Joint modelling of multivariate longitudinal and time-to-event data

Graeme L. Hickey

Department of Biostatistics, University of Liverpool, UK graeme.hickey@liverpool.ac.uk

9th International Conference of the ERCIM WG on Computational and Methodological Statistics, Seville, Spain

Outline of talk

- Introduction
- 2 Model
- Stimation
- 4 Simulation
- Software
- 6 Example
- Summary

Motivation for multivariate joint models

- Clinical studies often repeatedly measure multiple biomarkers or other measurements and an event time
- Research has predominantly focused on a single event time and single measurement outcome
- Ignoring correlation leads to bias and reduced efficiency in estimation
- Harnessing all available information in a single model is advantageous and should lead to improved model predictions

Introduction Model Estimation Simulation Software Example Summary References

- A large number of models published over recent years incorporating different outcome types; distributions, multivariate event times; estimation approaches; association structures; disease areas; etc.
- Early adoption into clinical literature, but a lack of software!

Data

For each subject i = 1, ..., n, we observe

- $y_i = (y_{i1}^\top, \dots, y_{iK}^\top)$ is the K-variate continuous outcome vector, where each y_{ik} denotes an $(n_{ik} \times 1)$ -vector of observed longitudinal measurements for the k-th outcome type: $y_{ik} = (y_{i1k}, \dots, y_{in_{ik}k})^\top$
- Observation times t_{ijk} for $j=1,\ldots,n_{ik}$, which can differ between subjects and outcomes
- (T_i, δ_i) , where $T_i = \min(T_i^*, C_i)$, where T_i^* is the true event time, C_i corresponds to a potential right-censoring time, and δ_i is the failure indicator equal to 1 if the failure is observed $(T_i^* \leq C_i)$ and 0 otherwise

Longitudinal sub-model

$$y_{ik}(t) = \mu_{ik}(t) + W_{1i}^{(k)}(t) + \varepsilon_{ik}(t),$$

where

- $\varepsilon_{ik}(t)$ is the model error term, which is i.i.d. $N(0, \sigma_k^2)$ and independent of $W_{1i}^{(k)}(t)$
- $\mu_{ik}(t) = x_{ik}^{\top}(t)\beta_k$ is the mean response
- $x_{ik}(t)$ is a p_k -vector of (possibly) time-varying covariates with corresponding fixed effect terms β_k
- $W_{1i}^{(k)}(t)$ is a zero-mean latent Gaussian process

Time-to-event sub-model

$$\lambda_i(t) = \lambda_0(t) \exp\left\{v_i^{\top}(t)\gamma_v + W_{2i}(t)\right\},$$

where

- $\lambda_0(\cdot)$ is an unspecified baseline hazard function
- $v_i(t)$ is a q-vector of (possibly) time-varying covariates with corresponding fixed effect terms γ_v
- $W_{2i}(t)$ is a zero-mean *latent* Gaussian process, independent of the censoring process

Following Laird and Ware (1982):

$$W_{1i}^{(k)}(t)=z_{ik}^{\top}(t)b_{ik}$$

Association structure

Following Laird and Ware (1982):

$$W_{1i}^{(k)}(t)=z_{ik}^{\top}(t)b_{ik}$$

Within-subject correlation between longitudinal measurements:

$$b_{ik} \sim N(0, D_{kk})$$

Following Laird and Ware (1982):

$$W_{1i}^{(k)}(t)=z_{ik}^{\top}(t)b_{ik}$$

- Within-subject correlation between longitudinal measurements: $b_{ik} \sim N(0, D_{kk})$
- ② Between longitudinal outcomes correlation: $cov(b_{ik}, b_{il}) = D_{kl}$ for $k \neq l$

Association structure

Following Laird and Ware (1982):

$$W_{1i}^{(k)}(t)=z_{ik}^{\top}(t)b_{ik}$$

- Within-subject correlation between longitudinal measurements: $b_{ik} \sim N(0, D_{kk})$
- ② Between longitudinal outcomes correlation: $cov(b_{ik}, b_{il}) = D_{kl}$ for $k \neq l$
- **3** Correlation between sub-models¹: $W_{2i}(t) = \sum_{k=1}^{K} \gamma_{yk} W_{1i}^{(k)}(t)$

¹Extends model proposed Henderson et al. 2000, although many other $W_{2i}(t)$ specifications have been proposed in literature

The estimation methodology mainly follows the 3 seminal works:

- Wulfsohn, MS and Tsiatis, AA (1997). A joint model for survival and longitudinal data measured with error. *Biometrics* 53(1), pp. 330–339
- Menderson, R et al. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1(4), pp. 465–480
- Stat Med 21, pp. 2369–2382
 Lin, H et al. (2002). Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables.

Lin et al. (2002) is specific to multivariate longitudinal data

We can re-write the longitudinal sub-model as

$$y_i \mid b_i, \beta, \Sigma_i \sim N(X_i\beta + Z_ib_i, \Sigma_i)$$
, with $b_i \mid D \sim N(0, D)$,

where
$$\beta = (\beta_1^\top, \dots, \beta_K^\top)$$
, and

$$X_{i} = \begin{pmatrix} X_{i1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & X_{iK} \end{pmatrix}, \qquad D = \begin{pmatrix} D_{11} & \cdots & D_{1K} \\ \vdots & \ddots & \vdots \\ D_{1K}^{\top} & \cdots & D_{KK} \end{pmatrix}$$

$$Z_{i} = \begin{pmatrix} Z_{i1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & Z_{iK} \end{pmatrix}, \qquad \Sigma_{i} = \begin{pmatrix} \sigma_{1}^{2}I_{n_{i1}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_{K}^{2}I_{n_{iK}} \end{pmatrix}$$

Likelihood

The observed data likelihood is given by

$$\prod_{i=1}^{n} \left(\int_{-\infty}^{\infty} f(y_i \mid b_i, \theta) f(T_i, \delta_i \mid b_i, \theta) f(b_i \mid \theta) db_i \right)$$

where
$$\theta = (\beta^\top, \text{vech}(D), \sigma_1^2, \dots, \sigma_K^2, \lambda_0(t), \gamma_v^\top, \gamma_y^\top)$$

The *observed* data likelihood is given by

$$\prod_{i=1}^{n} \left(\int_{-\infty}^{\infty} f(y_i \mid b_i, \theta) f(T_i, \delta_i \mid b_i, \theta) f(b_i \mid \theta) db_i \right)$$

where $\theta = (\beta^{\top}, \text{vech}(D), \sigma_1^2, \dots, \sigma_K^2, \lambda_0(t), \gamma_v^{\top}, \gamma_y^{\top})$, and

$$f(y_i \mid b_i, \theta) = \left(\prod_{k=1}^K (2\pi)^{-\frac{n_{ik}}{2}} \right) |\Sigma_i|^{-\frac{1}{2}}$$
$$\exp \left\{ -\frac{1}{2} (y_i - X_i \beta - Z_i b_i)^{\top} \Sigma_i^{-1} (y_i - X_i \beta - Z_i b_i) \right\}$$

The *observed* data likelihood is given by

$$\prod_{i=1}^{n} \left(\int_{-\infty}^{\infty} f(y_i \mid b_i, \theta) f(T_i, \delta_i \mid b_i, \theta) f(b_i \mid \theta) db_i \right)$$

where
$$\theta = (\beta^{\top}, \text{vech}(D), \sigma_1^2, \dots, \sigma_K^2, \lambda_0(t), \gamma_v^{\top}, \gamma_y^{\top})$$
, and

$$f(T_i, \delta_i \mid b_i; \theta) = \left[\lambda_0(T_i) \exp\left\{v_i^\top \gamma_v + W_{2i}(T_i, b_i)\right\}\right]^{\delta_i}$$
$$\exp\left\{-\int_0^{T_i} \lambda_0(u) \exp\left\{v_i^\top \gamma_v + W_{2i}(u, b_i)\right\} du\right\}$$

Likelihood

The observed data likelihood is given by

$$\prod_{i=1}^{n} \left(\int_{-\infty}^{\infty} f(y_i \mid b_i, \theta) f(T_i, \delta_i \mid b_i, \theta) \frac{f(b_i \mid \theta)}{db_i} db_i \right)$$

where $\theta = (\beta^\top, \text{vech}(D), \sigma_1^2, \dots, \sigma_K^2, \lambda_0(t), \gamma_v^\top, \gamma_y^\top)$, and

$$f(b_i | \theta) = (2\pi)^{-\frac{r}{2}} |D|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}b_i^{\top} D^{-1}b_i\right\},$$

with $r = \sum_{k=1}^{K} r_k$ is the total dimensionality of the random effects variance-covariance matrix.

EM algorithm (Dempster et al. 1977)

E-step. At the *m*-th iteration, we compute the expected log-likelihood of the *complete* data conditional on the *observed* data and the current estimate of the parameters.

$$Q(\theta \mid \hat{\theta}^{(m)}) = \sum_{i=1}^{n} \mathbb{E} \Big\{ \log f(y_i, T_i, \delta_i, b_i \mid \theta) \Big\},$$

$$= \sum_{i=1}^{n} \int_{-\infty}^{\infty} \Big\{ \log f(y_i, T_i, \delta_i, b_i \mid \theta) \Big\} f(b_i \mid T_i, \delta_i, y_i; \hat{\theta}^{(m)}) db_i$$

EM algorithm (Dempster et al. 1977)

E-step. At the *m*-th iteration, we compute the expected log-likelihood of the *complete* data conditional on the *observed* data and the current estimate of the parameters.

$$Q(\theta \mid \hat{\theta}^{(m)}) = \sum_{i=1}^{n} \mathbb{E} \Big\{ \log f(y_i, T_i, \delta_i, b_i \mid \theta) \Big\},$$

$$= \sum_{i=1}^{n} \int_{-\infty}^{\infty} \Big\{ \log f(y_i, T_i, \delta_i, b_i \mid \theta) \Big\} f(b_i \mid T_i, \delta_i, y_i; \hat{\theta}^{(m)}) db_i$$

M-step. We maximise $Q(\theta | \hat{\theta}^{(m)})$ with respect to θ . namely,

$$\hat{ heta}^{(m+1)} = rg\max_{ heta} \, Q(heta \, | \, \hat{ heta}^{(m)})$$

M-step: closed form estimators

$$\begin{split} \hat{\lambda}_{0}(t) &= \frac{\sum_{i=1}^{n} \delta_{i} I(T_{i} = t)}{\sum_{i=1}^{n} \mathbb{E}\left[\exp\left\{v_{i}^{\top} \gamma_{v} + W_{2i}(t, b_{i})\right\}\right] I(T_{i} \geq t)} \\ \hat{\beta} &= \left(\sum_{i=1}^{n} X_{i}^{\top} X_{i}\right)^{-1} \left(\sum_{i=1}^{n} X_{i}^{\top} (y_{i} - Z_{i} \mathbb{E}[b_{i}])\right) \\ \hat{\sigma}_{k}^{2} &= \frac{1}{\sum_{i=1}^{n} n_{ik}} \sum_{i=1}^{n} \left\{(y_{ik} - X_{ik} \beta_{k})^{\top} (y_{ik} - X_{ik} \beta_{k} - 2Z_{ik} \mathbb{E}[b_{ik}]) + \operatorname{trace}\left(Z_{ik}^{\top} Z_{ik} \mathbb{E}[b_{ik} b_{ik}^{\top}]\right)\right\} \\ \hat{D} &= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[b_{i} b_{i}^{\top}\right] \end{split}$$

UNIVERSITY OF LIVERPOOL

M-step: non-closed form estimators

There is no closed form update for $\gamma = (\gamma_v^\top, \gamma_y^\top)$, so use a one-step Newton-Raphson iteration

$$\hat{\gamma}^{(m+1)} = \hat{\gamma}^{(m)} + I\left(\hat{\gamma}^{(m)}\right)^{-1} S\left(\hat{\gamma}^{(m)}\right),\,$$

where

$$S(\gamma) = \sum_{i=1}^{n} \left[\delta_{i} \mathbb{E} \left[\tilde{v}_{i}(T_{i}) \right] - \int_{0}^{T_{i}} \lambda_{0}(u) \mathbb{E} \left[\tilde{v}_{i}(u) \exp \left\{ \tilde{v}_{i}^{\top}(u) \gamma \right\} \right] du \right]$$

$$I(\gamma) = -\frac{\partial}{\partial \gamma} S(\gamma)$$

with
$$\tilde{v}_i(t) = \left(v_i^{ op}, z_{i1}^{ op}(t)b_{i1}, \dots, z_{iK}^{ op}(t)b_{iK}\right)$$
 a $(q+K)$ -vector

M-step: non-closed form estimators

- Calculation of $I(\gamma)$ is the computational bottleneck of the estimation algorithm
- computation time $\mathcal{O}(DJ^2)$ (D= number of MC samples; J= number of unique failure times)
- Accounts for 76% of algorithm time in typical example problem
- **Possible solution**: use a Gauss-Newton-like approximation for $I(\gamma)$?

$$\mathbb{E}\left[h(b_i)\mid T_i, \delta_i, y_i; \hat{\theta}\right] = \frac{\int_{-\infty}^{\infty} h(b_i)f(b_i\mid y_i; \hat{\theta})f(T_i, \delta_i\mid b_i; \hat{\theta})db_i}{\int_{-\infty}^{\infty} f(b_i\mid y_i; \hat{\theta})f(T_i, \delta_i\mid b_i; \hat{\theta})db_i},$$

where

$$h(\cdot) = \text{any known fuction},$$
 $b_i \mid y_i, \theta \sim N\left(A_i \left\{Z_i^{\top} \Sigma_i^{-1} (y_i - X_i \beta)\right\}, A_i\right), \text{ and}$
 $A_i = \left(Z_i^{\top} \Sigma_i^{-1} Z_i + D^{-1}\right)^{-1}$

Monte Carlo E-step

Expectations might be unruly if $r = \dim(b_i)$ is large, so use Monte Carlo integration \Rightarrow Monte Carlo Expectation-Maximization (MCEM) algorithm (Wei and Tanner 1990)

$$\mathbb{E}\left[h(b_i) \mid T_i, \delta_i, y_i; \hat{\theta}\right] \approx \frac{\frac{1}{N} \sum_{d=1}^{N} h\left(b_i^{(d)}\right) f\left(T_i, \delta_i \mid b_i^{(d)}; \hat{\theta}\right)}{\frac{1}{N} \sum_{d=1}^{N} f\left(T_i, \delta_i \mid b_i^{(d)}; \hat{\theta}\right)}$$

where $b_i^{(1)}, b_i^{(2)}, \dots, b_i^{(D)}$ are a random sample from $b_i \mid y_i, \theta$

Monte Carlo E-step

As proposed by Henderson et al. (2000), we use antithetic simulation for variance reduction instead of directly sampling from the MVN distribution for $b_i \mid y_i$; $\hat{\theta}$:

Sample $\Omega \sim N(0, I_r)$ and obtain the *pairs*

$$A_i \left\{ Z_i^{\top} \Sigma_i^{-1} (y_i - X_i \beta) \right\} \pm C_i \Omega,$$

where C_i is the Cholesky decomposition of A_i such that $C_iC_i^{\top}=A_i$

Negative correlation between the pairs \Rightarrow smaller variance in the sample means than would be obtained from N independent simulations

In standard EM, convergence usually declared at (m + 1)-th iteration if one of the following criteria satisfied

$$\bullet \ \ \mathsf{Relative} \ \ \mathsf{change:} \ \ \Delta_{\mathsf{rel}}^{(m+1)} = \mathsf{max} \left\{ \frac{|\hat{\theta}^{(m+1)} - \hat{\theta}^{(m)}|}{|\hat{\theta}^{(m)}| + \epsilon_1} \right\} < \epsilon_0$$

$$\bullet \ \ \mathsf{Absolute \ change:} \ \ \Delta_{\mathsf{abs}}^{(m+1)} = \mathsf{max} \left\{ |\hat{\theta}^{(m+1)} - \hat{\theta}^{(m)}| \right\} < \epsilon_2$$

for some choice of ϵ_0 , ϵ_1 , and ϵ_2

In MCEM framework, there are 2 complications to account for

spurious convergence declared due to random chance

- spurious convergence declared due to random chance
 - ⇒ **Solution**: require convergence for 3 iterations in succession

- spurious convergence declared due to random chance
 - ⇒ **Solution**: require convergence for 3 iterations in succession
- estimators swamped by Monte Carlo error, thus precluding convergence

- spurious convergence declared due to random chance
 - ⇒ **Solution**: require convergence for 3 iterations in succession
- estimators swamped by Monte Carlo error, thus precluding convergence
 - \Rightarrow **Solution**: increase Monte Carlo size *N* as algorithm moves closer towards maximizer

- Using large N when far from maximizer = computationally inefficient
- Using small N when close to maximizer = unlikely to detect convergence

Solution (proposed by Ripatti et al. 2002): after a 'burn-in' phase, calculate the *coefficient of variation* statistic

$$\text{cv}(\Delta_{\text{rel}}^{(m+1)}) = \frac{\text{sd}(\Delta_{\text{rel}}^{(m-1)}, \Delta_{\text{rel}}^{(m)}, \Delta_{\text{rel}}^{(m+1)})}{\text{mean}(\Delta_{\text{rel}}^{(m-1)}, \Delta_{\text{rel}}^{(m)}, \Delta_{\text{rel}}^{(m+1)})},$$

and increase N to $N+\lfloor N/\delta \rfloor$ if $\text{cv}(\Delta_{\text{rel}}^{(m+1)})>\text{cv}(\Delta_{\text{rel}}^{(m)})$ for some small positive integer δ

There are two approaches available:

There are two approaches available:

1. Bootstrap estimator

Hsieh et al. (2006) demonstrated that the profile likelihood approach in the EM algorithm leads to underestimation in the SEs, so recommended bootstrapping:

- **1** sample n subjects with replacement and re-label with indices $i'=1,\ldots,n$
- re-fit the model to the bootstrap-sampled dataset
- **3** repeat steps 1 and 2 B-times, for each iteration extracting the model parameter estimates for $(\beta^\top, \text{vech}(D), \sigma_1^2, \dots, \sigma_K^2, \gamma_V^\top, \gamma_V^\top)$
- calculate SEs of B sets of estimates

There are two approaches available:

2. Empirical information matrix approximation

Following McLachlan and Krishnan (2008), $SE(\theta) \approx I_e^{-1/2}(\hat{\theta})$, where

$$I_{e}(\theta) = \sum_{i=1}^{n} s_{i}(\theta) s_{i}^{\top}(\theta) - \frac{1}{n} S(\theta) S^{\top}(\theta),$$

$$S(\theta) = \sum_{i=1}^{n} s_i(\theta)$$
 is the score vector

NB. SEs only calculated for $\theta_{-\lambda_0(t)}$, as profile likelihood arguments are used

Bootstrap versus approximate information matrix

Simulation study set-up

- 200 simulations of n = 250 / 500 patients
- Planned measurement of 2 biomarkers at 0, 1, 2, 3, 4, and 5 years; mean = 4.2 measurements
- Random-intercepts and random slopes simulated from $N_4(0,D)$
- Followed until 6-years with event time simulated from Gompertz PH model with shape = 0.25 and scale = $\exp(-3.5)$ \Rightarrow event rate \approx 46% at 5-years
- Independent censoring time from exponential distribution with scale $= \exp(-3) \Rightarrow \approx 19\%$ censored before end of follow-up
- 1 N(0,1) continuous covariate, and 1 Bernoulli(0.5) binary covariate

Results n = 250

	True	Mean	Empirical	Mean	Bias	MSE	Coverage ²
	value	estimate	SE	SE	Dias	IVISE	Coverage
Longitudinal sub-model 1							
(Intercept) ₁	0.0000	0.0002	0.0605	0.0582	0.0002	0.0037	0.9350
${\tt time}_1$	1.0000	0.9982	0.0187	0.0197	-0.0018	0.0004	0.9750
\mathtt{ctsxl}_1	1.0000	0.9964	0.0381	0.0416	-0.0036	0.0015	0.9600
$binxl_1$	1.0000	1.0005	0.0810	0.0821	0.0005	0.0066	0.9350
Longitudinal sub-model 2							
(Intercept) ₂	0.0000	0.0033	0.0554	0.0577	0.0033	0.0031	0.9550
$time_2$	-1.0000	-0.9996	0.0173	0.0191	0.0004	0.0003	0.9850
ctsxl ₂	0.0000	-0.0004	0.0409	0.0415	-0.0004	0.0017	0.9450
$binxl_2$	0.5000	0.4975	0.0801	0.0815	-0.0025	0.0064	0.9500
Time-to-event sub-model							
ctsx	0.0000	-0.0034	0.1188	0.1173	-0.0034	0.0141	0.9350
binx	1.0000	1.0228	0.2387	0.2301	0.0228	0.0575	0.9400
γ_1	-0.5000	-0.5243	0.1348	0.1540	-0.0243	0.0188	0.9800
γ_2	1.0000	1.0109	0.1585	0.1675	0.0109	0.0253	0.9650

²Mean SEs and coverage calculated using empirical information approximation

Results n = 500

	True	Mean	Empirical	Mean	Bias	MSE	Coverage ³
	value	estimate	SE	SE	Bias	IVISE	
Longitudinal sub-model 1							
(Intercept) ₁	0.0000	-0.0022	0.0376	0.0402	-0.0022	0.0014	0.9600
$time_1$	1.0000	1.0001	0.0129	0.0137	0.0001	0.0002	0.9750
\mathtt{ctsxl}_1	1.0000	0.9959	0.0243	0.0285	-0.0041	0.0006	0.9700
$binxl_1$	1.0000	1.0045	0.0527	0.0564	0.0045	0.0028	0.9600
Longitudinal sub-model 2							
(Intercept) ₂	0.0000	0.0017	0.0352	0.0400	0.0017	0.0012	0.9600
$time_2$	-1.0000	-0.9992	0.0135	0.0131	0.0008	0.0002	0.9350
ctsxl ₂	0.0000	0.0013	0.0269	0.0284	0.0013	0.0007	0.9500
$binxl_2$	0.5000	0.4973	0.0526	0.0563	-0.0027	0.0028	0.9750
Time-to-event sub-model							
ctsx	0.0000	0.0104	0.0791	0.0789	0.0104	0.0064	0.9550
binx	1.0000	0.9952	0.1627	0.1571	-0.0048	0.0265	0.9300
γ_1	-0.5000	-0.4976	0.0987	0.1006	0.0024	0.0098	0.9700
γ_2	1.0000	1.0061	0.1045	0.1091	0.0061	0.0109	0.9500

³Mean SEs and coverage calculated using empirical information approximation

joineRML

- An R package is now available for fitting this model: joineRML
- Currently on GitHub (due for CRAN submission shortly): github.com/graemeleehickey/joineRML
- Complements existing R package for univariate joint models: joineR (available on CRAN)

Example code


```
library(joineRML)
data(pbc2)
fit.pbc <- mjoint(</pre>
 formLongFixed = list("bilirubin" = log.b ~ year + drug,
                        "albumin" = log.a ~ year),
 formLongRandom = list("bilirubin" = ~ year | id,
                         "albumin" = \sim 1 \mid id),
  formSurv = Surv(vears, status2) ~ age + drug.
 data = pbc2,
  timeVar = "year",
  control = list(convCrit = "sas", tol0 = 0.002, tol2 = 0.002),
  inits = list(gamma = gamma.inits),
 verbose = TRUE)
summary(fit.pbc)
```

Alternative options

- Pre-2016: none!
- 2016-onwards (all still at development stage):
 - stjm: a new extension to the Stata package⁴ written by Michael Crowther
 - rstanjm: a new R package⁵ that utilises the Bayesian package Stan written by Sam Brilleman
 - JMbayes: a new extension⁶ to the R package written by Dimitris Rizopoulos

⁴Crowther MJ. Joint Statistical Meeting. Seattle; 2015.

⁵github.com/sambrilleman/rstanjm

⁶github.com/drizopoulos/JMbayes

The Mayo Clinic PBC data

- Primary biliary cirrhosis (PBC) is a chronic liver disease characterized by inflammatory destruction of the small bile ducts, which eventually leads to cirrhosis of the liver (Murtaugh et al. 1994)
- Trial conducted between 1974 and 1984 randomized 312 patients to either placebo or D-penicillamine
- Multiple biomarkers repeatedly measured at intermittent times:
 - serum bilirunbin (mg/dl)
 - 2 serum albumin (mg/dl)
 - prothrombin time (seconds)
- Time to death or transplantation (competing risks)

Longitudinal sub-model

$$\begin{split} \log(\text{bil}) &= (\beta_{0,1} + b_{0i,1}) + (\beta_{1,1} + b_{1i,1}) \text{year} + \varepsilon_{ij1}, \\ \log(\text{alb}) &= (\beta_{0,2} + b_{0i,2}) + (\beta_{1,2} + b_{1i,2}) \text{year} + \varepsilon_{ij2}, \\ \log(\text{pro}) &= (\beta_{0,3} + b_{0i,3}) + (\beta_{1,3} + b_{1i,3}) \text{year} + \beta_{2,3} (\text{year}/10)^2 + \varepsilon_{ij3}, \\ b_i &\sim \textit{N}_6(0,D), \text{ and } \varepsilon_{ijk} \sim \textit{N}(0,\sigma_k^2) \text{ for } k = 1,2,3 \end{split}$$

Time-to-event sub-model

$$\lambda_{i}(t) = \lambda_{0}(t) \exp \{\gamma_{v} \operatorname{age} + W_{2i}(t)\}$$

$$W_{2i}(t) = \gamma_{\text{bil}}(b_{0i,1} + b_{1i,1}t) + \gamma_{\text{alb}}(b_{0i,2} + b_{1i,2}t) + \gamma_{\text{pro}}(b_{0i,3} + b_{1i,3}t)$$

Longitudinal sub-model

Biomarker		Estimate	SE	P
log(bilirubin) (Intercept)		0.4841	0.0536	< 0.0001
	year	0.2008	0.0131	< 0.0001
log(albumin)	(Intercept)	1.2620	0.0074	< 0.0001
	year	-0.0382	0.0021	< 0.0001
log(prothrombin)	(Intercept)	2.3695	0.0060	< 0.0001
	year	0.0100	0.0027	0.0002
	$I((\texttt{year}/10)^2)$	0.2428	0.0287	< 0.0001

Results

Time-to-event sub-model⁷

	Estimate	SE	P
age	0.0462	0.0089	< 0.0001
$\gamma_{\tt bil}$	0.9862	0.1381	< 0.0001
$\gamma_{\tt alb}$	-4.6996	1.0007	< 0.0001
$\gamma_{ t pro}$	3.0901	1.7779	0.0822

 $^{^{7}\}gamma$ parameters were initialized at their separate univariate joint model estimates

Future research

- Develop joineRML package to be faster and more accurate
- Extend to include competing risks and recurrent events; e.g.
 Williamson et al. (2008)
- Incorporate model diagnostics; e.g. residuals

Acknowledgements

- Project investigators:
 - Dr. Ruwanthi Kolamunnage-Dona (University of Liverpool)
 - Dr. Pete Philipson (University of Northumbria)
 - Dr. Andrea Jorgensen (University of Liverpool)
- Statistical collaborators:
 - Prof. Robin Henderson (University of Newcastle)
 - Prof. Paula Williamson (University of Liverpool)
- Funding: Medical Research Council (MR/M013227/1)

References I

- Hickey, GL et al. (2016). Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues. *BMC Med Res Meth* 16(1), pp. 1–15.
- Laird, NM and Ware, JH (1982). Random-effects models for longitudinal data. *Biometrics* 38(4), pp. 963–74.
- Henderson, R et al. (2000). Joint modelling of longitudinal measurements and event time data. *Biostatistics* 1(4), pp. 465–480.
- Wulfsohn, MS and Tsiatis, AA (1997). A joint model for survival and longitudinal data measured with error. *Biometrics* 53(1), pp. 330–339.
- Lin, H et al. (2002). Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. *Stat Med* 21, pp. 2369–2382.
- Dempster, AP et al. (1977). Maximum likelihood from incomplete data via the EM algorithm. *J Roy Stat Soc B* 39(1), pp. 1–38.

References II

Wei, GC and Tanner, MA (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. *J Am Stat Assoc* 85(411), pp. 699–704.

Ripatti, S et al. (2002). Maximum likelihood inference for multivariate frailty models using an automated Monte Carlo EM algorithm. *Life Dat Anal* 8(2002), pp. 349–360.

Hsieh, F et al. (2006). Joint modeling of survival and longitudinal data: Likelihood approach revisited. *Biometrics* 62(4), pp. 1037–1043.

McLachlan, GJ and Krishnan, T (2008). The EM Algorithm and Extensions. Second. Wiley-Interscience.

Murtaugh, Paul A et al. (1994). Primary biliary cirrhosis: prediction of short-term survival based on repeated patient visits. *Hepatology* 20(1), pp. 126–134.

Williamson, Paula R et al. (2008). Joint modelling of longitudinal and competing risks data. *Statistics in Medicine* 27, pp. 6426–6438.