-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by University of Liverpool Repository

Solving Parity Games in Big Steps

Sven Schewe

Department of Computer Science
University of Liverpool
Ashton Building, Ashton Street
Liverpool L69 3BX
United Kingdom
sven.schewe@liverpool.ac.uk

Abstract

This article proposes a new algorithm that improves the complexity bound for
solving parity games. Our approach combines McNaughton’s iterated fixed point
algorithm with a preprocessing step, which is called prior to every recursive call.
The preprocessing uses ranking functions similar to Jurdzinski’s, but with a re-
stricted co-domain, to determine all winning regions smaller than a predefined
parameter. The combination of the preprocessing step with the recursive call
guarantees that McNaughton’s algorithm proceeds in big steps, whose size is
bounded from below by the chosen parameter. Higher parameters lead to smaller
call trees, but they also result in an expensive preprocessing step. An optimal
parameter balances the cost of the recursive call and the preprocessing step, re-
sulting in an improvement of the known upper bound for solving parity games

from O (m (27”) %c) to approximately O (m (Gi#) %c))

Keywords: parity games, finite games of infinite duration

1. Introduction

Parity games have many applications in model checking [13, 7, 6, 1, 28, 14]
and synthesis [28, 13, 26, 24, 19, 23, 25]. In particular, modal and alternating-
time p-calculus model checking [28, 1], synthesis [25, 19, 23] and satisfiability
checking [28, 13, 26, 24] for reactive systems, module checking [14], and ATL*
model checking [6, 1] can be reduced to solving parity games. This relevance of
parity games led to a series of different approaches to solving them [17, 8, 16, 20,
30, 5,29,10, 11,27, 18, 15,2, 4, 12, 9].

Preprint submitted to Journal of Computer and Systems Science (JCSS) October 4, 2016

https://core.ac.uk/display/80779575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The complexity of solving parity games is still an open problem. Parity games
are memoryless determined [7, 3], which implies that nondeterministic algorithms
can determine winning regions and strategies for both players. Due to their sym-
metry, they are therefore in NPNCoNP [7], and by reduction to payoff games [30],
in UPNCoUP [10]. Determining their membership in P continues to be a major
challenge.

All current deterministic algorithms have complexity bounds which are (at
least) exponential in the number of colours [17, 8, 30, 5, 29, 11, 4] (nO(C>), or
in the square-root of the number of game positions [16, 12, 4] (approximately
n®Wm)_ Practical considerations suggest that we should assume that the number
of colours is small compared to the number of positions. Indeed, almost all of the
applications listed above result in parity games where the number of colours is
(sub-)logarithmic in the size of the game arena. p-calculus model checking is the
only exception. In p-calculus model checking, however, the size of the game is
determined by the product of the transition system under consideration (which is
usually large), and the size of the formula (which is usually small). The number
of colours is determined by the alternation depth of the specification, which, in
turn, is usually small compared to the specification itself. Algorithms that are
exponential only in the number of colours are therefore considered to be the most
attractive.

The first representatives of algorithms in the complexity class n°(®) follow the
iterated fixed point structure induced by the parity condition [17, 8, 29]. The iter-

c—1
ated fixed point construction leads to a time complexity of O (m (% + 1))

for parity games with m edges, ¢ colours, and n game positions. The up-
per complexity bound for solving parity games was first reduced by Browne

[0.5¢]+1
et al. [5] to O<m<2—">) and slightly further by Jurdzifski [11] to

O(em () ™).

The wea{mess of recursive algorithms that follow the iterated fixed point struc-
ture [17, 8, 29] is the potentially incremental update achieved by each recursive
call. Recently, a big-step approach [12] has been proposed to reduce the com-
plexity of McNaughton’s algorithm for games with a high number of colours

(¢ € w(y/n)) to the bound n°V™ known from randomized algorithms [16, 4].

1.1. The Lineage of Our Approach

The approach we discuss is drawing from McNaughton’s approach [17, 8,
29] and the extension to big steps of Jurdziniski, Paterson, and Zwick [12]. The
core observation of McNaughton’s approach is that it helps to find solutions to

2

paradises, a particular type of sub-games. A paradise is a region of a game where
one player can force a win without leaving the paradise. Once a paradise is known,
one can divide solving the game into three parts: the paradise, the attractor of the
paradise, and the co-game of the attractor.

In [17, 8, 29], a paradise for the player who loses on the highest colour is
constructed by solving a parity game with one colour less. (If there is no such
paradise, solving the game becomes simple.)

Jurdzinski, Paterson, and Zwick [12] observed that this provides very weak
guarantees if the number of colours is high, say in the order of the number of game
positions. They adjusted the algorithm by first producing all ‘small’ paradises up
to size \/n. This can be done by individually considering all sets up to the size
of v/n and checking whether or not they are paradises of the player who loses
on the highest colour of the game. The union of these paradises form a paradise
that must contain all small paradises. Their algorithm first uses this novel way
of constructing a paradise and then uses the recursive call from McNaughton’s
algorithm [17, 8, 29]. It thus either provides a paradise strictly bigger than \/n or
an immediate solution.

The limitation of this construction is that a brute force construction of a par-
adise that contains all small paradises does not benefit from a small number of
colours. We overcome this limitation by introducing a technique for the construc-
tion of small paradises that does benefit from small number of colours. This tech-
nique is a simple generalisation of Jurdzinski’s ‘small progress measures’ [11].
His approach is adapted by restricting the co-domain of the used ranking func-
tion. The resulting algorithm is exploited in the construction of paradises that are
bounded by the size of a parameter par. Compared to [12], this results in a signif-
icant cut in the cost for finding small winning regions, since the running time for
the preprocessing algorithm is polynomial in the parameter, and exponential only

in the number of colours:
r+[0.5¢
O(cm (pa er 1))
1.2. Contribution

The different way of constructing paradises that contain all small paradises
(up to a parameter) improves the complexity of McNaughton’s algorithm for the
relevant lower end of the spectrum of colours, resulting in approximately the com-

plexity
= (0
olm (661;71) !
c

for solving parity games under the assumption that ¢ € o(y/n), where

c 1 1 4
=+

if ¢ 1s even, and

if ¢ 1s odd.
Using a the parameter of approximately

3 (3%77/)2

2¢

results in an O (m (%)7(0)) complexity (for k &~ 6e'®) for solving parity games,
which improves over the previously known O (m (22) L0'5CJ) bound [11].

This reduces the exponential factor from || to less than £ + % It is, after
the reduction from ¢ — 1 [17, 8, 29] to [g] + 1 by Browne et al. [5], the second

improvement that reduces the exponential growth with the number of colours. The
development of the known complexity bounds is outlined in the following table.

colours 3 4 5 6 7 8 9
McNaughton [17] | O(m n?) o(mn?) Oo(mn?) O(mn®) O(mn%) o(mn") o(mn®)
Browne &al.[5] | O(mn3) | O(mn®) | O(mn*) | O(mn?) O(mn?) O(mn®) O(mn®)
Jurdzitiski [11] O(mn) Oo(mn?) Oo(mn?) O(mn?) O(mn?) O(mn?*) O(mn?*)

Big Steps O(mn) | Omn'%) | O(mn?) | 0(mn’%) | 0mn’%) | O(mnT6) | O(mn2)

Besides the improved complexity for a fixed number of colours, the approach
also provides an improved development of the base of the exponential expression.
While previous algorithms had a base of O(%), this has shrunk to O (0”—2) in this
approach.

When solving parity games, we are often interested in winning strategies for
the players. For example, they serve as witnesses and counter examples in model
checking, and as models in synthesis. When constructing these strategies, the
improvement in the complexity of the discussed approach is even higher. Con-
structing winning strategies for both players does not increase the complexity of
the proposed algorithm. The best previously known bound for constructing win-

ning strategies [11] has been O(cm (ﬁ)mﬁ d)_

colours 3 4 5 6 7 8 9

Jurdzifiski [11] | O(mn?) O(mn?) O(mn?) o(mn?) O(mn*) O(mn?) o(mn®)

. 1 2 2l 23 3.k 355
Big Steps O(mn) O(mn 2) O(mn<) O(mn~3) O(mn~4) O(mn”16) O(mmn~20)

This extra advantage is yielded by an adjustment of the evaluation of three
colour games by a simple adjustment of Jurdzifiski’s ‘small progress measures’
approach [11], which allow for determining the winning strategies of both play-
ers.

The article is an extended version of the paper Solving Parity Games in Big
Steps [21] including the improved analysis of three colour games from [22].

2. Infinite Games

Infinite games on finite graphs are composed of a game arena and an evaluation
function. Most of the time, we are interested in finite games of infinite duration,
the special case where the game arena is finite. We will first discuss arenas and
then turn to the evaluation functions for safety, reachability, and parity games.

2.1. Arena
Games are played on arenas. An arena is a triple A = (Vj, V1, E), where

e 15 and V; are disjoint finite sets of positions, called the positions of Player
0 and Player 1, respectively,

o V' =1, W V] denotes the set of game positions, and

e [/ CV x Visasetof edges,

such that (V, F) is a directed graph. The arena is also required not to contain
sinks; that is, every position p € V" has at least one outgoing edge (p,p’) € E.

An arena is called a single player arena if all positions in Vj or all positions
in V; have out-degree 1. Games are called single player games, if their arena is a
single player arena.

2.2. Plays

Intuitively, a game is played by placing a pebble on the arena. If the pebble
is on a position p € Vj, Player 0 chooses an edge e = (p,p’) € E from p to
a successor p’ and moves the pebble to p'. Symmetrically, if the pebble is on a
position ¢ € V;, Player 1 chooses an edge €' = (¢, ¢') € E from g to a successor
¢' and moves the pebble to ¢’. This way, they successively construct an infinite

play ™ = pop1paps ... € V¥,

2.3. Strategies

For an arena 2 = (Vp, V4, E), a strategy for Player 0 is a function f : V*Vj —
V' that maps each finite history of a play that ends in a position p € Vj to a
successor p' of p. (That is, there is an edge (p,p’) € E from pto p'.) A play is
f-conform if every decision of Player 0 in the play is in accordance with f.

A strategy is called memoryless if it only depends on the current position. A
memoryless strategy for Player 0 can be viewed as a function f : V5 — V such
that (p, f(p)) € E holds for all p € Vj.

For a memoryless strategy f, we denote with Ay = (14, V4, Ey) the arena
obtained from A by deleting the transitions from positions of Player 0 that are not
in accordance with f. (Ay defines a directed graph where all positions of Player
0 have out-degree 1.) The analogous definitions are made for Player 1. Note that
Ay is a single player arena.

2.4. Safety and Reachability Games

A safety game is a game S = (Vy, V1, E, F) with arena 2 = (V, V4, E') and a
set F' C V of final (or: bad) positions.

Each play of a safety game is evaluated by checking whether or not it is con-
tained in V'~ F: Player 0 wins a play m = pop1peps - . . if, forall ¢ € w, p; ¢ F.
All games considered in this article are 0-sum games. For boolean outcome, this
means that one player wins while the other player loses. In safety games, Player 1
thus wins if there is an ¢ € w with p; € F. If we take the point of view of Player 1,
the game becomes a reachability game, as Player 1 has the objective to eventually
reach a position in F'.

2.5. Parity Games

A parity game is a game P = (Vp, V4, E, o) with arena 2 = (V, V3, E') and a
surjective colouring function o : V' — C C w that maps each position of P to a
natural number. The co-domain of « is called the set of colours (or: priorities) and
denoted by C. Note that the co-domain C of « is finite as the domain V' is finite.
For technical convenience' we usually assume without loss of generality that the

IThe restriction that the minimal colour is 0 is only technical. If no position with colour 0
exists, then we can reduce all colours by 1 and change the roles of Player 0 and 1. Winning
regions and strategies for Player 0 (Player 1) in the resulting game are the winning regions and
strategies for Player 1 (Player 0) in the original game.

minimal colour of a parity game is 0 = min{C}, and that C is an initial sequence”
of the integers.

Each play is evaluated by the highest colour that occurs infinitely often. Player
0 wins a play m = pop1p2ps - . . if the highest colour occurring infinitely often in
the sequence a(7) = a(po)a(pr)a(p2)a(ps) ... is even, while Player 1 wins if
the highest colour occurring infinitely often in «(7) is odd.

2.6. Winning Strategies and Winning Regions

A strategy f of Player 0 (Player 1) is called p-winning if all f-conform plays
starting in p are winning for Player 0 (Player 1). A position p in V' is winning
for Player 0 (Player 1) if Player 0 (Player 1) has a p-winning strategy. We call
the winning positions for Player O (resp. Player 1) the winning region of Player 0
(resp. Player 1), denoted Wy (resp. Wh).

2.7. Notation

All operations on arenas extend to games. E.g., for a strategy f and a parity
game P = (Vy, V4, E, «), Py is the parity game with the arena consisting of the
arena 2(; and the colouring function «.

For ease of notation, we sometimes use games when we refer to their arenas
only. We also use the common intersection and subtraction operations on digraphs
for arenas and games: P N V' and P . V', for example, denote the parity games
we get when we restricting the arena (15, Vi, E) of P to ANV’ = (VoNV', V1N
VIOENV xV')and AN F = (V, V1, E) NV V', respectively. Note that
our restriction to arenas without sinks forces us to check that the resulting arenas
preserve this property.

As many algorithms have to refer to both players, we use Player o for the
player o € {0, 1} (usually the player who wins when the maximal colour occurs
infinitely many times), and we use @ = 1 — o to refer to the other player.

2.8. Memoryless Determinacy

A class of games is called determined if the union of the winning regions
equals the set of positions. It is called memoryless determined if each player
o € {0,1} has, for a game G, a memoryless strategy f such that all plays in G that

%If a number, is missing in this sequence, we reduce all greater colours by 2 without changing
acceptance of any play. Hence, winning regions and strategies are not affected by this transforma-
tion.

Procedure McNaughton(P):

set c to the highest colour occurring in P
if c=0orV = () then return (V, ()
set o to ¢ mod 2
set W5 to ()
repeat
(a) set P’ to P~ o-Attractor(a™'(c), P)
(b) set (W}, W) to McNaughton(P")
(c) if (W} = 0 then
i. setW,toV ~ Wz
ii. return (W, W1)
(d) set W5 to WU G-Attractor(W,, P)
(e) set P to P~ G-Attractor(WL, P)

M N

Figure 1: The algorithm McNaughton(P) takes a parity game P as input and returns the ordered
pair (Wy, W1) of winning regions of the players 0 and 1, respectively. V" and « denote the positions
and the colouring function of the parity game P.

start in W, are winning for Player o. Parity games are memoryless determined
[7], and [3] contains a simple proof for their memoryless determinacy.

2.9. Solving Parity Games

When solving parity games, we distinguish two questions: the non-
constructive problem is to determine, for a given a parity game P the winning
regions of both players. The constructive extension requires additionally requires
the construction of winning strategies for both players.

Most algorithms are presented with the non-constructive question in mind, but
the constructive extension is usually simple. The only point where it requires
special care is in the three colour games from Section 4.5.

3. McNaughton’s Algorithm

In this section, we summarise McNaughton’s algorithm for solving parity
games. The algorithm dates back to McNaughton [17] and has first been pub-
lished in this form by Emerson and Lei [8, 29].

The algorithm is discussed in some detail and some of the proofs are repeated
because the algorithm discussed in Section 5 builds on them.

The algorithm is the algorithmic version of a simple proof of the memory-
less determinacy for parity games. The proof uses an inductive argument over the
number of positions. As an induction basis, games with only one game position
are clearly memoryless determined: there is only one strategy, and it is memory-
less. The game is won by Player 0 if the colour of this position is even and by
Player 1 if the colour of this position is odd.

For general parity games P with highest colour ¢, McNaughton’s algorithm
(Figure 1) first determines the set ' (c) of positions with maximal colour.

arcna

For the Player 0 = ¢ mod 2 that wins if ¢ occurs infinitely often (and is there-
fore the dominating colour), this algorithm then constructs the o-attractor A of
a(c).

For an arena 2l = (1, Vi, F), aset T C V or target positions, and a Player
o € {0,1}, the o-attractor of T is the set of game positions, from which Player o
can force the pebble into the set T of target positions. The o-attractor A of a set
T can be defined as the least set that contain 7" and that contain a game position p
of Player o in A if it contains some successor (all successors) of p:

o-Attractor(T, A)=({S DT |Vp e V,¥p' € S.(p,p) € E=p € Sand
VpeVz (—=3p' ¢ S. (p,p)) € E)=pe S}

The o-attractor A of a set T" of target positions can be constructed by choosing
e Ay=T,
o A =A;U{peV, |3 €A, (pp)e€E}
U{pe V5 |VY(p,p') € E.p € A;},and
e A=J A,

JEW

The construction also provides a memoryless strategy for Player o to move the
pebble to T from all positions in A. Let i, = min{n € w | p € A,,} denote the
index of the first set A;, a position p € A is in. For a positioninp € V;, N AN T,
p has a successor in p’ € A; _; by definition, and we choose the attractor strategy
f such that it maps p to such a successor. (Forallp € V,NANT. f(p) € A;,—1.
It is then easy to see that each f-conform play popips ... that starts in A either
eventually reaches T', or satisfies 4,, > i, > ip, > iy, > However, as
the integers are well founded, no such infinite chain exists, such that the latter
alternative can be discarded. The play therefore eventually reaches the target set
T.

A itself provides a memoryless strategy to keep the pebble out of A (and hence
out of T) for Player &: Player & can choose a strategy ¢, such that, for all p €
Ve~ A, g(p) ¢ A. Note that such an option must exist in a finite game, as p
would otherwise be in A. Let us assume for contradiction that a g-conform play
Pop1D2 - - - that starts outside of A eventually reaches A. Let p; be the first position
of this play in A. Theni > 0 (as py ¢ A holds by definition). The definition of A
then implies that p; ; € A (contradiction to p; being the first position of the play
in A).

Lemma 3.1. For an arena A and a set T of target positions, the o-attractor of T
can be constructed in time linear in the edges of A.

arena V

In the next step, the co-game P’ = P~ A of P is solved. The co-set C' = VN A
of the o-attractor A for some target set 7" is called a o-trap, because Player o
cannot leave C'; he is trapped there.

The co-game P’ is smaller than P: compared to P, it contains less positions.
By induction hypothesis, it is therefore memoryless determined.

By induction over the size of the game, P’ can therefore be solved by a recur-
sive call of the algorithm.

10

sy

N\,

NN
&

\

We call a subset P, C W, of a winning region of Player 0 € {0,1} a o-
paradise if it is a o-trap and Player o has a memoryless strategy f that is p-winning
for all p € P, in P N P,. That is, if Player ¢ has a winning strategy, such that P,
cannot be left in any f-conform play (E; N P, x V \ P, = 0).

Lemma 3.2. [17, 8, 29] For a parity game P with o-trap T,, and a c-paradise
Psof P =PnNT,, Psisad-paradise for P.

In fact, Player & can simply use the same winning strategy f for P as for P’:
as T, is a o-trap, Player ¢ has no additional moves in P, and every f conform
play that starts in P5 in P is also an f conform play in P’.

In particular, the winning region W~ of P’ is a -paradise in P by construction.
So is its g-attractor in P.

Lemma 3.3. /17, 8, 29] The o-attractor A, of a o-paradise P, for a parity game
P is a o-paradise for P, and a winning strategy for player o on A, can be com-

posed of the winning strategy for Player o on P, and an attractor strategy on
A, P,

For a given o-paradise P, for Player 0 € {0,1} in a parity game P, we can
reduce solving P to computing the o-attractor A, of P,, and solving P ~\ A,.

Lemma 3.4. [17, 8, 29] Let P be a parity game, P, be a o-paradise with o-
attractor A,, and let W and WL be the winning regions of Player o and Player
o, respectively, on P' = P ~. A,. Then

o Wz = WL is the winning region of Player @ on P, and she can win by
following her winning strategy from P’ on her winning region, and

o W, = W.UA is the winning region of Player o and he can win by following
his winning strategy for A (see Lemma 3.3) on A, and his winning strategy
from P on W,

11

Proof. First, Player & can use her winning strategy for her winning region W4
of P . A,, and use it in the larger game P, because Player ¢ has no additional
choices in W5 in P. Consequently, the set of gz-conform plays in P starting in
W35 coincides with the set of fs-conform plays in P \ A, starting in W.

For the same reason, Player o wins with his strategy from every position in A,
by a composition on the attractor strategy on A, ~ P, and her winning strategy
on P,, see Lemma 3.3.

Let g, be a winning strategy for player o in P’. Every g,-conform play in P
starting in a position not in ¥ either eventually reaches A,, and is then followed
by a tail (remainder of the play) in P that starts in A,, which is winning for o by
Lemma 3.3, or stays for ever in the sub-game P’, and is thus winning for Player
o, too. 0J

We now distinguish two cases: Firstly, if W. is non-empty, we can reduce
solving P to constructing the -attractor Uy of W, and solving the co-game P" =
P\ Uz by Lemma 3.4.

The co-game P” is simpler than P: Compared to P, it contains less positions
(though not necessarily less colours). By induction over the size of the game, P”
can therefore be solved by a recursive call of the algorithm.

Secondly, if W is empty, we can compose the winning strategy for Player o
on P’ with his attractor strategy for the o-attractor of the target set o '(c) to a
winning strategy on P.

Lemma 3.5. [17, 8, 29] Let P be a parity game with maximal colour c, let 0 =
c mod 2 be the player who wins if ¢ occurs infinitely many times, let A be the o-
attractor of a~*(c) and let f be an attractor strategy for Player o on her positions
on A~ a (c). If Player o has a winning strategy f' for every position in P' =
P A, then [and f' can be composed to a winning strategy for Player o for
every position in P.

12

Proof. Let g be a strategy for Player o that agrees with f and f’ on their respective
domain. We distinguish two types of g-conform plays: those that eventually stay
in P’, and those that visit A infinitely often. The latter plays contain infinitely
many c-coloured positions and are therefore winning for player 0. Games that
eventually stay in P’ consist of a finite prefix, followed by an f’-conform play in
P’. The highest colour occurring infinitely often is therefore even for o = 0 and
odd for o = 1, respectively. 0l

Theorem 3.6. [17, 8 29] For every parity game P = (Vy, Vi, E, o), the game
positions are partitioned into a winning region Wy of Player 0 and a winning re-
gion Wy of Player 1. Moreover, Player 0 and Player 1 have memoryless strategies
that are p-winning for every position p in their respective winning region.

Proof. The starting point of the inductive argument are games with a single posi-
tion. They are trivially won by the player that wins on the colour of this position
(induction basis).

For the induction step, assume that the memoryless determinacy holds for
games with up to n positions. For a parity game with n + 1 positions, we can then
select the highest colour cy,ax, S€t 0 t0 cpax mod 2 to identify the Player o who
wins if cpax Occurs infinitely often (note that ¢, is the dominating colour in this
case), and set A = o-Attractor(a ! (cmax), P), where a1 is the pseudo inverse of
a.

Then P’ = P ~ A is a—possibly empty—parity game with strictly less po-
sitions and colours. (Note that, by the attractor construction, every position in P’
has a successor, and the co-set of A is a o-trap.)

By our induction hypothesis, the positions in P’ are partitioned into winning
regions of the two players, and both players have memoryless winning strategies
on their winning regions.

We can now distinguish two cases:

1. The winning region of Player & on P’ is empty. In this case, Player o wins
memoryless by Lemma 3.5.

2. The winning region of Player & is non-empty.
Then W = G-Attractor(WL, P) is a & paradise for P by Lemmata 3.2 and
3.3. We can therefore solve the remainder of the game, P ~. W2, individu-
ally and use the respective winning regions and (by induction, memoryless
winning strategies) of the players by Lemma 3.4.

13

In Case (1) we are done and in Case (2) we have reduced the problem to solv-
ing a game with less positions. By induction, memoryless determinacy extends to
the complete game. U

The worst case running time of McNaughton’s algorithm [17, 8, 29] (cf. Pro-
cedure McNaughton of Figure 1) occurs if Uz, the 7-attractor of the winning W35’
of P~ A, always has a small intersection with A and contains exactly one position
with maximal colour c.

For parity games with ¢ colours, McNaughton’s algorithm requires O (m- (% +

1)071) steps for games with n positions and m edges. It can be extended to also
return the winning strategies for both players on their complete winning region.

4. Progress Measures

An alternative and structurally different approach is due to Jurdziriski [11].
In his algorithm, the progress of Player 0 towards proving that she can force the
highest colour to be even (or Player 1 towards proving that he can force the highest
colour to be odd) is intuitively measured by a vector that represents the worst
possible future.

We start by generalising his approach by using coarser progress measures.
Using coarser progress measures leads to an underapproximation of the winning
region of one player, and we will use this underapproximation of a winning region
in the following section.

While we have to re-prove the results of Jurdzifiski [11] for the more general
case, the structure of the proofs is very similar to the original ones. We close this
section by looking at the special case of three colour games, which forms the base
case of the algorithm proposed in the following section.

4.1. Progress Measures

For a parity game P = (Vp, V4, E, o) with maximal colour d, the maximal
o-progress measure is, for o € {0, 1}, a function o : V5 & V; — M7 whose
co-domain

M% ={h:{0,...,d} - N|h(c) =0if c mod 2 = o, and
h(c) < |a~!(c)| otherwise} U {T}

contains a maximal element T and a set of functions from {0, ..., d} to the inte-
gers. The co-domain M7 satisfies the requirement that

14

e cvery integer ¢ < d is mapped to 0 if mod 2 = o, while

e all other integers i are mapped to a value bounded by the number |o 1 (7)|
of z-coloured game positions.

h is often considered as a tuple. A o-progress measure
M C M7,

is a downward closed subset of M7 that contains the maximal element (T € M”.
Downward closedness means that, if M contains a function h € M?, then every
function b’ € MY that is point-wise smaller than A (h'(7) < h(i) Vi < d) is also
contained in M”.

4.2. Linear Pre-Orders on M?®

For each colour ¢ < d, we define a relation >, C M7 x MY, which is essen-
tially the lexicographic order, ignoring all colours smaller than c. >, is defined as
the smallest relation

e that contains { T} x M7 and
e that contains a pair of functions (h, h') € > if

— there is a colour ¢ > ¢ such that h(c') > h'(c), and h(c¢") = h'(")
holds for all colours ¢’ > ¢, or

— c¢mod 2 = o, and h(¢') = h'(c) holds for all ¢ > c.

>>¢ defines an order on M? — the lexicographic order when #/ is read as a
tuple, where higher colours have higher priority. >, defines a linear pre-order —
the lexicographic order when A is read as a tuple but cut off after colour c.

4.3. Pre-Order on Progress Measures

From this order, we infer the linear pre-order C on progress measures, which
requires that > is satisfied on every position of the game (0 C o < Vp €

V.o(p) >0 &' (p)).
We call a o-progress measure p valid if

e every position p € V, has some successor p’ € V with o(p) > 0(p'), and

e for every position p € V and every successor p’ € V of p, o(p) Do) 0(p')
holds.

15

Progress measures are ranking functions that can intuitively be used to es-
timate the worst-case future occurrence of ‘bad’ positions prior to positions
with higher colour. A valid o-progress measure that is not constantly T can
be used to partly evaluate a parity game. Let, for a o-progress measure p,
win(g) = V N\ ¢ !(T) denote the game positions that are not mapped to the
maximal element T of M.

Theorem 4.1. [11] Let P = (V;, Vi, E, «) be a parity game with valid o-progress
measure 9. Then Player o wins on win(p) with any memoryless winning strategy
that maps a position p € win(p) NV, to a position p' with o(p) >y o(p').-

Such a successor must exist, since the progress measure is valid. The C-least
valid o-progress measure is well defined and can be computed efficiently for small

Me.

Theorem 4.2. The C-least valid o-progress measure g, exists and can, for a par-
ity game with m edges and c colours, be computed in time O(cm |M?7|).

The proof is very similar to the proof of a similar claim for the maximal co-
domain M7 in Jurdziniski’s work [11]. We first introduce some notation.

For a given progress measure o;, we call an edge (p,p') a lift-edge if
0i(p) Pawp) o(p'). We call a position p € V, of Player 0 liftable if all outgo-
ing edges are lift edges, and we call a position p € V; of Player 1 liftable if some
outgoing edge is a lift edge.

We lift a liftable position by applying the following local update:

e at some liftable position p € V,, where the validity criterion is locally vio-
lated to 0;11(p) = min{po € M7 | I(p,p’) € E. 0> 0i(p)}, or

e at some liftable position p € V7 where the validity criterion is locally vio-
lated to 0;41(p) = min{p € M7 |V(p,p') € E. 0 >op) 0i(P)}.

and 0;11(q) = 0i(q) for all positions g # p.

Proof. First, it is easy to see that the position-wise minimum of two valid o-
progress measures forms a valid o-progress measure. With the finite domain,
this implies that g, is well defined as the position-wise minimum over all valid
o-progress measures.

To compute it, we can start with an arbitrary o-progress measure smaller than
o, — in particular, with the progress measure gy that assigns the constant function

16

to 0 to all positions. While p; is not valid, we update it to g;;; by updating the
function locally, using a lift operation.

Obviously, the update is still smaller or equal to g,. Forall ¢ € V, g,(q) >
0i(q), we get for the lifted position p:

0i+1(p) = min{o € M? | A(p,p') € E. 0>a(p) 0i(p)}
>o min{o € M7 | 3(p,p) € E. 0>ap) 0u(p')}
>0 ou(p) if p € V, and

0i+1(p) = min{o € M | V(p,p') € E. 0>a() 0i(p)}
>o min{o € M7 |V(p,p) € E. 0>ap) 0u(p')}

>0 ou(p) ifp € V5.

As p,, is valid, this implies g, T o,.
The finiteness of the domain guarantees termination. U

When using the maximal co-domain MZ_, which contains the function p that
assigns each colour ¢ with ¢ mod 2 # o to o(c) = |a~"(c)|, for the progress mea-
sures, the C-least valid o-progress measure g, determines the complete winning
region of Player o.

Theorem 4.3. [11] For a parity game P = (Vy, V1, E, o) and for the co-domain
MY for the progress measures, win(p,,) coincides with the winning region W, of
Player o for the C-least valid o-progress measure g,,.

4.4. o/k-Paradise
Instead of using this technique to solve the parity game, we will use the algo-
rithm to construct a particular type of paradises, which we call o /k-paradises.

Definition 4.4 (o/k-Paradise). We call a o-paradise P a o /k-paradise if it con-
tains all o-paradises of size < k.

The efficient construction of o /k paradises is an essential ingredient in the al-
gorithm discussed in the following sections. For their construction, we draw from
the efficient computation of the C-least valid o-progress measure (Theorem 4.2).

Instead of using the maximal co-domain MY_, the smaller co-domain MY is
used for the progress measures, which contains only those functions 5 that satisfy
%, h(c) < k for some parameter k& € N. (d denotes the highest colour of the
parity game). The size of M can be estimated by

17

|MZ| < (k+]—0.5k(d—|—1ﬂ >+1

Using MY instead of M7, win(p,) contains all o-paradises of size < k + 1
(where g, denotes the C-least valid o-progress measures).

Theorem 4.5. Let P = (Vy, Vi, E, «) be a parity game, and let P, C V be
a o-paradise of size |P,| < k + 1. Then there is a valid o-progress measure
0:V — M{ with P, = win(p).

Proof. Since P, is a o-paradise, F and V; N P, x V' ~ P, are disjoint, and Player
o can stay in P,. Moreover, Player o has a memoryless strategy f that is winning
on every game position in P, such that f(p) € P, forall p € V, N F,.

If we restrict P to P’ = P; N P,, then the winning region of Player ¢ must
therefore cover the whole set P, of game positions of P’.

To solve P’, we can use the maximal co-domain M7_". By Theorem 4.3, the
C'-least progress measure g/, for this co-domain satisfies win(¢/,) = P,. Since
M7 C M7 is contained in MY (P, must contain at least one position with even
colour if o = 0, resp. one position with odd colour if o = 1), we can extend g,
to a valid o-progress measure ¢ on P by setting o(p) = g,,(p) for all p € P,, and
o(p) = T otherwise. O

By Theorem 4.2, we can compute the C-least valid o-progress measure g, in
time O(cm | MY|), and, by Theorem 4.1, we can construct a winning strategy for
Player o on win(p,) within the same complexity bound.

Corollary 4.6. For a given parity game P with c colours and m edges, we can

construct a o /(k + 1)-paradise P**! for Player o in time O(cm(o 560'501))

A winning strategy for Player o on P Tl can be constructed within the same
complexity bound.

4.5. Three Colour Games

When using Jurdzinski’s algorithm [11] for solving parity games with
¢ colours, the size |MZ| of the maximal co-domain can be estimated by
(LO.T;)CJ)LO'E‘CJ +1if o =0, and by (%)05l 4 1if ¢ = 1. From Theorem 4.3
we therefore get the well established complexity for finding the winning regions

of and the winning strategy for one of the players in three colour games.

Corollary 4.7. [11] Parity games with maximal colour 2 can be solved and a
winning strategy for Player 0 can be constructed in time O(mn).

18

The algorithm described in the previous subsection provides a partition of the
winning regions and a winning strategy for Player o, but not for a winning strategy
of Player &. In principle, her winning strategy can be computed using a o-progress
measure, but, for games with an odd number of colours, this is slightly more
expensive. We dedicate this subsection to the special case of three colour games,
because they play a role as a base case for the algorithm discussed in the following
section.

We call parity games with maximal colour 2 three colour games. Corollary 4.7
shows that a non-constructive solution for three colour games as well as a winning
strategy for Player 0 can be obtained in time O(mn). To see why Jurdziski’s
algorithm [11] does not provide a strategy for Player 1, let us summarise his algo-
rithm for the simple case of a three colour games P = (V;, Vi, E,).

For three colour games, the O-progress measures can be viewed as mappings
o:V — {0,...,n1} U{T}, where ny = |a'(1)| denotes the number of 1-
coloured positions.

The starting point of the algorithm is the trivial progress measure g, that maps
all positions of P to 0. Starting from gy, we [ift the progress measure stepwise at
a liftable position p € V until a fixed point is reached.

For the trivial progress measure g,, an edge is a lift-edge if, and only if, it
originates from a 1-coloured position, and a position is liftable if, and only if, it
is 1-coloured. For an efficient implementation, it suffices to attach a flag to every
edge that indicates whether this edge is a lift-edge, to keep track of the number of
outgoing lift-edges for every game position, and to keep the liftable positions in a
doubly linked list.

In order to lift g;, any liftable position p can be taken from the list of liftable
positions. (If no liftable position remains, the least fixed point is reached.) After
lifting p; at position p, it suffices to check for each incoming and outgoing edge of
p if the flag that indicates liftability needs to be adjusted and, if so, to increase the
number of outgoing lift-edges for the respective predecessor of p (for incoming
edges), or to decrease the number of outgoing lift-edges for p (for outgoing
edges), respectively. If a position becomes liftable (non-liftable), it is added to
(removed from) the list of liftable positions.

While this algorithm provides good complexity bounds for the non-
constructive analysis of three colour games, it does not provide a winning strategy
for player 1 on her winning region. Note that the naive extension — fixing the edge
used for the last update as strategy for player one — is not sound: Figure 2 shows
a small example of a single player Biichi game (Biichi games are games with

19

i
O—O

Figure 2: The example shows a single player Biichi game (that is, a game where all positions are
coloured by 1 or 2), where all positions belong to Player 1 (Vy = ()). The positions a, b, and ¢ are
coloured by 1, while position d is coloured by 2 (indicated by the double line).

only the colours 1 and 2), where all positions are positions of Player 1 (V = ().
The positions a, b, and ¢ are coloured by 1, while position d is coloured by 2.
Player 1 can choose a self-loop at position a (in which case she wins), or move
in a Hamiltonian cycle (in which case she loses). If we start with twice lifting at
position a (¢1(a) = 1, p2(a) = 2) followed by lifting at position b (03(b) = 3),
¢ (04(c) = T). d (05(d) = T), and again at a (g5(a) = T) and b (g (b) = T,
all positions are correctly marked as winning for Player 1; but the last update of
position a relies on g5(d) = T, and the naive approach would result in a losing
strategy.

We show that a variant of the algorithm can be used to also construct a winning
strategy of Player 1 on her complete winning region. It suffices to store intermedi-
ate strategies for Player 1, and to keep two sets of liftable positions instead of one
— one set for positions that are liftable without changing the intermediate strat-
egy of Player 1, and one set of positions that are liftable, but only if the strategy
of Player 1 is changed. The adapted algorithm always gives preference to liftable
positions from the first set. If only liftable positions from the latter set remain, one
of these positions is lifted and the intermediate strategy is updated accordingly.

In the single player game from the example of Figure 2, we can either start
with the self-loop at position a and thus with a winning strategy, or with the losing
strategy to move from a to d. In the first case, we never have to adjust the strategy.
(One possible sequence of progress measure updates is (01(a) = 1, p2(a) = 2,
03(a) = 3, pa(a) = T, 05(b) = T, 0s(c) = T, 07(d) = T.) In the latter case,
we first compute the fixed point for the single player game, where the moves of
Player 1 are restricted by her strategy. (One possible sequence of progress measure
updates is (01(a) = 1, 02(b) = 2, 03(c) = 3.) Once the fixed point for this strategy
is reached, the strategy is adjusted by choosing the self-loop at position a. (One
possible sequence of further progress measure updates is (04(a) = 2, o5(a) = 3,

20

os(a) =T, 07(b) =T, 08(c) =T, 09(d) =T.)

Theorem 4.8. For parity games with maximal colour 2, the proposed algorithm
can be used to solve the parity game and to construct winning strategies for both
players on their respective winning region in time O(mn).

Proof. The proposed changes to Jurdziniski’s algorithm only impose a particular
order on the lifting operations, which could coincidentally occur in his algorithm,
too. This implies the correctness of the least fixed point and thus the correctness
of the resulting winning regions and strategy of Player 0 (cf. Corollary 4.7).

For the correctness of the winning strategy of Player 1 on her winning re-
gion, we show by induction that every time the intermediate strategy needs to be
changed, say from f to f’, the intermediate progress measure Q{L is the C-least
valid 0-progress measure in for Py.

Induction Basis: For any initial strategy f the claim holds trivially — up to the
first adjustment of the intermediate strategy the algorithm resembles the original
algorithm for P;.

Induction Step: Consider the situation after changing the intermediate strategy
from f to f’ by choosing a lift-edge (p,p’). Let us compare the C-least valid
0-progress measure Qlji for Py with the C-least valid 0-progress measure glf:' for
Py

We first show of (p) # gl{' (p). To see this, we develop the C-least valid 0-
progress measure Q[L, for Py from the trivial progress measure gy, where we apply
an update at position p only, if no update at any other position is possible.

Let 09, 01, 02, 03, ... be the sequence of progress measures constructed this
way, where g{;' is the limit. Note that oy C 91 C 0o C o3 C ... C g{;' and

20(p) < 01(p) < 02(p) < 03(p) < ... < o (p) hold.
We show by induction that gﬁ’ (p) < gl{ (p) implies g; C gl{ (p) for all i € w.
Let us assume o/ (p) < of (p).

Induction Basis: g, C o/ trivially holds.

Induction Step: We distinguish two cases. First, if position p is lifted, we have
that 01 (p) < of (p), which is < of(p) by assumption. For all other posi-
tions ¢ € V with ¢ # p, we have g;(q) < gﬁ(q) (by induction hypothesis)
and 0;11(q) = 0;(g), which implies 0,1 (q) < 0/ (q).

Second, if position ¢ # p is lifted, we first observe that ¢ has the same
successors in Py and Pp. 9; C Qlji implies for all successors ¢' of ¢ that

21

0i(¢') < ol(q') holds. Taking into account that o/ is a valid 0-progress
measure, this implies 0;41(q) < o/ (q).

For all other positions ¢" € V with ¢" # ¢, we have g;(¢") < Qﬁ(q”) (by
induction hypothesis) and 0;,1(¢") = 0;(¢"), which implies 0;11(¢") <
(AN

As pf' is the limit of these progress measures, we get of C of.
Similarly, we can establish that gl{ (p) < gl{ (p) implies Igl{ C gl{) ,
Note that both directions together show that o/,(p) = o/ (p) implies o, = of,,

which contradicts the assumption that (p, p’) was a lift-edge.

It also shows that Q{L, (p) > of,(p) implies that the next switch in strategy takes

place when Ql{, (p) is reached. (Unless Ql{, (p) is also the C-least valid 0-progress
measure for P, in which case the procedure terminates there.)

What remains is to exclude of (p) > Q{L, (). We first observe that of (p) #
1, because (p,p') would not be a lift-edge in this case. Let us now assume for
contradiction that § = of (p) — of (p) > 0.

We now re-calculate the 0-progress measure Q£ for Py from the trivial progress
measure Q.

Let g9, 01, 02, 03, ... be the sequence of progress measures constructed this
way, where Q{L is the limit. We show by induction that, for all g;, we have g;(q) <

Q{L,(q) + ¢ for all positions ¢ € V.

Induction Basis: For g, this is implied by oy C Q{L’.

Induction Step: We distinguish two cases. First, if position p is lifted, we have
. f f . . .
that 0;11(p) < o, (p) because o}, 1sl the limit of the sequence of progress
measures, and we have of (p) = of (p) + ¢ by assumption. For all other
positions ¢ € V with ¢ # p, we have 0;11(q) = 0i(¢q), which implies
0i+1(q) < of (q) + & with the induction hypothesis.

Second, if a position ¢ # p is lifted, we first observe that ¢ has the same
successors in Py and Py For each successor ¢’ € V' it holds that g;(¢") <
ol (¢') + 6. As pf' is valid, these inequations imply with the equal set of

successors 0;11(q) < glfil (q) + 0 by the lifting rules.

For all other positions ¢” € V with ¢" # ¢, we have p;(¢") < Q{L'(q”)+
(by induction hypothesis) and p;11(¢") = 0;(¢"), which implies 0;,1(¢")
Yl i 5

J
<

22

Procedure Winning-Regions(P):

set d to the highest colour occurring in P
if d < 2 then return ThreeColour(P)
set o to d mod 2
set n to the size |V | of P
set W+ to ()
repeat
(a) set WL to a-Attractor(Approximate(P, par(n, d),), P)
(b) set Wz to Wz U WL
(c) set PtoP \ WL
(d) set P’ to P~ o-Attractor(a ' (d), P)
(e) set (W{, W]) to Winning-Regions(P")
(f) if Wz = () then
.. setW,toV ~\ Wz
ii. return (Wo, W1)
(g) set Wz to WzU G-Attractor(WL, P)
(h) set P to P~ G-Attractor(W~, P)

SR

Figure 3: The Procedure Winning-Regions(P) takes a parity game P as input and returns the
ordered pair (Wy, W7) of winning regions for Player 0 and Player 1, respectively. V and « denote
the game positions and the colouring function of the parity game P. ThreeColour(P) solves a
three colour game P (c.f. Theorem 4.8), Approximate(P, par, o) computes a o / (par + 1)-paradise
(c.f. Corollary 4.6), and o-Attractor(F, P) computes the o-attractor of a set ' of game positions
in a game P (c.f. Lemma 3.1).

This implies in particular o/ (p') < Ql{, (p") + 6. This contradicts the assump-
tion, that (p, p') was a lift edge. O

5. Big Steps

As observed by Jurdzinski, Paterson, and Zwick [12], the draw-back of Mc-
Naughton’s algorithm is the potentially small change that occurs in every recur-
sive call: Each recursive call provides a paradise for the player who loses on the
highest colour, and if the attractor of the paradise includes one (or, more gener-
ally, few) positions with maximal colour, many iterations are needed. This can
be changed by coupling it with an alternative way to compute o /k-paradises for
this player, where k£ = par(n, d) is set to a parameter par that may depend on the
number of positions and the highest occuring colour.

23

Figure 3 provides an overview on the proposed algorithm. The input to the
algorithm is a parity game P, and the output is the ordered pair consisting of the
winning regions for the players.

The algorithm first determines the highest colour d of P (line 1). In line 2,
three colour games are covered, that is, games with highest colour < 2. Such
games are solved using the constructive algorithm discussed in Subsection 4.5.
For games with a higher maximal colour than 2, the algorithm proceeds by deter-
mining the Player 0 = d mod 2 that wins if the highest colour d occurs infinitely
often (line 3).

In every iteration of the repeat loop, the proposed big step algorithm (Figure 3)
first constructs a &/ (par + 1)-paradise (cf. Subsection 4.4) for an appropriate pa-
rameter par.

arena

By Lemma 3.4, we can now reduce solving P to constructing the 7-attractor
P of P2 (line 6a), and to solving P' = P ~ P&,

arcna

The algorithm then continues with the steps known from McNaughton’s algo-
rithm. That is, it next determines the set ' (d) of positions with maximal colour
in P,

arcna

24

and then constructs the o-attractor A of a~'(d) in P’ (line 6d).

arena [V

In the next step, the co-game P” = P’ ~. A of P’ is solved by a recursive call
of Procedure Winning-Regions (line 6e).

7

By Lemma 3.2, the winning region of player @ in P” is a @ paradise in P’.

If W. is empty, we can again evaluate the game immediately by Lemma 3.5
(line 7f). If WLZ is non-empty, we can reduce solving P’ to constructing the &-
attractor Uz of WZ, which is a g-paradise in P’ by Lemma 3.3, and to solving

P" =P~ WL (line 6h) by Lemma 3.4.

_

A

WL#0= |U;U P > par

The Procedure Winning-Regions therefore computes the winning regions cor-
rectly.

Theorem 5.1. [12] For a given parity game P, Procedure Winning-Regions com-
putes the complete winning regions of both players.

Note that all operations can be extended to also return the winning strategies
for both players without extra cost.

25

Efficiency. While we know little about the size of @ (which may be empty)
and W_Z (which may be singleton), we know that their union is greater than par,
because their union is a o-paradise (as the union of two o-paradises), and would
otherwise be contained in P2

We can therefore impose an upper bound on the number of iterations, which
depends on the size of the parameter. While bigger parameters slow down the
approximation procedure (c.f. Corollary 4.6), they restrict the size of the call tree.

For reasonable numbers of colours (that is, if the number of colours is in
O(y/n)), the best results are obtained if the parameter is chosen such that the
cost of calling the approximation procedure (line 6a) and the cost of the recursive
call (Iine 6e) are approximately equivalent. This is the case if we set the parameter

approximately to {/ ”—;
For a high number of colours (that is, if the number of colours is in w(y/n)),
the best results are obtained if the cost of calling the approximation procedure

(line 6a) approximately coincides with the size of the call tree.
The key ingredients for our efficient big step approach are:

1. an algorithm for the efficient construction of o /par-paradises (Section 4.4),
2. acorrectness proof for the overall algorithm, and

3. a complexity analysis for suitable parameters for a reasonable and a high
number of colours, respectively (Section 6).

6. Complexity

While the correctness of the algorithm is independent of the chosen parameter,
its complexity crucially depends on this choice. We argue in favour of choosing
the parameter par such that the cost of constructing a & /par-paradise and the cost
of a recursive call are balanced. We analyse this for games with a fixed number of
colours in two steps. In a first step, we identify the complexity in the usual terms,
showing that parity games can be solved in time

O(m . nv(tﬁ)),
where
c 4 e
7(0):§+§—02_1 if ¢ is odd,
and
fy(c):g+l—i—£ if ¢ is even.

We then discuss how the base of the exponent is affected when the colours are
viewed as a parameter. It is customary to give this growth in a form of O (m : (% +

1)071) for McNaughton’s algorithm [17, 8, 29] and O(c om - (LO.?)cj) 10.5 CJ) for
Jurdziniski’s [11], and something similar might be expected here. However, it turns

out that the constant factor is falling much faster: we show that the complexity is

approximately
& (o)
o (o (22)
c

for a “small” (o(y/n)) number of colours. The term “approximately” is used as
we only show the complexity to be in O (m . (%)7(0)) for all k > 6e5.

Finally, we show that, when the number of colours is high, we obtain the
n®Wn) complexity known from the older big-step approach of Jurdzifiski, Pater-
son, and Zwick [12].

6.1. Coarse Analysis — Fixed Number of Colours

For the important class of parity games with a reasonable number of colours
— ¢ € O(y/n) — we choose the parameter such that the cost for the recursive call
(line 6¢) coincides with the complexity of computing the approximation (line 6a).
First, we show that the Procedure Winning-Regions indeed proceeds in big steps.

Lemma 6.1. For a parameter par(n, c), the repeat loop of the algorithm is iter-
ated at most Lmj + 1 times.
Proof. As discussed in the proof of Theorem 5.1, the 7-attractor A of the com-
puted approximation P**" (line 6a) and the winning region W. of Player & are
o-paradises on P and P ~\ A, respectively. Thus, their union U is a 7-paradise
of P. If the size of U does not exceed par + 1, U is contained in P2*" by Corol-
lary 4.6. In this case, W is empty, and the loop terminates. Otherwise, a superset
of U is subtracted from P during the iteration (lines 6¢ and 7h), which can happen
at most Lmj times. O

Building on this observation, we define a parameter par such that the require-
ment of equal complexities is approximately satisfied. In order to do so, we pro-
ceed in two steps, starting with establishing the complexity for a fixed number of
colours. In this coarse analysis, the number of colours is not treated as a parame-
ter, but assumed to be fixed. The following table provides an overview.

27

number of colours 3 4 5 6 7 8
1 : . 21 3
paradise construction O(mn) O(mn'z) | O(mn?) | O(mn®3) | O(mn2%)
1 1 2 ia 11
chosen parameter par n2 n2 n3 niz nie
I 1 1 1 5 5
number of iterations % n2 n?2 n3 niz2 n1ie
. . 11 9 ol 23 - 3L
solving complexity O(mn) | O(mn 2) O(mn?) O(mn®3) | O(mn°%) | O(mn~16)

The colour coding shall help to identify similar complexities. The starting
point is the solving complexity for three colours from Theorem 4.8. Once we have
determined the cost of solving parity games with ¢ colours, we invest a similar
amount of time into constructing the & /par paradise for games with ¢ + 1 colours.
For four colours, this is O(mn). Once we have determined how much we are
willing to invest into constructing the & /par paradise, we can infer the parameter.
For four colour games, this is /n. And once we have determined the parameter,

we can infer first the number of iterations, e.g., v/n for four player

games, and

then the complexity as the cost of each iteration times the number of iterations,

e.g., O(mn!?) for games with four colours.
To capture this behaviour, we fix the function 7 such that

(0) c+ 1 c+1 4
C) = — _— = — - —
=Ty T [05c[05¢] 3 2 -1
if ¢is odd, and
(© c+1 1 1 c+1 1 4
C) = — _—_ Y — = — _—_— V— — —
N =377 3 [05c[05¢] 32 3¢ &
if ¢ 1s even, and choose
7(c)
) = ——————.
Ble) [0.5(c+1)]

These definitions imply y(c + 1) = v(c) + 1 — S(¢).
In the following proof, c is treated as a constant.

Theorem 6.2. Solving a parity game P with ¢ > 2 colours, m edges, and n game

positions can be performed in time O (m n“’(c)).

Proof. This is simple to prove by induction, where the induction basis (¢ = 3) is

provided by Theorem 4.8.

28

For the induction step (c — ¢ + 1), we choose the parameter of
par(n,c) = nf,

This provides a complexity of O (mn?(©)) for the approximation in line 6(a) by
Theorem 4.2, which together with the induction basis provides a complexity of
@] (m Tﬂ(c)) of each iteration of the loop (lines 6(a) to 6(h)).

With Lemma 6.1, we can infer the claimed complexity first of the loop, and
consequently (as the cost of lines 1 through 5 is dwarfed by the cost of the loop)
for the algorithm. O

6.2. Parameter for ¢ € o(/n) — Finer Analysis

In this subsection, we provide an analysis for the complexity of the algorithm
that treats the number of colours as a parameter. It is removed from the previous
subsection, because we believe that most users would be happy with the simpler
coarse analysis.

In a more fine-grained analysis, we start with adjusting the algorithm slightly,
such that the parameter is adjusted in every iteration of the loop (Figure 4).

In the remainder, we assume ¢ € o(y/n), and establish the consistency of the
estimations that, for

(K/n)ﬂ(c>

Ve+1 '
which converges to 1/ @ for a growing number of colours c, the time the algo-

par ~

rithm takes is estimated by a function #'(n, ¢) with

(/i;’n)V(C))

t'(n,c) € O(T

time for small constants /-.ch’ and «/'.

(ng'n)'V(C))

c!

Theorem 6.3. Parity games with o(/n) colours can be solved in O (m

: n _ 6
time for all Ky > K = Ve

Before turning to the proof, we provide an intuition for the problems that occur
and the functions and parameters we will use in the proof.

29

Procedure Winning-Regions(P):

set d to the highest colour occurring in P
if d < 2 then return ThreeColour(P)
set o to d mod 2
set Wy to ()
repeat
(a) setn to the size |V'| of P
(b) set WL to G-Attractor(Approximate(P, par (n, d),), P)
(c) set W5 to Wy U WL
(d) set PtoP ~ WL
(e) set P’ to P~ o-Attractor(a ' (d), P)
() set (W], W) to Winning-Regions(P")
(¢) if W. = 0 then
.. setW,toV ~ Wz
ii. return (Wo, W1)
(h) set Wz to WzU G-Attractor(WL., P)
(i) set P to P~ G-Attractor(W~, P)

M NS

Figure 4: The adjusted Procedure Winning-Regions(P), which changes the parameter in each
iteration of the loop.

Intuition and definitions. We will use an inductive argument, which is slightly
complicated by the problem that, after removing the attractor of a paradise, the
number of positions is reduced, but not necessarily the number of colours. It is
therefore possible that neither the assumption ¢ € o(y/n) nor ¢ < /n extend to
all parts of the call tree.

This proves to be a minor technical problem, which we meet with some re-
writing. We first define a parameter

n' =c-n,

which has the properties n’ < n, n’ € o(n), c € o(ﬁ), andc < n'.

It is important to note that n’ is global: it is calculated once before executing
the algorithm, and it is never updated during the execution of the algorithm.

Intuitively, we start with n + n’ positions rather than with n positions, and
calculate the complete time as if we had n’ positions more than we actually have.
Let us refer to them as n’ shadow positions.

Thus, the time we need to solve parity games with n positions and ¢ colours is

30

estimated by t'(n, ¢) = t(n + n', ¢)—and not by ¢(n, c)—and we can use
t(m,c) =0forallm < n'.

(As the n' shadow positions do not exist and are only used for our estimations, we
know that, if there are at most n’ positions left, they are all shadow positions: the
game is empty.)

Next, we define the constants that used in the proof.

,_ 36
Y

are used for the estimation of the running time and the calculation of the parame-

ter, and
2 2 6
1 ! —1 !
K, > K, >K >2\/j-/<; >2\/j-/<;:—:/<;
g g g e 9 e e

are used in the estimations of the running time. Note that ; can first be selected
arbitrarily close to k, and the remaining constants can be assigned afterwards.
Finally, we define a constant

— —
h;g>/<,gZ/<;

%} is a constant (slightly) below 1, which is used in a proof.
With these constants in place, we fix the parameter to be

(K}Iﬁ) B(e)
]

As it is difficult to argue with ceiling operators, we also define kz 7 > &' to be the

(K/E,ﬁﬁ) B(e)

e+

par(m,¢) = {

smallest constant greater or equal to ', such that
define

is an integer. We then

kz = sup{kem | 7 > 62} ,

and observe that lim;_,, Kz = £’. Note that we only use a kz5 in a context, where
n > n', while @ < ¢ < n’ < 7 holds. While the definition avoids the use of n’,
¢? < 7 is an important property for the definition to be useful.

31

Lemma 6.4. For fixed &, > Ky > k. and kg > 2\/2 - Ky, and for ¢ € o(\/n), the
running time of the approximation algorithm with parameter par(n, c) for a parity
game with ¢ + 1 colours and m edges is in O (m . %)

Proof. By Corollary 4.6, the running time for the approximation is in
O(cm(par(n, e) + [05(c + 1)1). Recalling that

par(n,c)

(ch B(c)
par(n, c) = — —

Je+1

we can obtain with y(¢) = 3(c)[0.5(c + 1)] that the running time is in

@ (m “(Ken + Ve +1-0.5(c+ 1)1)7(0) ’ 10.5(c+ 1)) - Yo 1 1[0.5(c+1ﬂ> ’

Using ¢ € o(y/n), we obtain

O((ken + /e +1-[0.5(c + 1)])7@) € O((")n)")
Finally, we use
c (26)% 1 e%c
N — and N
[0_5(0_1_ 1)]! e F 1(0.5(c+1)] = Y1 ez

to infer

(c)
c ~ [2 1
05(c+1)]!- et 1 7105(c+1)] e Vo
where the three ‘a2’ refer to factors between the respective two terms, which are
subexponential in c¢. The subexponential factor of the third ‘~’ is swallowed

by the strict inequation x, > 2\/2 - K, when we estimate the running time by
(k n)v(e)
O <m . 9%'_2 . O

The time consumed by an iteration of the loop is dominated by the recursive

call and the approximation. For the proof, we make the constants hidden by the O
notation explicit.

32

Corollary 6.5. For c + 1 colours (i.e., for maximal colour c) and a fixed K, > K,

there is a constant K such that the time consumed during one iteration of a loop is

bounded by the time spent by the recursive call plus ' - m('iggn\/c)%@ time steps. L]

In reference to the dominating role played by the approximation in this bound,
we estimate the running time for n positions, m edges (left implicit), and ¢ + 1
colours by

(/fgn)'Y(c)

Vel2

Proof of Theorem 6.3 We first sharpen ¢ € o(y/n) ton’ = cy/n < 4. We
g

then provide a function #'(n, ¢) that bounds the running time of the algorithm,
where

to(n,c+1)=%&-m

"_
K'g

K

t'(n,e) =t(n+n',c),

and ¢(7, ¢) is the function we discuss below. ¢(7, ¢) is intuitively the running time
for m — n’ real and n' shadow positions, whereas t'(72, ¢) would refer to 7 real
positions. Recalling that, for 7 < n/, there are only shadow and no real positions,
we sett(m,c) = 0forall c € wand allm < n'.

For given constants as defined above, we choose the minimal k£ € w such that
the following properties hold for all ¢ > £.

1. Ke S Rg,
2. &) -_/-f,’glfﬁ(a kB0 . —7(5:11) > 1, and
3. w2 — (@ — par(@, €)Y > &) - par(7@, €) - y(¢ + 1) - n?FD1 holds
forallm > ,i,,nf,ﬂ ¢? (and thus for all values of interest: smaller values 7 are
g9 g9

also smaller than n’).

We now prove our claim by induction. For the induction basis, we observe
that Theorem 6.2 implies that the following holds for all ¢ < k for an arbi-
trary (but fixed) constant £ € N: the running time of the algorithm is bound
by % -m - % (Thus, for all ¢ < k, we can follow the simplified version of
the algorithm referred to in Theorem 6.2.)

Before continuing with the induction step, we let

max{k, % }

—/
K1

33

be the maximum of the constant ' from above and the constant & from Corol-
lary 6.5, divided by the the constant (slightly) below 1.
We then define the following series of constants.
_ _ Kg) Y+
Kit1 = Ki + Ko - (—,) -
Ky
We use the constant K., = lim,_,, %; for the limit of this series. We then relax
the induction basis to the observation that, for all ¢ < k and m > n' (recall that
n' > c?),

(k!)7

v
is an upper bound on the running time of the algorithm for n positions (including
shadow positions).
For the induction step from c to c+ 1, we can use as induction hypothesis that
t(m, ¢) bounds the running time (with shadow positions) of the algorithm.
We now start an inductive proof for ¢ + 1, which is provided as an induction
over 7.

o~

t(n,c) =FKe-m -

IB: For the induction basis, we recall that (7, ¢ + 1) = 0 for all m < n'.

IS: Let @ > n'. For the induction step from all 7’ < 7 to 77, we assume that we
have shown the property for all 7’ < 7 (induction hypothesis) and show that
it also holds for 7.

The first relevant observation is that ¢ < /7 implies y(c) < par(m, ¢ + 1).
We have used this in (3) to estimate

c+1)—1

(D) — (7 — par(m, ¢))7(¢tD) ', - par(m,c) - y(c+ 1) -m

7 (55) e+ 1) w0

VARV

From here, we can estimate the running time (with shadow positions) as
follows.

34

t(m,c+1) —t(m — par(m,c),c+ 1)

K v(c+1)

= K mY(ct+l n - c+1
= Keyr M- 3g(c+1)!2 '(n7(+)—(n—par(n,c)7(+))
—plc c K’ﬁ'}’(c)
> FReal - (g/l } %1 (6)(). 1B(e) . 7(0++11)) - (93;2
Kkl m)Ye
2 Ecﬂ'm'(gé/c)?
k! m)v(©)
> Ec-m.(gé/c)% -|-ta(ﬁ,0—|—1)

t(m,c) +t.(myc+1).
Consequently, we can infer that
t(m,e+1) > t(m,c) + ty(m,c+ 1) + t(7 — par(f, ¢+ 1)

holds for the chosen function, which establishes the estimation in the inner
induction.

This, in turn, closes the estimation for the outer induction.
What remains it to see that the ¢ (n, ¢) = t(n+n/, ¢) has the required property.

But this is implied by n/ < Z2"2 . O
kg

While one can use this proof to establish this bound for «j arbitrarily close to
k, note that this has a significant impact on the constant factor.

C

c
Using again ¢! ~ (E) , We obtain:

Corollary 6.6. Parity games with o(\/n) colours can be solved in
v(c) 2
O(m (’Z—?)) time for all k > 6e's.

6.3. High number of colours

We close with a rough analysis of the cost for medium and high numbers of
colours. In both cases, we aim at roughly aligning the the size of the call tree and
the cost of the approximation.

Different to the previous subsection, we fix the parameter initially and do not
adjust it during the algorithm. We assume that the number of colours and the
parameter are large, e.g., ¢, par € w(+/n), in our estimation (the main target is

¢ € Q(vn)).

35

For ¢ = y/n, we roughly balance the cost of the approximation for a parameter
in 6(/n) and the size of the call tree.

To get an impression of the size of the call tree, we can encode each node in
a call tree by a sequence of call and return symbols. If we assume ¢ colours and
a parameter par (which remains constant for simplicity), then each node in such a
call tree can be encoded by a sequence, where

e the number of calls is smaller than the number of colours and

e the number of calls and par times the number of returns is at most the num-
ber of positions.

The number of leaves encoded by these sequences can be estimated from
above by (C+CW), where the estimation from above allows any sequence of

c calls and % returns. The number of positions in the call tree is of the same
order.

The cost of a single estimation with parameter par is O (c m (par J;Jro el)) i

For ¢ < y/n, we select par = ¢. This results in an estimation of the cost of the
approximations of 2°(¢) (assuming ¢ € Q(logn)), and an estimation of the size of
the call tree of (1 + %4)9(),

Theorem 6.7. Parity games with n positions and ¢ < \/n colours can be solved

O(c)
in <1 + c%) time.

For ¢ > \/n, we choose a parameter around /n, e.g., par = [y/n]. This
results in a call tree of approximate size and approximation which takes approxi-

O(vn)
mate time <1 + ﬁ) . The cost of the overall computation is therefore also

) . O(v/n)
in <1 + %> .

Noting that ¢ > y/n is not used in the estimation, we get:
Theorem 6.8. Parity games with n positions and c colours can be solved in

oW
(1+)

This essentially boils down to the nOWn) result of Jurdzifiski, Paterson, and
Zwick [12], with a slight improvement when log (ﬁ) is in o(logn).

time.

36

Acknowledgements. 1 would like to thank the exceptionally through and helpful
reviewers for their useful comments. They helped to make especially Section 6.2
significantly more accessible.

This work was partially supported by the Engineering and Physical Science
Research Council (EPSRC) through grant EP/H046623/1.

References

[1]

[2]

[3]

[6]

[7]

[8]

[9]

R. ALUR, T. A. HENZINGER, AND O. KUPFERMAN, Alternating-time tem-
poral logic, Journal of the ACM, 49 (2002), pp. 672-713.

D. BERWANGER, A. DAWAR, P. HUNTER, AND S. KREUTZER, Dag-width
and parity games, in Proc. STACS, Springer-Verlag, 2006, pp. 524-436.

H. BIORKLUND, S. SANDBERG, AND S. G. VOROBYOV, Memoryless de-
terminacy of parity and mean payoff games: a simple proof, Theoretical
Computer Science, 310 (2004), pp. 365-378.

H. BIORKLUND AND S. VOROBYOV, A combinatorial strongly subexpo-

nential strategy improvement algorithm for mean payoff games, Discrete
Appl. Math., 155 (2007), pp. 210-229.

A. BROWNE, E. M. CLARKE, S. JHA, D. E. LONG, AND W. MARRERO,

An improved algorithm for the evaluation of fixpoint expressions, Theoretical
Computer Science, 178 (1997), pp. 237-255.

L. DE ALFARO, T. A. HENZINGER, AND R. MAJUMDAR, From verification

to control: Dynamic programs for omega-regular objectives, in Proc. LICS,
IEEE Computer Society Press, June 2001, pp. 279-290.

E. A. EMERSON, C. S. JUTLA, AND A. P. SISTLA, On model-checking for
fragments of p-calculus., in CAV, 1993, pp. 385-396.

E. A. EMERSON AND C. LEI1, Efficient model checking in fragments of

the propositional ji-calculus, in Proc. LICS, IEEE Computer Society Press,
1986, pp. 267-278.

J. FEARNLEY AND S. SCHEWE, Time and parallelizability results for pa-
rity games with bounded tree and DAG width, Logical Methods in Computer
Science, 467 (2013), pp. 1-31.

37

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. JURDZINSKI, Deciding the winner in parity games is in UP N co-UP,
Information Processing Letters, 68 (1998), pp. 119—-124.

—, Small progress measures for solving parity games, vol. 1770 of Lec-
ture Notes in Computer Science, Springer, 2000, pp. 290-301.

M. JURDZINSKI, M. PATERSON, AND U. ZWICK, A deterministic subex-
ponential algorithm for solving parity games, vol. 38, 2008, pp. 1519-1532.

D. KOZEN, Results on the propositional ji-calculus., Theor. Comput. Sci.,
27 (1983), pp. 333-354.

O. KUPFERMAN AND M. VARDI, Module checking revisited, in Proc. CAV,
vol. 1254 of Lecture Notes in Computer Science, Springer-Verlag, 1997,
pp. 36-47.

M. LANGE, Solving parity games by a reduction to SAT, in Proc. Int. Work-
shop on Games in Design and Verification, 2005.

W. LUDWIG, A subexponential randomized algorithm for the simple
stochastic game problem, Inf. Comput., 117 (1995), pp. 151-155.

R. MCNAUGHTON, Infinite games played on finite graphs., Ann. Pure Appl.
Logic, 65 (1993), pp. 149-184.

J. OBDRZALEK, Fast mu-calculus model checking when tree-width is
bounded, in Proc. CAV, Springer-Verlag, 2003, pp. 80-92.

N. PITERMAN, From nondeterministic Biichi and Streett automata to deter-

ministic parity automata, Journal of Logical Methods in Computer Science,
3 (2007).

A. PURI, Theory of hybrid systems and discrete event systems, PhD thesis,
Computer Science Department, University of California, Berkeley, 1995.

S. SCHEWE, Solving parity games in big steps, in Proceedings of the
27th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2007), 12—-14 December, New Delhi, India,
vol. 4805 of Lecture Notes in Computer Science, Springer-Verlag, 2007,
pp. 449—-460.

38

[22] ——, Synthesis of Distributed Systems, PhD thesis, Universitit des Saarlan-
des, 2008.

[23] ——, Tighter bounds for the determinisation of Biichi automata, in Proceed-
ings of the Twelfth International Conference on Foundations of Software
Science and Computation Structures (FoSSaCS 2009), 22-29 March, York,
England, UK, vol. 5504 of Lecture Notes in Computer Science, Springer-
Verlag, 2009, pp. 167-181.

[24] S. SCHEWE AND B. FINKBEINER, Satisfiability and finite model property
for the alternating-time p-calculus, in Proceedings of the 15th Annual Con-
ference of the European Association for Computer Science Logic (CSL
2006), 25-29 September, Szeged, Hungary, vol. 4207 of Lecture Notes in
Computer Science, Springer-Verlag, 2006, pp. 591-605.

[25] ——, Synthesis of asynchronous systems, in Proceedings of the 16th Interna-
tional Symposium on Logic-Based Program Synthesis and Transformation
(LOPSTR 2006), 12—14 July, Venice, Italy, vol. 4407 of Lecture Notes in
Computer Science, Springer-Verlag, 2006, pp. 127-142.

[26] M. Y. VARDI, Reasoning about the past with two-way automata, in Proc.
ICALP, Springer-Verlag, 1998, pp. 628—641.

[27] J. VOGE AND M. JURDZINSKI, A discrete strategy improvement algorithm
for solving parity games (Extended abstract), in Proc. CAV, Springer-Verlag,
July 2000, pp. 202-215.

[28] T. WILKE, Alternating tree automata, parity games, and modal ji-calculus,
Bull. Soc. Math. Belg., 8 (2001).

[29] W. ZIELONKA, Infinite games on finitely coloured graphs with applications
to automata on infinite trees, Theor. Comput. Sci., 200 (1998), pp. 135-183.

[30] U. ZWICK AND M. PATERSON, The complexity of mean payoff games on
graphs, Theoretical Computer Science, 158 (1996), pp. 343-359.

39

