—k+1,N—k—1,...,2,1,0} = [HjU{N} — {N —k}.
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Recall that equation (10) gives

[e's) 1 + ,USZH-lt

E t) = T tr: S e—
o(t) 7%%@) il;[Ol—FUASQZHt

The substitution v = s~ reduces this to the finite product

N—1
Ey(t)y= J[ (1 +s V).
i=0
Then
N—1 ' '
Eév(stlt) = H (1+ SQZt) = H (14 q¢'t).
i=0 i€l

Let k£ be an integer, £ < N. By corollary 3.3 we have

1+ v tst
14 v—lg—2k+1¢

Eck (t) =

Ey(t).
Substituting v = s~ in the above equation gives

1+t v, vt
1 +82N—2ktE® (s 1)
= J[ (1 +4¢%).

i€l

Eg(stlt) =

Now s), (Hiel% (1+ qit)) = P} )/ Pl ¢)» by (15). Consequently

PR )/ Py = 3By (s" ')
and
P(]Xk:q))/P(]Q\)],@) = s¢, (Ey (s"7'1)).

(16)

(17)

Since sx(EX(t)) = (A, ck)n/ (ck)y by lemma 2.1, we can multiply the two

expressions to get

N N
Pieo /P

{ck)
(

— SOOI () o)

To complete the proof of lemma 4.3 it is enough to show that

Sey (H (1+ qit)> = s, (Ex (5" 't))

€1y

18

SA(EY (sM 1)) se, (Ep (sV't))
S-S N (vl -

(18)



for all £ < N, so as to compare the Coefﬁcients of the two polynomials.
By (15) we have s, (Hieh(l + qlt)) v/ P.s), while

Cka

s (BX (1) = (Meyn/ Ny
S(I—N)\Cklp(f/\\’yck)/p(f/\\/’@)

by (18).
Since PY )y = PX,,) and sq, (EY (sV'1)) = s(N-Dlexls,, (EY(#)) the re-
sult follows. a

We now deduce a formula for the power series E)(t) with coefficients in
the two variables s and v from the formula for EY (¢) in lemma 4.3.

Theorem 4.4 We have
M | 4 12025+

1+ovls=2tlt

Ey(t)

j=1
for any partition \.

Proof: For any integer N > I(A) we have EY (s¥~'t) = [I;c;, (1 + ¢'t) by
lemma 4.3. Now

L= U2 {0+ N —j} — UQ{N — 5}

Hence
I(N)

EY(s" ) = 1]

i=1

1+q>\+N thN(N lt)
1+gN-it 7°

and so
I(N) 1 4+ 2N +N=j)gl=Ny

N _ N
E)\ (t) - 1_[1 1_}_82(]\7,]')81,]\% E@ (t)

MN 1 4 gN+2x-2j+1y
- H 1+ sN—2j+1¢ Eyp' (1).
j=1 LFS

This means that the two power series F(t) and

MV | 4 162N —2+1

jl;Il 1+ v-ls—2tl

Ey(t)

agree for every substitution v = s with N > [()\). Since the coefficients
are Laurent polynomials in v it follows that the two power series are equal
when v is treated as an indeterminate. O
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When we apply theorem 4.4 to the case A\ = ¢, and compare the result
with corollary 3.3 we note a number of cancellations in

1+ v tg?hi—2itly
1 +ov-ls=2+1 -~

I(\)
j=1
In our final theorem we give a simpler expression for the rational function
E\(t)/Ep(t), in terms of the Frobenius notation A = (a1, ..., agw|b1, - - -, ban)
for the partition A. As in [8] the Frobenius notation describes A in terms of
the lengths {a;} of the ‘arms’ and {b;} of the ‘legs’ of its Young diagram,
counting right or down from the d(\) cells on the main diagonal. Thus
a;=XN—iand b=\ —ifori=1,....d(N).

Theorem 4.5 We have

d(/\) 1+'U_1320i+1t
E\(t) = Fy(t
>\( ) g 1 +,U71872bi71t @( )
for any partition X = (aq, ..., aq)|b1,- -, ba)) i Frobenius notation.

Proof: The result follows from exactly the same argument as in theorem 4.4
once we observe that we can write the index set I, as

L= U {N +a;} — U {N —b; — 1},
To confirm this, write a; = A\; —4,b; = \; — j for all 4,7 < N. Then

a; >0 <= 1 <dj,

The integers a;,1 < i < N are all distinct, and Iy, = {N + a;,i < N}. Since
N+ a; > N < 1 <d, there are exactly d) numbers in I, which are not
in Iy, and hence d) numbers in [y which are not in I,. We can identify these
as {N —b; —1:j <d,} by showing that

N —bj —1%# N +aq;, for any 4,7 < N.

Consider the cell in row ¢ and column 7, 1 < 4,5 < N, in relation to the
Young diagram of A. If the cell lies in A then A; > j and A} > i. Add these
to get a; +b; > 0 and so a; + b; # —1. Otherwise \; < j —1 and )\9 <i—1,
giving a; + b; < —2 and again a; + b; # —1.

20



This completes the proof; indeed the rational function

d(\) 14 p—lg2aitly

= E\(t)/Ey(t
’i:H1 1 +ovlg2bi—1¢ )\( )/ (Z)( )

admits no further cancellation, since the exponents of s in the numerator are
all positive, while those in the denominator are negative. O

Having used this result to get the power series for FE)(t) with explicit
coefficients in A, the general invariant (), ) is then found by calculating
Schur functions of the series, using the formula

A ) = su(Ex(1)) (V) -

Remark. The rational function above can be expressed in terms of the
content polynomial C\(t) defined by

Ca(t) = [T (1 + ¢,

TEA

It is easy to check, by decomposing A as a disjoint union of simple hooks
based on the diagonal cells, that

d()‘) 1+v*182ai+1t
11 1+ v-ls=2bi-1¢

i=1

= Cy\(v'st) /Ox(v™ 1 s71e).

This leads to an alternative proof of theorem 4.5 using theorem 3.10 of [10],
once it is established that the product of the Gyoja-Aiston idempotent ey,
with |A| = n, and the polynomial EM(t), whose coefficients are the ele-
mentary symmetric functions of the Murphy operators in H,,, satisfies the
equation

EM(t)e)\ = C’)\(t)e,\.

4.2 An explicit example

We illustrate our results by calculating the framed Homfly polynomial (=, HH ).
Let p be a partition whose conjugate p' has r parts. The Jacobi-Trudy

formula gives the Schur function s, of the series 3" e;t' as the determinant

of the r x r matrix whose (i,j) entry is ey, with k = u; + j — i, taking

er = 0 for k < 0. The diagonal entries in the matrix are thus the coefficients

corresponding to the columns of the diagram of 1, and each row of the matrix

is completed by taking consecutive coefficients from the series. Then

€2 €3
s = det =e2 —ee3
BH €1 €9
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and it is enough to expand the series EEFE‘ (t) as far as the term in ¢* in order
to calculate S (EEFD (1)).
For the diagram A\ = H2 we have d(\) =1 with a; = 2,b; = 1 so that

-1 o
EEFD (vs™'t) =
Using (12) with A = ¢; we can write

1 —o? (1 —v?)(1 —qv?) ,
1 D@D

Ey(vs't) = 1+

(1 - UQ)(I - qUQ)(l - QQUQ)t3 + O(t4)
(¢—1)(¢?—1)(¢* - 1) '
We have
1+ ¢*t - - , ,
1+qq_2t =1+ (=g t—A—q¢ "+ (=) +0(t"
and so

- (1-q 1(]__7}12 + (¢ - q‘6)> 4+ 0(th

= 1+eit+et? +est® +O(th).

Now
S (EEF‘:' (1) = (vs_l)_‘lsEE (EEF‘:' (vs™1t))
= (vs ') !(ef — eres),

where e, e and e3 are the coefficients in the series above.
Combined with the expression

_ (vt =) (vts —vs Y (vls? —ws ) (v s — vs)
(s—s )2(s2— s 2)(s* —s %)
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from (12) we get

(B2, 8) = (v57) (e} — eren) (B)
— 8 (02 = 1)2(v? — q)(v* — ¢*)(v?q — 1)
B (g —1)%(¢> = 1)%(¢®* = 1)(¢* — 1) ¢ (19)

with

C = BB +¢2 - — g — 4288+ ¢ = —2¢* + 242 — 1
+(q13_q10_q9+2q8+q7+q6_2q4+q2+q>v2
(=g — ¢ + ¢ — ¢t — q3)v4 O

Remark. Since (A, p) = s,(Ex\(t)) (A\) = sx(E,(t)) (1) the calculation in
our example could have been done with the roles of A and p interchanged. In
this case we would have had a more complicated expression for E,(t) since
d(pu) = 2, and in addition the expression for s, would involve terms up to
degree 4 from the Jacobi-Trudy formula

€y €3 €4

s =det| 1 e e
go 1 €
0 1 €1

In general (), ;1) contains some form of least common multiple of (\) and
(u), and a ‘core’ part, such as the expression C' in the example above.

To find (), u)y we can make the substitution v = s™. When either
(\)xy = 0 or () = 0 this will vanish. This happens when one of the
partitions has more than N parts. In our example this is the case when
N =1, as we can see from the factor v?q — 1 in (19).

We can equally calculate (A, )y from Vandermonde minors, using theo-
rem 4.2, and we compare the two results for our example in the case N = 3.

The substitution with N = 3 in equation (19) gives

(B, B =("+a+ )P+ + -+ D)@+ 1) (" + P+ +q+1) /¢

On the other hand taking IEF‘:‘ =4{0,2,5} and IEEl = {0, 3,4}, gives the

minor

1 1 1
P(3B:D ot — det| 1 ¢® ¢ | =¢®—¢B—¢® 1B+ -
1 ¢ ¢

= g+ +1)(+q+1)
@+ ++a+ D) +¢" + ¢ — ¢ +1)(g— 1),
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and so

(F2, H)s = q_SP(3BI| 0 )/P(%,(/))’ by theorem 4.2,

78q26_q23_q20_}_q15+q8_q6
(¢—1)(¢*> = 1)(¢> — q)
= (+1)(¢*+q+1)
@+ ++q+ )P+ + 8 -+ 1)/,

as before.

4.3 The sl(N), invariants of the Hopf link

Irreducible sl(N), modules{V,} are indexed by partitions with at most N
parts. The framed sl(NN), invariant (Jg; Vi, V,,) for the Hopf link H coloured
by the irreducible modules V) and V), is given, up to a fractional power
of s, from our Homfly invariant (A, u) by applying the sl(IN) specialisation
v = s . The exact formula, noted in [6], is

(Ja; V\, V) = MO )y, with o = s™W.

The correction factor arises from the isomorphism between the Hecke algebras
used here and the version based on the R-matrix in sl(N),.

The sl(N), invariants of the Hopf link are then essentially the Laurent
polynomials in ¢ determined by N x N minors of the Vandermonde matrix
(q").

In the simplest case N = 2 the most general minor is

qij qi(j+b) 2ij+ib+aj [ ab
det<q<i+a>j gty | = ¢ 1),

arising from partitions A with parts (b+j—1, j) and p with parts (a+i—1,1%).
ab _

Then (A, p)e = qi’ up to a power of ¢g. Calculation of this power and

-1
the correction factor gives the formula
(JH; V)\, VM) = [ab] (20)
for the si(2), invariants of the Hopf link, where [£] is the quantum integer
sk — sk
= ——.
%] s—s7!

The si(2), modules V) and V,, in this case do not depend on i or j, and
have dimension a and b respectively. They correspond to the single row
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diagrams d,_; and dj_;. The formula (20) for the s/(2), Hopf link invariants
was given in [12] and [4]. It allows a simple development of the properties
for the related 3-manifold invariants where ¢ is replaced by a root of unity,
(13, 4].

For N > 3 the sl(N), invariants of the Hopf link do not have such an
immediately memorable form. Their expression by Vandermonde minors was
given by Kohno and Takata, [5], only in the case where ¢ is a root of unity.
Our determination of them here for generic ¢ in theorem 4.2 and the eventual
2-variable formulation for (\, y) given in theorem 4.5 was initially inspired
by our reading of [5].

Version 1.7, August 2002.
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