Joint modelling of multivariate longitudinal and

time-to-event data

Graeme L. Hickey

K’&’4 UNIVERSITY OF

¢ LIVERPOOL

Department of Biostatistics, University of Liverpool, UK

graeme.hickey@liverpool.ac.uk

9th International Conference of the ERCIM WG on Computational and
Methodological Statistics, Seville, Spain

GL. Hickey Joint modelling of multivariate data



Introduction

¢/ UNIVERSITY OF

Outline of talk % LIVERPOOL

@ Introduction
© Model

© Estimation
@ Simulation

© Software

@ Example

e Summary

GL. Hickey Joint modelling of multivariate data



Introduction

¢/ UNIVERSITY OF

Motivation for multivariate joint models ® LIVERPOOL

@ Clinical studies often repeatedly measure multiple biomarkers or

other measurements and an event time

@ Research has predominantly focused on a single event time and

single measurement outcome

@ Ignoring correlation leads to bias and reduced efficiency in

estimation

@ Harnessing all available information in a single model is

advantageous and should lead to improved model predictions

GL. Hickey Joint modelling of multivariate data
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What is the state of the field? %/ LIVERPOOL
o ych Methodology (20161 16:117 BMC Medical Research
Methodology
Joint modelling of time-to-event and @

multivariate longitudinal outcomes: recent
developments and issues

Graeme L. Hickey'", Pete Philipson?, Andrea Jorgensen' and Ruwanthi Kolamunnage-Dona

@ A large number of models published over recent years
incorporating different outcome types; distributions, multivariate
event times; estimation approaches; association structures;
disease areas; etc.

@ Early adoption into clinical literature, but a lack of software!

GL. Hickey Joint modelling of multivariate data



¢/ UNIVERSITY OF

% LIVERPOOL

For each subject i = 1,...,n, we observe

® yi = (¥il,---, Vi) is the K-variate continuous outcome vector,
where each yj, denotes an (nj x 1)-vector of observed
longitudinal measurements for the k-th outcome type:
Yik = (Vitks - - - Yinyk) -

@ Observation times tj for j = 1,..., ny, which can differ

between subjects and outcomes

o (T;,0;), where T; = min(T;, C;), where T/ is the true event
time, C; corresponds to a potential right-censoring time, and §;
is the failure indicator equal to 1 if the failure is observed

(T < G) and 0 otherwise
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Longitudinal sub-model ¥ LIVERPOOL

yi(t) = () + WP (1) + e 2),
where
o ci(t) is the model error term, which is i.i.d. N(0,02) and
independent of Wl(-k)(t)
o 1y (t) = x; (t)Bx is the mean response

@ x(t) is a px-vector of (possibly) time-varying covariates with

corresponding fixed effect terms [y

° Wl(,.k)(t) is a zero-mean /atent Gaussian process
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Time-to-event sub-model ¥ LIVERPOOL

Ni(t) = ho(t) exp { v (£, + Wai(t) }

where
@ Ao(+) is an unspecified baseline hazard function

@ v;(t) is a g-vector of (possibly) time-varying covariates with

corresponding fixed effect terms ~,

o Whi(t) is a zero-mean latent Gaussian process, independent of

the censoring process
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Association structure w LIVERPOOL

Following Laird and Ware (1982):

Wl(ik)(t) = z; ()b
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Association structure w LIVERPOOL

Following Laird and Ware (1982):

Wl(ik)(t) = z; ()b

@ Within-subject correlation between longitudinal measurements:
bix ~ N(0, Dyx)
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Association structure w LIVERPOOL

Following Laird and Ware (1982):
k
WiP(8) = 2 (£)bik

@ Within-subject correlation between longitudinal measurements:
bix ~ N(0, Dyx)

@ Between longitudinal outcomes correlation: cov(bj, bj) = Dy
for k # 1
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Association structure % LIVERPOOL

Following Laird and Ware (1982):

W1(fk)(t) = z; (t) b

@ Within-subject correlation between longitudinal measurements:
bix ~ N(0, Dix)

@ Between longitudinal outcomes correlation: cov(bjk, biy) = Dy
for k £ |

@ Correlation between sub-models': Wh;(t) = 3K 1 14 Wl(,k)(t)

!Extends model proposed Henderson et al. 2000, although many other Wh;(t)

specifications have been proposed in literature
GL. Hickey Joint modelling of multivariate data
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Estimation w LIVERPOOL

The estimation methodology mainly follows the 3 seminal works:

@ Wulfsohn, MS and Tsiatis, AA (1997). A joint model for survival
and longitudinal data measured with error. Biometrics 53(1),
pp. 330-339

@ Henderson, R et al. (2000). Joint modelling of longitudinal
measurements and event time data. Biostatistics 1(4),
pp. 465480

@ Lin, H et al. (2002). Maximum likelihood estimation in the joint
analysis of time-to-event and multiple longitudinal variables.
Stat Med 21, pp. 2369-2382

Lin et al. (2002) is specific to multivariate longitudinal data
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Likelihood w LIVERPOOL

We can re-write the longitudinal sub-model as
yilbi, B,Zi ~ N(Xi + Zib;, X;), with b;| D ~ N(0, D),

where 3= (3] ,...,584), and

Xi1 0 D11 Dk
X = ., D = :

0 Xix Dy Dkk

Zi 0 2l 0
Z = : , Y, = :

0 Zik 0 Uf(/,,IK
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Likelihood w LIVERPOOL

The observed data likelihood is given by

1 (/_o:o F(yi | bi, 0)F(T;, 5 | by, 0)F (b | 6)db,->

i=1

where 6 = (87, vech(D), 0%, ..., o%, )\o(t),’va,’ny)

GL. Hickey Joint modelling of multivariate data



Estimation
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Likelihood w LIVERPOOL

The observed data likelihood is given by

ﬁ (/_O:O f(yi | bi, 0)F(T;, ;| b, 0)f(bi| 9)db,->

i=1

where 6 = (87, vech(D), o2, .. .,Uf(,)\o(t),’va,’ny), and

f(yi| bi,0) = <H(27T)> Pl

k=1

exp {—

GL. Hickey Joint modelling of multivariate data
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Likelihood w LIVERPOOL

The observed data likelihood is given by

n

11 (/_O:O fyi | bi, 0)F(T;, 01| b, 0)f(bi| 9)db,->

i=1

where 6 = (87, vech(D), o2, .. .,Uf(,)\o(t),’va,’ny), and

F(T6:1 b5 0) = [Mo(T) exp {7 + War(Ti, ) }]”

T
eXP{/O )\O(U)eXP{V;T’Yer Wai(u, bi)}du}
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Likelihood w LIVERPOOL

The observed data likelihood is given by

1 (/_O; F(yi | b, 0)F (T, 1 | by, 0)F (b | 0)db,->

i=1

where 6 = (87, vech(D), o2, .. .,Uf(,)\o(t),’va,’ny), and

r 1
f(b:16) = @) 51D F exp {367 Db}

with r = 8 r is the total dimensionality of the random effects

variance-covariance matrix.

GL. Hickey Joint modelling of multivariate data



Estimation

’?\ UNIVERSITY OF

EM algorithm (Dempster et al. 1977) ¥ LIVERPOOL

E-step. At the m-th iteration, we compute the expected
log-likelihood of the complete data conditional on the observed data

and the current estimate of the parameters.
R n
Qo0 = S E{logf(yi, Ti,o, b [0) },
i=1

n 00 R
= 3 [ {108 (v T i by )} £y | Ti iy 0l
j=177%°
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EM algorithm (Dempster et al. 1977) ¥ LIVERPOOL

E-step. At the m-th iteration, we compute the expected
log-likelihood of the complete data conditional on the observed data

and the current estimate of the parameters.
R n
Qo0 = S E{logf(yi, Ti,o, b [0) },
i=1
n 00 R
= 3 [ {108 (v T i by )} £y | Ti iy 0l
j=177%°

M-step. We maximise Q(0|A(™) with respect to 6. namely,

6(m+1) = arg max Q(A]6(™)
0
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M-step: closed form estimators ¥ LIVERPOOL

o B 7:1 (5,/( T = t)
S E [exp {v; v + Wai(t, bi)}] I(T; > t)

n -1 n
B = <ZX,-TX,-> <ZXiT(YiZiE[bi])>
i=1 i=1

1 n

2 T

Ok = <= — Yik — XikBk)  (vik — XSk — 2ZiE[bix])
k Zi:1 Nk ; {(

+trace (Z;IZikE[bikb;lz )}

b = ,11;15 [bib] |
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M-step: non-closed form estimators ¥ LIVERPOOL

There is no closed form update for v = (7, Yy 7, so use a one-step

Newton-Raphson iteration

Amt1) — 4(m) | (ﬁ(m))‘l s (5m).

with %(t) = (v, z1(t)bi, ..., zk(t)bixc ) a (g + K)-vector
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M-step: non-closed form estimators ¥ LIVERPOOL

e Calculation of /(7y) is the computational bottleneck of the

estimation algorithm

e computation time O(DJ?) (D = number of MC samples; J =

number of unique failure times)
@ Accounts for 76% of algorithm time in typical example problem
@ Possible solution: use a Gauss-Newton-like approximation for
I()?
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2% h(bi)f (bi | yi; O)F (T, ;| by; 0)db;
I F(bi | yi; O)F(T;, 6| bi; ) db;

)

E [h(by) | T, 0,11 6] =

where

h(-) = any known fuction,
bilyi,0 ~ N(A{Z I '(yi-XB)} A), and
A = (z,Tz,.—lz,-JrD*)*1
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Monte Carlo E-step ¥ LIVERPOOL

Expectations might be unruly if r = dim(b;) is large, so use Monte
Carlo integration = Monte Carlo Expectation-Maximization (MCEM)
algorithm (Wei and Tanner 1990)

L n (6 £ (7501 6(;0)
Ndaf (Ti, 5i | B9; HA)

E [h(bi) | Ti, 6i, yis é} ~

where b( ), b,(2) .,bgD) are a random sample from b; | y;, 0

P i

GL. Hickey Joint modelling of multivariate data
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Monte Carlo E-step ¥ LIVERPOOL

As proposed by Henderson et al. (2000), we use antithetic simulation
for variance reduction instead of directly sampling from the MVN

distribution for b; |y,-;é

Sample Q ~ N(0, /;) and obtain the pairs
A; {ZiTzi_l(Yi - Xiﬁ)} = G,

where C; is the Cholesky decomposition of A; such that C,-C,-T = A

Negative correlation between the pairs = smaller variance in the
sample means than would be obtained from N independent

simulations

GL. Hickey Joint modelling of multivariate data



Estimation

¢/ UNIVERSITY OF

Convergence %/ LIVERPOOL

In standard EM, convergence usually declared at (m + 1)-th iteration

if one of the following criteria satisfied

. L) _ o [y
® Relative change: A} = Max\ e < €

@ Absolute change: Agg’jl) = max {|é(m+1) - é(m)‘} < €

for some choice of ¢p, €1, and e
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Convergence %/ LIVERPOOL

In MCEM framework, there are 2 complications to account for
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Convergence %/ LIVERPOOL

In MCEM framework, there are 2 complications to account for

@ spurious convergence declared due to random chance
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Convergence LIVERPOOL

In MCEM framework, there are 2 complications to account for

@ spurious convergence declared due to random chance

= Solution: require convergence for 3 iterations in succession
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Convergence % LIVERPOOL

In MCEM framework, there are 2 complications to account for

@ spurious convergence declared due to random chance

= Solution: require convergence for 3 iterations in succession

@ estimators swamped by Monte Carlo error, thus precluding

convergence

GL. Hickey Joint modelling of multivariate data
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Convergence % LIVERPOOL

In MCEM framework, there are 2 complications to account for

@ spurious convergence declared due to random chance

= Solution: require convergence for 3 iterations in succession

@ estimators swamped by Monte Carlo error, thus precluding
convergence
= Solution: increase Monte Carlo size N as algorithm moves

closer towards maximizer

GL. Hickey Joint modelling of multivariate data
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Convergence

@ Using large N when far from maximizer = computationally
inefficient

@ Using small N when close to maximizer = unlikely to detect
convergence

Solution (proposed by Ripatti et al. 2002): after a ‘burn-in’ phase,

calculate the coefficient of variation statistic

-1 +1
(A sd(Bpg ", A, AY)

e mean(Afgl'_ N A(m+1))

rel rel

and increase N to N+ |N/d] if cv(A Eel+ )) > cv(AEeI)) for some

small positive integer ¢
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Standard error estimation

There are two approaches available:

GL. Hickey Joint modelling of multivariate data



Estimation

Standard error estimation

There are two approaches available:

1. Bootstrap estimator
Hsieh et al. (2006) demonstrated that the profile likelihood approach

in the EM algorithm leads to underestimation in the SEs, so

recommended bootstrapping:
© sample n subjects with replacement and re-label with indices
i"=1,...,n
@ re-fit the model to the bootstrap-sampled dataset

© repeat steps 1 and 2 B-times, for each iteration extracting the
model parameter estimates for (3" ,vech(D),0%,...,0%, fy‘j—,’y;)
@ calculate SEs of B sets of estimates

GL. Hickey Joint modelling of multivariate data
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Standard error estimation ¥ LIVERPOOL

There are two approaches available:

2. Empirical information matrix approximation

Following McLachlan and Krishnan (2008), SE(0) ~ le_l/z(é), where

0) = 3 5(0)57 (0) - ~5(0)ST(0),
i=1
S5(0) = > si(0) is the score vector

NB. SEs only calculated for 6_y, ), as profile likelihood arguments

are used

GL. Hickey Joint modelling of multivariate data
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Standard error estimation

COMPUTATIONAL
ACCURACY TIME

Bootstrap versus approximate information matrix
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Simulation study set-up ¥ LIVERPOOL

@ 200 simulations of n = 250 / 500 patients

@ Planned measurement of 2 biomarkers at 0, 1, 2, 3, 4, and 5

years; mean = 4.2 measurements
@ Random-intercepts and random slopes simulated from N4(0, D)

o Followed until 6-years with event time simulated from Gompertz
PH model with shape = 0.25 and scale = exp(—3.5) = event
rate ~ 46% at 5-years

@ Independent censoring time from exponential distribution with
scale = exp(—3) = ~ 19% censored before end of follow-up

@ 1 N(0,1) continuous covariate, and 1 Bernoulli(0.5) binary
covariate

GL. Hickey Joint modelling of multivariate data
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Results n = 250

True N!ean Empirical Mean Bias MSE Coverage?
value estimate SE SE
Longitudinal sub-model 1
(Intercept)j 0.0000 0.0002 0.0605 0.0582 0.0002 0.0037 0.9350
timep 1.0000 0.9982 0.0187 0.0197 -0.0018 0.0004 0.9750
ctsxly 1.0000 0.9964 0.0381 0.0416 -0.0036 0.0015 0.9600
binxl; 1.0000 1.0005 0.0810 0.0821 0.0005 0.0066 0.9350
Longitudinal sub-model 2
(Intercept)o 0.0000 0.0033 0.0554 0.0577 0.0033 0.0031 0.9550
timep -1.0000 -0.9996 0.0173 0.0191 0.0004 0.0003 0.9850
ctsxly 0.0000 -0.0004 0.0409 0.0415 -0.0004 0.0017 0.9450
binxly 0.5000 0.4975 0.0801 0.0815 -0.0025 0.0064 0.9500
Time-to-event sub-model
ctsx 0.0000 -0.0034 0.1188 0.1173 -0.0034 0.0141 0.9350
binx 1.0000 1.0228 0.2387 0.2301 0.0228 0.0575 0.9400
Y1 -0.5000 -0.5243 0.1348 0.1540 -0.0243 0.0188 0.9800
Y2 1.0000 1.0109 0.1585 0.1675 0.0109 0.0253 0.9650

2Mean SEs and coverage calculated using empirical information approximation
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Results n = 500 % LIVERPOOL

True N!ean Empirical Mean Bias MSE Coverage®
value estimate SE SE
Longitudinal sub-model 1
(Intercept)j 0.0000 -0.0022 0.0376 0.0402 -0.0022 0.0014 0.9600
timep 1.0000 1.0001 0.0129 0.0137 0.0001 0.0002 0.9750
ctsxly 1.0000 0.9959 0.0243 0.0285 -0.0041 0.0006 0.9700
binxl; 1.0000 1.0045 0.0527 0.0564 0.0045 0.0028 0.9600
Longitudinal sub-model 2
(Intercept)o 0.0000 0.0017 0.0352 0.0400 0.0017 0.0012 0.9600
timep -1.0000 -0.9992 0.0135 0.0131 0.0008 0.0002 0.9350
ctsxly 0.0000 0.0013 0.0269 0.0284 0.0013 0.0007 0.9500
binxly 0.5000 0.4973 0.0526 0.0563 -0.0027 0.0028 0.9750
Time-to-event sub-model
ctsx 0.0000 0.0104 0.0791 0.0789 0.0104 0.0064 0.9550
binx 1.0000 0.9952 0.1627 0.1571 -0.0048 0.0265 0.9300
Y1 -0.5000 -0.4976 0.0987 0.1006 0.0024 0.0098 0.9700
Y2 1.0000 1.0061 0.1045 0.1091 0.0061 0.0109 0.9500

3Mean SEs and coverage calculated using empirical information approximation
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joineRML ¥ LIVERPOOL

@ An R package is now available for fitting this model: joineRML

@ Currently on GitHub (due for CRAN submission shortly):
github.com/graemeleehickey/joineRML

@ Complements existing R package for univariate joint models:
joineR (available on CRAN)

GL. Hickey Joint modelling of multivariate data
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Example code % LIVERPOOL

library(joineRML)
data(pbc2)

fit.pbc <- mjoint(

formLongFixed = list("bilirubin" = log.b ~ year + drug,
"albumin" = log.a ~ year),

formLongRandom = list("bilirubin" = ~ year | id,
"albumin” = ~ 1 | id),

formSurv = Surv(years, status2) ~ age + drug,

data = pbc2,

timeVar = "year",

control = list(convCrit = "sas", tol@ = 0.002, tol2 =

inits = list(gamma = gamma.inits),

verbose = TRUE)

summary(fit.pbc)
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Alternative options %/ LIVERPOOL

@ Pre-2016: none!
@ 2016-onwards (all still at development stage):
e stjm: a new extension to the Stata package* written by Michael
Crowther
o rstanjm: a new R package® that utilises the Bayesian package
Stan written by Sam Brilleman
e JMbayes: a new extension® to the R package written by Dimitris

Rizopoulos

4Crowther MJ. Joint Statistical Meeting. Seattle; 2015.
5github .com/sambrilleman/rstanjm

6github .com/drizopoulos/JMbayes
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The Mayo Clinic PBC data ¥ LIVERPOOL

@ Primary biliary cirrhosis (PBC) is a chronic liver disease
characterized by inflammatory destruction of the small bile ducts,
which eventually leads to cirrhosis of the liver (Murtaugh et al.
1994)

@ Trial conducted between 1974 and 1984 randomized 312 patients
to either placebo or D-penicillamine

@ Multiple biomarkers repeatedly measured at intermittent times:

@ serum bilirunbin (mg/dl)
@ serum albumin (mg/dl)
© prothrombin time (seconds)

@ Time to death or transplantation (competing risks)
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Proposed model ¥ LIVERPOOL

Longitudinal sub-model

log(bil) = (o1 + boi1) + (B1,1 + biig)year + €1,

log(alb) = (Bo2 + boi2) + (Br2 + bii2)year + ¢,

log(pro) = (Bo3+ boi3)+ (B13+ bii3)year + ﬂz,g,(year/IO)2 + €jj3,
bi ~ Ng(0,D), and e ~ N(0,0%) for k =1,2,3

Time-to-event sub-model

Ai(t) = Xo(t)exp{yvage + Wa(t)}
Wai(t) = pir(boir + bii1t) + Yaww(boi2 + b1i2t) + Ypro(boiz + b1i3t)

GL. Hickey Joint modelling of multivariate data
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Results w LIVERPOOL

Longitudinal sub-model

Biomarker Estimate SE P
log(bilirubin) (Intercept) 0.4841 0.0536 < 0.0001
year 0.2008 0.0131 < 0.0001
log(albumin) (Intercept) 1.2620 0.0074 < 0.0001
year -0.0382 0.0021 < 0.0001
log(prothrombin)  (Intercept) 2.3695 0.0060 < 0.0001
year 0.0100 0.0027 0.0002

I((year/10)?) 0.2428 0.0287 < 0.0001

GL. Hickey Joint modelling of multivariate data
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Results w LIVERPOOL

Time-to-event sub-model”

Estimate SE P
age 0.0462 0.0089 < 0.0001
Ybil 0.9862 0.1381 < 0.0001
Yalb -4.6996 1.0007 < 0.0001
Ypro 3.0001 1.7779 0.0822

7~y parameters were initialized at their separate univariate joint model estimates

GL. Hickey Joint modelling of multivariate data
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Future research %/ LIVERPOOL

@ Develop joineRML package to be faster and more accurate

@ Extend to include competing risks and recurrent events; e.g.
Williamson et al. (2008)

@ Incorporate model diagnostics; e.g. residuals

GL. Hickey Joint modelling of multivariate data
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