
Solving Parity Games in Big StepsSven S
heweDepartment of Computer S
ien
eUniversity of LiverpoolAshton Building, Ashton StreetLiverpool L69 3BXUnited Kingdomsven.s
hewe�liverpool.a
.uk
Abstra
tThis arti
le proposes a new algorithm that improves the
omplexity bound forsolving parity games. Our approa
h
ombines M
Naughton's iterated �xed pointalgorithm with a prepro
essing step, whi
h is
alled prior to every re
ursive
all.The prepro
essing uses ranking fun
tions similar to Jurdziński's, but with a re-stri
ted
o-domain, to determine all winning regions smaller than a prede�nedparameter. The
ombination of the prepro
essing step with the re
ursive
allguarantees that M
Naughton's algorithm pro
eeds in big steps, whose size isbounded from below by the
hosen parameter. Higher parameters lead to smaller
all trees, but they also result in an expensive prepro
essing step. An optimalparameter balan
es the
ost of the re
ursive
all and the prepro
essing step, re-sulting in an improvement of the known upper bound for solving parity gamesfrom O�m �2n
 �12
� to approximately O�m �6e1:6n
2 �13
�.Keywords: parity games, �nite games of in�nite duration1. Introdu
tionParity games have many appli
ations in model
he
king [13, 7, 6, 1, 28, 14℄and synthesis [28, 13, 26, 24, 19, 23, 25℄. In parti
ular, modal and alternating-time �-
al
ulus model
he
king [28, 1℄, synthesis [25, 19, 23℄ and satis�ability
he
king [28, 13, 26, 24℄ for rea
tive systems, module
he
king [14℄, and ATL*model
he
king [6, 1℄
an be redu
ed to solving parity games. This relevan
e ofparity games led to a series of different approa
hes to solving them [17, 8, 16, 20,30, 5, 29, 10, 11, 27, 18, 15, 2, 4, 12, 9℄.Preprint submitted to Journal of Computer and Systems S
ien
e (JCSS) O
tober 4, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80779575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The
omplexity of solving parity games is still an open problem. Parity gamesare memoryless determined [7, 3℄, whi
h implies that nondeterministi
 algorithms
an determine winning regions and strategies for both players. Due to their sym-metry, they are therefore in NP\CoNP [7℄, and by redu
tion to payoff games [30℄,in UP\CoUP [10℄. Determining their membership in P
ontinues to be a major
hallenge.All
urrent deterministi
 algorithms have
omplexity bounds whi
h are (atleast) exponential in the number of
olours [17, 8, 30, 5, 29, 11, 4℄ (nO(
)), orin the square-root of the number of game positions [16, 12, 4℄ (approximatelynO(pn)). Pra
ti
al
onsiderations suggest that we should assume that the numberof
olours is small
ompared to the number of positions. Indeed, almost all of theappli
ations listed above result in parity games where the number of
olours is(sub-)logarithmi
 in the size of the game arena. �-
al
ulus model
he
king is theonly ex
eption. In �-
al
ulus model
he
king, however, the size of the game isdetermined by the produ
t of the transition system under
onsideration (whi
h isusually large), and the size of the formula (whi
h is usually small). The numberof
olours is determined by the alternation depth of the spe
i�
ation, whi
h, inturn, is usually small
ompared to the spe
i�
ation itself. Algorithms that areexponential only in the number of
olours are therefore
onsidered to be the mostattra
tive.The �rst representatives of algorithms in the
omplexity
lass nO(
) follow theiterated �xed point stru
ture indu
ed by the parity
ondition [17, 8, 29℄. The iter-ated �xed point
onstru
tion leads to a time
omplexity of O�m�n
 + 1�
�1�for parity games with m edges,

olours, and n game positions. The up-per
omplexity bound for solving parity games was �rst redu
ed by Browneet al. [5℄ to O�m� 2n
 �d0:5
e+1�, and slightly further by Jurdziński [11℄ toO�
m (nb0:5

)b0:5

�.The weakness of re
ursive algorithms that follow the iterated �xed point stru
-ture [17, 8, 29℄ is the potentially in
remental update a
hieved by ea
h re
ursive
all. Re
ently, a big-step approa
h [12℄ has been proposed to redu
e the
om-plexity of M
Naughton's algorithm for games with a high number of
olours(
 2 !(pn)) to the bound nO(pn) known from randomized algorithms [16, 4℄.1.1. The Lineage of Our Approa
hThe approa
h we dis
uss is drawing from M
Naughton's approa
h [17, 8,29℄ and the extension to big steps of Jurdziński, Paterson, and Zwi
k [12℄. The
ore observation of M
Naughton's approa
h is that it helps to �nd solutions to2

paradises, a parti
ular type of sub-games. A paradise is a region of a game whereone player
an for
e a win without leaving the paradise. On
e a paradise is known,one
an divide solving the game into three parts: the paradise, the attra
tor of theparadise, and the
o-game of the attra
tor.In [17, 8, 29℄, a paradise for the player who loses on the highest
olour is
onstru
ted by solving a parity game with one
olour less. (If there is no su
hparadise, solving the game be
omes simple.)Jurdziński, Paterson, and Zwi
k [12℄ observed that this provides very weakguarantees if the number of
olours is high, say in the order of the number of gamepositions. They adjusted the algorithm by �rst produ
ing all `small' paradises upto size pn. This
an be done by individually
onsidering all sets up to the sizeof pn and
he
king whether or not they are paradises of the player who loseson the highest
olour of the game. The union of these paradises form a paradisethat must
ontain all small paradises. Their algorithm �rst uses this novel wayof
onstru
ting a paradise and then uses the re
ursive
all from M
Naughton'salgorithm [17, 8, 29℄. It thus either provides a paradise stri
tly bigger than pn oran immediate solution.The limitation of this
onstru
tion is that a brute for
e
onstru
tion of a par-adise that
ontains all small paradises does not bene�t from a small number of
olours. We over
ome this limitation by introdu
ing a te
hnique for the
onstru
-tion of small paradises that does bene�t from small number of
olours. This te
h-nique is a simple generalisation of Jurdziński's `small progress measures' [11℄.His approa
h is adapted by restri
ting the
o-domain of the used ranking fun
-tion. The resulting algorithm is exploited in the
onstru
tion of paradises that arebounded by the size of a parameter par. Compared to [12℄, this results in a signif-i
ant
ut in the
ost for �nding small winning regions, sin
e the running time forthe prepro
essing algorithm is polynomial in the parameter, and exponential onlyin the number of
olours: O �
m � par+d0:5
epar �� :1.2. ContributionThe different way of
onstru
ting paradises that
ontain all small paradises(up to a parameter) improves the
omplexity of M
Naughton's algorithm for therelevant lower end of the spe
trum of
olours, resulting in approximately the
om-plexity O0�m 6e1:6n
2 !
(
)1A3

for solving parity games under the assumption that
 2 o(pn), where
(
) =
3 + 12 � 13
 � 4
2if
 is even, and
(
) =
3 + 12 � 4
2 � 1if
 is odd.Using a the parameter of approximately3r(3 6pen)22
results in an O�m ��n
2 �
(
)�
omplexity (for � � 6e1:6) for solving parity games,whi
h improves over the previously known O�m �2n
 �b0:5

� bound [11℄.This redu
es the exponential fa
tor from b
2
 to less than
3 + 12 . It is, afterthe redu
tion from
 � 1 [17, 8, 29℄ to d
2e + 1 by Browne et al. [5℄, the se
ondimprovement that redu
es the exponential growth with the number of
olours. Thedevelopment of the known
omplexity bounds is outlined in the following table.#
olours 3 4 5 6 7 8 9M
Naughton [17℄ O(mn2) O(mn3) O(mn4) O(mn5) O(mn6) O(mn7) O(mn8)Browne & al. [5℄ O(mn3) O(mn3) O(mn4) O(mn4) O(mn5) O(mn5) O(mn6)Jurdziński [11℄ O(mn) O(mn2) O(mn2) O(mn3) O(mn3) O(mn4) O(mn4)Big Steps O(mn) O(mn1 12) O(mn2) O(mn2 13) O(mn2 34) O(mn3 116) O(mn3 920)Besides the improved
omplexity for a �xed number of
olours, the approa
halso provides an improved development of the base of the exponential expression.While previous algorithms had a base of O�n
 �, this has shrunk to O� n
2 � in thisapproa
h.When solving parity games, we are often interested in winning strategies forthe players. For example, they serve as witnesses and
ounter examples in model
he
king, and as models in synthesis. When
onstru
ting these strategies, theimprovement in the
omplexity of the dis
ussed approa
h is even higher. Con-stru
ting winning strategies for both players does not in
rease the
omplexity ofthe proposed algorithm. The best previously known bound for
onstru
ting win-ning strategies [11℄ has been O�
m (nd0:5
e)d0:5
e�.4

olours 3 4 5 6 7 8 9Jurdziński [11℄ O(mn2) O(mn2) O(mn3) O(mn3) O(mn4) O(mn4) O(mn5)Big Steps O(mn) O(mn1 12) O(mn2) O(mn2 13) O(mn2 34) O(mn3 116) O(mn3 920)This extra advantage is yielded by an adjustment of the evaluation of three
olour games by a simple adjustment of Jurdziński's `small progress measures'approa
h [11℄, whi
h allow for determining the winning strategies of both play-ers.The arti
le is an extended version of the paper Solving Parity Games in BigSteps [21℄ in
luding the improved analysis of three
olour games from [22℄.2. In�nite GamesIn�nite games on �nite graphs are
omposed of a game arena and an evaluationfun
tion. Most of the time, we are interested in �nite games of in�nite duration,the spe
ial
ase where the game arena is �nite. We will �rst dis
uss arenas andthen turn to the evaluation fun
tions for safety, rea
hability, and parity games.2.1. ArenaGames are played on arenas. An arena is a triple A = (V0; V1; E), where� V0 and V1 are disjoint �nite sets of positions,
alled the positions of Player0 and Player 1, respe
tively,� V = V0 ℄ V1 denotes the set of game positions, and� E � V � V is a set of edges,su
h that (V;E) is a dire
ted graph. The arena is also required not to
ontainsinks; that is, every position p 2 V has at least one outgoing edge (p; p0) 2 E.An arena is
alled a single player arena if all positions in V0 or all positionsin V1 have out-degree 1. Games are
alled single player games, if their arena is asingle player arena.2.2. PlaysIntuitively, a game is played by pla
ing a pebble on the arena. If the pebbleis on a position p 2 V0, Player 0
hooses an edge e = (p; p0) 2 E from p toa su

essor p0 and moves the pebble to p0. Symmetri
ally, if the pebble is on aposition q 2 V1, Player 1
hooses an edge e0 = (q; q0) 2 E from q to a su

essorq0 and moves the pebble to q0. This way, they su

essively
onstru
t an in�niteplay � = p0p1p2p3 : : : 2 V !. 5

2.3. StrategiesFor an arena A = (V0; V1; E), a strategy for Player 0 is a fun
tion f : V �V0 !V that maps ea
h �nite history of a play that ends in a position p 2 V0 to asu

essor p0 of p. (That is, there is an edge (p; p0) 2 E from p to p0.) A play isf -
onform if every de
ision of Player 0 in the play is in a

ordan
e with f .A strategy is
alled memoryless if it only depends on the
urrent position. Amemoryless strategy for Player 0
an be viewed as a fun
tion f : V0 ! V su
hthat (p; f(p)) 2 E holds for all p 2 V0.For a memoryless strategy f , we denote with Af = (V0; V1; Ef) the arenaobtained fromA by deleting the transitions from positions of Player 0 that are notin a

ordan
e with f . (Af de�nes a dire
ted graph where all positions of Player0 have out-degree 1.) The analogous de�nitions are made for Player 1. Note thatAf is a single player arena.2.4. Safety and Rea
hability GamesA safety game is a game S = (V0; V1; E; F) with arena A = (V0; V1; E) and aset F � V of �nal (or: bad) positions.Ea
h play of a safety game is evaluated by
he
king whether or not it is
on-tained in V r F : Player 0 wins a play � = p0p1p2p3 : : : if, for all i 2 !, pi =2 F .All games
onsidered in this arti
le are 0-sum games. For boolean out
ome, thismeans that one player wins while the other player loses. In safety games, Player 1thus wins if there is an i 2 ! with pi 2 F . If we take the point of view of Player 1,the game be
omes a rea
hability game, as Player 1 has the obje
tive to eventuallyrea
h a position in F .2.5. Parity GamesA parity game is a game P = (V0; V1; E; �) with arena A = (V0; V1; E) and asurje
tive
olouring fun
tion � : V ! C � ! that maps ea
h position of P to anatural number. The
o-domain of � is
alled the set of
olours (or: priorities) anddenoted by C. Note that the
o-domain C of � is �nite as the domain V is �nite.For te
hni
al
onvenien
e1 we usually assume without loss of generality that the1The restri
tion that the minimal
olour is 0 is only te
hni
al. If no position with
olour 0exists, then we
an redu
e all
olours by 1 and
hange the roles of Player 0 and 1. Winningregions and strategies for Player 0 (Player 1) in the resulting game are the winning regions andstrategies for Player 1 (Player 0) in the original game.6

minimal
olour of a parity game is 0 = minfCg, and that C is an initial sequen
e2of the integers.Ea
h play is evaluated by the highest
olour that o

urs in�nitely often. Player0 wins a play � = p0p1p2p3 : : : if the highest
olour o

urring in�nitely often inthe sequen
e �(�) = �(p0)�(p1)�(p2)�(p3) : : : is even, while Player 1 wins ifthe highest
olour o

urring in�nitely often in �(�) is odd.2.6. Winning Strategies and Winning RegionsA strategy f of Player 0 (Player 1) is
alled p-winning if all f -
onform playsstarting in p are winning for Player 0 (Player 1). A position p in V is winningfor Player 0 (Player 1) if Player 0 (Player 1) has a p-winning strategy. We
allthe winning positions for Player 0 (resp. Player 1) the winning region of Player 0(resp. Player 1), denotedW0 (resp.W1).2.7. NotationAll operations on arenas extend to games. E.g., for a strategy f and a paritygame P = (V0; V1; E; �), Pf is the parity game with the arena
onsisting of thearena Af and the
olouring fun
tion �.For ease of notation, we sometimes use games when we refer to their arenasonly. We also use the
ommon interse
tion and subtra
tion operations on digraphsfor arenas and games: P \ V 0 and P r V 0, for example, denote the parity gameswe get when we restri
ting the arena A(V0; V1; E) of P to A\V 0 = (V0\V 0; V1\V 0; E \ V 0 � V 0) and A r F = (V0; V1; E) \ V r V 0, respe
tively. Note thatour restri
tion to arenas without sinks for
es us to
he
k that the resulting arenaspreserve this property.As many algorithms have to refer to both players, we use Player � for theplayer � 2 f0; 1g (usually the player who wins when the maximal
olour o

ursin�nitely many times), and we use � = 1� � to refer to the other player.2.8. Memoryless Determina
yA
lass of games is
alled determined if the union of the winning regionsequals the set of positions. It is
alled memoryless determined if ea
h player� 2 f0; 1g has, for a game G, a memoryless strategy f su
h that all plays in Gf that2If a number, is missing in this sequen
e, we redu
e all greater
olours by 2 without
hanginga

eptan
e of any play. Hen
e, winning regions and strategies are not affe
ted by this transforma-tion. 7

Pro
edure M
Naughton(P):1. set
 to the highest
olour o

urring in P2. if
 = 0 or V = ; then return (V; ;)3. set � to
 mod 24. set W� to ;5. repeat(a) set P 0 to Pr �-Attra
tor(��1(
);P)(b) set (W 00;W 01) to M
Naughton(P 0)(
) if (W 0� = ; theni. set W� to V rW�ii. return (W0;W1)(d) set W� to W�[�-Attra
tor(W 0� ;P)(e) set P to Pr �-Attra
tor(W 0� ;P)Figure 1: The algorithm M
Naughton(P) takes a parity game P as input and returns the orderedpair (W0;W1) of winning regions of the players 0 and 1, respe
tively. V and� denote the positionsand the
olouring fun
tion of the parity game P .start in W� are winning for Player �. Parity games are memoryless determined[7℄, and [3℄
ontains a simple proof for their memoryless determina
y.2.9. Solving Parity GamesWhen solving parity games, we distinguish two questions: the non-
onstru
tive problem is to determine, for a given a parity game P the winningregions of both players. The
onstru
tive extension requires additionally requiresthe
onstru
tion of winning strategies for both players.Most algorithms are presented with the non-
onstru
tive question in mind, butthe
onstru
tive extension is usually simple. The only point where it requiresspe
ial
are is in the three
olour games from Se
tion 4.5.3. M
Naughton's AlgorithmIn this se
tion, we summarise M
Naughton's algorithm for solving paritygames. The algorithm dates ba
k to M
Naughton [17℄ and has �rst been pub-lished in this form by Emerson and Lei [8, 29℄.The algorithm is dis
ussed in some detail and some of the proofs are repeatedbe
ause the algorithm dis
ussed in Se
tion 5 builds on them.8

The algorithm is the algorithmi
 version of a simple proof of the memory-less determina
y for parity games. The proof uses an indu
tive argument over thenumber of positions. As an indu
tion basis, games with only one game positionare
learly memoryless determined: there is only one strategy, and it is memory-less. The game is won by Player 0 if the
olour of this position is even and byPlayer 1 if the
olour of this position is odd.For general parity games P with highest
olour
, M
Naughton's algorithm(Figure 1) �rst determines the set ��1(
) of positions with maximal
olour.��1(
)arena
For the Player � =
 mod 2 that wins if
 o

urs in�nitely often (and is there-fore the dominating
olour), this algorithm then
onstru
ts the �-attra
tor A of��1(
).For an arena A = (V0; V1; E), a set T � V or target positions, and a Player� 2 f0; 1g, the �-attra
tor of T is the set of game positions, from whi
h Player �
an for
e the pebble into the set T of target positions. The �-attra
tor A of a setT
an be de�ned as the least set that
ontain T and that
ontain a game position pof Player � in A if it
ontains some su

essor (all su

essors) of p:�-Attra
tor(T;A)= TfS � T j 8p 2 V�8p0 2 S: (p; p0) 2 E) p 2 S and8p 2 V�: (:9p0 =2 S: (p; p0) 2 E)) p 2 Sg.The �-attra
tor A of a set T of target positions
an be
onstru
ted by
hoosing� A0 = T ,� Aj+1 = Aj [fp 2 V� j 9p0 2 Aj: (p; p0) 2 Eg[fp 2 V� j 8(p; p0) 2 E: p0 2 Aj g, and� A = Sj2!Aj .

9

The
onstru
tion also provides a memoryless strategy for Player � to move thepebble to T from all positions in A. Let ip = minfn 2 ! j p 2 Ang denote theindex of the �rst set Aip a position p 2 A is in. For a position in p 2 V� \ Ar T ,p has a su

essor in p0 2 Aip�1 by de�nition, and we
hoose the attra
tor strategyf su
h that it maps p to su
h a su

essor. (For all p 2 V� \Ar T . f(p) 2 Aip�1.It is then easy to see that ea
h f -
onform play p0p1p2 : : : that starts in A eithereventually rea
hes T , or satis�es ip0 > ip1 > ip2 > ip3 > : : :. However, asthe integers are well founded, no su
h in�nite
hain exists, su
h that the latteralternative
an be dis
arded. The play therefore eventually rea
hes the target setT . A itself provides a memoryless strategy to keep the pebble out ofA (and hen
eout of T) for Player �: Player �
an
hoose a strategy g, su
h that, for all p 2V� r A, g(p) =2 A. Note that su
h an option must exist in a �nite game, as pwould otherwise be in A. Let us assume for
ontradi
tion that a g-
onform playp0p1p2 : : : that starts outside of A eventually rea
hes A. Let pi be the �rst positionof this play in A. Then i > 0 (as p0 =2 A holds by de�nition). The de�nition of Athen implies that pi�1 2 A (
ontradi
tion to pi being the �rst position of the playin A).Lemma 3.1. For an arena A and a set T of target positions, the �-attra
tor of T
an be
onstru
ted in time linear in the edges of A.Aarena
In the next step, the
o-gameP 0 = PrA ofP is solved. The
o-setC = VrAof the �-attra
tor A for some target set T is
alled a �-trap, be
ause Player �
annot leave C; he is trapped there.The
o-game P 0 is smaller than P:
ompared to P , it
ontains less positions.By indu
tion hypothesis, it is therefore memoryless determined.By indu
tion over the size of the game, P 0
an therefore be solved by a re
ur-sive
all of the algorithm.

10

AW 0�W 0�arena
We
all a subset P� � W� of a winning region of Player � 2 f0; 1g a �-paradise if it is a �-trap and Player � has a memoryless strategy f that is p-winningfor all p 2 P� in P \ P�. That is, if Player � has a winning strategy, su
h that P�
annot be left in any f -
onform play (Ef \ P� � V r P� = ;).Lemma 3.2. [17, 8, 29℄ For a parity game P with �-trap T�, and a �-paradiseP� of P 0 = P \ T�, P� is a �-paradise for P .In fa
t, Player �
an simply use the same winning strategy f for P as for P 0:as T� is a �-trap, Player � has no additional moves in P , and every f
onformplay that starts in P� in P is also an f
onform play in P 0.In parti
ular, the winning regionW 0� ofP 0 is a �-paradise inP by
onstru
tion.So is its �-attra
tor in P .Lemma 3.3. [17, 8, 29℄ The �-attra
torA� of a �-paradise P� for a parity gameP is a �-paradise for P , and a winning strategy for player � on A�
an be
om-posed of the winning strategy for Player � on P� and an attra
tor strategy onA� r P�.For a given �-paradise P� for Player � 2 f0; 1g in a parity game P , we
anredu
e solving P to
omputing the �-attra
tor A� of P�, and solving P r A�.Lemma 3.4. [17, 8, 29℄ Let P be a parity game, P� be a �-paradise with �-attra
tor A�, and let W 0� and W 0� be the winning regions of Player � and Player�, respe
tively, on P 0 = P r A�. Then� W� = W 0� is the winning region of Player � on P , and she
an win byfollowing her winning strategy from P 0 on her winning region, and� W� = W 0�[A is the winning region of Player � and he
an win by followinghis winning strategy for A (see Lemma 3.3) on A� and his winning strategyfrom P 0 onW 0�. 11

Proof. First, Player �
an use her winning strategy for her winning region W�of P r A�, and use it in the larger game P , be
ause Player � has no additional
hoi
es in W� in P . Consequently, the set of g�-
onform plays in P starting inW�
oin
ides with the set of f�-
onform plays in P r A� starting inW�.For the same reason, Player � wins with his strategy from every position inA�,by a
omposition on the attra
tor strategy on A� r P� and her winning strategyon P�, see Lemma 3.3.Let g� be a winning strategy for player � in P 0. Every g�-
onform play in Pstarting in a position not inW 0� either eventually rea
hes A�, and is then followedby a tail (remainder of the play) in P that starts in A�, whi
h is winning for � byLemma 3.3, or stays for ever in the sub-game P 0, and is thus winning for Player�, too. �We now distinguish two
ases: Firstly, if W 0� is non-empty, we
an redu
esolvingP to
onstru
ting the �-attra
tor U� ofW 0�, and solving the
o-gameP 00 =P r U� by Lemma 3.4. U�arena
The
o-game P 00 is simpler than P: Compared to P , it
ontains less positions(though not ne
essarily less
olours). By indu
tion over the size of the game, P 00
an therefore be solved by a re
ursive
all of the algorithm.Se
ondly, if W 0� is empty, we
an
ompose the winning strategy for Player �on P 0 with his attra
tor strategy for the �-attra
tor of the target set ��1(
) to awinning strategy on P .Lemma 3.5. [17, 8, 29℄ Let P be a parity game with maximal
olour
, let � =
 mod 2 be the player who wins if
 o

urs in�nitely many times, let A be the �-attra
tor of ��1(
) and let f be an attra
tor strategy for Player � on her positionson A r ��1(
). If Player � has a winning strategy f 0 for every position in P 0 =P r A, then f and f 0
an be
omposed to a winning strategy for Player � forevery position in P . 12

Proof. Let g be a strategy for Player � that agrees with f and f 0 on their respe
tivedomain. We distinguish two types of g-
onform plays: those that eventually stayin P 0, and those that visit A in�nitely often. The latter plays
ontain in�nitelymany
-
oloured positions and are therefore winning for player �. Games thateventually stay in P 0
onsist of a �nite pre�x, followed by an f 0-
onform play inP 0. The highest
olour o

urring in�nitely often is therefore even for � = 0 andodd for � = 1, respe
tively. �Theorem 3.6. [17, 8, 29℄ For every parity game P = (V0; V1; E; �), the gamepositions are partitioned into a winning regionW0 of Player 0 and a winning re-gionW1 of Player 1. Moreover, Player 0 and Player 1 have memoryless strategiesthat are p-winning for every position p in their respe
tive winning region.Proof. The starting point of the indu
tive argument are games with a single posi-tion. They are trivially won by the player that wins on the
olour of this position(indu
tion basis).For the indu
tion step, assume that the memoryless determina
y holds forgames with up to n positions. For a parity game with n+1 positions, we
an thensele
t the highest
olour
max, set � to
max mod 2 to identify the Player � whowins if
max o

urs in�nitely often (note that
max is the dominating
olour in this
ase), and set A = �-Attra
tor(��1(
max);P), where ��1 is the pseudo inverse of�. Then P 0 = P r A is a�possibly empty�parity game with stri
tly less po-sitions and
olours. (Note that, by the attra
tor
onstru
tion, every position in P 0has a su

essor, and the
o-set of A is a �-trap.)By our indu
tion hypothesis, the positions in P 0 are partitioned into winningregions of the two players, and both players have memoryless winning strategieson their winning regions.We
an now distinguish two
ases:1. The winning region of Player � on P 0 is empty. In this
ase, Player � winsmemoryless by Lemma 3.5.2. The winning region of Player � is non-empty.ThenW 00� = �-Attra
tor(W 0�;P) is a � paradise for P by Lemmata 3.2 and3.3. We
an therefore solve the remainder of the game, P rW 00� , individu-ally and use the respe
tive winning regions and (by indu
tion, memorylesswinning strategies) of the players by Lemma 3.4.13

In Case (1) we are done and in Case (2) we have redu
ed the problem to solv-ing a game with less positions. By indu
tion, memoryless determina
y extends tothe
omplete game. �The worst
ase running time of M
Naughton's algorithm [17, 8, 29℄ (
f. Pro-
edure M
Naughton of Figure 1) o

urs if U�, the �-attra
tor of the winningW�'of PrA, always has a small interse
tion withA and
ontains exa
tly one positionwith maximal
olour
.For parity games with

olours, M
Naughton's algorithm requiresO�m��n
 +1�
�1� steps for games with n positions and m edges. It
an be extended to alsoreturn the winning strategies for both players on their
omplete winning region.4. Progress MeasuresAn alternative and stru
turally different approa
h is due to Jurdziński [11℄.In his algorithm, the progress of Player 0 towards proving that she
an for
e thehighest
olour to be even (or Player 1 towards proving that he
an for
e the highest
olour to be odd) is intuitively measured by a ve
tor that represents the worstpossible future.We start by generalising his approa
h by using
oarser progress measures.Using
oarser progress measures leads to an underapproximation of the winningregion of one player, and we will use this underapproximation of a winning regionin the following se
tion.While we have to re-prove the results of Jurdziński [11℄ for the more general
ase, the stru
ture of the proofs is very similar to the original ones. We
lose thisse
tion by looking at the spe
ial
ase of three
olour games, whi
h forms the base
ase of the algorithm proposed in the following se
tion.4.1. Progress MeasuresFor a parity game P = (V0; V1; E; �) with maximal
olour d, the maximal�-progress measure is, for � 2 f0 ; 1g, a fun
tion % : V0 ℄ V1 ! M� whose
o-domainM�1 = fh : f0; : : : ; dg ! N j h(
) = 0 if
 mod 2 = �, andh(
) � j��1(
)j otherwiseg [f>g
ontains a maximal element > and a set of fun
tions from f0; : : : ; dg to the inte-gers. The
o-domainM�1 satis�es the requirement that14

� every integer i � d is mapped to 0 if i mod 2 = �, while� all other integers i are mapped to a value bounded by the number j��1(i)jof i-
oloured game positions.h is often
onsidered as a tuple. A �-progress measureM� �M�1is a downward
losed subset ofM�1 that
ontains the maximal element (> 2M�.Downward
losedness means that, ifM�
ontains a fun
tion h 2 M�, then everyfun
tion h0 2 M�1 that is point-wise smaller than h (h0(i) � h(i) 8i � d) is also
ontained inM�.4.2. Linear Pre-Orders onM�For ea
h
olour
 � d, we de�ne a relation B
 �M� �M�, whi
h is essen-tially the lexi
ographi
 order, ignoring all
olours smaller than
. B
 is de�ned asthe smallest relation� that
ontains f>g �M� and� that
ontains a pair of fun
tions (h; h0) 2 B
 if� there is a
olour
0 �
 su
h that h(
0) > h0(
0), and h(
00) = h0(
00)holds for all
olours
00 >
0, or�
 mod 2 = �, and h(
0) = h0(
0) holds for all
0 �
.B0 de�nes an order on M� � the lexi
ographi
 order when h is read as atuple, where higher
olours have higher priority. B
 de�nes a linear pre-order �the lexi
ographi
 order when h is read as a tuple but
ut off after
olour
.4.3. Pre-Order on Progress MeasuresFrom this order, we infer the linear pre-order v on progress measures, whi
hrequires that B0 is satis�ed on every position of the game (% v %0 , 8p 2V: %(p)B0 %0(p)).We
all a �-progress measure % valid if� every position p 2 V� has some su

essor p0 2 V with %(p)B�(p) %(p0), and� for every position p 2 V� and every su

essor p0 2 V of p, %(p)B�(p) %(p0)holds. 15

Progress measures are ranking fun
tions that
an intuitively be used to es-timate the worst-
ase future o

urren
e of `bad' positions prior to positionswith higher
olour. A valid �-progress measure that is not
onstantly >
anbe used to partly evaluate a parity game. Let, for a �-progress measure %,win(%) = V r %�1(>) denote the game positions that are not mapped to themaximal element > ofM�.Theorem 4.1. [11℄ LetP = (V0; V1; E; �) be a parity game with valid �-progressmeasure %. Then Player � wins on win(%) with any memoryless winning strategythat maps a position p 2 win(%) \ V� to a position p0 with %(p)B�(p) %(p0).Su
h a su

essor must exist, sin
e the progress measure is valid. The v-leastvalid �-progress measure is well de�ned and
an be
omputed ef�
iently for smallM�.Theorem 4.2. Thev-least valid �-progress measure %� exists and
an, for a par-ity game withm edges and

olours, be
omputed in time O(
m jM�j).The proof is very similar to the proof of a similar
laim for the maximal
o-domainM�1 in Jurdziński's work [11℄. We �rst introdu
e some notation.For a given progress measure %i, we
all an edge (p; p0) a lift-edge if%i(p) 7�(p) %(p0). We
all a position p 2 V� of Player 0 liftable if all outgo-ing edges are lift edges, and we
all a position p 2 V1 of Player 1 liftable if someoutgoing edge is a lift edge.We lift a liftable position by applying the following lo
al update:� at some liftable position p 2 V� where the validity
riterion is lo
ally vio-lated to %i+1(p) = minf% 2 M� j 9(p; p0) 2 E: %B�(p) %i(p0)g, or� at some liftable position p 2 V� where the validity
riterion is lo
ally vio-lated to %i+1(p) = minf% 2 M� j 8(p; p0) 2 E: %B�(p) %i(p0)g.and %i+1(q) = %i(q) for all positions q 6= p.Proof. First, it is easy to see that the position-wise minimum of two valid �-progress measures forms a valid �-progress measure. With the �nite domain,this implies that %� is well de�ned as the position-wise minimum over all valid�-progress measures.To
ompute it, we
an start with an arbitrary �-progress measure smaller than%� � in parti
ular, with the progress measure %0 that assigns the
onstant fun
tion16

to 0 to all positions. While %i is not valid, we update it to %i+1 by updating thefun
tion lo
ally, using a lift operation.Obviously, the update is still smaller or equal to %�. For all q 2 V , %�(q) B0%i(q), we get for the lifted position p:%i+1(p) = minf% 2 M� j 9(p; p0) 2 E: %B�(p) %i(p0)gB0 minf% 2 M� j 9(p; p0) 2 E: %B�(p) %�(p0)gB0 %�(p) if p 2 V� and%i+1(p) = minf% 2 M� j 8(p; p0) 2 E: %B�(p) %i(p0)gB0 minf% 2 M� j 8(p; p0) 2 E: %B�(p) %�(p0)gB0 %�(p) if p 2 V�.As %� is valid, this implies %i+1 v %�.The �niteness of the domain guarantees termination. �When using the maximal
o-domainM�1, whi
h
ontains the fun
tion % thatassigns ea
h
olour
 with
 mod 2 6= � to %(
) = j��1(
)j, for the progress mea-sures, the v-least valid �-progress measure %� determines the
omplete winningregion of Player �.Theorem 4.3. [11℄ For a parity game P = (V0; V1; E; �) and for the
o-domainM�1 for the progress measures, win(%�)
oin
ides with the winning regionW� ofPlayer � for the v-least valid �-progress measure %�.4.4. �=k-ParadiseInstead of using this te
hnique to solve the parity game, we will use the algo-rithm to
onstru
t a parti
ular type of paradises, whi
h we
all �=k-paradises.De�nition 4.4 (�=k-Paradise). We
all a �-paradise P k� a �=k-paradise if it
on-tains all �-paradises of size � k.The ef�
ient
onstru
tion of �=k paradises is an essential ingredient in the al-gorithm dis
ussed in the following se
tions. For their
onstru
tion, we draw fromthe ef�
ient
omputation of the v-least valid �-progress measure (Theorem 4.2).Instead of using the maximal
o-domainM�1, the smaller
o-domainM�k isused for the progress measures, whi
h
ontains only those fun
tions h that satisfyPd
=0 h(
) � k for some parameter k 2 N . (d denotes the highest
olour of theparity game). The size ofM�k
an be estimated by17

jM�k j � � k + d0:5(d + 1)ek �+ 1.UsingM�k instead ofM�1, win(%�)
ontains all �-paradises of size � k + 1(where %� denotes the v-least valid �-progress measures).Theorem 4.5. Let P = (V0; V1; E; �) be a parity game, and let P� � V bea �-paradise of size jP�j � k + 1. Then there is a valid �-progress measure% : V !M�k with P� = win(%).Proof. Sin
e P� is a �-paradise, E and V� \P��V rP� are disjoint, and Player�
an stay in P�. Moreover, Player � has a memoryless strategy f that is winningon every game position in P� su
h that f(p) 2 P� for all p 2 V� \ P�.If we restri
t P to P 0 = Pf \ P�, then the winning region of Player � musttherefore
over the whole set P� of game positions of P 0.To solve P 0, we
an use the maximal
o-domainM�10. By Theorem 4.3, thev0-least progress measure %0� for this
o-domain satis�es win(%0�) = P�. Sin
eM�10 �M�k is
ontained inM�k (P� must
ontain at least one position with even
olour if � = 0, resp. one position with odd
olour if � = 1), we
an extend %0�to a valid �-progress measure % on P by setting %(p) = %0�(p) for all p 2 P�, and%(p) = > otherwise. �By Theorem 4.2, we
an
ompute the v-least valid �-progress measure %� intime O(
m jM�kj), and, by Theorem 4.1, we
an
onstru
t a winning strategy forPlayer � on win(%�) within the same
omplexity bound.Corollary 4.6. For a given parity game P with

olours and m edges, we
an
onstru
t a �=(k + 1)-paradise P k+1� for Player � in time O�
m (k + d0:5
ek)�.A winning strategy for Player � on P k+1�
an be
onstru
ted within the same
omplexity bound.4.5. Three Colour GamesWhen using Jurdziński's algorithm [11℄ for solving parity games with

olours, the size jM�1j of the maximal
o-domain
an be estimated by(nb0:5

)b0:5

 + 1 if � = 0, and by (nd0:5
e)d0:5
e + 1 if � = 1. From Theorem 4.3we therefore get the well established
omplexity for �nding the winning regionsof and the winning strategy for one of the players in three
olour games.Corollary 4.7. [11℄ Parity games with maximal
olour 2
an be solved and awinning strategy for Player 0
an be
onstru
ted in time O(mn).18

The algorithm des
ribed in the previous subse
tion provides a partition of thewinning regions and a winning strategy for Player �, but not for a winning strategyof Player �. In prin
iple, her winning strategy
an be
omputed using a �-progressmeasure, but, for games with an odd number of
olours, this is slightly moreexpensive. We dedi
ate this subse
tion to the spe
ial
ase of three
olour games,be
ause they play a role as a base
ase for the algorithm dis
ussed in the followingse
tion.We
all parity games with maximal
olour 2 three
olour games. Corollary 4.7shows that a non-
onstru
tive solution for three
olour games as well as a winningstrategy for Player 0
an be obtained in time O(mn). To see why Jurdziński'salgorithm [11℄ does not provide a strategy for Player 1, let us summarise his algo-rithm for the simple
ase of a three
olour games P = (V0; V1; E; �).For three
olour games, the 0-progress measures
an be viewed as mappings% : V ! f0; : : : ; n1g [f>g, where n1 = j��1(1)j denotes the number of 1-
oloured positions.The starting point of the algorithm is the trivial progress measure %0 that mapsall positions of P to 0. Starting from %0, we lift the progress measure stepwise ata liftable position p 2 V until a �xed point is rea
hed.For the trivial progress measure %0, an edge is a lift-edge if, and only if, itoriginates from a 1-
oloured position, and a position is liftable if, and only if, itis 1-
oloured. For an ef�
ient implementation, it suf�
es to atta
h a �ag to everyedge that indi
ates whether this edge is a lift-edge, to keep tra
k of the number ofoutgoing lift-edges for every game position, and to keep the liftable positions in adoubly linked list.In order to lift %i, any liftable position p
an be taken from the list of liftablepositions. (If no liftable position remains, the least �xed point is rea
hed.) Afterlifting %i at position p, it suf�
es to
he
k for ea
h in
oming and outgoing edge ofp if the �ag that indi
ates liftability needs to be adjusted and, if so, to in
rease thenumber of outgoing lift-edges for the respe
tive prede
essor of p (for in
omingedges), or to de
rease the number of outgoing lift-edges for p (for outgoingedges), respe
tively. If a position be
omes liftable (non-liftable), it is added to(removed from) the list of liftable positions.While this algorithm provides good
omplexity bounds for the non-
onstru
tive analysis of three
olour games, it does not provide a winning strategyfor player 1 on her winning region. Note that the naive extension � �xing the edgeused for the last update as strategy for player one � is not sound: Figure 2 showsa small example of a single player Bü
hi game (Bü
hi games are games with19

a b
dFigure 2: The example shows a single player Bü
hi game (that is, a game where all positions are
oloured by 1 or 2), where all positions belong to Player 1 (V0 = ;). The positions a, b, and
 are
oloured by 1, while position d is
oloured by 2 (indi
ated by the double line).only the
olours 1 and 2), where all positions are positions of Player 1 (V0 = ;).The positions a, b, and
 are
oloured by 1, while position d is
oloured by 2.Player 1
an
hoose a self-loop at position a (in whi
h
ase she wins), or movein a Hamiltonian
y
le (in whi
h
ase she loses). If we start with twi
e lifting atposition a (%1(a) = 1, %2(a) = 2) followed by lifting at position b (%3(b) = 3),
 (%4(
) = >), d (%5(d) = >), and again at a (%6(a) = >) and b (%7(b) = >),all positions are
orre
tly marked as winning for Player 1; but the last update ofposition a relies on %5(d) = >, and the naive approa
h would result in a losingstrategy.We show that a variant of the algorithm
an be used to also
onstru
t a winningstrategy of Player 1 on her
omplete winning region. It suf�
es to store intermedi-ate strategies for Player 1, and to keep two sets of liftable positions instead of one� one set for positions that are liftable without
hanging the intermediate strat-egy of Player 1, and one set of positions that are liftable, but only if the strategyof Player 1 is
hanged. The adapted algorithm always gives preferen
e to liftablepositions from the �rst set. If only liftable positions from the latter set remain, oneof these positions is lifted and the intermediate strategy is updated a

ordingly.In the single player game from the example of Figure 2, we
an either startwith the self-loop at position a and thus with a winning strategy, or with the losingstrategy to move from a to d. In the �rst
ase, we never have to adjust the strategy.(One possible sequen
e of progress measure updates is (%1(a) = 1, %2(a) = 2,%3(a) = 3, %4(a) = >, %5(b) = >, %6(
) = >, %7(d) = >.) In the latter
ase,we �rst
ompute the �xed point for the single player game, where the moves ofPlayer 1 are restri
ted by her strategy. (One possible sequen
e of progress measureupdates is (%1(a) = 1, %2(b) = 2, %3(
) = 3.) On
e the �xed point for this strategyis rea
hed, the strategy is adjusted by
hoosing the self-loop at position a. (Onepossible sequen
e of further progress measure updates is (%4(a) = 2, %5(a) = 3,20

%6(a) = >, %7(b) = >, %8(
) = >, %9(d) = >.)Theorem 4.8. For parity games with maximal
olour 2, the proposed algorithm
an be used to solve the parity game and to
onstru
t winning strategies for bothplayers on their respe
tive winning region in time O(mn).Proof. The proposed
hanges to Jurdziński's algorithm only impose a parti
ularorder on the lifting operations, whi
h
ould
oin
identally o

ur in his algorithm,too. This implies the
orre
tness of the least �xed point and thus the
orre
tnessof the resulting winning regions and strategy of Player 0 (
f. Corollary 4.7).For the
orre
tness of the winning strategy of Player 1 on her winning re-gion, we show by indu
tion that every time the intermediate strategy needs to be
hanged, say from f to f 0, the intermediate progress measure %f� is the v-leastvalid 0-progress measure %f� for Pf .Indu
tion Basis: For any initial strategy f the
laim holds trivially � up to the�rst adjustment of the intermediate strategy the algorithm resembles the originalalgorithm for Pf .Indu
tion Step: Consider the situation after
hanging the intermediate strategyfrom f to f 0 by
hoosing a lift-edge (p; p0). Let us
ompare the v-least valid0-progress measure %f� for Pf with the v-least valid 0-progress measure %f 0� forPf 0 .We �rst show %f�(p) 6= %f 0� (p). To see this, we develop the v-least valid 0-progress measure %f 0� for Pf 0 from the trivial progress measure %0, where we applyan update at position p only, if no update at any other position is possible.Let %0, %1, %2, %3, : : : be the sequen
e of progress measures
onstru
ted thisway, where %f 0� is the limit. Note that %0 v %1 v %2 v %3 v : : : v %f 0� and%0(p) � %1(p) � %2(p) � %3(p) � : : : � %f 0� (p) hold.We show by indu
tion that %f 0� (p) � %f�(p) implies %i v %f�(p) for all i 2 !.Let us assume %f 0� (p) � %f�(p).Indu
tion Basis: %0 v %f� trivially holds.Indu
tion Step: We distinguish two
ases. First, if position p is lifted, we havethat %i+1(p) � %f 0� (p), whi
h is � %f�(p) by assumption. For all other posi-tions q 2 V with q 6= p, we have %i(q) � %f�(q) (by indu
tion hypothesis)and %i+1(q) = %i(q), whi
h implies %i+1(q) � %f�(q).Se
ond, if position q 6= p is lifted, we �rst observe that q has the samesu

essors in Pf and Pf 0 . %i v %f� implies for all su

essors q0 of q that21

%i(q0) � %f�(q0) holds. Taking into a

ount that %f� is a valid 0-progressmeasure, this implies %i+1(q) � %f�(q).For all other positions q00 2 V with q00 6= q, we have %i(q00) � %f�(q00) (byindu
tion hypothesis) and %i+1(q00) = %i(q00), whi
h implies %i+1(q00) �%f�(q00).As %f 0� is the limit of these progress measures, we get %f 0� v %f�.Similarly, we
an establish that %f�(p) � %f 0� (p) implies %f� v %f 0� .Note that both dire
tions together show that %f�(p) = %f 0� (p) implies %f� = %f 0� ,whi
h
ontradi
ts the assumption that (p; p0) was a lift-edge.It also shows that %f 0� (p) > %f�(p) implies that the next swit
h in strategy takespla
e when %f 0� (p) is rea
hed. (Unless %f 0� (p) is also the v-least valid 0-progressmeasure for P , in whi
h
ase the pro
edure terminates there.)What remains is to ex
lude %f�(p) > %f 0� (p). We �rst observe that %f�(p) 6=?, be
ause (p; p0) would not be a lift-edge in this
ase. Let us now assume for
ontradi
tion that Æ = %f�(p)� %f 0� (p) > 0.We now re-
al
ulate the 0-progress measure %f� forPf from the trivial progressmeasure %0.Let %0, %1, %2, %3, : : : be the sequen
e of progress measures
onstru
ted thisway, where %f� is the limit. We show by indu
tion that, for all %i, we have %i(q) �%f 0� (q) + Æ for all positions q 2 V .Indu
tion Basis: For %0, this is implied by %0 v %f 0� .Indu
tion Step: We distinguish two
ases. First, if position p is lifted, we havethat %i+1(p) � %f�(p) be
ause %f� is the limit of the sequen
e of progressmeasures, and we have %f�(p) = %f 0� (p) + Æ by assumption. For all otherpositions q 2 V with q 6= p, we have %i+1(q) = %i(q), whi
h implies%i+1(q) � %f 0� (q) + Æ with the indu
tion hypothesis.Se
ond, if a position q 6= p is lifted, we �rst observe that q has the samesu

essors in Pf and Pf 0 . For ea
h su

essor q0 2 V it holds that %i(q0) �%f 0� (q0) + Æ. As %f 0� is valid, these inequations imply with the equal set ofsu

essors %i+1(q) � %f 0� (q) + Æ by the lifting rules.For all other positions q00 2 V with q00 6= q, we have %i(q00) � %f 0� (q00) + Æ(by indu
tion hypothesis) and %i+1(q00) = %i(q00), whi
h implies %i+1(q00) �%f 0� (q00) + Æ. 22

Pro
edure Winning-Regions(P):1. set d to the highest
olour o

urring in P2. if d � 2 then return ThreeColour(P)3. set � to d mod 24. set n to the size jV j of P5. set W� to ;6. repeat(a) set W 0� to �-Attra
tor(Approximate(P; par(n; d); �);P)(b) set W� to W� [W 0�(
) set P to P rW 0�(d) set P 0 to Pr �-Attra
tor(��1(d);P)(e) set (W 00;W 01) to Winning-Regions(P 0)(f) if W 0� = ; theni. set W� to V rW�ii. return (W0;W1)(g) set W� to W�[�-Attra
tor(W 0� ;P)(h) set P to Pr �-Attra
tor(W 0� ;P)Figure 3: The Pro
edure Winning-Regions(P) takes a parity game P as input and returns theordered pair (W0;W1) of winning regions for Player 0 and Player 1, respe
tively. V and � denotethe game positions and the
olouring fun
tion of the parity game P . ThreeColour(P) solves athree
olour game P (
.f. Theorem 4.8), Approximate(P ; par; �)
omputes a �=(par+1)-paradise(
.f. Corollary 4.6), and �-Attra
tor(F;P)
omputes the �-attra
tor of a set F of game positionsin a game P (
.f. Lemma 3.1).This implies in parti
ular %f�(p0) � %f 0� (p0) + Æ. This
ontradi
ts the assump-tion, that (p; p0) was a lift edge. �5. Big StepsAs observed by Jurdziński, Paterson, and Zwi
k [12℄, the draw-ba
k of M
-Naughton's algorithm is the potentially small
hange that o

urs in every re
ur-sive
all: Ea
h re
ursive
all provides a paradise for the player who loses on thehighest
olour, and if the attra
tor of the paradise in
ludes one (or, more gener-ally, few) positions with maximal
olour, many iterations are needed. This
anbe
hanged by
oupling it with an alternative way to
ompute �=k-paradises forthis player, where k = par(n; d) is set to a parameter par that may depend on thenumber of positions and the highest o

uring
olour.23

Figure 3 provides an overview on the proposed algorithm. The input to thealgorithm is a parity game P , and the output is the ordered pair
onsisting of thewinning regions for the players.The algorithm �rst determines the highest
olour d of P (line 1). In line 2,three
olour games are
overed, that is, games with highest
olour � 2. Su
hgames are solved using the
onstru
tive algorithm dis
ussed in Subse
tion 4.5.For games with a higher maximal
olour than 2, the algorithm pro
eeds by deter-mining the Player � = d mod 2 that wins if the highest
olour d o

urs in�nitelyoften (line 3).In every iteration of the repeat loop, the proposed big step algorithm (Figure 3)�rst
onstru
ts a �=(par + 1)-paradise (
f. Subse
tion 4.4) for an appropriate pa-rameter par.
P par�arena

By Lemma 3.4, we
an now redu
e solving P to
onstru
ting the �-attra
torP par� of P par� (line 6a), and to solving P 0 = P r P par� .
P par�arena

The algorithm then
ontinues with the steps known from M
Naughton's algo-rithm. That is, it next determines the set ��1(d) of positions with maximal
olourin P ,
P par���1(d)arena

24

and then
onstru
ts the �-attra
tor A of ��1(d) in P 0 (line 6d).
P par�Aarena

In the next step, the
o-game P 00 = P 0 r A of P 0 is solved by a re
ursive
allof Pro
edure Winning-Regions (line 6e).
P par�AW 0�W 0�arena

By Lemma 3.2, the winning region of player � in P 00 is a � paradise in P 0.If W 0� is empty, we
an again evaluate the game immediately by Lemma 3.5(line 7f). If W 0� is non-empty, we
an redu
e solving P 0 to
onstru
ting the �-attra
tor U� of W 0�, whi
h is a �-paradise in P 0 by Lemma 3.3, and to solvingP 00 = P 0 rW 0� (line 6h) by Lemma 3.4.
P par�U�arena

W 0� 6= ;) jU� [P par� j > parThe Pro
edure Winning-Regions therefore
omputes the winning regions
or-re
tly.Theorem 5.1. [12℄ For a given parity gameP , Pro
edureWinning-Regions
om-putes the
omplete winning regions of both players.Note that all operations
an be extended to also return the winning strategiesfor both players without extra
ost. 25

Ef�
ien
y. While we know little about the size of P par� (whi
h may be empty)and W 0� (whi
h may be singleton), we know that their union is greater than par,be
ause their union is a �-paradise (as the union of two �-paradises), and wouldotherwise be
ontained in P par� .We
an therefore impose an upper bound on the number of iterations, whi
hdepends on the size of the parameter. While bigger parameters slow down theapproximation pro
edure (
.f. Corollary 4.6), they restri
t the size of the
all tree.For reasonable numbers of
olours (that is, if the number of
olours is inO(pn)), the best results are obtained if the parameter is
hosen su
h that the
ost of
alling the approximation pro
edure (line 6a) and the
ost of the re
ursive
all (line 6e) are approximately equivalent. This is the
ase if we set the parameterapproximately to 3qn2
 .For a high number of
olours (that is, if the number of
olours is in !(pn)),the best results are obtained if the
ost of
alling the approximation pro
edure(line 6a) approximately
oin
ides with the size of the
all tree.The key ingredients for our ef�
ient big step approa
h are:1. an algorithm for the ef�
ient
onstru
tion of �=par-paradises (Se
tion 4.4),2. a
orre
tness proof for the overall algorithm, and3. a
omplexity analysis for suitable parameters for a reasonable and a highnumber of
olours, respe
tively (Se
tion 6).6. ComplexityWhile the
orre
tness of the algorithm is independent of the
hosen parameter,its
omplexity
ru
ially depends on this
hoi
e. We argue in favour of
hoosingthe parameter par su
h that the
ost of
onstru
ting a �=par-paradise and the
ostof a re
ursive
all are balan
ed. We analyse this for games with a �xed number of
olours in two steps. In a �rst step, we identify the
omplexity in the usual terms,showing that parity games
an be solved in timeO�m � n
(
)�;where
(
) =
3 + 12 � 4
2 � 1 if
 is odd,and
(
) =
3 + 12 � 13
 � 4
2 if
 is even.26

We then dis
uss how the base of the exponent is affe
ted when the
olours areviewed as a parameter. It is
ustomary to give this growth in a form ofO�m ��n
 +1�
�1� for M
Naughton's algorithm [17, 8, 29℄ and O�
 � m � � nb0:5

�b0:5

� forJurdziński's [11℄, and something similar might be expe
ted here. However, it turnsout that the
onstant fa
tor is falling mu
h faster: we show that the
omplexity isapproximately O0�m � 6e1:6n
2 !
(
)1Afor a �small� (o(pn)) number of
olours. The term �approximately� is used aswe only show the
omplexity to be in O �m � ��n
2 �
(
)� for all � > 6e1:6.Finally, we show that, when the number of
olours is high, we obtain thenO(pn)
omplexity known from the older big-step approa
h of Jurdziński, Pater-son, and Zwi
k [12℄.6.1. Coarse Analysis � Fixed Number of ColoursFor the important
lass of parity games with a reasonable number of
olours�
 2 O(pn)�we
hoose the parameter su
h that the
ost for the re
ursive
all(line 6e)
oin
ides with the
omplexity of
omputing the approximation (line 6a).First, we show that the Pro
edure Winning-Regions indeed pro
eeds in big steps.Lemma 6.1. For a parameter par(n;
), the repeat loop of the algorithm is iter-ated at most � npar(n;
)+2�+ 1 times.Proof. As dis
ussed in the proof of Theorem 5.1, the �-attra
tor A of the
om-puted approximation P par� (line 6a) and the winning region W 0� of Player � are�-paradises on P and P r A, respe
tively. Thus, their union U is a �-paradiseof P . If the size of U does not ex
eed par + 1, U is
ontained in P par� by Corol-lary 4.6. In this
ase,W 0� is empty, and the loop terminates. Otherwise, a supersetof U is subtra
ted from P during the iteration (lines 6
 and 7h), whi
h
an happenat most � npar(n;
)+2� times. �Building on this observation, we de�ne a parameter par su
h that the require-ment of equal
omplexities is approximately satis�ed. In order to do so, we pro-
eed in two steps, starting with establishing the
omplexity for a �xed number of
olours. In this
oarse analysis, the number of
olours is not treated as a parame-ter, but assumed to be �xed. The following table provides an overview.27

number of
olours 3 4 5 6 7 8paradise
onstru
tion - O(mn) O(mn1 12) O(mn2) O(mn2 13) O(mn2 34)
hosen parameter par - n 12 n 12 n 23 n 712 n 1116number of iterations npar - n 12 n 12 n 13 n 512 n 516solving
omplexity O(mn) O(mn1 12) O(mn2) O(mn2 13) O(mn2 34) O(mn3 116)The
olour
oding shall help to identify similar
omplexities. The startingpoint is the solving
omplexity for three
olours from Theorem 4.8. On
e we havedetermined the
ost of solving parity games with

olours, we invest a similaramount of time into
onstru
ting the �=par paradise for games with
+1
olours.For four
olours, this is O(mn). On
e we have determined how mu
h we arewilling to invest into
onstru
ting the �=par paradise, we
an infer the parameter.For four
olour games, this is pn. And on
e we have determined the parameter,we
an infer �rst the number of iterations, e.g., pn for four player games, andthen the
omplexity as the
ost of ea
h iteration times the number of iterations,e.g., O(mn1:5) for games with four
olours.To
apture this behaviour, we �x the fun
tion
 su
h that
(
) =
3 + 12 � 1d0:5
eb0:5

 =
3 + 12 � 4
2 � 1if
 is odd, and
(
) =
3 + 12 � 13
 � 1d0:5
eb0:5

 =
3 + 12 � 13
 � 4
2if
 is even, and
hoose �(
) =
(
)d0:5(
+ 1)e :These de�nitions imply
(
+ 1) =
(
) + 1� �(
).In the following proof,
 is treated as a
onstant.Theorem 6.2. Solving a parity game P with
 > 2
olours,m edges, and n gamepositions
an be performed in time O�mn
(
)�.Proof. This is simple to prove by indu
tion, where the indu
tion basis (
 = 3) isprovided by Theorem 4.8. 28

For the indu
tion step (
 7!
+ 1), we
hoose the parameter ofpar(n;
) = n�(
):This provides a
omplexity of O�mn
(
)� for the approximation in line 6(a) byTheorem 4.2, whi
h together with the indu
tion basis provides a
omplexity ofO�mn
(
)� of ea
h iteration of the loop (lines 6(a) to 6(h)).With Lemma 6.1, we
an infer the
laimed
omplexity �rst of the loop, and
onsequently (as the
ost of lines 1 through 5 is dwarfed by the
ost of the loop)for the algorithm. �6.2. Parameter for
 2 o(pn) � Finer AnalysisIn this subse
tion, we provide an analysis for the
omplexity of the algorithmthat treats the number of
olours as a parameter. It is removed from the previoussubse
tion, be
ause we believe that most users would be happy with the simpler
oarse analysis.In a more �ne-grained analysis, we start with adjusting the algorithm slightly,su
h that the parameter is adjusted in every iteration of the loop (Figure 4).In the remainder, we assume
 2 o(pn), and establish the
onsisten
y of theestimations that, for par � (�0n)�(
)3p
+ 1 ;whi
h
onverges to 3q (�0n)2
 for a growing number of
olours
, the time the algo-rithm takes is estimated by a fun
tion t0(n;
) witht0(n;
) 2 O�(�00gn)
(
)3p
!2 �time for small
onstants �00g and �0.Theorem 6.3. Parity games with o(pn)
olours
an be solved inO�m� (�00gn)
(
)3p
!2 �time for all �00g > � = 63pe .Before turning to the proof, we provide an intuition for the problems that o

urand the fun
tions and parameters we will use in the proof.
29

Pro
edure Winning-Regions(P):1. set d to the highest
olour o

urring in P2. if d � 2 then return ThreeColour(P)3. set � to d mod 24. set W� to ;5. repeat(a) set n to the size jV j of P(b) set W 0� to �-Attra
tor(Approximate(P; par(n; d); �);P)(
) set W� to W� [W 0�(d) set P to P rW 0�(e) set P 0 to Pr �-Attra
tor(��1(d);P)(f) set (W 00;W 01) to Winning-Regions(P 0)(g) if W 0� = ; theni. set W� to V rW�ii. return (W0;W1)(h) set W� to W�[�-Attra
tor(W 0� ;P)(i) set P to Pr �-Attra
tor(W 0� ;P)Figure 4: The adjusted Pro
edure Winning-Regions(P), whi
h
hanges the parameter in ea
hiteration of the loop.Intuition and de�nitions. We will use an indu
tive argument, whi
h is slightly
ompli
ated by the problem that, after removing the attra
tor of a paradise, thenumber of positions is redu
ed, but not ne
essarily the number of
olours. It istherefore possible that neither the assumption
 2 o(pn) nor
 � pn extend toall parts of the
all tree.This proves to be a minor te
hni
al problem, whi
h we meet with some re-writing. We �rst de�ne a parametern0 =
 � pn;whi
h has the properties n0 � n, n0 2 o(n),
 2 o(pn0), and
� n0.It is important to note that n0 is global: it is
al
ulated on
e before exe
utingthe algorithm, and it is never updated during the exe
ution of the algorithm.Intuitively, we start with n + n0 positions rather than with n positions, and
al
ulate the
omplete time as if we had n0 positions more than we a
tually have.Let us refer to them as n0 shadow positions.Thus, the time we need to solve parity games with n positions and

olours is30

estimated by t0(n;
) = t(n+ n0;
)�and not by t(n;
)�and we
an uset(n;
) = 0 for all n � n0:(As the n0 shadow positions do not exist and are only used for our estimations, weknow that, if there are at most n0 positions left, they are all shadow positions: thegame is empty.)Next, we de�ne the
onstants that used in the proof.�0g > �g � �0 = 3 6pep2are used for the estimation of the running time and the
al
ulation of the parame-ter, and �00g > �0g > �g > 2r2e � �0g > 2r2e � �0 = 63pe = �are used in the estimations of the running time. Note that �00g
an �rst be sele
tedarbitrarily
lose to �, and the remaining
onstants
an be assigned afterwards.Finally, we de�ne a
onstant �01 = 6s� ��0g� ;�01 is a
onstant (slightly) below 1, whi
h is used in a proof.With these
onstants in pla
e, we �x the parameter to bepar(n;
) = &��0n��(
)3p
+ 1 ' :As it is dif�
ult to argue with
eiling operators, we also de�ne �
;n � �0 to be thesmallest
onstant greater or equal to �0, su
h that ��
;nn��(
)3p
+1 is an integer. We thende�ne �
 = supf�
;n j n >
2g ;and observe that lim
!1 �
 = �0. Note that we only use a �
;n in a
ontext, wheren > n0, while
2 �
2 � n0 < n holds. While the de�nition avoids the use of n0,
2 < n is an important property for the de�nition to be useful.31

Lemma 6.4. For �xed �0g > �g � �
 and �g > 2q2e � �0g, and for
 2 o(pn), therunning time of the approximation algorithm with parameter par(n;
) for a paritygame with
+ 1
olours andm edges is in O�m � (�gn)
(
)3p
!2 �.Proof. By Corollary 4.6, the running time for the approximation is inO�
m (par(n;
) + d0:5(
+ 1)epar(n;
))�. Re
alling thatpar(n;
) = ��
n��(
)3p
+ 1 ;we
an obtain with
(
) = �(
)d0:5(
+ 1)e that the running time is inO m � (�
n + 3p
 + 1 � d0:5(
+ 1)e)
(
) �
d0:5(
+ 1)e! � 3p
+ 1d0:5(
+1)e! :Using
 2 o(pn), we obtainO�(�
n+ 3p
+ 1 � d0:5(
+ 1)e)
(
)� � O�(�0gn)
(
)�:Finally, we use
d0:5(
+ 1)e! � 3p
+ 1d0:5(
+1)e � (2e)
2
 2
3 and 13p
!2 � e 2
3
 2
3to infer
d0:5(
+ 1)e! � 3p
 + 1d0:5(
+1)e � 2r2e!
(
) � 13p
!2 ;where the three `�' refer to fa
tors between the respe
tive two terms, whi
h aresubexponential in
. The subexponential fa
tor of the third `�' is swallowedby the stri
t inequation �g > 2q2e � �0g when we estimate the running time byO�m � (�gn)
(
)3p
!2 �. �The time
onsumed by an iteration of the loop is dominated by the re
ursive
all and the approximation. For the proof, we make the
onstants hidden by theOnotation expli
it. 32

Corollary 6.5. For
+ 1
olours (i.e., for maximal
olour
) and a �xed �g > �,there is a
onstant � su
h that the time
onsumed during one iteration of a loop isbounded by the time spent by the re
ursive
all plus � �m (�gn)
(
)3p
!2 time steps. �In referen
e to the dominating role played by the approximation in this bound,we estimate the running time for n positions, m edges (left impli
it), and
 + 1
olours by ta(n;
+ 1) = � �m(�gn)
(
)3p
!2 :Proof of Theorem 6.3 We �rst sharpen
 2 o(pn) to n0 =
pn � �00g��0g�0g n. Wethen provide a fun
tion t0(n;
) that bounds the running time of the algorithm,where t0(n;
) = t(n+ n0;
);and t(n;
) is the fun
tion we dis
uss below. t(n;
) is intuitively the running timefor n � n0 real and n0 shadow positions, whereas t0(n;
) would refer to n realpositions. Re
alling that, for n � n0, there are only shadow and no real positions,we set t(n;
) = 0 for all
 2 ! and all n � n0.For given
onstants as de�ned above, we
hoose the minimal k 2 ! su
h thatthe following properties hold for all
 � k.1. �
 � �g,2. �01 � �0g1��(
) � �0�(
) �
(
+1)
+1 � 1, and3. n
(
+1) � (n � par(n;
))
(
+1) � �01 � par(n;
) �
(
 + 1) � n
(
+1)�1 holdsfor all n > �0g�00g��0g
2 (and thus for all values of interest: smaller values n arealso smaller than n0).We now prove our
laim by indu
tion. For the indu
tion basis, we observethat Theorem 6.2 implies that the following holds for all
 � k for an arbi-trary (but �xed)
onstant k 2 N : the running time of the algorithm is boundby �0 �m � (�gn)
(
)3p
!2 . (Thus, for all
 � k, we
an follow the simpli�ed version ofthe algorithm referred to in Theorem 6.2.)Before
ontinuing with the indu
tion step, we let�0 = maxf�; �0g�0133

be the maximum of the
onstant �0 from above and the
onstant � from Corol-lary 6.5, divided by the the
onstant (slightly) below 1.We then de�ne the following series of
onstants.�i+1 = �i + �0 � ��g�0g�
(i+1) :We use the
onstant �1 = limi!1 �i for the limit of this series. We then relaxthe indu
tion basis to the observation that, for all
 � k and n > n0 (re
all thatn0 �
2), t(n;
) = �
 �m � (�0gn)
(
)3p
!2is an upper bound on the running time of the algorithm for n positions (in
ludingshadow positions).For the indu
tion step from
 to
+1, we
an use as indu
tion hypothesis thatt(n;
) bounds the running time (with shadow positions) of the algorithm.We now start an indu
tive proof for
 + 1, whi
h is provided as an indu
tionover n.IB: For the indu
tion basis, we re
all that t(n;
+ 1) = 0 for all n � n0.IS: Let n > n0. For the indu
tion step from all n0 < n to n, we assume that wehave shown the property for all n0 < n (indu
tion hypothesis) and show thatit also holds for n.The �rst relevant observation is that
�pn implies
(
)� par(n;
+ 1).We have used this in (3) to estimaten
(
+1) � (n� par(n;
))
(
+1) � �01 � par(n;
) �
(
+ 1) � n
(
+1)�1� �01 � � �0�(
)3p
+1� �
(
+ 1) � n
(
) :From here, we
an estimate the running time (with shadow positions) asfollows.
34

t(n;
+ 1)� t(n� par(n;
);
+ 1)= �
+1 �m � �0g
(
+1)3p(
+1)!2 � �n
(
+1) � (n� par(n;
)
(
+1)�� �
+1 � ��01 � �0g1��(
) � �0�(
) �
(
+1)
+1 � �m � (�0gn)
(
)3p
!2� �
+1 �m � (�0gn)
(
)3p
!2� �
 �m � (�0gn)
(
)3p
!2 + ta(n;
+ 1)= t(n;
) + ta(n;
+ 1) :Consequently, we
an infer thatt(n;
+ 1) � t(n;
) + ta(n;
+ 1) + t(n� par(n;
+ 1)holds for the
hosen fun
tion, whi
h establishes the estimation in the innerindu
tion.This, in turn,
loses the estimation for the outer indu
tion.What remains it to see that the t0(n;
) = t(n+n0;
) has the required property.But this is implied by n0 � �00g��0g�0g � n. �While one
an use this proof to establish this bound for �00g arbitrarily
lose to�, note that this has a signi�
ant impa
t on the
onstant fa
tor.Using again
! � �
e�
, we obtain:Corollary 6.6. Parity games with o(pn)
olours
an be solved inO�m��n
2 �
(
)� time for all � > 6e1 23 .6.3. High number of
oloursWe
lose with a rough analysis of the
ost for medium and high numbers of
olours. In both
ases, we aim at roughly aligning the the size of the
all tree andthe
ost of the approximation.Different to the previous subse
tion, we �x the parameter initially and do notadjust it during the algorithm. We assume that the number of
olours and theparameter are large, e.g.,
; par 2 !(3pn), in our estimation (the main target is
 2
(pn)). 35

For
 = pn, we roughly balan
e the
ost of the approximation for a parameterin �(pn) and the size of the
all tree.To get an impression of the size of the
all tree, we
an en
ode ea
h node ina
all tree by a sequen
e of
all and return symbols. If we assume

olours anda parameter par (whi
h remains
onstant for simpli
ity), then ea
h node in su
h a
all tree
an be en
oded by a sequen
e, where� the number of
alls is smaller than the number of
olours and� the number of
alls and par times the number of returns is at most the num-ber of positions.The number of leaves en
oded by these sequen
es
an be estimated fromabove by �
+ npar
 �, where the estimation from above allows any sequen
e of

alls and npar returns. The number of positions in the
all tree is of the sameorder.The
ost of a single estimation with parameter par is O�
m� par + d0:5
epar ��.For
 � pn, we sele
t par =
. This results in an estimation of the
ost of theapproximations of 2O(
) (assuming
 2
(logn)), and an estimation of the size ofthe
all tree of (1 + n
2)O(
).Theorem 6.7. Parity games with n positions and
 � pn
olours
an be solvedin �1 + n
2�O(
) time.For
 � pn, we
hoose a parameter around pn, e.g., par = dpne. Thisresults in a
all tree of approximate size and approximation whi
h takes approxi-mate time �1 +
pn�O(pn). The
ost of the overall
omputation is therefore alsoin �1 +
pn�O(pn).Noting that
 � pn is not used in the estimation, we get:Theorem 6.8. Parity games with n positions and

olours
an be solved in�1 +
pn�O(pn) time.This essentially boils down to the nO(pn) result of Jurdziński, Paterson, andZwi
k [12℄, with a slight improvement when log �
pn� is in o(logn).36

A
knowledgements. I would like to thank the ex
eptionally through and helpfulreviewers for their useful
omments. They helped to make espe
ially Se
tion 6.2signi�
antly more a

essible.This work was partially supported by the Engineering and Physi
al S
ien
eResear
h Coun
il (EPSRC) through grant EP/H046623/1.Referen
es[1℄ R. ALUR, T. A. HENZINGER, AND O. KUPFERMAN, Alternating-time tem-poral logi
, Journal of the ACM, 49 (2002), pp. 672�713.[2℄ D. BERWANGER, A. DAWAR, P. HUNTER, AND S. KREUTZER, Dag-widthand parity games, in Pro
. STACS, Springer-Verlag, 2006, pp. 524�436.[3℄ H. BJÖRKLUND, S. SANDBERG, AND S. G. VOROBYOV, Memoryless de-termina
y of parity and mean payoff games: a simple proof, Theoreti
alComputer S
ien
e, 310 (2004), pp. 365�378.[4℄ H. BJÖRKLUND AND S. VOROBYOV, A
ombinatorial strongly subexpo-nential strategy improvement algorithm for mean payoff games, Dis
reteAppl. Math., 155 (2007), pp. 210�229.[5℄ A. BROWNE, E. M. CLARKE, S. JHA, D. E. LONG, AND W. MARRERO,An improved algorithm for the evaluation of �xpoint expressions, Theoreti
alComputer S
ien
e, 178 (1997), pp. 237�255.[6℄ L. DE ALFARO, T. A. HENZINGER, AND R. MAJUMDAR, From veri�
ationto
ontrol: Dynami
 programs for omega-regular obje
tives, in Pro
. LICS,IEEE Computer So
iety Press, June 2001, pp. 279�290.[7℄ E. A. EMERSON, C. S. JUTLA, AND A. P. SISTLA, On model-
he
king forfragments of �-
al
ulus., in CAV, 1993, pp. 385�396.[8℄ E. A. EMERSON AND C. LEI, Ef�
ient model
he
king in fragments ofthe propositional �-
al
ulus, in Pro
. LICS, IEEE Computer So
iety Press,1986, pp. 267�278.[9℄ J. FEARNLEY AND S. SCHEWE, Time and parallelizability results for pa-rity games with bounded tree and DAG width, Logi
al Methods in ComputerS
ien
e, 467 (2013), pp. 1�31. 37

[10℄ M. JURDZIŃSKI, De
iding the winner in parity games is in UP \
o-UP,Information Pro
essing Letters, 68 (1998), pp. 119�124.[11℄ , Small progress measures for solving parity games, vol. 1770 of Le
-ture Notes in Computer S
ien
e, Springer, 2000, pp. 290�301.[12℄ M. JURDZIŃSKI, M. PATERSON, AND U. ZWICK, A deterministi
 subex-ponential algorithm for solving parity games, vol. 38, 2008, pp. 1519�1532.[13℄ D. KOZEN, Results on the propositional �-
al
ulus., Theor. Comput. S
i.,27 (1983), pp. 333�354.[14℄ O. KUPFERMAN AND M. VARDI, Module
he
king revisited, in Pro
. CAV,vol. 1254 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, 1997,pp. 36�47.[15℄ M. LANGE, Solving parity games by a redu
tion to SAT, in Pro
. Int. Work-shop on Games in Design and Veri�
ation, 2005.[16℄ W. LUDWIG, A subexponential randomized algorithm for the simplesto
hasti
 game problem, Inf. Comput., 117 (1995), pp. 151�155.[17℄ R. MCNAUGHTON, In�nite games played on �nite graphs., Ann. Pure Appl.Logi
, 65 (1993), pp. 149�184.[18℄ J. OBDR �ZÁLEK, Fast mu-
al
ulus model
he
king when tree-width isbounded, in Pro
. CAV, Springer-Verlag, 2003, pp. 80�92.[19℄ N. PITERMAN, From nondeterministi
 Bü
hi and Streett automata to deter-ministi
 parity automata, Journal of Logi
al Methods in Computer S
ien
e,3 (2007).[20℄ A. PURI, Theory of hybrid systems and dis
rete event systems, PhD thesis,Computer S
ien
e Department, University of California, Berkeley, 1995.[21℄ S. SCHEWE, Solving parity games in big steps, in Pro
eedings of the27th Conferen
e on Foundations of Software Te
hnology and Theoreti
alComputer S
ien
e (FSTTCS 2007), 12�14 De
ember, New Delhi, India,vol. 4805 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, 2007,pp. 449�460. 38

[22℄ , Synthesis of Distributed Systems, PhD thesis, Universität des Saarlan-des, 2008.[23℄ , Tighter bounds for the determinisation of Bü
hi automata, in Pro
eed-ings of the Twelfth International Conferen
e on Foundations of SoftwareS
ien
e and Computation Stru
tures (FoSSaCS 2009), 22�29 Mar
h, York,England, UK, vol. 5504 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, 2009, pp. 167�181.[24℄ S. SCHEWE AND B. FINKBEINER, Satis�ability and �nite model propertyfor the alternating-time �-
al
ulus, in Pro
eedings of the 15th Annual Con-feren
e of the European Asso
iation for Computer S
ien
e Logi
 (CSL2006), 25�29 September, Szeged, Hungary, vol. 4207 of Le
ture Notes inComputer S
ien
e, Springer-Verlag, 2006, pp. 591�605.[25℄ , Synthesis of asyn
hronous systems, in Pro
eedings of the 16th Interna-tional Symposium on Logi
-Based Program Synthesis and Transformation(LOPSTR 2006), 12�14 July, Veni
e, Italy, vol. 4407 of Le
ture Notes inComputer S
ien
e, Springer-Verlag, 2006, pp. 127�142.[26℄ M. Y. VARDI, Reasoning about the past with two-way automata, in Pro
.ICALP, Springer-Verlag, 1998, pp. 628�641.[27℄ J. VÖGE AND M. JURDZIŃSKI, A dis
rete strategy improvement algorithmfor solving parity games (Extended abstra
t), in Pro
. CAV, Springer-Verlag,July 2000, pp. 202�215.[28℄ T. WILKE, Alternating tree automata, parity games, and modal �-
al
ulus,Bull. So
. Math. Belg., 8 (2001).[29℄ W. ZIELONKA, In�nite games on �nitely
oloured graphs with appli
ationsto automata on in�nite trees, Theor. Comput. S
i., 200 (1998), pp. 135�183.[30℄ U. ZWICK AND M. PATERSON, The
omplexity of mean payoff games ongraphs, Theoreti
al Computer S
ien
e, 158 (1996), pp. 343�359.
39

