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Abstract 

The polar corundum structure type offers a route to new room temperature multiferroic 

materials, as the partial LiNbO3-type cation ordering that breaks inversion symmetry may be 

combined with long range magnetic ordering of high spin d5 cations above room temperature 

in the AFeO3 system. We report the synthesis of a polar corundum GaFeO3 by a high-pressure 

high-temperature route and demonstrate that its polarity arises from partial LiNbO3-type cation 

ordering by complementary use of neutron, X-ray and electron diffraction methods. In-situ 

neutron diffraction shows that the polar corundum forms directly from AlFeO3-type GaFeO3 

under the synthesis conditions. The A3+/Fe3+ cations are shown to be more ordered in polar 

corundum GaFeO3 than in isostructural ScFeO3. This is explained by DFT calculations that 
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indicate that the extent of ordering is dependent on the configurational entropy available to 

each system at the very different synthesis temperatures required to form their corundum 

structures. Polar corundum GaFeO3 exhibits weak ferromagnetism at room temperature that 

arises from its Fe2O3-like magnetic ordering, which persists to a temperature of 408 K. We 

demonstrate that the polarity and magnetisation are coupled in this system, with a measured 

linear magnetoelectric coupling coefficient of 0.057 ps/m. Such coupling is a prerequisite for 

potential applications of polar corundum materials in multiferroic/magnetoelectric devices. 

 

1. Introduction 

New low-energy information storage and processing architectures have been proposed which 

rely on magnetoelectric and multiferroic materials1-2, but the development of such systems is 

hampered by a paucity of suitable candidate materials, which must combine magnetic and polar 

electrical order at (or close to) room temperature. This is challenging because the electronic 

structure requirements for the two ground states are antagonistic in several respects e.g., 

classical routes to polar materials rely on the coordination environments of closed shell s2 and 

d0 cations which are not consistent with magnetism3-5. The perovskite BiFeO3 partially solves 

this problem by combining ferroelectrically- and antiferromagnetically-ordered sublattices6-7. 

Several new approaches centred on the ABO3 perovskite family have emerged recently, such 

as strain-generated ferromagnetism in epitaxial thin films8-9, magnetic percolation at 

morphotropic phase boundary compositions in bulk ceramics10 and symmetry engineering11 in 

bulk12 and thin film materials13. However, the identification of other materials families where 

the two ground states may co-exist at ambient temperature is less developed. By using the 

connection between the polar LiNbO3 structure and perovskite, we identified polar derivatives 

of corundum as a new class of ternary oxide AFeO3 materials that support both magnetic order 

(from a sufficiently high concentration of Fe3+ cations) and electrical order (enabled by cation 

site ordering), which can be targeted by high pressure synthesis methods14. The polar corundum 

ScFeO3, the first compound of this type, is ordered magnetically above room temperature and 

the limited extent of long-range cation site order is sufficient to break inversion symmetry, 

producing electrical polarity (more recently, LiNbO3-type polymorphs of Mn2FeTaO6
15 and 

Zn2FeTaO6
16 have been reported with low magnetic ordering temperatures by a similar 

synthetic approach, and potential ferroelectric switching mechanisms have been investigated 

computationally17). The crystal chemistry of ScFeO3 is complex as, in addition to the 
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competition between bixbyite and partially ordered corundum phases,14 higher synthesis 

pressures stabilise a perovskite phase, from which a fully ordered LiNbO3-type polymorph 

(with a correspondingly enhanced spontaneous polarisation and Néel temperature) is recovered 

on decompression18. This implies that the structural chemistry of analogous AFeO3 

compositions (where A is a trivalent cation capable of adopting octahedral coordination) could 

offer polarity and magnetism if synthesised under appropriate conditions. 

The ternary ferrite GaFeO3 represents one such candidate for isolation of a polar corundum 

phase. While at ambient pressure ScFeO3 adopts the fluorite-derived bixbyite structure with 

Sc3+ and Fe3+ coordinated in an edge-sharing network of distorted MO6 octahedra19, ambient 

pressure GaFeO3 adopts the polar orthorhombic AlFeO3 structure with edge-sharing chains of 

(Ga, Fe)O6 octahedra and vertex-linked GaO4 tetrahedra, but only exhibits long-range magnetic 

ordering and magnetoelectric coupling well below room temperature20-23. Like ScFeO3 and 

InFeO3
24, its structural behaviour at high pressures and temperatures shows complex interplay 

between corundum and perovskite structures: at ambient temperature, hydrostatic compression 

to pressures above 40 GPa converts the structure directly to an orthorhombic perovskite, which 

in turn transforms on decompression to 25 GPa to a corundum-type phase which is retained 

down to ambient pressure25. Corundum-type GaFeO3 can also be obtained directly by annealing 

at a sufficiently high temperature and pressure26 and by analogy with ScFeO3 it is possible that 

a polar variant of this structure will be accessible in this part of the phase diagram. We have 

targeted and isolated such a polar corundum GaFeO3 phase, demonstrating that a family of 

materials adopt this structure. Polar corundum GaFeO3 exhibits weak ferromagnetism above 

room temperature, and the extent of the cation site order is enhanced with respect to that 

observed in ScFeO3, allowing the measurement of linear magnetoelectric coupling consistent 

with the polar R3c space symmetry and the observed α-Fe2O3 – like magnetic order. 

 

2. Experimental Details 

Synthesis: Initially, the ambient pressure phase of GaFeO3 was prepared from stoichiometric 

mixtures of Ga2O3 (99.999%) and Fe2O3 (99.998%) reacted at 900 °C for 12 hours, 1300 °C  

for 24 hours followed by 1400 °C for 2 hours in an alumina crucible in air. This precursor phase 

was then annealed under flowing oxygen at 1300 °C for 10 hours, in order to maximise the 

resistivity of the subsequent high pressure product. The GaFeO3 starting materials were then 

heated to 150, 500, 700, 900, 1100, 1300 and 1500 °C, respectively, for 10 minutes at 6 GPa 
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in a Pt-lined alumina crucible encapsulated within a graphite furnace in a Walker-type multi-

anvil press. The samples were then cooled to room temperature and the pressure released. The 

high pressure phase forming at 900 °C was used for structural, electric and magnetic studies.  

Powder X-ray diffraction: Phase identification was performed using a PANalytical X’Pert 

Pro diffractometer in Bragg-Brentano geometry with monochromated Co Kα1 radiation (λ = 

1.78896 Å). Synchrotron XRD data (SXRD) were collected from the I11 powder 

diffractometer (Diamond Light Source, UK). The sample was loaded inside a 0.1 mm quartz 

capillary and data were collected using an incident wavelength λ = 0.827127(1) Å over a 2θ 

range 2 – 150°, using the high resolution MAC detectors. Anomalous scattering data were 

collected on beam line I11 from a sample loaded on to the external surface of a 0.3 mm 

borosilicate capillary. A monochromator scan was used to measure the Ga K edge fluorescence 

spectrum and an energy of 10.359 keV (λ = 1.196901(5) Å) was selected for the anomalous 

scattering data set using the high resolution MAC detectors. A corresponding non-anomalous 

data set was then collected from the same capillary at λ = 0.826185(5) Å.  

Powder neutron diffraction: Time-of-flight neutron powder diffraction (NPD) data were 

collected at ambient temperature and pressure on the POLARIS diffractometer at the ISIS 

facility, Rutherford Appleton Laboratory (UK). The sample was contained in a quartz capillary 

of diameter 1.5 mm, filled to a height of 40 mm. The data analysis was performed by Rietveld 

refinement using Topas Academic (Version 5). 

In-situ powder neutron diffraction: High-pressure high-temperature data were collected on 

the medium-resolution high-flux PEARL diffractometer (ISIS, UK) using a Paris-Edinburgh 

(PE) press27. The sample was pelletised and placed in a high-pressure furnace assembly28. The 

furnace assembly was placed in between WC anvils in a V4 variant PE press dedicated to high 

temperature pressure measurements. The sample pressure was determined by the equation of 

state (EoS) of platinum29. The temperature was determined by the resonance technique from 

the Hf foils included in the sample volume30. Time of flight data were collected using the 90 

degree detector bank over a d-spacing range of 0.5-4 Å and corrected for anvil attenuation 

using in-house routines27. The hydraulic load of the press was gradually increased until the 

desired sample pressure was achieved prior to heating. The data analysis was performed by 

Rietveld refinement using Topas Academic (Version 5). 

SQUID Magnetometry: Magnetic measurements were carried out on powder samples using a 

commercial superconducting quantum interference device (SQUID) magnetometer MPMS XL 

– 7 and MPMS3 (Quantum Design, USA). Magnetization vs. temperature data were recorded 

from 5 K to 900 K in the following modes: ZFC (zero-field cooling), FC (field cooling) and 
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TRM (thermoremanent magnetization). The magnetic field-dependent magnetization was also 

measured at 10, 200, 400 and 420 K between -9 kOe and 9 kOe. 

Magnetoelectric coupling: For magnetoelectric (ME) measurements, the polar corundum 

sample was polished to a 5 micron finish using SiC paper in a semi-automatic polishing 

machine. Ohmic contacts were made via sputtering Pt. ME measurements were carried out on 

a modified SQUID magnetometer31. Prior to the measurements the sample was poled in the 

following sequence: slowly cooled (1 - 2 K/min) from 350 K to 130 K in a 20 kOe magnetic 

field and zero electric field (short circuit). At 100 K, an electric field of 350 – 400 kV/m was 

applied while cooling down in the same magnetic field to the measurement temperature at 1 

K/min. After poling, electric and magnetic fields were switched off and electrodes were short 

circuited for 15 minutes.  

Dielectric constant Dielectric properties were measured using an Agilent 4980 precision LCR 

meter for frequencies of 20 Hz to 2 MHz in the temperature range of 30−500 °C. A ramp rate 

of 1 °C min-1 was used. The sample with sputter coated Pt electrodes on both sides was loaded 

in a home-made sample holder and data were collected using the LABVIEW program. 

Differential Scanning Calorimetry (DSC): Heat flow was measured from a powder sample 

in an aluminium pan between room temperature to 500 °C by the modulated DSC technique 

using a DSC Q2000 instrument (TA Instruments). 

In-situ resistance: Two-probe dc electrical resistance measurements as a function of 

temperature at 6 GPa were carried out using Keithley 220 programmable current source and 

Keithley 2182 Nanovoltmeter. The GaFeO3 powder was loaded into the alumina crucible and 

Pt plates were employed on both the top and bottom of the crucible as the electrodes. 

ICP-OES measurements: Powder samples of GaFeO3 (approximately 50 mg) were dissolved 

in 10 cm3 HF-HCl mixture (UniSolv Acid Dissolution Reagent 1, Inorganic Ventures) with 10 

drops of concentrated HNO3. The solution was then neutralised with 50 cm3 of triethanolamine-

triethylenetretramine solution (UNS-1 solution, Inorganic Ventures) and diluted to 

approximately 20 ppm. The same protocol was used to prepare a standard solution from a 

stoichiometric mixture of Ga2O3 and Fe2O3. Measurements were collected on a Spectro Ciros 

Vision ICP-OES instrument. 

TEM-EDX: EDX measurements were performed on a Jeol 2000FX using an EDAX EDX 

detector. Sample powder was dispersed in 500µl of ethanol and a drop of the suspension was 

dropped on a carbon coated TEM copper grid. EDX spectra were collected for several minutes 

in order to obtain a suitable signal to noise ratio. Compositions were calculated from the mean 

of 25 particles. 
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Convergent beam electron diffraction (CBED): Specimens were prepared using a FEI 

Helios 600i focussed (Ga) ion beam instrument. Thin lamellae were sectioned and mounted on 

Cu grids using the lift out technique. Primary milling was performed using an acceleration 

voltage of 30kV, final cleaning passes were applied to specimen surfaces using a low energy 

(5kV) polish. CBED experiments were performed in JEOL 2000FX microscope operated at 

200keV. 

SAED and HAADF-STEM: TEM specimens were prepared by grinding the powder sample 

under ethanol and depositing several drops of the dispersion onto holey carbon grids. The 

selected area electron diffraction (SAED) patterns were recorded using a Tecnai G2 

microscope operated at 200 kV. The Fe and Ga distribution in the structure was investigated 

using high angle annular dark field scanning TEM (HAADF-STEM) imaging. The experiment 

was conducted on a probe aberration-corrected Titan 80-300 microscope operated at 300 kV. 

Theoretical HAADF-STEM images have been calculated using the QSTEM 2.20 software.  

Mossbauer spectroscopy: Mössbauer spectroscopy was performed in absorption, at room 

temperature, using a WissEl (MA-260) electromagnetic Doppler drive system, a 57Co(Rh) 

gamma source, of actual activity of ~40 mCi and Xe-gas Reuter-Stokes proportional counter. 

Canberra amplification, discrimination and scaling electronics were used to acquire sample and 

α-Fe calibration spectra of width of 512 channels, to a level of approximately 107 counts per 

channel. Samples were diluted with sucrose (icing sugar) for measurements at an approximate 

ratio of 0.2, in order to prevent excessive line-shape distortion and non-resonant absorption. 

Custom folding, absorber geometry modelling and non-linear least squares regression routines 

were used for the extraction of the spectroscopic parameters and their errors. Isomer shifts are 

referred to the source. 

Computational: All calculations were performed under periodic boundary conditions, using 

the CP2K32-33 code which employs a mixed Gaussian/plane-wave basis set. We employed 

double-ζ polarization quality Gaussian basis sets34 and a 600 Ry plane-wave cutoff for the 

auxiliary grid, in conjunction with Goedecker−Teter−Hutter pseudopotentials35-36. Total 

energy calculations and structural optimizations, including both atomic coordinates and cell 

parameters, were performed at the hybrid density functional theory (DFT) level using the PBE0 

exchange and correlation functional37-38, which has 25% Hartree-Fock exchange (HFX). The 

HFX calculations were significantly accelerated by using the auxiliary density matrix method 

(ADMM)39 and a truncated potential40, with which the HFX energy becomes zero beyond a 

pre-defined real-space cutoff radius. For production quality calculations we have used the 

cpFIT3 auxiliary basis sets and a cutoff radius of 4 Å, a convergence threshold of 5.0 × 10−6 
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Ha for the self-consistent field cycle, and structural optimizations were considered to have 

converged when the maximum force on all atoms falls below 4.5 × 10−4 Ha Bohr−1. 

Calculations were performed with the Γ-point approximation using a 2 × 2 × 1 multiplication 

of the hexagonal primitive cell consisting of 120 atoms. Additional calculations in a 3 × 3 × 1 

supercell (270 atoms) show that the relative energy between FM and AFM magnetic 

configurations in the LiNbO3 cation order converged to within 5 meV/f.u. in the 2 × 2 × 1 

supercell. A comprehensive and systematic configurational and compositional search on 

ScFeO3 and GaFeO3 in the corundum structure was performed as part of this study (described 

fully in the Supporting Information), in which the LiNbO3 structure was identified as the 

ground state of corundum-type ScFeO3. The ground state of corundum-type GaFeO3 was found 

to be phase separated layers of Fe2O3 and Ga2O3, hence discussion of phase stability refers to 

LiNbO3 and “phase separated” as the ground state references for ScFeO3 and GaFeO3 

respectively. Additional details of the computational study, including defect formation 

energies, configurational search, and estimation of configurational entropies, are provided in 

the Supporting Information (including Figures S1 – S3, and Tables S1 – S2). 

 

3. Results 

 

3.1. Isolation and stability of corundum GaFeO3 

Extensive investigation of (T, P) synthesis conditions in the multianvil cell revealed a 700-

900°C temperature range at 6 GPa that afforded a diffraction pattern that could be indexed 

solely with a corundum unit cell after decompression and cooling to room temperature (Figure 

1a). The composition was confirmed to be stoichiometric GaFeO3 by ICP-OES measurements 

(Table S3), with a high level of compositional homogeneity confirmed by TEM-EDX (Figure 

S4). Reaction at higher temperatures produces Fe3O4 as a secondary phase in increasing 

quantity (2 wt.% 1100°C, 19 wt.% 1500°C) while 500 °C affords partial conversion of ambient 

pressure GaFeO3 to the corundum structure. In-situ neutron diffraction data collected at 4.7 

GPa confirms that the ambient pressure orthorhombic GaFeO3 is converted directly to a 

corundum-type phase (Figure 1b, c). Higher resolution information on the transformation 

temperature is provided by in-situ measurement of dc resistance under the synthesis conditions: 

by cycling a sample to increasing maximum temperatures, its resistance was found to decrease 

irreversibly during cycles to 400 and 550 °C signifying the onset of the phase transformation, 

before returning to near-reversible behaviour for cycles to 650 and 800 °C, consistent with 
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completed formation of the corundum phase (Figure 1d). A second sample was cycled four 

times between ~25 – 900 °C and showed an irreversible decrease in resistance on the first cycle, 

which coincides with the resistivity of subsequent cycles at 550 °C (Figure S5), implying that 

complete conversion to the corundum is achieved at this temperature. This is consistent with 

both the ex-situ PXRD where the pattern is already dominated by the corundum phase at 500 

°C, and the in-situ NPD where the refined AlFeO3-phase content reaches a minimum plateau 

at 575 °C. 

To better understand the isolation of polar corundum GaFeO3 under high pressure reaction 

conditions, we calculated the enthalpies of different polymorphs of GaFeO3 at different 

pressures up to 40 GPa. We considered the ambient pressure AlFeO3-type structure, an 

orthorhombic perovskite structure, the LiNbO3 and ilmenite ordered corundum structures, and 

the ground state corundum configuration produced by our configurational search (in which Ga 

and Fe form a structure with distinct [001] blocks at either end of the corundum cell, see 

Supporting Information and Figure S1). Their enthalpies were compared with those of the 

binary oxides using the ambient pressure forms -Fe2O3 and -Ga2O3 as the references. Finally, 

an estimate of the configurational entropies available to the AlFeO3- and LiNbO3-type 

structures was calculated at 1200 K (see Supplementary Text). The calculated enthalpies as a 

function of pressure are plotted in Figure 2a, with the estimated entropic contribution to the 

total energy at 1200 K overlaid for these two structure types to illustrate the estimated extent 

of entropic stabilization. The equivalent calculations for the same polymorphs of ScFeO3, using 

-Fe2O3 and bixbyite-type Sc2O3 as the references, are shown in Figure 2b. 

For GaFeO3, the ambient pressure AlFeO3 structure is the most stable ternary phase at 0 GPa, 

and is stable relative to the binaries when configurational entropy of 98.8 meV/f.u. at 1200 K 

is considered. At this pressure, the LiNbO3 structure is unstable with respect to its binary 

constituents by 159 meV/f.u at 0 K. With increasing pressure, the AlFeO3 structure is 

progressively destabilised, and the corundum-type structures become the most stable beyond 

~3 GPa. Among the corundum-type structures, the LiNbO3 cation ordering is found to be more 

stable than the ilmenite ordering at all pressures. At ~30 GPa the perovskite structure becomes 

more stable than the LiNbO3 structure, which is in good agreement with experimental work25. 

In ScFeO3, the LiNbO3 structure is the most stable ternary phase at 0 GPa but is less stable than 

the binary mixture by 128 meV/f.u; the orthorhombic perovskite phase is stabilised more 

rapidly with pressure and becomes the most enthalpically stable phase at ~7 GPa. 
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These results show that configurational entropy due to disorder of Ga and Fe cations in the 

AlFeO3 and corundum lattices at the synthesis temperatures plays a critical role in the 

stabilisation of the ternary phases. This is consistent with our configurational search of 

corundum-type GaFeO3 (see Figure 3a), where a total of 151 configurations, including the fully 

ordered LiNbO3 structure, are found within 50 meV/f.u. (~0.5 kT at the synthesis temperature 

of 1200 K) of the lowest energy configuration: these may correspond to states that are 

accessible under the synthesis temperature. This contrasts with ScFeO3, which has only 5 

configurations within 50 meV/f.u. of the fully ordered LiNbO3 ground state (Figure 3b), 

indicating that a higher temperature is required to entropically stabilise the corundum structure 

of ScFeO3 by accessing a greater number of configurations. 

 

3.2. Structural analysis 

The synchrotron powder X-ray diffraction (SXRD) patterns of GaFeO3 synthesised at high 

pressure could be indexed to an R-centered hexagonal unit cell with lattice parameters a = 

5.01936(4) Å, c = 13.5903(1) Å), as shown in Figure 4a, which is consistent with the corundum 

structure adopted by α-Fe2O3
41-42. The observed reflection conditions (h-h0l: h+l = 3n, l = 2n), 

also observed in selected area electron diffraction (SAED) patterns (Figure 4c), are consistent 

with R3c and R3̅c space groups which correspond to the polar LiNbO3 and non-polar (fully 

disordered) corundum structures respectively. These systematic absences preclude the 

possibility of an ilmenite structure type with R3̅ space symmetry. Regarding the possible 

acentric R3c and centrosymmetric R3̅c structural models of GaFeO3, the very similar X-ray 

scattering factors of Fe3+ and Ga3+ preclude unambiguous space group assignment from 

Rietveld refinement against PXRD data alone. We addressed this problem in two parts: firstly, 

by using convergent beam electron diffraction (CBED) to determine the point group of the 

GaFeO3 corundum; and secondly by employing powder neutron diffraction and anomalous X-

ray scattering to determine the extent of the cation ordering.  

The whole pattern symmetry of the [55̅1] zone from CBED (Figure 4b) displays only a single 

m symmetry element. Considering only trigonal crystal systems this permits the assignment of 

the 3m point group43 and along with the observed reflection conditions from PXRD data 

indicates that the high pressure phase of GaFeO3 crystallises in the non-centrosymmetric R3c 

space group. To confirm the assignment of the R3c space group and investigate the degree of 

cation order in GaFeO3, neutron powder diffraction (NPD) analysis of two samples synthesised 

by the same protocol utilized the modest contrast in the neutron scattering lengths of Fe (9.45 
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fm) and Ga (7.288 fm). The appearance of Bragg peaks that were not present in the SXRD 

pattern, including two intense reflections at 4.14 and 4.54 Å, confirmed the presence of long 

range magnetic order at room temperature. The magnetic structure was determined by 

representational analysis using the SARAh package44 and found to be a k = 0 G-type 

antiferromagnetic arrangement analogous to the high temperature antiferromagnetic structure 

of α-Fe2O3
45

 with spins aligned parallel to the a axis. Structural models in R3c (LiNbO3) and 

R3̅c (corundum) were refined against four Polaris data banks simultaneously, with the magnetic 

structure modelled in a P1 cell. In the disordered corundum (R3̅c) refinement, the magnitudes 

of the magnetic moments were constrained to a single refined value to reflect the statistical 

distribution of Fe3+ cations. In the cation-ordered model (R3c), the occupancies of Ga3+ and 

Fe3+ on each site in the nuclear phase were refined with a constraint on the total composition, 

and the magnetic phases were modelled with two independently refined moments, whose 

positions in the P1 cell corresponded to the LiNbO3-type cation ordering. In addition to site 

occupancy refinement in the LiNbO3 model, atomic coordinates and isotropic thermal 

displacement parameters (Biso) were refined with Biso constrained to be equal for the Fe/Ga 

sites. 

For both samples the best goodness of fit was obtained from refinement in the R3c space group, 

with R3̅c (disordered corundum) giving the higher χ2 (see Tables S4 and S5). Inspection of the 

refined R3c model revealed that the refined cation occupancies from the nuclear scattering in 

R3c resulted in compositions of [Ga0.68(2)Fe0.32(2)][Ga0.32(2)Fe0.68(2)]O3 (36(2) % ordered, defined 

by the difference in site occupancy) and [Ga0.62(3)Fe0.38(3)][Ga0.38(3)Fe0.62(3)]O3  (24(3)% ordered) 

for the two samples, which is consistent with the relative magnitudes of the ordered spins on 

each site in the magnetic structure: the ordered moment at the Fe-rich site in sample 1 refined 

to 2.15(2) μB, whilst that of the Fe-poor site refined to 1.03(3) μB. Assuming that individual Fe 

have the same moment at each site, then the refined (average) moments are due to different 

populations of Fe at each site, which yields [Ga0.68(1)Fe0.32(1)][Ga0.32(1)Fe0.68(1)]O3, and the 

equivalent calculation for sample 2 yields [Ga0.65(1)Fe0.35(1)][Ga0.35(1)Fe0.65(1)]O3). The Rietveld 

fits are shown together with the refined R3c model in Figure 5, and refined parameters for each 

sample are shown in Tables 1 and 2. The consistency between the extent of cation ordering 

obtained directly from the nuclear scattering, and the extent of ordering obtained independently 

from the magnetic scattering, in addition to the superior goodness of fit, confirms the 

assignment of polar R3c symmetry. The polarization of GaFeO3 (sample 1) was calculated as 
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6.9 μC.cm-2 from a formal point charge model, using the program PSEUDO46 with the refined 

atomic coordinates of sample 1.  

Anomalous scattering synchrotron X-ray diffraction at the Ga K edge provides an alternative 

probe of the extent of cation order. The R3c model was refined simultaneously against two 

histograms, collected at ambient temperature at resonant (10.359 keV) and non-resonant 

(15.119 keV) energies from sample 1. The background was fitted by refinement of a 

Chebyschev polynomial function, and peak profiles were modelled by a Pearson VII function 

with a refined axial divergence correction. Lattice parameters, atomic coordinates and isotropic 

thermal displacement parameters were refined independently for each site, and a Suortti surface 

roughness (absorption) correction was refined for each histogram. Initially a series of [GaxFe1-

x][Ga1-xFex]O3 models with the extent of cation ordering (x) varied systematically between 0 ≤ 

x ≤ 1 were refined, and the resulting plot of χ2 vs x (Figure S6) showed two shallow minima 

centred approximately at x = 0.4 and x = 0.6, consistent with the partial cation ordering 

observed by NPD. By allowing x to refine freely, a composition 

[Ga0.596(4)Fe0.404(4)][Ga0.404(4)Fe0.596(4)]O3, which is 19.2(6)% ordered, was obtained which is 

within four standard deviations of the NPD value (furthermore, the shallow minima in χ2 vs x 

indicate that the reported least squares errors on x from SXRD are underestimated). Both the 

NPD and SXRD results are also consistent with the computational screening of configurational 

entropy; the average cation order in the 2331 configurations examined and displayed in Figure 

3, weighted by their relative population at 900 °C, yields a value of [Ga0.61Fe0.39][Ga0.39-

Fe0.61]O3. 

HAADF-STEM was used as a local probe to image the cation ordering directly. The two 

crystallographic positions jointly occupied by Fe and Ga form separate atomic columns in the 

structure as viewed along the [246̅1] (= <100>p) direction (Figure S7). In HAADF-STEM, the 

observed intensity is proportional to the composition of the atomic columns and scales 

approximately as Z1.6-1.9 (where Z is the average atomic number of the projected columns). 

Because of a very small difference between the average Z of the Fe-rich and Ga-rich atomic 

columns (Z = 27.6 and 29.4, respectively), the associated difference in brightness is expected 

to be subtle (see the calculated intensity profile in Figure 6c). Nevertheless, the intensity 

profiles taken from the experimental [24 6̅1] HAADF-STEM image (Figure 6a, b) show 

systematic intensity differences reminiscent of that observed on the profile from the calculated 

image (Figure 6c). All of these structural analyses confirm the R3c space group with partial 

Ga/Fe order in the polar corundum structure. 
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3.3. Magnetic order and magnetoelectric coupling 

Mössbauer spectroscopy of polar corundum GaFeO3 at ambient temperature and pressure 

confirms the long range magnetic order demonstrated at room temperature by neutron 

diffraction (Figure 7d, with fitted parameters shown in Table 3). The absorption pattern is 

clearly decomposed into a combination of two magnetically-ordered sites, with average 

hyperfine fields of 39.48 T and 33.09 T, respectively (the larger of the two being close to that 

of Goethite47 with its transition temperature of ~400 K48) which account for 91.09(2) % of the 

fitted area, with the remainder assigned to one asymmetric paramagnetic doublet accounting 

for 8.91(2) % of the fitted area, which is a dynamic line shape resulting from the proximity of 

the Néel temperature. The two main sites exhibit significant static hyperfine field distributions 

of width of 0.2 – 0.3 T. The fitted isomer shift (IS) of 0.25 mm/s and quadrupole splitting of 

0.19 mm/s are consistent with Fe3+, but the IS is smaller than expected for a typical octahedral 

coordination in an oxide, which may be due to the high degree of static disorder in the system. 

Isomer shifts of <0.25 mm/s have been reported under applied hydrostatic pressure for a 

corundum GaFeO3 produced by transformation from the metastable perovskite (and thus likely 

to be highly ordered)25, demonstrating a high degree of sensitivity of IS to local coordination 

environment in this system.  

Figure 7a shows the magnetisation of polar corundum GaFeO3 measured in an applied 

magnetic field of 1000 Oe in zero field cooled (ZFC), field cooled (FC) and thermoremanent 

magnetisation (TRM) from 300 K to 500 K. ZFC/FC divergence appears at 408 K together 

with the onset of TRM. The M(H) isotherms in Figure 7b are consistent with this magnetic 

ordering temperature of 408 K. The linear isotherm at 420K shows that the sample is 

paramagnetic, with hysteresis observed at and below 400K, consistent with weak 

ferromagnetism occurring simultaneously with the antiferromagnetic order. ZFC, FC and TRM 

magnetisation data between 5 and 350 K (Figure S8), show that no magnetic transition occurs 

below 408K. The remanent magnetisation was 0.012 µB/f.u. at 10 K (Figure 7b). 

In order to minimise spurious signals caused by leakage currents, magnetoelectric 

measurements were carried out at 10 K on the polar corundum GaFeO3 sample poled both 

electrically and magnetically (the resistivity at 10 K, measured in-situ, was 2.38 x 1012 Ω.m). 

The ME susceptibility (), measured as the slope of the induced ac magnetization (Mac) versus 

the applied ac electric field amplitude (Eac) is 0.057 ps/m. (Figure 7c). The observation of linear 
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magnetoelectric coupling is consistent with the symmetry of the magnetic structure: above the 

Morin transition,45 α-Fe2O3 adopts 2/m magnetic point symmetry (which is centrosymmetric, 

permitting weak ferromagnetism but not linear magnetoelectric coupling49), but the cation 

ordering in polar corundum GaFeO3 eliminates the inversion centre, thus lowering the magnetic 

point symmetry to m,50 which permits both weak ferromagnetism and linear magnetoelectric 

coupling49. The observed magnitude of α is similar to that observed in other Fe-based polar 

magnetoelectrics that are ordered magnetically above room temperature.10, 12, 51 Demonstration 

of switchable electrical polarization (i.e. ferroelectricity and multiferroicity) was not possible 

in these samples due to the high dielectric loss. 

 

 

3.4. Thermal stability 

To test the thermal stability and decomposition behaviour of polar corundum GaFeO3 at 

ambient pressure, the as-made samples were annealed at different temperatures between 300 – 

1000 °C in air. Ex-situ PXRD patterns of the post-annealed samples showed that the 

orthorhombic ambient pressure phase is recovered after annealing at 1000 °C, but the 

corundum unit cell is retained after annealing at 300 – 800 °C with no apparent decomposition 

(Figure S9). However, DSC and in-situ dielectric measurements (Figure 8) collected on heating 

from 25 – 500 °C show an endothermic peak, and a corresponding peak in the dielectric 

constant, which is frequency-independent (Figure S10) and centred at approximately 200 °C. 

The feature is strongly pronounced during the first heating cycle and absent in subsequent 

cycles, which indicates the occurrence of an irreversible phase transition. To investigate 

whether this is associated with a loss of polarity in the sample, CBED images, magnetisation 

and magnetoelectric coupling data were collected on annealed samples.  

Figure 7c shows the ME susceptibility  decreases from 0.057 ps/m for as-made polar 

corundum GaFeO3 to 0.003 ps/m for the sample annealed at 380 °C: for this sample, the 

induced magnetic moment is below the detection limit of 10-9 emu. Close inspection of the 

CBED whole pattern symmetry for the [1̅11] zone axis (Figure S11) reveals the sample to have 

retained 3m point symmetry, which implies that the sample has retained some residual polarity. 

Taken together with the magnetoelectric measurements, this implies that the polarity of the 

material (via the cation ordering) is diminished, but not eliminated entirely, by annealing polar 

corundum GaFeO3 at this temperature. The weak ferromagnetism, which arises from the α-
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Fe2O3-type magnetic structure, is also retained after thermal treatment (Figure S12). This is 

consistent with the 2/m magnetic point symmetry of α-Fe2O3 above the Morin transition45: the 

loss of cation ordering in polar corundum GaFeO3 would restore the inversion centre, thus 

raising the magnetic point symmetry back to 2/m (which is centrosymmetric, permitting weak 

ferromagnetism but not linear magnetoelectric coupling49).  

4. Discussion  

Under the high temperature, high pressure conditions applied in this study, a corundum phase 

of GaFeO3 forms directly from the ambient pressure phase, in contrast to the sequence of phases 

observed on application of pressure at room temperature where a corundum phase is accessed 

via a non-quenchable perovskite phase25. The fact that the phase does not form by 

transformation from the high pressure perovskite phase18, 25 means that the extent of Ga/Fe 

ordering is limited, producing the polar corundum structure rather than the fully ordered 

LiNbO3 structure. NPD and X-ray anomalous scattering experiments demonstrate a greater 

degree of ordering in GaFeO3 than in the isostructural ScFeO3. Our computational results imply 

that GaFeO3 should have a greater tendency towards cation disorder than ScFeO3 at a given 

synthesis temperature, as demonstrated by the higher number of accessible cation 

configurations in GaFeO3 (Figure 3). This originates from the small overall energy cost of 

Ga/Fe site swaps in GaFeO3, while only the antisite Sc/Fe defect within face-shared dimers is 

energetically possible in ScFeO3. While the enthalpy of the polar corundum phase of both 

GaFeO3 and ScFeO3 is unstable relative to the binary oxides, the higher entropic content of 

GaFeO3 (provided by the large number of thermally accessible cation configurations in the 

corundum cell at the synthesis temperature) means that its polar corundum phase is stabilised 

at lower temperature than that of ScFeO3. Experimentally, this results in polar corundum 

GaFeO3 being stabilized at 900 °C, while polar corundum ScFeO3 must be synthesized at a 

much higher temperature of 1400 °C. The effect of the different synthesis temperatures of the 

two materials is expected to have an impact on the extent of cation ordering. From our previous 

Monte Carlo simulation of ScFeO3
14, it was clear that between 1300 and 1450 K, ScFeO3 

transformed from a mainly ordered to a mainly disordered structure: it is also clear that ScFeO3 

is calculated to be much more ordered than GaFeO3 at 1200 K, with a site occupancy of ~0.9. 

This indicates that the experimentally observed cation disorder in polar corundum ScFeO3 is 

driven by the enhanced configurational entropy at the higher synthesis temperature. In GaFeO3, 

the low synthesis temperature of 900 °C provides sufficient configurational entropy to stabilise 

the polar corundum, but it is insufficient to disorder the material to the same extent as seen for 
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ScFeO3 synthesised at 1400 °C, and consequently produces more ordered compounds. We note 

the creation of anti-site defects in LiNbO3-type GaFeO3 (e.g. by swapping cations in adjacent 

face-sharing MO6 octahedra, as described in Supporting Information) is less energetically 

demanding than in LiNbO3-type ScFeO3, see Table S2, and the anti-site defects may be partly 

responsible for the cation disorder in polar corundum GaFeO3. It is possible that another source 

of disorder could originate from the precursor of corundum GaFeO3, i.e. the ambient pressure 

AlFeO3-type, in which extent of cation ordering is dependent on the synthesis conditions52 and 

predicted from our simulation based on small energy costs of creating anti-site defects (see 

Table S6 in the Supporting Information). This implies that a more ordered polar corundum 

GaFeO3 may be obtained from a highly ordered precursor, e.g. the fully ordered perovskite, as 

observed experimentally in ScFeO3
18.  

In most respects the refined crystal structure of GaFeO3 is very similar to that of ScFeO3. The 

unit cell volume of GaFeO3 is approximately 10 % smaller than that of ScFeO3 on account of 

the smaller ionic radius of Ga3+ (0.62 Å) versus Sc3+ (0.745 Å). This is an isotropic contraction 

driven by the smaller average size of the MO6 coordination octahedra, as indicated by the 

similar c/a ratios in the two compounds (2.71 and 2.69, respectively). The unit cell dimensions 

of GaFeO3 are very close to those of α-Fe2O3
41-42

 and are consistent with those reported from 

corundum structured GaFeO3 in a recent in-situ high pressure study25. The refined metal-oxide 

distances, illustrated in Figure 5, lie in the range 1.93 – 2.13 Å, and the refined volume of the 

Ga-rich MO6 polyhedra (10.49 Å3) are slightly smaller than those of the Fe-rich polyhedra 

(10.64 Å3), consistent with the relative ionic radii. As in the binary corundums and ScFeO3, 

the cations are displaced from the centres of the face-sharing MO6 octahedra by electrostatic 

repulsion. 

Polar corundum GaFeO3 exhibits weak ferromagnetism with an ordering temperature of 408 

K; this is approximately 50 K higher than the ordering temperature observed in ScFeO3
14, 

which may be due to its enhanced cation ordering. The remanent magnetisation of GaFeO3 

(0.012 μB / f.u.)  is comparable to that observed in ScFeO3 (0.0106 μB / f.u.)14. The combination 

of weak ferromagnetism and absence of inversion symmetry permits magnetoelectric coupling 

in GaFeO3. The observed linear magnetoelectric susceptibility (α) of 0.057 ps m-1 is small in 

comparison to other Fe-based polar weak ferromagnetic ceramics10, 51, but the fact that the room 

temperature structure is identical to the structure at the measurement temperature (10 K) 

implies that, given definition of a suitable processing protocol, magnetoelectric coupling may 

be attainable under ambient conditions in this compound. The magnitude of this coupling falls 
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below a detectable value when the sample is heated to 380 °C at ambient pressure. DSC and 

dielectric measurements suggest that this is due to an irreversible phase transition, CBED 

patterns however indicate that 3m point symmetry is still present in the sample. This indicates 

that the polarity of the sample (driven by the cation ordering that defines the polar corundum 

structure type) is degraded sufficiently to weaken the ME response below the detection limit, 

but is not entirely eliminated by annealing under these conditions.  Ultimately, the ambient 

pressure phase is recovered by annealing at a sufficiently high temperature. 

5. Conclusions 

GaFeO3 is the second member of the polar corundum family, and the first to display ME 

coupling. The enhanced cation site order in GaFeO3 over ScFeO3 confirms the distinction of 

this family both from non-polar corundum and from fully LiNbO3-ordered derivatives: the less 

extreme synthesis conditions required to access polar corundum indicate that a broad family of 

materials should be accessible, for example through multiple cation decoration of corundum. 

The magnetoelectric coupling shows that the engineered co-existence of magnetisation and 

polarisation in new structural families is a route to coupling these degrees of freedom – thin 

film growth, already achieved for ScFeO3
14, is a route to tune this further. The relationship 

between M,  and the cation site order is also controllable via site-ordering extent. The absence 

of measurable magnetic impurities under the optimised synthesis conditions is consistent with 

the stability and chemical robustness of this new family of room temperature polar magnetic 

magnetoelectric materials.  
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Figure 1: Formation of the corundum phase by high temperature high pressure annealing. (a) 

Laboratory PXRD patterns obtained from GaFeO3 quenched from a range of temperatures after 

annealing at 6 GPa. Patterns labelled A contain the starting AlFeO3-structured phase, and those 

labelled C contain the corundum phase. (b) Refined weight fraction of the AlFeO3 (black), 

corundum (red) phases and spinel decomposition phase (blue) as a function of temperature at 

6 GPa from in-situ neutron diffraction. (c) Rietveld refinement against in-situ neutron data 

collected at 6 GPa, 500 °C. Blue tick marks = corundum phase, magenta = AlFeO3 phase, green 

= spinel phase. Asterisks (*) mark peaks from the Pt pressure calibrant; daggers (†) mark 

graphite peaks, double dagger (‡) marks a vanadium peak. (d) In-situ resistance measurements 

collected from a pellet of GaFeO3 at 6 GPa cycled to increasing temperatures. Lines are a guide 

to the eye. The colours of the points correspond to their position in the heating sequence, which 

is shown inset. 
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Figure 2: Calculated enthalpies as a function of pressure for (a) GaFeO3 polymorphs in the 

AFM state, and (b) ScFeO3 polymorphs in the AFM state, plotted relative to the binary oxides 

α-Fe2O3 + β-Ga2O3 and α-Fe2O3 + Sc2O3. The shaded areas represent an estimate of the 

configurational entropy of GaFeO3 and ScFeO3 at the respective synthesis temperatures of 1200 

K and 1800 K: 98.8 meV/f.u. for the ambient pressure AlFeO3-type GaFeO3; 143 meV/f.u. for 

corundum GaFeO3 and 106 meV/f.u. for corundum ScFeO3. (c) the ambient pressure AlFeO3-

type structure of GaFeO3 viewed along [001], which features edge-sharing chains of (Fe, Ga) 

octahedra parallel to vertex-linked GaO4 tetrahedra, (d) the polar LiNbO3-type cation ordering 

in the corundum structure, (e) the non-polar FeTiO3 (ilmenite)-type cation ordering in the 

corundum structure, (f) the optimised Pbnm perovskite-type structure used for this calculation, 

which represents the phase that is accessible experimentally under applied pressures of 25 

GPa25. Atom colours: green = Ga(Sc), brown = Fe, red = O. 
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Figure 3: Calculated stabilities of different cation configurations in a hexagonal corundum-

type unit cell. Site occupancies (defined as the proportion of Fe3+ cations in a given 

configuration that are coincident with Fe3+ positions in the fully ordered LiNbO3 structure) of 

different configurations are plotted against their relative energies with respect to the ground 

state of ScFeO3 (left) and GaFeO3 (right). The phase separated structure of ScFeO3 and the 

LiNbO3-type GaFeO3 are highlighted in red circles. The lowest energy configuration is marked 

with a green star symbol. 
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Figure 4: Unit cell and space group determination. (a) LeBail fit to SXRD data (λ = 0.8256185 

Å) of corundum GaFeO3 in the hexagonal setting of space group R3̅c, which has the highest 

symmetry consistent with the systematic absences, yields a refined unit cell of dimensions a = 

5.01959(3), c = 13.5907(2) Å. The fit to high angle data (70 < 2θ < 150°) is inset. Black markers 

= yobs, red line = ycalc, grey line = yobs - ycalc, blue tick marks = allowed hkl reflections. (b) 

CBED [55̅1] zone axis pattern of corundum GaFeO3, which contains a mirror plane as the only 

symmetry element, consistent with space group R3c. (c) SAED patterns from three different 

zone axes, confirming the rhombohedral cell and systematic absences observed by SXRD. 
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Figure 5: Refined polar corundum structure of GaFeO3. (a) Rietveld refinement against NPD 

data from the Polaris back-scattering bank (inset: fit to the low d-spacing region), and (b) 

against Polaris bank 3 (2θ = 52.2°), which features two intense peaks of magnetic origin in the 

range 4 < d < 5 Å; black markers = yobs, red line = ycalc, grey line = yobs – ycalc, blue tick marks 

= nuclear structure, magenta tick marks = magnetic structure. (c) The refined nuclear and 

magnetic structure of GaFeO3 viewed along 110. At each atom, green segments indicate Ga 

occupancy, brown segments indicate Fe occupancy, black arrows indicate magnetic moments 

which are ordered parallel to the a axis in an antiferromagnetic arrangement. The magnitudes 

of the ordered moments are indicated by the sizes of the arrows. (d) The local coordination 

environments of the two crystallographically independent cation sites, which occupy adjacent 

face-sharing octahedra. The colours indicate the extent of occupancy by Fe (brown) and Ga 

(green). 
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Figure 6: HAADF-STEM analysis of polar corundum GaFeO3 (a) Experimental HAADF-

STEM image from the [246̅1] axis, with a simulated image (inset) generated from the refined 

(PND) crystal structure. (b) Intensity profiles measured from individual rows of atomic 

columns over large areas from the experimental image, and (c) intensity profiles measured 

over large areas from the simulated image. Regions in (b) that resemble the simulated 

structure of (c) are marked with black rectangles.  
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Figure 7. Magnetic properties of polar corundum GaFeO3. (a) Zero-field cooled (blue points), 

field-cooled (red points) and remanent (black) magnetization as a function of temperature in 

the range 300 – 500 K, measured with an applied field of 0.1 T. (b) Magnetization as a function 

of applied magnetic field at temperatures of 10 K (red points), 200 K (black points), 400 K 

(magenta points) and 420 K (blue points). (c) Induced ac magnetization versus applied ac 

electric field amplitude at 10 K for two samples: as-made (black points), and post-annealed at 

380 °C (red points). (d) 57Fe Mössbauer spectrum at ambient temperature, showing hyperfine 

splitting consistent with long-range magnetic ordering, and fitted with a three-site model (see 

Table 3 for fitted parameters). 
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Figure 8: Calorimetric and dielectric behaviour of polar corundum GaFeO3 synthesised at 

900 °C. (a) DSC scans performed on heating, black points represent the first cycle and red 

points represent the second cycle. (b) Capacitance data recorded on first heating cycle (black 

points) and second heating cycle (red points). (c) Dielectric loss recorded on first heating 

cycle (black points) and second heating cycle (red points).  
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Table 1: Structural parameters for R3c GaFeO3 (sample 1) from Rietveld refinement against 

room temperature NPD, with refined lattice parameters a = 5.01871(9) Å, c = 13.5879(3) Å, V 

= 296.39(1) Å3. 

 
 

x y z Biso / Å
2 Occ. M / μB 

Ga(1) 0 0 0 0.231(3) 0.32(2) 
 

Fe(1) 0 0 0 0.231(3) 0.68(2) 1.03(3) 

Fe(2) 0 0 0.28919(5) 0.231(3) 0.32(2) 2.15(2) 

Ga(2) 0 0 0.28919(5) 0.231(3) 0.68(2) 
 

O(1) 0.3026(2) -0.0046(4) 0.8922(3) 0.284 (5) 1 
 

 

 

Table 2: Structural parameters for R3c GaFeO3 (sample 2) refined against room temperature 

NPD data, with refined lattice parameters a = 5.02547(9) Å, c = 13.6057(3) Å, V = 297.31 (2) 

Å3. 

 
 

x y z Biso / Å
2 Occ. M / μB 

Ga(1) 0 0 0 0.216(4) 0.38(3) 
 

Fe(1) 0 0 0 0.216(4) 0.62(3) 1.08(4) 

Fe(2) 0 0 0.28906(5) 0.216(4) 0.38(3) 2.00(3) 

Ga(2) 0 0 0.28906(5) 0.216(4) 0.62(3) 
 

O(1) 0.3030(3) -0.0033(5) 0.8916(2) 0.34(2) 1 
 

 

Table 3: Mössbauer fitting parameters for the spectrum of Figure 7. The errors are provided 

in brackets. 

Site Bhf (T) ΔBhf (T) IS (mm/s) QS (mm/s) A (%) 

1 39.49(2) 0.28(1) 0.249(3) 0.21(1) 44.00(1) 

2 33.11(2) 0.37(1) 0.257(3) 0.19(1) 47.09(1) 

3 0 0 0.93(1) 2.16(3) 8.91(1) 
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