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Abstract (250 words max) 

Infectious bronchitis virus (IBV) causes infectious bronchitis in poultry, a respiratory disease 

that is a source of major economic loss to the poultry industry. Detection and the study of the 

molecular pathogenesis of the virus often involves the use of real-time quantitative PCR 

assays (qPCR). To account for error within the experiments, the levels of target gene 

transcription are normalised to that of suitable reference genes.  Despite publication of the 

MIQE guidelines in 2009, single un-tested reference genes are often used for normalization of 
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qPCR assays in avian research studies. Here we use the geNorm algorithm to identify suitable 

reference genes in different avian cell types during infection with apathogenic and pathogenic 

strains of IBV.  We discuss the importance of selecting an appropriate experimental sample 

subset for geNorm analysis, and show the effect that this selection can have on resultant 

reference gene selection. The effects of inappropriate normalization on the transcription 

pattern of a cellular signalling gene, AKT1, and the interferon-inducible, MX1, were studied. 

We identify the possibility of the misinterpretation of qPCR data when an inappropriate 

normalisation strategy is employed. This is most notable when measuring the transcription of 

AKT1, where changes are minimal during infection. 
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Introduction  

Infectious bronchitis is one of the most economically detrimental diseases to the poultry 

industry. The infection, caused by the gammacoronavirus, infectious bronchitis virus (IBV), 

initially establishes itself within the respiratory tract and often leads to secondary bacterial 

infections. The emergence of new strains and the lack of cross protection between them mean 

that effective vaccines that fully protect against IBV are difficult to develop. Early and quick 

detection of the virus is therefore important for the control of the disease. IBV has historically 

been detected via various methods including virus isolation in embryonated eggs, tracheal 

organ cultures or immunoassays. These methods however are expensive and time consuming  

and therefore, the use of broadly targeted multi-probe qPCR assays are more often used 

(Hewson et al., 2009; Muradrasoli et al., 2009). In these assays the transcription of strain 
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specific viral genes are measured and the levels of viral RNA are normalised to  host reference 

genes. The selection of the most stable reference genes is important to compensate for any 

errors in sample preparation and processing. The study of the replication of infectious 

bronchitis virus, like many other viruses infecting non-model species, is often hindered by the 

absence of molecular reagents. However, with the design of primer and probes, qPCR is often 

used for the study of the molecular basis of viral replication. In this study we investigate the 

effects of inaccurate normalisation on two host genes. The interferon-induced MX1 gene and 

AKT1, encoding for a cellular signalling protein. The transcription profiles of both genes are 

predicted to be different during infection, with MX1 transcription altered by viral infection. On 

the contrary, activity of AKT1 is known to be modulated by phosphorylation at the protein 

level and therefore gene transcription is unlikely to be altered due to virus infection.  

 

In a previous study, GAPDH and UB were identified as suitable reference genes in IBV-M41 

infected SPF chickens (Fan et al., 2012). In the study, Fan et al provide an indication of 

potentially suitable reference genes in IBV infected tissues. There is, however, a need to 

identify the most stable reference genes for each individual experimental condition by the use 

of algorithms such as geNorm (Vandesompele et al., 2002), Normfinder (Andersen et al., 

2004) or BestKeeper (Pfaffl et al., 2004), this is discussed in the MIQE guidelines published in 

2009 (Bustin et al., 2009).  Several studies have also investigated the implications of 

inappropriate normalisation (Dheda et al., 2005; Tricarico et al., 2002). Staines et al (2016) 

discuss the importance of reference gene selection and compare the different normalization 

methods available. It is now widely accepted that multiple reference genes must be used to 

normalize data, however many recent studies have recommended a set of reference genes for 

the study of gene expression in avian species (Bages et al., 2015; Borowska et al., 2016; 

Chapman et al., 2016; Nascimento et al., 2015; Olias et al., 2014; Yin et al., 2011), or 
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particular avian viral infections (W. Q. Fan et al., 2012; Li et al., 2005; Yang et al., 2013; Yue 

et al., 2010). Yang et al. (2013) recommend the use of RPL30 and SDHA as reference genes 

for mRNA transcription analysis in chicken embryo fibroblasts (CEF) infected with avian 

leucosis virus. The stability of reference genes in CEFs infected with Newcastle disease virus 

was also investigated and ACTB, HPRT1 and HMBS were recommended for use in such 

studies (Yin et al., 2011) . Whilst the majority of these publications discuss the implications of 

inappropriate normalisation methods, they recommend a set of reference genes identified as 

being suitable  for a particular set of experimental data. These studies may give an indication 

as to appropriate reference genes for certain experimental conditions. However, these genes 

should be used as candidate reference genes only, and their stability be measured for each 

experimental condition independently. This strategy is not often employed in avian viral 

research. The present study discusses the design of geNorm analysis studies and the 

implications of inappropriate normalization on the measurement of host gene transcription 

during IBV infection of avian cells. 

 

Materials and Methods 

 Cell culture and virus strains. Chick kidneys were prepared from 2 to 3 week old specific 

pathogen free (SPF) Rhode Island Red chickens. Primary chick kidney cells (CK cells) were 

prepared as described previously (Hennion & Hill, 2015).  DF1 cells (Himly et al., 1998) were 

maintained in 1x DMEM (Sigma) supplemented with 10% FCS and 100U Pen/Strep.  

IBV Beau-R is an apathogenic molecular clone of Beaudette-CK described previously (Casais 

et al., 2001). M4-CK is a pathogenic strain of IBV adapted to grow in CK cells, here referred 

to as M41(Darbyshire et al., 1979).  

Sample preparation and experimental design.  CK cells were infected with IBV-Beau-R 

(MOI 1), IBV-M41 (MOI 1) or mock infected. At 12 and 24 hours post infection the RNA was 
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extracted using RNeasy Mini kit (Qiagen). RNA was quantified using a Nanodrop (Thermo 

Scientific). One µg of RNA was reverse transcribed using Superscript III (Invitrogen) 

according to manufacturer’s protocol including a DNase step and using random primers 

(Promega).  

Selection of appropriate reference genes. SYBR Green qPCR was performed using Power 

SYBR Green Master Mix (ThermoFisher Scientific). Primers were used at a final 

concentration of 0.8 µM and sequences are shown in Table 1 (Staines et al., 2016). The qPCR 

was run on a 7500 Fast Real Time System (Applied Biosystems) with the following cycle 

profile: 95 °C for 10 mins and then 40 cycles at 95 °C for 15 sec and 60 °C for 30 sec. A 

dissociation step was included for melt curve analysis. The raw CT values were analyzed 

using the geNorm algorithm through the qbase+ software (Biogazelle).  

Measurement of gene transcription by qPCR. TaqMan qPCR was performed using 

TaqMan® Fast Universal PCR 2x Master Mix (ThermoFisher Scientific). Primers were used 

at 500nM and hydrolysis probes at 125nM final concentrations (primer and probe sequences 

are shown in Table 2 (Staines et al., 2016)). The qPCR was run on a 7500 Fast Real Time 

System (Applied Biosystems) with the following cycle profile: 95 °C for 1 mins and then 40 

cycles at 95 °C for 10 sec and 60 °C for 30 sec. IBV 5′UTR primer and hydrolysis probe 

sequences were as follows: IBV5′ Forward, 5′-GCTTTTGAGCCTAGCGTT-3′;  IBV5′ 

Reverse 5′-GCCATGTTGTCACTGTCTATTG-3′; and IBV 5′ probe, 5′ (FAM)-

CACCACCAGAACCTGTCACCTC-(TAMRA)-3′ (Maier et al., 2013). 

 

Results 

Selection of samples for geNorm analysis. CK cells were infected with a pathogenic (M41) 

and apathogenic (Beau-R) strain of IBV and RNA collected at 12 and 24 hpi. The viral 

genome copy number was quantitated by qPCR using a standard curve (Figure 1). Viral 
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genome copy number was normalised to a mock infected sample at each time point. An 

increase in genome copies can be seen from 12 to 24 hpi with similar levels of Beau-R and 

M41 genome being produced at each time point. A SYBR green qPCR was then performed 

using primer sets previously described by Staines et al (2016). The stability factors of 

candidate reference genes were established by imputing CT values of gene transcription into 

the geNorm algorithm. Of the three replicates, one from each experimental subset was chosen 

for testing. The relative stability of 9 candidate genes was ranked by geNorm M value, with 

the more stable genes having the lowest value. The stability of the candidate reference genes 

in CK cells infected with Beau-R and M41 are shown (Figure 2 (a)). The reference genes were 

ranked according to their stability, from lowest to highest as; 28s rRNA, TBP, RPLP0, RPL13, 

GAPDH, HPRT1, PGK1, HMBS and ACTB. The geNorm V values (not shown) recommend 

the optimal number of reference genes to be used. In this case the results of the algorithm 

suggest that the addition of the third most stable reference gene, PGK1, to ACTB and HMBS 

does not significantly increase the stability of the reaction. Therefore it is recommended that 

ACTB and HMBS be used as reference genes in this experimental set up.  

 

The importance of using an appropriate subset of data was investigated by removing sections 

of data from the analysis. Figure 2 (b) and (c) show the candidate reference genes ranked 

according to stability in CK cells infected with Beau-R and M41 at 12 hpi or 24 hpi, 

respectively. The stability of the reference genes changes depending on which subset of data is 

used. The most suitable reference genes at 12 hpi are HMBS and RPL13 whereas at 24 hpi 

they are ACTB and HPRT1. Differences in the stability of reference genes when CK cells were 

infected with the different strains of IBV, Beau-R (Figure 2 (d)) and M41 (Figure 2 (e)) were 

investigated. Here again, the most appropriate reference genes are different between the 

different experimental setups with HMBS and ACTB being more  stable in CK cells infected 
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with Beau-R and HPRT1 and TBP being the most suitable genes in CK cells infected with 

M41. 

 

In addition to the primary CK cells, the apathogenic strain Beau-R is able to infect the 

continuous avian cell line, DF1 cells. DF1 cells were infected with Beau-R and RNA extracted 

at 12 and 24 hpi. Viral genome copy number was quantified by qPCR and an increase in viral 

genome copy number can be seen between 12 and 24 hpi (Figure 3). SYBR green qPCR 

assays were performed using the primer sets described in Table 1, and the raw data analyzed 

using the geNorm algorithm. The reference genes in order of stability in DF1 cells infected 

with Beau-R at 12 and 24 hpi were; 28s rRNA, GAPDH, ACTB, TBP, RPLP0, PGK1, HPRT1, 

HMBS and RPL13 (Figure 4 (a)). The geNorm V values (not shown) recommend the use of 

the first two reference genes for these experimental samples, HMBS and RPL13. Once more, 

the effect of selecting a smaller subset of the data was investigated. The two most suitable 

reference genes in the 12 hpi samples of DF1 cells infected with Beau-R were HPRT1 and 

HMBS where as ACTB was the least stable (Figure 4 (b)). At 24 hpi the most stable reference 

genes were PGK1 and GAPDH (Figure 4 (c)). The variation in the stability of reference genes 

is consistent across the cell types, virus strain and time points examined.  

 

Effect of inappropriate normalisation. The selection of appropriate reference genes has been 

discussed at length as being important for the accurate analysis of gene expression levels. The 

two genes with the highest stability measure in DF1 cells infected with Beau-R at 12 and 24 

hpi were found to be HMBS and RPL13. The effect of inappropriate normalisation on studies 

of gene transcription was investigated. The transcription of avian AKT1 was compared to that 

of the interferon-inducible avian MX1 when normalised using different reference genes 

(Figure 5). The most suitable reference genes as identified by geNorm (RPL13 and HMBS) 
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were compared to the use of single, commonly used, reference genes with low stability values, 

ACTB and 28s rRNA. Figure 5a and b respectively show a significant change, calculated by 

unpaired t-test, in transcription of both AKT1 (P=0.0025) and MX1 (P =0.0382) over time 

during infection, when normalised to RPL13 and HMBS. The use of a single reference gene 

changes the significance of the data. This is most notably different in the AKT1 data where 

changes in transcription are smaller than those of MX1 during infection. For example changes 

AKT1 transcription normalised to RPL13 and HMBS has P =0.0025 (Figure 5 (a)) whereas, 

when the same Ct values are normalised to ACTB, P =0.3170 (Figure 5 (b)). However, the 

change in the significance of MX1 transcription is not as different, where P =0.0382 when 

normalised to RPL13 and HMBS (Figure 5 (b)) compared to P =0.0903 when normalised to 

ACTB (Figure 5 (d)).  The use of 28s rRNA as a single reference gene was also investigated. 

The change in significance of AKT1 gene expression (from P =0.0025 to 0.0213) was seen 

(Figures 5 (a) and 5 (e)), however this change is less notable for MX1 transcription (Figures 5 

(b) and 5 (f)).  

 

Discussion 

Limitations that prevent the use of reference gene stability analysis include lack of sufficient 

sample, time and cost of reagent. A cross sectional subset of samples is therefore often used, 

and the choice of samples has an impact on the outcome of the calculation of reference gene 

stability. In this study the transcription of candidate reference genes in one batch of three 

replicates was analyzed, as viral genome copy number had previously been found to be 

consistent throughout the samples. We were interested to investigate whether selecting a 

smaller subset of the samples would have had an effect on the stability measure of the 

reference genes. The stability changed depending on the cell type, strain of virus and the time 

at which the RNA was collected (Figures 2 and 4). Most notably the stability of TBP was 
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found to be low in CK infected samples except in CK cells infected with M41 at 12 and 24 

hpi. Also, a commonly used reference gene, ACTB, was found to be one of the more stable 

genes in CK cells however, that stability was not observed in DF1 cells.  Ribosomal RNA has 

historically been used in avian studies as a reference gene. However, in this study we have 

found it to be the least stable reference gene out of the candidates in both CK and DF1 cells 

infected with IBV. This suggests that the selection of an appropriate subset of experimental 

samples is an important step in accurate normalisation of mRNA transcription levels.  

 

There has been a recent surge in the publication of reference gene stability papers, most of 

which recommend a set of four to six reference genes for use in a particular experimental 

setup. Whilst the importance of using multiple reference genes is recognized in these studies, 

the suggestion that these reference genes may have uniform transcription across different 

experimental samples performed in different laboratories is misleading. Despite significant 

improvement in the design and publication of qPCR studies in model species, single reference 

genes are still used for normalisation of target genes in non-model species such as Gallus 

gallus. We therefore investigated variations in the transcription of two avian genes when 

normalised to geNorm selected reference genes, HMBS and RPL13 and also ACTB and 28s 

rRNA. The mRNA expression of AKT1 was measured along with that of MX1, which is known 

to change during infection with IBV (Cong et al., 2013). We found a significant change in 

transcription levels of both AKT1 and MX1 mRNA during infection from 12 to 24 hpi when 

normalised correctly to the selected reference genes (Figures 5 (a) and 5 (b)). This correlated 

with an increase in copies of IBV genome present (Figure 3). When the same raw data was 

normalised to ACTB the statistical significance of the variation was lost and the transcription 

of mRNA would be interpreted as not changing over time during IBV infection (Figures 5 (c) 

and 5 (d)). The most notable changes were in the transcription of AKT1 mRNA (Figures 5(a), 
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(c), (e)). This highlights that data sets showing small changes in mRNA levels are more 

susceptible to inappropriate normalisation strategies than those with large changes, such as in 

the case of MX1. Nonetheless, our study clearly demonstrates the importance of correct 

selection of reference genes for robust analysis of experimental data.  
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Table 1. Primer sequences and accession numbers of candidate reference genes used for 

geNorm analysis (Staines et al., 2016) 

Gene  Sequence Accession Number 

 ACTB Forward 5'-CAGGTCATCACCATTGGCAAT-3' NM_205518 

  Reverse 5'-GCATACAGATCCTTACGGATATCCA-3'   

 HMBS Forward 5'-GGTTGAGATGCTCCGTGAGTTT-3' XM_417846 

 Reverse 5'-GGCTCTTCTCCCCAATCTTAGAA-3'   

 HPRT1 Forward 5'-TGGTCAAAAGAACTCCTCGAAGT-3' NM_204848 

  Reverse 5'-TGTAATCGAGGGCGTATCCAA-3'   

 PGK1 Forward 5'-GTTTATGTCAATGATGCTTTTGGAA-3' NM_204985 

  Reverse 5'-GCCTTTGCAAAATAATCCAGTTCT-3'   

 RPL13 Forward 5'-TCGTGCTGGCAGAGGATTC-3' NM_204999 

 Reverse 5'-TCGTCCGAGCAAACCTTTTG-3'  

 RPLP0 Forward 5'-TTGTTCATCACCACAAAGATT-3' NM_204987 

 Reverse 5'-CCCACTTTGTCTCCGGTCTTAA-3'  

 TBP Forward 5'-CTTCGTGCCCGAAATGCT-3' NM_205103 

 Reverse 5'-GCGCAGTAGTACGTGGTTCTCTT-3'  

 28s rRNA  Forward 5′-GGCGAAGCCAGACCAAACT-3′ X59733 

 Reverse 5′-GACGACCGATTTGCACGTC-3′  

 GAPDH Forward 5′-GGTGGTGCTAAGCGTGTTA-3′ X01578 

 Reverse 5′-CCCTCCACAATGCCAA-3′  
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Table 2. Primer and probe sequences and accession numbers of AKT1 and MX1 genes as well 

as reference genes. 

Gene   Sequence Accession Number 

 AKT1a Forward 5'-TCACGGCATCCATTCTTAAACA-3' NM_205055 

  Reverse 5'-CTTCAGAAAATACACACTCTCTC-3' 
 

  Probe 5‘-AAAACAACTCCCCTCCGTTAGCATACTCCA(BHQ)-3' 
 

 MX1b Forward 5'-CACTGCAACAAGCAAAGAAGGA-3' NM_204609.1 

  Reverse 5'-TGATCAACCCCACAAGGAAAA-3' 
 

  Probe 5'(FAM)-ACAAAGCACACACCCAACTGTCAGCG-(TAMRA)-3' 
 

 HMBS Forward 5'-GGTTGAGATGCTCCGTGAGTTT-3' XM_417846 

  Reverse 5'-GGCTCTTCTCCCCAATCTTAGAA-3' 
 

  Probe 5'-(FAM)-CCTGACCTCTGCTTTGAGATTGTTGCCA-(TAMRA)-3' 
 

 RPL13 Forward 5'-TCGTGCTGGCAGAGGATTC-3' NM_204999 

  Reverse 5'-TCGTCCGAGCAAACCTTTTG-3' 
 

  Probe 5'-(FAM)-TAATGCCCGCCAGTTTAAGCTCTTCTAGGC-(TAMRA)-3' 
 

 ACTB Forward 5'-CAGGTCATCACCATTGGCAAT-3' NM_205518 

  Reverse 5'-GCATACAGATCCTTACGGATATCCA-3' 

 Probe 5′ -(FAM)-CACAGGACTCCATACCCAAGAAAGATGGC-(TAMRA)-3′  

 28s rRNA Forward 5′-GGCGAAGCCAGACCAAACT-3′ X59733 

 Reverse 5′-GACGACCGATTTGCACGTC-3′  

 Probe 5′-(FAM)-AGGACCGCTACGGACCTCCACCA-(TAMRA)-3′  

aAKT1 primers and probe designed and produced by Primerdesign Ltd., UK 
bMX1 primer and probe designed by William Mwangi, The Pirbright Institute, UK  
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Figure Captions 

Figure 1. Viral genome copy number in CK cells infected with IBV. CK cells were infected 

with IBV Beau-R and M41 strains and at 12 and 24 hpi cells were lysed and RNA extracted. 

Viral genome was amplified by qPCR of the 5′UTR region of the genome.  CT values were 

compared to a standard curve to calculate genome copy number. Copy number was normalised 

to control mock levels and the average of three replicates is plotted as viral genome copy 

number (±SEM).  

Figure 2. Transcriptional stability of candidate reference genes in IBV infected CK cells. CK 

cells were infected with IBV Beau-R and M41 and at 12 and 24 hpi cells were lysed and RNA 

extracted. Candidate reference gene mRNA was amplified by SYBRgreen qPCR. The 

transcriptional stability of the candidate reference genes is calculated by inputting CT values 

into the geNorm algorithm. The geNorm algorithm calculates the M value, a representation of 

the  stability of the reference genes. The lower the M value, the more stable the gene between 

the experimental samples. (a) The geNorm M values of candidate reference genes in CK cells 

infected with mock, BeauR or M41 at 12 and 24 hpi. GeNorm M values of candidate reference 

gene  transcription in CK cells infected with Beau-R and M41 at 12 hpi (b) or 24 hpi (c). M 

values of candidate reference gene transcription in CK cells infected with Beau-R (d) or M41 

(e) at 12 and 24 hpi. 

Figure 3. Viral genome copy number in DF1 cells infected with Beau-R. DF1 cells were infected with IBV Beau-R and at 12 and 24 hpi cells were lysed and RNA extracted. Viral genome present was amplified by qPCR of the 5′UTR region of the genome.  CT values were compared to a standard curve to calculate genome copy number. Copy number was normalised to control mock levels and the average of three replicates is plotted as viral genome copy number (±SEM). 
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Figure 4. Transcriptional stability of candidate reference genes in IBV infected DF1 cells. 

DF1 cells were mock infected or infected with IBV Beau-R and at 12 and 24 hpi cells were 

lysed and RNA extracted. Candidate reference gene mRNA was amplified by SYBRgreen 

qPCR. The transcriptional stability of the candidate reference genes is calculated by entering 

CT values into the geNorm algorithm. The geNorm algorithm calculates the M value which is 

a representation of the transcriptional stability of the candidate reference genes. The lower the 

M value, the more stable the gene. (a) The M values of candidate reference genes in DF1 cells 

infected with mock and Beau-R at 12 and 24 hpi. The M values of candidate reference gene 

transcription in DF1 cells infected with mock or Beau-R at 12 (b) or 24 hpi (c).  

Figure 5. Transcription of AKT1 and MX1 genes normalised to various reference genes. DF1 

cells were infected with mock or Beau-R and at 12 and 24 hpi cells were lysed and RNA 

extracted. AKT1 and MX1 mRNA was amplified by qPCR and transcription calculated using 

ΔΔCT and normalising to RPL13 and HMBS, ACTB or 28s rRNA. (a) AKT1 transcription 

normalised to RPL13 and HMBS. (b) MX1 transcription normalised to RPL13 and HMBS. (c) 

AKT1  transcription normalised to ACTB. (d) MX1 transcription normalised to ACTB. (e) 

AKT1 transcription normalised to 28s rRNA. (f) MX1 transcription normalised to 28s rRNA. P 

values calculated by two-tailed t-test. 
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