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In approximate density functional theory (DFT), the self-interaction error is an electron delo-
calization anomaly associated with underestimated insulating gaps. It exhibits a predominantly
quadratic energy-density curve that is amenable to correction using efficient, constraint-resembling
methods such as DFT + Hubbard U (DFT+U). Constrained DFT (cDFT) enforces conditions on
DFT exactly, by means of self-consistently optimized Lagrange multipliers, and while its use to
automate error corrections is a compelling possibility, we show that it is limited by a fundamental
incompatibility with constraints beyond linear order. We circumvent this problem by utilizing sep-
arate linear and quadratic correction terms, which may be interpreted either as distinct constraints,
each with its own Hubbard U type Lagrange multiplier, or as the components of a generalized
DFT+U functional. The latter approach prevails in our tests on a model one-electron system, H+

2 ,
in that it readily recovers the exact total-energy while symmetry-preserving pure constraints fail
to do so. The generalized DFT+U functional moreover enables the simultaneous correction of the
total-energy and ionization potential, or the correction of either together with the enforcement of
Koopmans’ condition. For the latter case, we outline a practical, approximate scheme by which the
required pair of Hubbard parameters, denoted as U1 and U2, may be calculated from first-principles.

PACS numbers: 71.15.-m, 31.15.E-, 71.15.Qe, 71.15.Dx

Approximate density-functional theory (DFT)1,2 un-
derlies much of contemporary quantum-mechanical
atomistic simulation, providing a widespread and valu-
able complement to experiment3,4. The predictive capac-
ity of DFT is severely limited, however, by systematic er-
rors5–7 exhibited by tractable exchange-correlation func-
tionals such as the local-density approximation (LDA)8

or generalized-gradient approximations9. Perhaps the
most prominent of these pathologies is the delocalization
or many-electron self-interaction error (SIE)8, which is
due to spuriously curved rather than correctly piecewise-
linear total-energy profiles with respect to the total elec-
tron number5,6. This gives rise to the underestimated
fundamental gaps5, charge-transfer energies10, and re-
action barriers11 characteristic of practical DFT. While
the construction of viable, explicit density functionals
free of pathologies such as SIE is extremely challeng-
ing12, significant progress has been made in the devel-
opment of implicit functionals in the guise of corrective
approaches. Examples include methods that operate by
correcting SIE on a one-electron basis according to vari-
ationally optimized definitions, such as generalized13–15

Perdew-Zunger8 approaches, in which much progress has
recently been made by generalizing to complex-valued or-
bitals16–18, and those which address many-electron SIE
directly, such as Koopman’s compliant functionals7,19.

An established, computationally very efficient DFT
correction scheme is DFT+U20–25, originally developed
to restore the Mott-Hubbard effects absent in the LDA
description of transition-metal oxides. A simplified for-
mulation23–25, in which the required Hubbard U param-

eter is a linear-response property of the system under
scrutiny25, is now routinely and diversely applied26–30.
Beginning with Ref. 11, Marzari, Kulik, and co-workers
have suggested and extensively developed31,32 the inter-
pretation of DFT+U as a correction for SIE, for sys-
tems in which it may be primarily attributed to dis-
tinct subspaces (otherwise, the related Koopman’s com-
pliant functionals are available7,19). The SIE correcting

DFT+U functional is given, where n̂Iσ = P̂ I ρ̂σP̂ I , by

EU =
∑
Iσ

U I

2
Tr
[
n̂Iσ − n̂Iσn̂Iσ

]
. (1)

Here, ρ̂σ is the Kohn-Sham density-matrix for spin σ
and P̂ I is a projection operator for the subspace I.
DFT+U attains the status of an automatable, first-
principles method when it is provided with calculated
Hubbard U parameters24,25,28,33,34 (particularly at their
self-consistency11,30,35), which may be thought of as
subspace-averaged SIEs quantified in situ. The subspaces
are usually pre-defined for corrective treatment, having
been deemed responsible for the dominant SIEs on the
basis of physical intuition and experience, although a fur-
ther level of self-consistency over subspaces is possible
using Wannier functions36. DFT+U effectively adds a
set of penalty functionals promoting integer eigenvalues
in n̂Iσ, and it replicates the effect of a derivative discon-
tinuity in the energy, for each subspace I, by adding an
occupancy-dependent potential v̂Iσ = U I(P̂ I/2− n̂Iσ).

While DFT+U is effective and computationally effi-
cient, even linear-scaling37, a considerable degree of care
is needed to calculate the required U parameters, which
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sometimes pose numerical challenges28,31. Fully self-
contained calculations of the Hubbard U by means of
automated variational extremization would be extremely
useful for many practitioners, and expedient in high-
throughput materials search contexts38. The constraint-
like functional form of DFT+U , where the U I resem-
ble the Lagrange multipliers of penalty functionals on
the eigenvalues of n̂Iσ, suggests the possible viability of
such a method. Constrained density-functional theory
(cDFT)10,39,40 formalizes and automates the use of self-
consistent41 penalty functionals in DFT, enforcing them
as exact constraints by locating the lowest-energy com-
patible excited state of the underlying functional. It is ef-
fective for treating SIE, in its own right, for systems com-
prising well-separated fragments, where it may be used
to break physical symmetries and to explore the integer-
occupancy states at which SIE is typically reduced10,42.
However, as we now demonstrate, cDFT is fundamentally
incompatible with constraints beyond linear order, and
therefore exact constraints cannot be used to correct SIE
in an automated fashion. As a result, it seems that we
cannot excite a SIE affected system to a state that will
reliably exhibit less SIE, without breaking a symmetry.

The simplest conceivable SIE-targeting constraint
functional is the quadratic form C2 =

∑
I(N

I − N I
c )2,

where N I = Tr[n̂I ] is the total occupancy of a particu-
larly error-prone subspace I and N I

c is its targeted value,
neglecting the spin index for concision. This constraint
is a functional of subspace total occupancies, rather than
the occupancy eigenvalues as in DFT+U , which is an
important distinction for all but single-orbital sites. For
Nsites symmetry-equivalent subspaces with N I

c = Nc

for all I, the total-energy of the system is given by
W = EDFT + VcC2, where Vc is a common cDFT La-
grange multiplier. This gives rise to a constraining po-
tential of the form v̂c = 2Vc

∑
I(N

I−Nc)P̂ I , making ex-
plicit its dependence on the constraint non-satisfaction.
This, in turn, implies an externally imposed interaction

correction given by f̂c = 2Vc
∑
I P̂

I P̂ I , which acts to
modify the energy-density profile, and which is identical
to that generated by DFT+U (Eq. 1) when Vc = −U I/2.

Following Ref. 41 for the self-consistent cDFT problem,
the Hellmann-Feynman theorem provides that the first
energy derivative is simply the constraint functional, i.e.,
dW/dVc = Cn, so that the total-energy W (Vc) always
attains a stationary point upon constraint satisfaction,
in this case when C2 = 0. Fig. 1 depicts this function
for an ideal system for the study of one-electron SIE6,12,
H+

2 , simulated43 using the PBE functional9. At the con-
sidered, intermediate bond-length of 4 a0, the overlap of
the two atom-centered PBE 1s orbital subspaces yields a
total occupancy double-counting of 24%, accounting for
spillage. The observed asymptotic behavior of W (Vc)
demonstrates that the C2 constraint is unenforceable.
Here, a target occupancy of Nc = 0.5 e has been applied,
necessitating a repulsive constraint and a positive Vc, but
the same qualitative outcome arises for any Nc 6= NDFT.

The key to the failure of the C2 constraint is the
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FIG. 1. (Color online) The constrained total-energy of the
stretched H+

2 system, with a target occupancy of Nc =
0.5 e per fixed atom-centered 1s-orbital subspace, against the
cDFT Lagrange multiplier Vc. Also shown is the constraint
functional C2 = (N−Nc)

2, averaged over the two atoms, and
its first and second derivatives, which all fall off rapidly with
Vc.

fall-off of all self-consistent cDFT response functions41

dnN/dV nc = dn+1W/dV n+1
c , as depicted in Fig. 2. This

results in a diminishing returns as Vc is increased, i.e.,
as the constraint asymptotically approaches satisfaction.
Motivated by this, we investigate whether non-linear con-
straints of form Cn = (N−Nc)

n are unsatisfiable for any
order n 6= 1 and for any target choice Nc 6= NDFT. The
n = 0 case is trivial, and the constraint is ill-defined
for n < 0 since there the total-energy diverges upon
constraint satisfaction. Cn becomes imaginary for non-
integer n with negative (N −Nc), so that we may limit
our discussion to integers n ≥ 2. We begin by analyzing
the derivatives of the total-energy W (Vc). The second
derivative follows directly from the above discussion, as

d2W

dV 2
c

=
dCn
dVc

= n (N −Nc)
n−1 dN

dVc
. (2)

The energy derivative of order m generally involves cDFT
response functions up to order m− 1, and positive inte-
ger powers of (N − Nc) which may vanish, depending
on m and n, but not diverge. The cDFT response func-
tion dN/dVc may be gainfully expanded, if v̂ext is the
external potential, in terms of the intrinsic subspace-
projected interacting response function defined by χ =
Tr[(dN/dv̂ext)P̂ ], since this object is independent of the
form of the constraint. The first-order cDFT response
dN/dVc is thus expressed, by means of the chain rule in

v̂ext = v̂c = Vc(δCn/δρ̂) = nVc (N −Nc)
n−1

P̂ , as

dN

dVc
= Tr

[
dN

dv̂ext

dv̂ext
dVc

]
= nχ

d

dVc
[VcCn−1]

⇒ dN

dVc
= nχCn−1

(
1− n (n− 1)χVcCn−2

)−1

, (3)

an expression which we have verified numerically. At any
valid stationary point, Cn = 0 and each of Vc, χ, and its
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derivatives must remain finite. Thus, for n ≥ 2, the
response dN/dVc and energy curvature d2W/dV 2

c both
then vanish. The latter is therefore not a stationary point
discriminant, and we move to higher derivatives, such as

d3W

dV 3
c

= n (n− 1)Cn−2

(
dN

dVc

)2

+ nCn−1
d2N

dV 2
c

, (4)

where the required second-order response is given by

d2N

dV 2
c

= n

[
dχ

dVc
Cn−1 + (n− 1)

dN

dVc

×
(
dχ

dVc
VcCn−2 + 2χCn−2

+ (n− 2)χVcCmax(n−3,0)
dN

dVc

)]
×
(

1− n (n− 1)χVcCn−2

)−1

. (5)

This object, and thus d3W/dV 3
c both vanish at stationary

points for all n ≥ 2, due to the vanishing Cn−1 in the
first term of Eq. 5, and due to the vanishing first-order
response (for which, see Eq. 3) in all remaining terms.

In general, the cDFT response function dmN/dV mc
comprises terms proportional to response functions of the
same type but of lower order, plus a single term which
is proportional to a potentially non-vanishing mixed re-
sponse function dm−1χ/dV m−1

c multiplied by the nec-
essarily vanishing Cn−1. This serves as an inductive
proof that response functions at all orders, beginning
with dN/dVc, vanish as we approach a vanishing Cn, as
illustrated in Fig. 2. Then, since each term in the mth

energy derivative is always proportional to non-divergent
powers of (N−Nc) and response functions of at most or-
der m−1, all energy derivatives tend to zero, as depicted
in Fig. 1, proving the conjecture. Thus, non-linear con-
straints of SIE-targeting Cn form cannot be enforced.

In order to cast the SIE-targeting Cn functional
into a viable form, one possible option remains. We
may expand the single-site C2, for example, as C2 =
−2NcVc(N−Nc)−Vc(N2

c −N2), and afford an additional
degree of freedom to the system by decoupling these two
terms. Writing the result in the notation of DFT+U , by
change of variables, we arrive at the constraint energy∑

I

U1

2

(
N I −Nc

)
+
∑
I

U2

2

(
N2

c −N I2
)
. (6)

The vanishing response problem is now circumvented,
by interpreting the Hubbard U parameters for linear
and quadratic terms as separate Lagrange multipliers.
Adapting Eq. 6 to multiple, multi-orbital sites and ne-
glecting inter-eigenvalue terms, in the spirit of DFT+U ,
while retaining only the free-energy44 (setting N I

c = 0),
we arrive at the generalized DFT+U correction given by

EU1U2 =
∑
Iσ

U I1
2

Tr
[
n̂Iσ
]
−
∑
Iσ

U I2
2

Tr
[
n̂Iσ2

]
. (7)
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FIG. 2. (Color online) The magnitudes of the interacting
density response χ and cDFT response functions dmN/dV m

c ,
calculated from a polynomial fit to the average subspace oc-
cupancy for the same system as in Fig. 1. The dmN/dV m

c

fall off as we asymptotically approach constraint satisfaction,
while the occupancy, and hence χ, tends to a constant value.

Here, the DFT+U functional of Eq. 1 is recovered by
setting U I1 = U I2 . Otherwise, the corrective potential is

modified to v̂IU1U2
= U I1 P̂ /2− U I2 n̂I , so that the charac-

teristic occupancy eigenvalue dividing an attractive from
a repulsive potential is changed from 1/2 to U I1 /2U

I
2 .

Self-consistency effects aside, the U2 parameters are re-
sponsible for correcting the interaction and for any gap
modification, while the U1 parameters may be used to
adjust the linear dependence of the energy on the sub-
space occupancies, and thereby to refine eigenvalue de-
rived properties such as the ionization potential. We note
a resemblance between Eq. 7 and the three-parameter
DFT+Uαβ functional proposed in Ref. 45, where here a
third degree of freedom may be retained by using N I

c 6= 0.
Fig. 3 shows the total-energy W of the H+

2 system as
before, but now against the U1 and U2 defined in Eq. 6,
with a subspace target occupancy of Nc = Nexact =
0.602 e, (the population of each of the two PBE 1s or-
bital subspaces, calculated using the exact functional).
The total-energy is non-uniquely maximized along the
heavy white line where the constraint is satisfied, at
∼ 0.92 eV below the exact energy. To understand why
the total-energy is always degenerate, and hence why
the occupancy condition under-defines the pair (U1, U2),
it suffices to show that the Hessian of the constraint
functional, Hij = d2W/dUidUj

46, is everywhere sin-
gular. The determinant of Hij is conveniently calcu-
lated in terms of the response functions, i.e., by us-
ing the ground-state expressions dW/dU1 = N/2 and
dW/dU2 = −N2/2, as

|H| = 1

2

∣∣∣∣ dN/dU1 −dN2/dU1

dN/dU2 −dN2/dU2

∣∣∣∣ = 0, (8)

as required, for all U1 and U2. This implies a vanish-
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FIG. 3. (Color online) The constrained total-energy of
stretched H+

2 against the Lagrange multipliers U1 and U2

defined in Eq. 6. The subspace target occupancy is set to
Nc = Nexact, and the zero is set to the exact total-energy. The
constraint is satisfied at the total-energy maximum along the
solid white line. The ionization potential is exact along the
thick dashed line. The linear-response Hubbard U2, together
with the U1 value needed to correspondingly recover the exact
subspace density, are shown using thin dashed lines.

ing energy curvature along the lines on which the cor-
rective potential is constant. The linear-response Hub-
bard U at this bond length, calculated using a method
adapted from Ref. 25, is 4.84 eV. If we intuitively set
U2 = U , then a corresponding U1 = 3.16 eV is re-
quired to recover the exact subspace density. The line
on which the ionization potential is exact (for the special
case of H+

2 , this means that the occupied Kohn-Sham
state eigenvalue and the ion-ion energy sum to the ex-
act total-energy, written εDFT +Eion-ion = Eexact), inter-
cepts U1 ≈ 0 eV at the linear-response U2 = U , echoing
the ‘SIC’ double-counting correction proposed in Ref. 47.
Finally, for the constrained total-energy, we note that
while it can be tuned to reach a maximum at the exact
energy for a plausible target, Nc = 0.511 e, an unrea-
sonable U1 = U2 = −444.5 eV is required to do so. We
conclude, therefore, that an SIE affected ground-state
cannot be systematically excited to a state that is less so
by means of exact constraints, without breaking a physi-
cal symmetry. Put another way, the total-energy cannot
typically be SIE-corrected by altering the density alone,
and a non-vanishing energy correction term is required.

Such a correction is provided by the generalized
DFT+U term of Eq. 7, the total-energy generated by
which is shown in Fig. 4. The zero of energy and the

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Linear U1 (eV)

Q
ua
dr
at
ic
U
2
(e
V
)

-3

-2

-1

0

1

2

FIG. 4. (Color online) As per Fig. 3 but showing the free-
energy obtained by setting Nc = 0 e in Eq. 6, i.e., using the
generalized DFT+U of Eq. 7. The thick dashed line is the
exact energy intercept, and the thin dashed lines show the
linear-response U2 together with the corresponding U1 needed
to recover the exact energy. The solid white line, as in Fig. 3,
indicates where the exact subspace occupancy is recovered.

heavy dashed line show Eexact, and the thin dashed lines
indicate the Hubbard U2 = 4.84 eV and corresponding
U1 = 4.44 eV required to recover it. Eexact is attained by
a traditional DFT+U calculation at U1 = U2 = 3.85 eV,
and the intersection of the heavy solid and dashed lines
yields the pair, U1 = 5.73 eV and U2 = 6.98 eV, at which
Eexact and Nexact are located. At the same point, the
Kohn-Sham eigenvalue εDFT lies at∼ 2.8 eV above εexact,
reflecting that an accurate total-energy at a particular
occupancy may coincide with an inaccurate ionization
energy, and vice versa, as was recently shown in detailed
analyses of the residual SIE in hybrid functionals48 and
in DFT+U itself, at fractional total occupancies32.

The generalized DFT+U functional enables simulta-
neous correction of the ionization potential and total-
energy, or the correction of either together with Koop-
mans’ condition5,7,8. In the one-electron case, as in H+

2 ,
Koopmans’ condition may be enforced at εexact. The
approximately parallel solid curves of Fig. 5 illustrate
the large U1 and U2 values required to do so, as a func-
tion of internuclear distance. To estimate these, we
have used the convenient feature of H+

2 that the PBE
1s orbital subspace projectors closely match Kohn-Sham
orbitals in spatial profile, almost exactly so at disso-
ciation. As demonstrated by the occupancy curves in
Fig. 5, this implies a negligible charge and kinetic self-
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FIG. 5. (Color online) Generalized Hubbard U parameters
estimated for the PBE H+

2 molecule at varying bond lengths.
Approximately parallel solid curves (blue, left) depict the U1

and U2 values required to recover the exact total-energy and
Koopmans’ condition, assuming constant PBE subspace oc-
cupancies. Open circles show the corresponding quantities
calculated using a practical scheme based on the conventional
Hubbard U and the PBE occupied eigenvalue (see text). The
topmost curves (sand, right) show the fraction of the latter
U1 (dashed) and U2 (solid) due to the Koopmans term, UK .
On the same axis (dark red, right), we show that the average
DFT+U subspace occupancy is insensitive to the U value.

consistency effect, vanishing entirely for U1 = 2NDFTU2,
in subspace-uniform corrections such as those in ques-
tion. For Nsites equivalent one-orbital subspaces span-
ning the energy window responsible for εDFT, the density
non-self-consistent U1 and U2 are derived from Eexact ≈
EDFT + Nsites

(
U1NDFT − U2N

2
DFT

)
/2, where NDFT =

Tr [n̂DFT], and εexact ≈ εDFT + (U1 − 2U2NDFT) /2, in
which the subspace overlap and spillage are also ne-
glected.

Since subspace response stiffening very typically re-
sults from the application of a conventional DFT+U cor-
rection11,35, it is promising to construct a charge non-self-
consistent first-principles calculation scheme for U1 and
U2, e.g., for use in refining DFT+U calculations in or-
der to approximately enforce Koopmans’ condition. For
this, let us suppose we have calculated a conventional
U which reconciles the total energy reasonably, so that
Eexact ≈ EDFT + UNsites

(
NDFT −N2

DFT

)
/2. We may

combine this with the previous two equations and a fur-
ther requirement for Koopmans’ condition at an accurate
energy, i.e., εexact = EDFT[N ]−EDFT[N − 1], where the
latter is the DFT-estimated total-energy of the ionized
system. This results (see Fig. 5 open circles for data) in

U1 ≈ U (1−NDFT) (2−NsitesNDFT) + UK , and

NDFTU2 ≈ U (1−NDFT) (1−NsitesNDFT) + UK , (9)

where, with UK = 2 (EDFT[N − 1]− EDFT[N ] + εDFT),
we define the ‘Koopmans U ’. We emphasize that only
convenient, approximate DFT quantities are used in

these formulae. The interdependence U1 − U2NDFT ≈
U (1−NDFT), for any value of Nsites, reveals the role
of U in splitting U1 and U2. In H+

2 , Koopmans’ condi-
tion pushes both up to considerably higher values than
are commonplace28 for the conventional U of DFT+U ,
which, following Ref. 32 and given NPBE, lies close to
its regime of minimal efficacy for eigenvalue correction.
The Koopmans fraction of each parameter, UK/U1 or
UK/ (NDFTU2), generically denoted by ‘UK/U ’ in Fig. 5,
lies close to unity for U2 at all H+

2 bond lengths, and it
exceeds unity slightly when the UK and U -related con-
tributions tend to cancel. U1 is also UK-dominated at
short bond lengths, at which U1 ≈ NDFTU2, before ul-
timately falling off to the average of U and U2 in the
fully dissociated limit. If the outlined proposed scheme
is applied to finesse an existing DFT+U calculation that
is already accurate for recovering the total-energy, using
a linear-response11,25 or otherwise calculated U , call it
U0, then U = 0 eV is the appropriate value to use in our
approximate formulae of Eq. 9. An approximately Koop-
mans’ compliant DFT+U calculation then results from
the use of the parameters U0+UK and U0+UK/NDFT+U0

,
in place of U1 and U2. The proposed scheme may be
generalized to multi-orbital subspaces straightforwardly,
in terms of the eigenvalues of n̂IDFT instead of NDFT.
The constant-NDFT approximation may be replaced by
a linear-response approximation, in terms of χ, or lifted
entirely by means of a parametrization of the occupancies
and a numerical solution of the resulting equations.

To conclude, we have proven analytically, with strin-
gent numerical tests, that non-linear constraints are in-
compatible with cDFT. It is not possible, therefore, to
automate systematic SIE corrections of DFT+U type by
means of cDFT, notwithstanding the great utility of the
latter, e.g., for correcting SIE by promoting broken sym-
metry, integer-occupancy configurations well described
by approximate functionals10,42. Nonetheless, we have
found that the cDFT free-energy functionals, dubbed
‘generalized DFT+U ’ functionals, offer the intriguing ca-
pability of simultaneously correcting two central quanti-
ties in DFT, the total-energy and the highest occupied or-
bital energy. Our approximate formulae for the required
parameters, which may differ greatly from the familiar
Hubbard U , offer a framework within which to further
develop double-counting techniques and first-principles
schemes for the promising class of SIE correcting meth-
ods based on DFT+U11,28,31,32, as well as opening up
possibilities for their diverse application. We envisage
that SIE correction schemes of two or more parameters
may also be useful for generalizing the exchange frac-
tion of hybrid functionals48, and for DFT+U type cor-
rections of perturbative many-body approximations such
as GW 49, the deviation from linearity of which is some-
what analogous to that of approximate DFT50,51. For
the analysis and correction of spuriously self-interacting
multi-reference systems, we may learn much from the ex-
act solution of minimal models52.
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