
Query Answering in DL-Lite with Datatypes: A Non-Uniform Approach

André Hernich and Julio Lemos and Frank Wolter
University of Liverpool

Department of Computer Science
{hernich, jlemos, wolter}@liverpool.ac.uk

Abstract

Adding datatypes to ontology-mediated queries (OMQs) of-
ten makes query answering hard. As a consequence, the use
of datatypes in OWL 2 QL has been severely restricted. In
this paper we propose a new, non-uniform, way of analyzing
the data-complexity of OMQ answering with datatypes. In-
stead of restricting the ontology language we aim at a classi-
fication of the patterns of datatype atoms in OMQs into those
that can occur in non-tractable OMQs and those that only oc-
cur in tractable OMQs. To this end we establish a close link
between OMQ answering with datatypes and constraint satis-
faction problems over the datatypes. In a case study we apply
this link to prove a P/coNP-dichotomy for OMQs over DL-
Lite extended with the datatype (Q,≤). The proof employs
a recent dichotomy result by Bodirsky and Kára for temporal
constraint satisfaction problems.

1 Introduction
In recent years, querying data using ontologies has become
one of the main applications of description logics (DLs).
The general idea is that an ontology is used to enrich in-
complete and heterogenous data with a semantics and with
background knowledge and thereby serves as an interface
for querying data that also allows the derivation of addi-
tional facts. In this area called ontology-based data manage-
ment (OBDM) one of the main research problems is to iden-
tify ontology languages and queries for which query answer-
ing scales to large amounts of data (Calvanese et al. 2007;
Bienvenu and Ortiz 2015). In DL, ontologies take the form
of a TBox, data is stored in an ABox, and the most important
class of queries are (unions of) conjunctive queries, or sim-
ply (U)CQs. A basic observation regarding this setup is that
even for DLs from the DL-Lite family that have been de-
signed for tractable OBDM the addition of datatypes to the
TBoxes or the UCQs easily leads to non-tractable query an-
swering problems (Artale, Ryzhikov, and Kontchakov 2012;
Savkovic and Calvanese 2012). As a consequence of this,
the use of datatypes in TBoxes and query languages for
OBDM has been severely restricted (Motik and Horrocks
2008; Motik et al. 2009). In applications, however, there is
clearly a need for expressive datatypes both in TBoxes and
in queries.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The aim of this paper is to revisit OBDM with expres-
sive datatypes from a new, non-uniform perspective. Instead
of the standard approach that aims at the definition of DLs
L and query languages Q such that for any TBox T in L
and any query q in Q, answering q under T is tractable in
data-complexity we now aim at describing the complexity of
query answering with datatypes at a more fine-grained level
by taking into account the way in which datatype atoms can
occur in TBoxes and in queries. To this end, we establish
a close link between the complexity of query answering and
of constraint satisfaction problems (CSPs) over the datatype.
This link enables us to transfer complexity results from the
CSP world to the world of OBDM and leads, in some cases,
to complete classifications of the complexity of query an-
swering into PTime and coNP-complete classes.

In more detail, we consider TBoxes in the DL DL-LiteR
underpinning the OWL profile OWL 2 QL extended with
concept inclusions that contain attribute restrictions quali-
fied by unary datatype atoms on their right hand side and
UCQs that contain datatype atoms of arbitrary arity. If T is
such a TBox over datatypeD and q such a UCQ overD, then
Q = (T , q) is called an ontology-mediated query (OMQ)
over D. We aim at understanding the complexity of query
answering for this very broad class of OMQs. A first ob-
servation is that query answering becomes undecidable for
many important datatypes D including (Q, <), (Z, <) and
(Z,≤). To restore decidability and enable a polynomial re-
duction to the complement of CSPs over D we introduce
the bounded match depth property (BMDP), a new property
of OMQs that ensures that answers to OMQs can be deter-
mined based on a bounded subset of the standard chase of
a DL-LiteR knowledge base. This property is a generaliza-
tion of the bounded derivation depth property in (Calı̀, Gott-
lob, and Lukasiewicz 2012). Many practical OMQs have the
BMDP. For example, all OMQs with either TBoxes whose
chase always terminates (which is often the case in prac-
tice (Grau et al. 2013)) or with rooted UCQs whose variables
are all connected via non-datatype variables to answer vari-
able (which covers a broad class of UCQs). If the datatypeD
is homogeneous (as is the case for (Q, <) and (Q,≤)), then
the latter condition can be relaxed even further to certain
Boolean UCQs. As the CSP of many important datatypes
is in NP, it follows that query answering for OMQs with
the BMDP over such datatypes is in coNP, a significant im-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80779633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

provement compared to the undecidable OMQs without the
BMDP. To sharpen the link between OMQ answering and
CSP further, we also provide a converse polynomial reduc-
tion of CSPs over a datatype D to the complement of an-
swering OMQs with BMDP over D. This converse reduc-
tion can thus be used to transfer NP-hardness results from
the CSP world to coNP-hardness results for OMQ answer-
ing. More importantly, however, we now have a framework
for transfering complexity classification results from CSP to
OMQ answering.

We illustrate the power of this framework for the data-
type (Q,≤). Note first that even without qualified attribute
restrictions OMQs over datatype (Q,≤) can express many
interesting queries.

Example 1.1. Let T = {∃p v ∃U,∃p− v ∃U} be a TBox,
where p is a role name and U an attribute. Then the Boolean
CQ

q ← p(x, y) ∧ U(x, u) ∧ U(y, v) ∧ u ≤ v
is entailed by a KB (T ,A) over (Q,≤) such that A is an
ABox containing no assertions using U iff A contains a
p-cycle. Thus, answering the OMQ (T , q) is NLogSpace-
complete. We also construct OMQs over (Q,≤) that are
PTime-complete and, respectively, coNP-complete.

Our main result is a P/coNP-dichotomy for OMQs over
(Q,≤) with the BMDP. To formulate the dichotomy we as-
sociate with every OMQ Q = (T , q) a datatype pattern
dtype(Q) = (θT , θq) such that θT contains the datatype
atoms in T and θq contains the datatype atoms in q. In Ex-
ample 1.1, θT = ∅ and θq = {u ≤ v}. Then, based on the
framework introduced above and a recent P/NP-dichotomy
result for temporal CSPs (Bodirsky and Kára 2010a) we
show that for any datatype pattern θ exactly one of the fol-
lowing two conditions holds (unless P=coNP):

• Evaluating OMQs Q with BMDP and dtype(Q) = θ is
always in PTime.

• There exists an OMQ Q with BMDP and dtype(Q) = θ
whose evaluation problem is coNP-hard.

In addition, our dichotomy comes with a purely syntactic de-
scription of the datatype patterns that lead to OMQs that are
in PTime. For example, the datatype pattern in Example 1.1
will always lead to an OMQ in PTime.

Related Work Expressive DLs with datatypes (or concrete
domains) have been introduced in (Baader and Hanschke
1991) and studied extensively (Lutz 2002). In the con-
text of tractable DLs, reasoning with datatypes has been
studied in (Baader, Brandt, and Lutz 2005; Magka, Kaza-
kov, and Horrocks 2011) for EL and in (Poggi et al.
2008; Savkovic and Calvanese 2012; Artale, Ryzhikov, and
Kontchakov 2012) for DL-Lite. These works focus on find-
ing ontology languages for which typical reasoning tasks
are tractable. In contrast, here we start with ontology lan-
guages for which query answering is intractable in general,
and aim at a complexity classification of query answering
guided by the datatype pattern. Our methodology is closely
related to recent work relating OBDM to constraint satisfac-
tion problems (Lutz and Wolter 2012; Bienvenu et al. 2014;

Hernich et al. 2015). However, here we classify data-
type patterns according to the data-complexity of evalu-
ating the OMQs containing them, whereas in (Lutz and
Wolter 2012) TBoxes are classified according to the data-
complexity of OMQs containing them, and in (Bienvenu et
al. 2014) OMQs themselves are classified according to their
data-complexity. Consequently, here we establish a link to
temporal constraint satisfaction (Bodirsky and Kára 2010a)
whereas the work mentioned above establishes a link to
standard constraint satisfaction and the Feder-Vardi conjec-
ture (Feder and Vardi 1993; Bulatov, Jeavons, and Krokhin
2005).

Detailed proofs are provided in the full version of this pa-
per.

2 Preliminaries
A datatype is a tuple D = (D,R1, R2, . . .), where D is a
non-empty set and R1, R2, . . . are relations on D. We call
dom(D) := D the domain of D. To simplify the presenta-
tion, we will not distinguish between a relation Ri and its
name (i.e., we use Ri both as a relation and as the name of
the relation Ri).

A primitive positive (PP) formula over D is a first-order
formula ϕ built from atomic formulas overD using conjunc-
tion and existential quantification. If ϕ has no free variables,
then ϕ is called a PP sentence over D. By CSP(D) we de-
note the problem of deciding whether a given PP sentence
over D is satisfied in D. PP formulas over D do not use
domain elements of D as constants. If we admit such con-
stants we speak about PP formulas or sentences over D with
constants and denote the satisfiction problem for such PP
sentences by CSPc(D).

We assume countably infinite and mutually disjoint sets of
concept names, role names, attribute names, and individual
names. Roles r and basic concepts B are defined by the
rules

r := p | p− B := A | ∃r | ∃U

where p ranges over all role names, A ranges over all con-
cept names, and U ranges over all attribute names. A
DL-LiteattribR (D) TBox is a finite set of role inclusions
r1 v r2, attribute inclusions U1 v U2, and concept in-
clusions B1 v B2 and B1 v ¬B2, where r1, r2 range
over roles, U1, U2 over attributes, and B1, B2 over basic
concepts. In TBoxes of the extension DL-LiteqattribR (D) of
DL-LiteattribR (D) one can use, in addition, qualified attribute
restrictions on the right hand side of inclusions:

B v ∃U.ϕ, B v ∀U.ϕ

where B is a basic concept, U is an attribute, and ϕ is a PP
formula over D with constants and a single free variable x.

Let D be a datatype. A D-ABox consists of assertions of
the form A(a), p(a, b), and U(a, u), where A is a concept
name, p is a role name, U is an attribute name, a, b are in-
dividual names, and u ∈ dom(D). A D-knowledge base
(D-KB) is a pair (T ,A) consisting of a DL-LiteqattribR (D)
TBox T and a D-ABox A.

An interpretation I = (∆I , ·I) over a datatype D con-
sists of a non-empty domain ∆I = ∆Iind ∪ dom(D) and
an interpretation function ·I that assigns to each concept
name A a set AI ⊆ ∆Iind, to each role name p a relation
pI ⊆ ∆Iind × ∆Iind, and to each attribute name U a relation
UI ⊆ ∆Iind × dom(D). The elements in ∆Iind are called
individuals, whereas the elements in dom(D) are called
data values. We assume that ∆Iind and dom(D) are dis-
joint. Throughout this paper, we make the standard name
assumption: if I is an interpretation, then we set aI := a
for all individual names a. We also set uI := u for each
u ∈ dom(D), and RI := R for each relation R of D. The
interpretation I induces the interpretations BI and rI for
each basic concept B and role r in the standard way (Artale
et al. 2009). The qualified attribute restrictions are inter-
preted as follows:

(∃U.ϕ)I = {a ∈ ∆Iind | ∃s ((a, s) ∈ UI & D |= ϕ(s))},
(∀U.ϕ)I = {a ∈ ∆Iind | ∀s ((a, s) ∈ UI ⇒ D |= ϕ(s))}.

The interpretation I is called model of a D-ABox A if
a ∈ AI , (a, b) ∈ pI , and (a, u) ∈ UI for all assertions
A(a), p(a, b), and U(a, u) in A. It is called model of a
DL-LiteqattribR (D) TBox T if XI ⊆ Y I for every inclusion
X v Y ∈ T .

An interpretation is a model of a D-KB (T ,A) if it is a
model of both A and T . A D-KB (T ,A) is satisfiable if it
has a model; in this case we say that A is satisfiable relative
to T .

Conjunctive queries (CQs) q overD take the form q(x̄)←
ϕ, where x̄ is the tuple of answer variables of q, and ϕ is
a conjunction of atomic formulas of the form A(y), p(y, z),
U(y, u), orR(u1, . . . , uk), whereA, p, U , andR range over
concept names, role names, attribute names, and relation
names in D, respectively; each y, z and each u, u1, . . . , uk
is a variable and the variables u, u1, . . . , uk are called data
variables. As usual, all variables of x̄ must occur in some
atom of ϕ. A match of q in an interpretation I is a mapping
µ from the variables of ϕ to ∆I such that for each atom
X(t1, . . . , tk) of ϕ we have (µ(t1), . . . , µ(tk)) ∈ XI . A
tuple c̄ of individual names and data values is an answer to
q in an interpretation I if there is a match µ of q in I such
that µ(x̄) = c̄. We denote this by I |= q(c̄).

A union of conjunctive queries (UCQ) q over D takes the
form q1(x̄), . . . , qn(x̄), where each qi(x̄) is a CQ over D.
The qi are called disjuncts of q. A tuple c̄ of individual
names and data values is an answer to q in an interpretation
I, denoted by I |= q(c̄), if c̄ is an answer to some disjunct
of q in I.

Given a D-KB (T ,A), a UCQ q over D, and a tuple c̄ of
individual names and data values, we write T ,A |= q(c̄) if
c̄ is an answer to q in every model of (T ,A).

An ontology-mediated query (OMQ) over D takes the
form Q = (T , q), where T is a DL-LiteqattribR (D) TBox
and q is a UCQ over D. Given a D-ABox A and a tuple c̄,
we write A |= Q(c̄) if T ,A |= q(c̄).

When studying the OMQ answering problem we focus on
data complexity, unless otherwise stated.

3 Universal Pre-Models

Many ontology languages for which query evaluation is
tractable admit the construction of universal models of KBs
using some variant of the chase procedure. This applies
to DL-LiteR as well. In contrast, KBs in its extension
DL-LiteqattribR (D) often do not have universal models and
the aim of this section is to introduce instead models with
placeholders for data values that play a similar role as uni-
versal models, but modulo the assignment of data values to
the placeholders. The following examples illustrates why
universal models do not always exist.

Example 3.1. Consider the KB (T ,A) over the datatype
(Q,≤) with T = {A v ∃U1, A v ∃U2}. and A = {A(a)}.
Consider the OMQs Qi = (T , qi), for i ∈ {1, 2}, where

q1(x)← U1(x, u1) ∧ U2(x, u2) ∧ u1 ≤ u2,

q2(x)← U1(x, u1) ∧ U2(x, u2) ∧ u2 ≤ u1.

ClearlyA 6|= Q1(a) since for the interpretation I withUI1 =
{(a, 2)} and UI2 = {(a, 1)} we have I 6|= q1(a). Also,A 6|=
Q2(a) since for the interpretation J with UJ1 = {(a, 1)}
and UJ2 = {(a, 2)} we have J 6|= q2(a). However, there
does not exist a model I of T and A such that I 6|= qi(a)
for both i = 1 and i = 2.

The reason that universal models do not exist is that
distinct interpretations of attributes can be required to re-
fute the entailment of CQs or UCQs. The notion of pre-
interpretation formalizes this intuition: it fixes the interpre-
tation of concept and roles names but leaves the interpreta-
tion of attributes open by adding placeholders for data values
(called data nulls) to the set of possible values of attributes.

Fix a D-KB (T ,A). A pre-interpretation J over D is
the same as an interpretation over D with the exception
that attribute names U are now interpreted as sets UJ ⊆
∆Jind × (dom(D) ∪∆Jnull), where ∆Jnull is a set of data nulls
disjoint from ∆Jind ∪ dom(D), and that for each u ∈ ∆Jnull
we fix a set ZJ (u) of PP formulas ϕ that occur in quali-
fied attribute restrictions of T . Intuitively, the formulas in
ZJ (u) restrict the possible data values in dom(D) that can
be assigned to u. The definitions of the interpretations CJ
of a concept C and SJ of a role or attribute S are extended
from interpretations to pre-interpretations in the straightfor-
ward way. A pre-model of a KB is a pre-interpretation that
satisfies all assertions and inclusions in the KB.

Pre-interpretations J can be completed to interpretations
by assigning data values to data nulls. A completion function
f for J is a mapping f : ∆Jnull → dom(D) such that for all
u ∈ ∆Jnull and ϕ ∈ ZJ (u) we have D |= ϕ(f(u)). The
completion f(J) of J by f is the interpretation I obtained
from J by replacing each data null u in J by f(u), and by
dropping the sets ZJ (u).

Using a straightforward modification of the standard
chase procedure for DL-LiteR (see, e.g., (Calvanese et al.
2007)) one can construct a pre-model can(T ,A) of any sat-
isfiable D-KB (T ,A) such that for any UCQ q over D and

any c̄:

(T ,A) |= q(c̄) ⇐⇒ f(can(T ,A)) |= q(c̄),

for all completion functions f.

We call can(T ,A) with this property a universal pre-model
of T and A.
Lemma 3.2. For every satisfable D-KB (T ,A) there exists
a universal pre-model can(T ,A) of T and A.

The following example illustrates the construction of uni-
versal pre-models.
Example 3.3. Extend the TBox T from Example 3.1 to T ′
by adding A v ∀U1.x ≥ 0 and A v ∀U1.x ≤ 1. The uni-
versal pre-model can(T ′,A) is given by setting ∆can(T ,A) =

{a, u1, u2}; Acan(T ,A) = {a}; U can(T ,A)
1 = {(a, u1)};

U
can(T ,A)
2 = {(a, u2)}; Zcan(T ,A)(u1) = {0 ≤ x, x ≤ 1},

and Zcan(T ,A)(u2) = ∅. A completion function f for
can(T ,A) maps u1 to a rational number f(u1) with 0 ≤
f(u1) ≤ 1 and u2 to some rational number and defines
a completion f(can(T ,A)) in which U1 is interpreted as
(a, f(u1)) and U2 is interpreted as (a, f(u2)).

4 Query Evaluation and CSP
Universal pre-models can be infinite and their completions
can have a very complicated structure. In fact, we begin this
section with the observation that there are many important
and simple datatypes D such that evaluating OMQs over D
is undecidable, and this holds even for OMQs with TBoxes
without qualified attribute restrictions. We then introduce
the bounded match depth property (BMDP) of OMQs which
entails that evaluating OMQs can only be undecidable if a
CSP over D is undecidable. Even more importantly, the
BMDP allows us to establish mutual polynomial reductions
between evaluating OMQs over a datatypeD and CSPs over
D. We also establish the BMDP for a large class of OMQs.
Theorem 4.1. Let D ∈ {(Z, 6=), (Z, <), (Z,≤), (Q, 6=),
(Q, <)}. Then the query evaluation problem for OMQs over
D with DL-LiteattribR (D) TBoxes is undecidable in combined
complexity.
For (Z, 6=) and (Q, 6=) the proof is by reduction of the
N × N tiling problem and very similar to known undecid-
ability proofs for query evaluation with either UCQs with
inequality or TBoxes with key constraints (Toman and Wed-
dell 2008; Rosati 2007; Gutiérrez-Basulto et al. 2015). As
x 6= y iff x < y or y < x, undecidability of query evalu-
ation with inequality in the datatype entails undecidability
of query evaluation with < in the datatype. Finally, un-
decidability of query evaluation for (Z,≤) can be proved
by reduction of query evaluation for (Z, <). It remains
open whether query evaluation is decidable for OMQs over
(Q,≤) and whether undecidability holds for data complex-
ity.

The proof of Theorem 4.1 makes heavy use of TBoxes
whose chase does not terminate and of UCQs that are not
safe or rooted. Given a CQ q over D, we call any two vari-
ables x, y connected in q if x and y are connected via a path
of atoms in q that does not contain data variables. Then q

is rooted if any non-data variable is connected to a non-data
answer variable and q is safe if any two non-data variables of
q are either connected in q or are both connected to non-data
answer variables. A UCQ is rooted (safe) if all its disjuncts
are rooted (and safe, respectively) and an OMQ is rooted
(safe) if its UCQ is rooted (and safe, respectively). Thus, ev-
ery rooted query is safe, but the converse does not hold. Note
that safe queries do not allow us to compare attribute values
of individuals that are arbitrarily far apart in can(T ,A).
Example 4.2. The CQ in Example 1.1 is safe but not rooted,
the CQs in Example 3.1 are rooted. In contrast, the Boolean
CQ given by q ← U1(x1, u1)∧U2(x2, u2)∧ u1 ≤ u2 is not
safe.

An important shared property of all OMQs with TBoxes
with a terminating chase, all rooted OMQs, and all safe
OMQs over homogeneous datatypes1 is that they can be an-
swered on a finite initial portion of can(T ,A) whose size
only depends on the OMQ. Given an integer d ≥ 0, let
cand(T ,A) be the subinterpretation of can(T ,A) induced
by the set of domain elements that are reachable from ABox
elements in at most d steps. An OMQQ = (T , q) over data-
typeD enjoys the bounded match depth property (BMDP) if
there exists a d ≥ 0 such that for all D-ABoxes A and all
tuples c̄,

T ,A |= q(c̄) ⇐⇒ f(cand(T ,A)) |= q(c̄), (?)
for all completion functions f.

This property closely resembles the bounded derivation
depth property in (Calı̀, Gottlob, and Lukasiewicz 2012),
with the key difference being that it crucially depends on
the notion of completion.

It is not difficult to verify that all OMQs with a TBox
with a terminating chase and all rooted OMQs (T , q) have
the BMDP. In fact, in the latter case (?) holds when d is the
maximum number of atoms in a disjunct of q. A much more
sophisticated argument shows that safe OMQs over homo-
geneous datatypes enjoy the BMDP.
Lemma 4.3. The following OMQs enjoy the BMDP: safe
OMQs over homogeneous datatypes; rooted OMQs; and
OMQs using a TBox T such that can(T ,A) is finite for each
ABox A.

We now show that every OMQ Q = (T , q) over D that
enjoys the BMDP can be reduced to a constraint satisfac-
tion problem CSPc(Γ) whose constraint language Γ is de-
fined solely by the patterns of formulas over D that occur in
Q. We describe these patterns using the notion of the data-
type pattern of Q. The datatype pattern of Q is defined as
dtype(Q) = (θT , θq), where θT is the set of all PP formulas
that occur in qualified attribute restrictions of T , and θq con-
tains, for each disjunct q′ of q, the conjunction of all atoms
of q′ over D. Note that θT is a set of PP formulas with con-
stants and a single free variable, whereas θq is a set of PP
formulas without constants. We refer to datatype patterns of
OMQs over D as datatype patterns over D.

1A datatype D is homogeneous if every isomorphism be-
tween finite induced substructures extends to an automorphism
on D. (Q, <) and (Q,≤) are examples of homogeneous
datatypes (Chang and Keisler 1998).

Example 4.4. Let T = {A v ∃U1.1 ≤ x ∧ x ≤ 3} be a D-
TBox, for D = (Q,≤), and let q be the UCQ over D given
by q1(x), q2(x), where

q1(x)←
∧3
i=1 Ui(x, zi) ∧ z1 ≤ z2 ∧ z1 ≤ z3,

q2(x)← U1(x, z′1) ∧ U2(x, z′2) ∧ z′2 ≤ z′1.
Then dtype(T , q) = (θT , θq), where θT = {1≤x∧x≤ 3}
and θq = {z1 ≤ z2 ∧ z1 ≤ z3, z

′
2 ≤ z′1}.

Now, with each datatype pattern θ = (θT , θq) over D,
where θT = {ϕ1, . . . , ϕm} and θq = {ψ1, . . . , ψn}, we
associate the constraint language

Γθ = (dom(D), Rϕ1
, . . . , Rϕm

, R¬ψ1
, . . . , R¬ψn

),

where for each formula ϕ(x1, . . . , xk) over D, we let Rϕ =
{ā ∈ dom(D)k | D |= ϕ(ā)}.
Theorem 4.5. Let θ be a datatype pattern over D.

If Q = (T , q) is an OMQ over D with dtype(Q) = θ
and Q enjoys the BMDP, then evaluating Q is polynomially
reducible to the complement of CSPc(Γθ).

Conversely, there is a rooted OMQ Q over D with
dtype(Q) = θ such that the complement of CSPc(Γθ) is
polynomially reducible to evaluating Q.

Proof. Let θ = (θT , θq), where θT = {ϕ1, . . . , ϕm} and
θq = {ψ1, . . . , ψn}. Assume Q enjoys the BMDP, and that
q is given as q1(x̄), . . . , qn(x̄). Let A be a D-ABox and
let c̄ be a tuple of individual names and data values of the
same length as x̄. It is not difficult to see that satisfiability
of D-ABoxes A relative to T is polynomially reducible to
CSPc(dom(D), Rϕ1

, . . . , Rϕm
). Thus, we can assume that

A is satisfiable relative to T . Consider the pre-model I :=
cand(T ,A), where d is an integer that satisfies (?) but is
independent of A. A pre-match of qi in I is a match of
the abstract part of qi (i.e. qi stripped off of all atoms over
D) in I. Let Xi be the set of all pre-matches µ of qi in I
with µ(x̄) = c̄, and let ū = u1, . . . , uk be a repetition-free
enumeration of all the data nulls that occur in the image of
some pre-match in X1 ∪ · · · ∪Xn. Then the following is an
instance of CSPc(Γθ):

Φ := ∃ū

(
k∧
i=1

∧
ϕ∈ZI(ui)

Rϕ(ui) ∧
n∧
i=1

∧
µ∈Xi

R¬ψi
(µ(z̄i))

)
,

where u1, . . . , uk are identified with individual variables in
Φ. It is easy to check that T ,A 6|= q(c̄) iff Γθ |= Φ.

For the converse, we encode each instance Φ of
CSPc(Γθ) by an ABox AΦ as follows. We use a distin-
guished individual aΦ to denote the root of AΦ. For each
atom α = R¬ψi(x1, . . . , xk) in Φ there is an individual
bα connected to aΦ via an assertion ri(aΦ, bα). For each
j ∈ {1, . . . , k}, this individual is connected to individual
cxj

via an assertion sj(bα, cxj
). Finally, for each variable x

that occurs in Φ we include the assertion A(cx); if Rϕi
(x)

occurs in Φ we additionally include Aϕi
(cx). Furthermore,

for each element u ∈ dom(D) that occurs in Φ we include
the assertion U(cu, u). Figure 1 illustrates this construction
for the case m = 1, n = 3, and Φ being

∃x, y (Rϕ1
(x)∧R¬ψ1

(0, x)∧R¬ψ1
(x, y)∧R¬ψ3

(y, 1, x)) .

aΦ

c0
cx cy

c1

10

r1
r1

r3

s1 s2 s1
s2

s1

s2
s3

U U

A

Aϕ1

Figure 1: ABox AΦ from the proof of Theorem 4.5

Let T = {A v ∃U} ∪ {Aϕi
v ∀U.ϕi | 1 ≤ i ≤ m} and let

q be the UCQ given by q1(x), . . . , qn(x), where qi(x) is

ri(x, y) ∧
∧

1≤j≤k

(sj(y, zj) ∧ U(zj , uj)) ∧ ψi(u1, . . . , uk)

and k is the number of free variables of ψi. Clearly, Q =
(T , q) is a rooted OMQ over D with dtype(Q) = θ. It
is straightforward to verify that Γθ |= Φ if and only if
T ,AΦ 6|= q(aΦ).

Note that the TBoxes constructed in the converse direc-
tion of the proof of Theorem 4.5 are very simple. In partic-
ular, the chase terminates on any given ABox.

It follows immediately from Theorem 4.5 that for the
datatypesD given in Theorem 4.1 the query evaluation prob-
lem for OMQs with the BMDP overD is in coNP. In the next
section we show how Theorem 4.5 can be used to understand
the OMQs with the BMDP whose query evaluation problem
is not only in coNP but in PTime.

5 The Datatype (Q,≤)

The results of the previous section establish a tight link be-
tween evaluating OMQs and solving CSPs. In particular,
they allow us to transfer complexity classification results
from CSP to OMQ answering. We now demonstrate the
power of this link for the datatype (Q,≤). Our main result is
the following P/coNP-dichotomy of evaluating OMQs over
(Q,≤) that enjoy the BMDP based on their datatype pat-
terns. To simplify the presentation, we assume w.l.o.g. that
for all datatype patterns θ = (θT , θq) over (Q,≤) the for-
mulas in θq are acyclic.2

We use min-pattern and max-pattern to refer to formulas
of the form x0 ≤ x1∧· · ·∧x0 ≤ xk and x1 ≤ x0∧· · ·∧xk ≤
x0, for k ≥ 0, respectively.

Theorem 5.1. Let θ = (θT , θq) be a datatype pattern over
(Q,≤), where θq = {ψ1, . . . , ψn}.

If each ψi is a min-pattern or each ψi is a max-pattern,
then evaluating OMQs Q over (Q,≤) with dtype(Q) = θ
and the BMDP is in PTime.

Otherwise, there is a rooted OMQ Q over (Q,≤) with
dtype(Q) = θ such that evaluating Q is coNP-complete.

2Cycles x1 ≤ x2 ≤ · · · ≤ xn ≤ x1 that occur in a formula
in θq can always be eliminated by removing all their atoms and
replacing each xi with x1.

The simple and purely syntactic characterization of the
tractable cases of Theorem 5.1 makes it very easy to ver-
ify whether evaluating a given OMQ over (Q,≤) with the
BMDP is guaranteed to be tractable or possibly coNP-
complete. For instance, Theorem 5.1 implies that the OMQ
(T , q) in Example 4.4 and in general all OMQs over (Q,≤)
that have the same datatype pattern and enjoy the BMDP
can be evaluated in PTime. On the other hand, if we con-
sider the datatype pattern that has z1 ≤ z2 ∧ z2 ≤ z3 in
place of z1 ≤ z2 ∧ z1 ≤ z3, then there are rooted OMQs
over (Q,≤) with that datatype pattern for which evaluation
is coNP-complete.

We now take a closer look at the proof of Theorem 5.1.
The main device is a recent dichotomy for temporal CSPs
by Bodirsky and Kára (2010a). Temporal CSPs are de-
fined as CSP(Γ), where Γ = (Q, R1, R2, . . .) and each
Ri is definable by a first-order formula Φi(x̄) over (Q, <)
without constants, i.e., Ri = {ā | (Q, <) |= Φi(ā)}.
The datatypes Γ of a temporal CSP are called temporal
constraint languages. Bodirsky and Kára (2010a) prove
that for every temporal constraint language Γ, CSP(Γ)
is either in PTime or NP-complete. Whether or not a
given temporal constraint language defines a tractable CSP
depends only on which functions preserve its relations.
Bodirsky and Kára consider a set F of five types of func-
tions f : Q2 → Q together with the set dual-F consisting
of the duals dual-f(x, y) := −f(−x,−y) of all functions
f in F .3 A function f ∈ F ∪ dual-F preserves a relation
R ⊆ Qn if for all (a1, . . . , an), (b1, . . . , bn) ∈ R we have
(f(a1, b1), . . . , f(an, bn)) ∈ R. We also say that f pre-
serves a temporal constraint language Γ if f preserves all
relations in Γ.

Theorem 5.2. (Bodirsky and Kára 2010a) Let Γ be a tem-
poral constraint language. If Γ is preserved by a function in
F ∪ dual-F , then CSP(Γ) is in PTime. Otherwise, CSP(Γ)
is NP-complete.

Together with Theorem 4.5 and a constant-elimination
technique, this leads to a basic P/coNP-dichotomy for eval-
uating OMQs Q over (Q,≤) with the BMDP based on the
preservation properties of Γdtype(Q).

Theorem 5.3. Let θ = (θT , θq) be a datatype pattern over
(Q,≤), where θq = {ψ1, . . . , ψn}.

If there is a function inF∪dual-F that preservesR¬ψi for
each i ∈ {1, . . . , n}, then evaluating OMQs Q over (Q,≤)
with dtype(Q) = θ and the BMDP is in PTime.

Otherwise, there is a rooted OMQ Q over (Q,≤) with
dtype(Q) = θ such that evaluating Q is coNP-complete.

To obtain a purely syntactic characterization of the data-
type patterns θ = (θT , θq) over (Q,≤) that lead to tractable
OMQs, we further analyze the relations R¬ψ that are de-
fined by the formulas ψ ∈ θq and are preserved under some
function in F ∪ dual-F . Note that the negation ¬ψ of each
formula ψ ∈ θq is equivalent to a disjunction Ψ of atomic
formulas x < y, with x and y variables. Moreover, since ψ

3The set F consists of the functions min , mi , mx , and ll , de-
fined in (Bodirsky and Kára 2010a), and all constant functions.

is acyclic (by assumption), the directed graph with the vari-
ables of Ψ as its vertices, and edges (y, x) for each atomic
formula x < y of Ψ is acyclic. We call such formulas Ψ
acyclic disjunctive formulas. The following lemma is the
combinatorial core of our analysis.
Lemma 5.4. Let R ⊆ Qn be defined by an acyclic disjunc-
tive formula Ψ over (Q, <). If R is preserved by a function
in F ∪ dual-F , then Ψ has the form

∨k
i=1 xi < x0 if f ∈ F ,

and
∨k
i=1 x0 < xi if f ∈ dual-F .

Altogether, this leads to a proof of Theorem 5.1.

Proof of Theorem 5.1. By Theorem 5.3, it suffices to show
that the following are equivalent:

1. Each ψ ∈ θq is a min-pattern, or each ψ ∈ θq is a max-
pattern.

2. There is a function f ∈ F ∪ dual-F such that each R¬ψ ,
ψ ∈ θq , is preserved under f .

If each ψ ∈ θq is a min-pattern, then for each ψ ∈ θq the
relation R¬ψ is defined by a formula of the form

∨n
i=1 x0 >

xi. Similarly, if each ψ ∈ θq is a max-pattern, then for
each ψ ∈ θq the relation R¬ψ is defined by a formula of the
form

∨n
i=1 xi > x0. It is known (Bodirsky and Kára 2010b,

Proposition 3.5) that relations defined by such formulas are
preserved under a function in F ∪ dual-F .

Conversely, let f be a function in F ∪ dual-F such that
each R¬ψ with ψ ∈ θq is preserved under f . Let ψ ∈ θq .
Then, R¬ψ is defined by an acyclic disjunctive formula Ψ.
By Lemma 5.4, Ψ has the form

∨n
i=1 xi < x0, if f ∈ F , and∨n

i=1 x0 < xi, if f ∈ dual-F . This implies that each ψ ∈ θq
is a min-pattern, or each ψ ∈ θq is a max-pattern.

We now refine the analysis of the datatype patterns that
lead to OMQs with an evaluation problem in PTime further
by presenting a dichotomy between those that can be used in
PTime-hard OMQs and those that always lead to OMQs in
NLogSpace. Example 1.1 shows that there are rooted OMQs
Q over (Q,≤) and with dtype(Q) = (∅, {x ≤ y}) such
that evaluating Q is NLogSpace-complete. It turns out that
the NLogSpace upper bound holds for all OMQs Q whose
datatype pattern contains atomic formulas only.
Theorem 5.5. Evaluating OMQs Q over (Q,≤) with the
BMDP and dtype(Q) = (θT , θq) such that each formula in
θq is of the form x0 ≤ x1 is in NLogSpace.

The proof of Theorem 5.5 is a straightforward applica-
tion of Part 1 of Theorem 4.5, which allows us to reduce
evaluating OMQs as in Theorem 5.5 to the complement of
CSPc(Q, <,≤) (it is not difficult to see that this reduction
can be carried out in logarithmic space), and the observation
that CSPc(Q, <,≤) is in NLogSpace via a simple reacha-
bility test. The following result entails that the NLogSpace
upper bound cannot be generalised to further tractable data-
type patterns.
Theorem 5.6. There is a rooted OMQ Q over (Q,≤) with
dtype(Q) = (∅, {x ≤ y ∧ x ≤ z}) such that evaluating Q
is PTime-complete.

The proof of Theorem 5.6 is by reduction of the alternat-
ing reachability problem.

6 Conclusion
We have presented a framework for analyzing the non-
uniform complexity of OMQ answering with expressive
datatypes by establishing a close link to CSPs. We have
illustrated the power of this framework by transfering a
P/coNP dichotomy result for CSPs over (Q,≤) to OMQ an-
swering over (Q,≤). Many research questions arise within
this framework, including the following: (1) The framework
should be applied to analyze the complexity of OMQ an-
swering for other important datatypes based on the ratio-
nals, the integers, strings, or other structures used in spatial
and temporal reasoning. On the CSP side there has been
very significant progress in understanding the complexity of
such structures (Bodirsky 2015). (2) We have established the
BMDP for many relevant OMQs, but a more systematic in-
vestigation covering additional datatypes and TBoxes would
be useful. (3) We have focused on establishing worst-case
complexity results and dichotomies for OMQ answering. It
would be of great interest to exploit the CSP reduction fur-
ther and develop practical query answering algorithms, in
particular, to use constraint solvers as part of practical query
engines.

Acknowledgments. This work was supported by the EP-
SRC under the grant EP/M012646/1 “iTract: Islands of
Tractability in Ontology-Based Data Access”.

References
Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. The DL-Lite family and relations.
J. Artif. Intell. Res. (JAIR) 36:1–69.
Artale, A.; Ryzhikov, V.; and Kontchakov, R. 2012. DL-Lite
with attributes and datatypes. In ECAI, 61–66.
Baader, F., and Hanschke, P. 1991. A scheme for integrating
concrete domains into concept languages. In IJCAI 1991,
452–457.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
envelope. In IJCAI-05, 364–369.
Bienvenu, M., and Ortiz, M. 2015. Ontology-mediated
query answering with data-tractable description logics. In
Reasoning Web 2015, 218–307.
Bienvenu, M.; ten Cate, B.; Lutz, C.; and Wolter, F. 2014.
Ontology-based data access: A study through disjunctive
datalog, csp, and MMSNP. ACM Trans. Database Syst.
39(4):33:1–33:44.
Bodirsky, M., and Kára, J. 2010a. The complexity of tempo-
ral constraint satisfaction problems. J. ACM 57(2):9:1–9:41.
Bodirsky, M., and Kára, J. 2010b. A fast algorithm and
datalog inexpressibility for temporal reasoning. ACM Trans.
Comput. Log. 11(3):15:1–15:21.
Bodirsky, M. 2015. The complexity of constraint satisfac-
tion problems (invited talk). In STACS 2015, 2–9.
Bulatov, A. A.; Jeavons, P.; and Krokhin, A. A. 2005. Clas-
sifying the complexity of constraints using finite algebras.
SIAM J. Comput. 34(3):720–742.

Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2012. A general
datalog-based framework for tractable query answering over
ontologies. J. Web Sem. 14:57–83.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. Au-
tom. Reasoning 39(3):385–429.
Chang, C., and Keisler, H. 1998. Model Theory. Elsevier.
Feder, T., and Vardi, M. Y. 1993. Monotone monadic SNP
and constraint satisfaction. In Proc. of the ACM Symposium
on Theory of Computing, 612–622.
Grau, B. C.; Horrocks, I.; Krötzsch, M.; Kupke, C.; Magka,
D.; Motik, B.; and Wang, Z. 2013. Acyclicity notions for
existential rules and their application to query answering in
ontologies. J. Artif. Intell. Res. (JAIR) 47:741–808.
Gutiérrez-Basulto, V.; Ibáñez-Garcı́a, Y. A.; Kontchakov,
R.; and Kostylev, E. V. 2015. Queries with negation and in-
equalities over lightweight ontologies. J. Web Sem. 35:184–
202.
Hernich, A.; Lutz, C.; Ozaki, A.; and Wolter, F. 2015.
Schema.org as a description logic. In IJCAI 2015, 3048–
3054.
Lutz, C., and Wolter, F. 2012. Non-uniform data complexity
of query answering in description logics. In KR 2012.
Lutz, C. 2002. Description logics with concrete domains-a
survey. In Advances in Modal Logic 4, 265–296.
Magka, D.; Kazakov, Y.; and Horrocks, I. 2011. Tractable
extensions of the description logic EL with numerical
datatypes. J. Autom. Reasoning 47(4):427–450.
Motik, B., and Horrocks, I. 2008. OWL datatypes: Design
and implementation. In ISWC 2008, 307–322.
Motik, B.; Grau, B. C.; Horrocks, I.; Wu, Z.; Fokoue, A.;
and Lutz, C. 2009. Owl 2 web ontology language: Pro-
files. World Wide Web Consortium, Working Draft WD-
owl2-profiles-20081202.
Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.;
Lenzerini, M.; and Rosati, R. 2008. Linking data to on-
tologies. J. Data Semantics 10:133–173.
Rosati, R. 2007. The limits of querying ontologies. In
Schwentick, T., and Suciu, D., eds., Database Theory -
ICDT 2007, volume 4353 of Lecture Notes in Computer Sci-
ence, 164–178. Springer.
Savkovic, O., and Calvanese, D. 2012. Introducing
datatypes in DL-Lite. In ECAI 2012, 720–725.
Toman, D., and Weddell, G. E. 2008. On keys and functional
dependencies as first-class citizens in description logics. J.
Autom. Reasoning 40(2-3):117–132.

