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Abstract. Power grids are generally regarded as a very reliable systems, nevertheless outages
and electricity shortfalls are common events. Severe accidents have the potential to produce
significant social and economic consequences, hence it is important to reduce their likelihood
by assuring safe operations robust topologies. Grid safety relies on accurate vulnerability mea-
sures, control schemes and good quality information, for instance during power network oper-
ations, contingency analysis is used to constrain the network to secure operative states with re-
spect to predefined failures (e.g. list of single component failures). In order to better understand
the power network weakness and strengths a variety of robustness metrics have been introduced
in literature. In this work power network vulnerabilities to failure events are analysed and the
most relevant outages have been ranked using different metrics, i.e. topology-based, flow-based
and hybrid metrics. Single line failures (N-1 contingencies) have been investigated and sources
of uncertainty such as variability in the power demand and imprecision in the line parameters
have considered in all the phases of the calculation. The assumption underpinning the method-
ologies and results are discussed. The different metrics have been compared before and after
the uncertainty quantification. A modified version of the IEEE 118 bus power network has been
selected as representative case study. Through the metrics comparison it has been possible
to point out interesting aspects of the different robustness indexes and better consideration of
uncertainties in the calculations.
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1 INTRODUCTION

Power Grid has been historically developed to distribute electric power from large size iso-
lated power plants to the various end-user loads (e.g. industry or residences) by means of power
transmission and distribution networks. The distribution grids topologies were usually designed
in radial fashion to comply with the needs of a simple one-way flow of electricity, i.e. from the
main grid to the local users.

In the last decades, the power grid traditional paradigm has deeply changed. Distribution
networks are getting more active in the power production due to increasing share of distributed
renewable generators (e.g. micro wind turbines, photovoltaic panels)[1]. Non-classical design
and non-radial complex meshed topologies are likely to became more common in the future
[2]. In this designs of increasing complexity, is important to understand the role played by
variability in both power demand and power production sides and by imprecise knowledge of
the network parameters. More specifically, allocation of renewable distributed generators are
injecting considerable amount of uncertainty [3], making the system behaviour less determinis-
tic and classical vulnerability assessment less reliable. Furthermore structural weaknesses have
to be understood to provide more robust topologies and mitigate likelihood of unexpected haz-
ardous scenarios.

The presented scenario highlights the need of develop improved frameworks for power grid
vulnerability analysis (i.e. sophisticated uncertainty quantification techniques) as well as the
need of define enhanced metric for the identification of operational and structural risks. Ro-
bustness of power networks is defined as the degree to witch the network is able to withstand
an unexpected event without degradation in performance [4]. A closely related concept is the
vulnerability, which is sometime regarded as lack of robustness. A wide range of indexes have
been proposed in literature for their assessment, e.g. using realistic simulation of network re-
sponse and power-flow solution (“power-flow-based metrics”).

Vulnerability assessments for power girds were also based on topological analysis of net-
works, using techniques founded on complex network theory [5]. For these approaches, the
vulnerability indexes have been computed using pure topological approaches (i.e. ‘topology-
based metrics’) or enhanced by including electrical engineering concepts in the analysis (i.e.
‘hybrid metrics’). The hybrid metrics have been introduced on the idea that pure topological
approach may fail in exhaustive captivation of the electric networks complexity and criticality,
see as example [6]. It is work remarking that a controversy still open centred on weather or not
pure topological approaches and hybrid approaches are capable of fully capture vulnerabilities
in power girds [5]. Few examples of recently applied metrics are the effective resistance (RG),
network spectral radius (ρG), algebraic connectivity (ΛG) and extended betweenness (Be). For
further details about these metrics the readers are reminded to [7], [8] or [9].

M. Ouyang et al. [11] analysed correlation of six topology-based vulnerability metrics re-
spect to single and multiple component failure. E. Bompard et al. [8] compared two hybrid
metrics (i.e. extended betweenness and net-ability) by ranking components with respect to the
system vulnerability. Recently, Lucas Cuadra et al. [5] reviewed power grid robustness met-
rics computed adopting complex network theory approaches.Concerning the power-flow-based
metrics, quantity such as system cascading index (CEI), has been applied to estimate the degra-
dation of performance, likelihood and extent of cascading failures [1]-[10].
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To the Authors knowledge, further comparison between different metrics seems to be needed.
In this survey, single line failures (N − 1 contingencies) have been considered as threatening
events. Sources of uncertainty due to imprecise knowledge of the network parameters and vari-
ability in the power demand have been accounted for. Their effects have been quantified in the
vulnerability metrics and in the contingency ranking. In addition, different power-flow models
(i.e. alternate current and direct current power-flows) have been compared in the results. The
work aim is to better understand strength and limitations of the different metrics and explore
their capability in ranking critical components and spot network strength and weaknesses.

The paper is structured as follows:
Power network modelling and a broad review power-flow solution methods is introduced in
Section 2. Contingency analysis and uncertainty modelling are described in in Section 3. In
Section 4 robustness and vulnerability concepts in power networks are discussed and the metrics
used in the assessment defined. In Section 5 a case study and the results for different approaches
are described. Some of the limitation faced and results are further discussed in Section 6 and
Section 7 close the paper.

2 BACKGROUND AND POWER NETWORK MODELLING

A power network structure can be represented by an unweighed graph G = {N ,L}, where
N is the set of network nodes (or busses) and L is the set of links (branches or feeders). The
topology of the graph is identified by a squared symmetric matrix called adjacency matrix A,
which elements ai,j are equal 1 if the node i is linked to the node j or 0 if no direct link exists.
Links can be associated to some measure of interest (e.g. length, traffic, power flow, line resis-
tance, etc.) and the adjacency matrix rewrite in its weighted formW , where the matrix elements
wi,j are the weights of the links between nodes i and j and 0 if not linked.

Spectral graph theory is used analyse spectral graph proprieties of networks such as its eigen-
values eigenvectors. The Laplacian L of the adjacency matrix A is defined as [12]:

LA = DA − A (1)

where A is the adjacency matrix and DA is the diagonal matrix of degrees for A. The matrix
L can be computed using the weighed adjacency matrix W (i.e. including electrical concepts
such as susceptances). Spectral proprieties of graph G bears valuable information about the net-
work the graph represent and some eigenvalues can be associated to its robustness [13]. Further
details are going to be discussed in Section 4.

AC and DC Power Flow

Power flow methods are commonly used to solve problem in power grid analysis, as example
the energy dispatch problem, i.e. optimal schedule of power production, or security constrained
optimal power scheduling. Different solvers are founded on stronger or weaker assumptions
and alternating current (AC) and direct current (DC) approaches are widely applied.
The AC power flow is a non linear solver accounting both active and reactive power flows
without neglecting loses. In the AC formulation the active and reactive nodal equations are as
follow [14]:
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Pk =
N∑
i

|Vi||Vk|[Gi,kcos(θi,k) +Bi,ksin(θi,k)] (2)

Qk =
N∑
i

|Vi||Vk|[Gi,ksin(θi,k)−Bi,kcos(θi,k)] (3)

where Pk and Qk are active and reactive power injected in the node k, respectively, |Vi| is the
voltage magnitude of node i and θi,j is the voltage angle difference between node i and k. The
elements Gi,k and Bi,k are the conductance and susceptance of the link connecting node i and
k, respectively.The Equations 2-3 are solved for each k ∈ N by some iterative techniques (e.g.
Newton-Raphson method) although convergence is not always assured.

The DC power flow is a linear approximation of the AC power flow which account for just
active power flows, neglect power loses and reactive power management. It has been widely
used to alleviate the computational cost of numerically intensive codes (e.g. reliability based
designs or robust optimizations) and it has always a feasible solution. It has been adopted in
transmission network analysis [14] but can be found also in distribution systems analysis [15].
The DC power flow formulation can be written as follows [14]:

Pk =
N∑
i

|Vi||Vk|Bi,ksin(θi,k) ≈
N∑
i

Bi,kθi,k (4)

were the equation 4 is obtained under the following DC power flow assumptions:

• Flat voltage profile |Vi| = 1 p.u. ∀ i ∈ N

• Small voltage angle differencessin(θi,k) ≈ θi,k;

• R� X negligible resistance;

It is worth remarking that DC model although useful in reducing computational time, might
result in a poor approximation [14]. In order to obtain good quality results, grid voltage profile
should be as flat as possible and ratio X/R relatively high. This means that the quality of the
DC solution is system dependent and operative state dependent, hence its validity should be
carefully assessed before use. The vast majority of topology-based metrics when enhanced by
using electrical concepts made use of the DC assumptions [5]. Following the consideration
made, the AC power flow is going to be considered as baseline method for comparison with DC
power flow solutions.

3 CONTINGENCIES ANALYSIS AND UNCERTAINTY

Contingency Selection

A contingency in power networks is defined as the unexpected failure of one of its compo-
nents (e.g. links, nodes, generators, transformers) [1]. Contingency analysis is commonly used
to constrain the network to safe operational states if a contingency occurs. Generally speaking,
even if the network has modest size (e.g. small distribution grid), a complete analysis of all pos-

sible failures is infeasible. An exhaustive contingency list will has to include
N∑
k=1

N !/k!(N−k)!

failures, where k is the number of failed components. Consider as example a very small net-
work of just 50 components, exhaustive list include 50 single component failures (i.e. N − 1

4



Roberto Rocchetta,Edoardo Patelli

contingencies), 4900 N − 2 contingencies, 705600 N − 3 contingencies, more than 1.32x108

N − 4 contingencies and so on. In power grid reliability and risk assessment, common practice
consists in selecting a subset of the more threatening N − 1 or N − 2 contingencies based on
expert opinion or some identification procedure [17]. Other works focused also on selecting the
most threatening attack of link and node based on complex network measures such as maximum
centrality [5]. In this work, the N − 1 single line trips are analysed and the most threatening
failures identified using different metrics. In addition, uncertainty analysis have been performed
as described in the following subsection.

Uncertainty

Generally speaking, uncertainty can be separated in two groups, the so called aleatory and
epistemic uncertainties [18]. The aleatory is related to stochastic behaviours and randomness
in events and variables. The epistemic is commonly related to lack of knowledge about a par-
ticular behaviour, imprecision in measurement and poorly designed models. Adequately model
uncertainty is paramount to improve robustness of the analysis accounting for both lack of infor-
mation and inherent randomness (e.g. environmental conditions, future power demand, power
produced by renewable generators, etc.). In the power grid context many of the sources of
uncertainties which might be relevant for the analysis. Among the others, some of the well-
recognized sources of variability are electricity price volatility, load power demand and envi-
ronmental variability, model assumption (e.g. DC or AC power flow, contingency selection)
and many others. The sources of uncertainty investigated (similarly to what done in [26]) are:

• Uncertainty in the line emergency rating which might be due to, e.g. neglected effect of
ambient wind and temperature.
The lack of precise knowledge on the emergency ratings of network lines have been mod-
elled using uniform distributions around a given design value [26]. The uniform distribu-
tion has been used consistently with the principle of maximum entropy.

• Load demand uncertainty and variability.
The aggregated load connected to a node can be described by a Normal distribution [1].
Its corresponding probability distribution function is the following:

f(PL,i) =
1√

(2π)σi
exp

(
−(PL,i − µi)

2σ2
i

)
(5)

where PL,i is the load demand or power withdrawn form node i at hour of the day t, µi
is the load mean value and σi is the standard deviation at node i ∈ N . The parameter of
the distribution can be estimated from historical records of load demand per node.

A simple Monte Carlo sampling procedure have been used to propagate uncertainty from
the input to the output quantities of interest. Within each Monte Carlo run, sampling procedure
(e.g. inverse transform sampling) is used to obtain a random realization for each uncertain
parameter (nodal loads and line loading limits). The samples are forwarded to the system solver
for vulnerability assessment. The algorithm allows obtaining a probabilistic description of the
outputs variability, i.e. the output probability distribution functions with respect to the input
uncertainties.
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4 ROBUSTNESS AND VULNERABILITY METRICS

Robustness in power grid is defined as the degree to witch the network is able to withstand
an unexpected event without degradation in performance [4]-[11]. Vulnerability is used to score
low reliability power grids by assessing drops in performance metrics. The network vulnerabil-
ity V(Ci) after the contingency (Ci) occurs can be quantified as follows [5]:

V(Ci) =
M−M(Ci)

M
(6)

where M(Ci) is the network vulnerability metric after contingency Ci and M is the metric
value for the undamaged network.

Power flow-based metrics

Flow-based indexes can be obtained by simulating network in normal and damaged states
and using power flow solvers (e.g. DC or AC). In this work a cascading metric (CEI(Ci)) is
obtained by simulating the outage with both AC power flow contingency analysis and its linear
DC approximation. Generally speaking, a “cascading” is a sequential successions of dependent
events [21]. In power system cascading analysis, many are the factors that can contributed or
generate a sequence of failures. In a general way, line tripping can have two origins, one is load-
driven when thermal expansion can result in the line dropping beneath its safety clearance, and
one is load-independent such as mechanical failure [22]. In the adopted model, overload events
are the one accounted for, the metric adopted to assess the cascading overload vulnerability is
analogous to the one presented in [21]:

CEI(Ci) =
∑
l∈L
P(Cl|Ci)SevOLl(Ci) (7)

where P(Cl|Ci) is the probability of secondary trip of line l after line i contingency occurs
and SevOLl(Ci) is the severity function for line l overload if failure Ci occurs.

Severity functions are used to quantify the extent of the failure and different definitions are
available [1]. The continuous severity function for overload is specifically defined for each
circuit (distribution lines and transformers) and it measures the extent of violation in terms of
excessive power flow as the percentage of rating:

PRl =
Pl

Pemerg,l
(8)

where Pl is the active power flowing in the line l and Pemerg,l is the emergency rating of
the line l ∈ L. The expression for the continuous severity due to overload (SevOLl) of a line l
is findable in [21]. Continuous severity functions, if compared with discrete severity functions,
have the advantage of providing non zero risk results for scenarios close to the performance
limits, but not failure, which reflects the realistic sense that a near violation scenario is as a
matter of fact risky. The probability of cascading trip of line k after an initiating contingency i
can be expressed as in [10]:

P(Cj|Ci) =
Pj(Ci, ζ)− P0,j(ζ)

Ptrip,j(Ci, ζ)− P0,j(ζ)
(9)
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where Pj(Ci, ζ) is the post-contingency flow on circuit j given contingency i and operative-
environmental condition ζ , Ptrip,j(Ci, ζ) is defined as the flow leading to a certain trip of the
line j (assumed to be 125% of its maximum capacity) and P0,j(ζ) is the pre-contingency flow
in the line j if condition ζ holds. Equation 9 is related to the fact that higher load levels and
larger transients increases the likelihood of cascading event on circuit k after initiating event on
circuit i. The probability P(Cj|Ci) is zero defined for Pj(Ci, ζ) ≥ 0.9Pemerg,j .

Topology-based and hybrid metrics

Power network vulnerability is also assessed by pure topological analysis of the grid struc-
ture. These approach use unweighted adjacency matrix A to represent network structure, com-
ponents are regarded as identical and no rough electrical concept is included in the analysis [5].
Similarly, hybrid metrics adopt complex network concepts but enhanced by inclusion of elec-
trical engineering knowledge in the analysis. These often include concepts such as DC approx-
imation and electrical concepts such as line emergency rating Pemerg,l or link impedances. For
these approaches the weighted adjacency matrix W is built using the matrix of susceptances
Bi,k [13]-[5]. The analysed metrics in this paper are: graph spectral radius, algebraic connectiv-
ity, effective graph resistance [13], graph global efficiency [28] and extended betweenness [8].

In spectral analysis of graphs, the largest eigenvalue of the adjacency matrix is known as
graph spectral radius (ρG). It has been used as indicator of robustness of networks against dy-
namic processes such as virus spreading or epidemic processes [20]. Few works attempted to
relate spectral radius to the power grid vulnerability and relatively small values have been con-
sidered as indicator of robustness. In [13] it has been highlighted that spectral radius relates to
process-based system transitions while algebraic connectivity to connectivity-based transitions.

Another important metrics obained through spectral analysis of the network graph is the
second smallest eigenvalue of the Laplacian matrix L, also known as the algebraic connectiv-
ity (ΛG). The corresponding eigenvector is named the Fiedler vector which elements provide
information about graph partitioning [9]. The metric ΛG is used as indicator of the level of con-
nection between nodes in a graph, higher values means that the network is more difficult to be
partitioned in independent components. As example null value for ΛG means that the network
is disconnected. For these reasons the algebraic connectivity is regarded as a basic indication
of network robustness level [19].

The effective graph resistance (RG) is an hybrid metric which have been sometimes related
to the power grid vulnerability [13]. The effective resistance Ri,j between a pair of nodes i
and j is the potential difference between these nodes when a unit current is injected at node i
and withdrawn at node j. In order to compute RG information about the grid topology links
parameters is needed. RG can be obtained as follows:

RG =
N−1∑
i=1

1

µi
(10)

were µi are the eigenvalues of the L obtained from the weighted adjacency matrix of suscep-
tances.
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Others vulnerability indicators commonly used in the power network topological analysis are
global efficiency (EG) and betweenness. The efficiency of a network is defined as the average
of inverses of the distance for all nodes. The EG is defined as [28]:

EG =
1

(N − 1)N

N−1∑
i,j∈N i 6=j

1

Di,j
(11)

where N is the number of nodes in the network and Di,j is the shortest path length between
node i and j.

Betweenness has been recently used in [16] to identify most vulnerable lines in power sys-
tems. The extended betweenness (Te(l)) has been introduced in [8] as fast metric to spot most
critical lines in terms of system vulnerability. The metric Te(l) is based on both complex net-
work and electrical concepts. For the line l is defined as follows [8]:

Te(l) = max(|
∑
g∈G

∑
d∈Ld

Cd
gf

gd
l |) l ∈ L (12)

where Gn and Ld are set of generation nodes and load nodes, Cd
g is the power transmission

capacity from generator g to load d and f gdl is the linearised power flow sensitivity in the line l
with respect to an injection in generation node g and withdraw in the demand node d. Cd

g and
df gdl are computed as follows [8]:

f gdl = flg − fld (13)

Cd
g = min

l∈L

(
Pemerg,k
|f gdl |

)
(14)

where fld and flg are the elements of the power transfer distribution factors (PTDF) matrix
corresponding to line l and demand node d and generation node g, respectively. The reader is
reminded to [29] for further details on PTDF capability and calculation procedure.

5 CASE STUDY

The selected case study is a modified version of the IEEE 118 nodes test system. The network
counts 118 nodes, 186 lines and 54 generators which makes it fairly complex and suitable for
the analysis. Within the gird there are 55 PV nodes (i.e. generators nodes g) and 64 PQ nodes
(i.e. load nodes d). The network model and data can be found between the MatPower software
[24] or in reference [27]. Figure 1 displays the network structure and generators location. The
original network data have been slightly modified in order to simulate a condition of higher
stress for the network. The modified system includes an increment in the load demand of 30 %
and Pemerg,l ∀ l ∈ L reduced of 20%.

Results power-flow-based metrics

The AC and its linearised version are used to simulate the network in normal and contingency
states the cascading index CEI computed and line outages ranked. The analysis is performed
as follows:
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One-line Diagram of IEEE 118-bus Test System

IIT Power Group, 2003

System Description:

118 buses
186 branches
91 load sides
54 thermal units

Figure 1: The IEEE 118 bus test system [27].

• First, AC or DC approach is selected and optimal power flow is solved. This solution is
the optimal power production subject to line flow limits, generation constraints and load
demanded.

• The contingency analysis is performed by removal of lines from the system. The AC or
DC methods simulate the power flows redistribution in the branches given the optimal
power scheduled.

• Finally, the CEI(l) is computed for each contingency in equation 7. Line vulnerability
are ranked and ordered based on the CEI value.

Figures 2 display a comparison between AC and DC solutions. Y-axis shows the normal-
ized CEI results and the X-axis the line identification number (ID). It can be noticed that DC
power flow overestimated the cascading index for some of the contingency listed (e.g. lines
ID 141-150) and underestimate it for others e.g line ID 13, 43, 153 (l8−5, l26−30, l89−92). This
result is mainly due to the approximate percentage of rating PRk obtained in the DC approach.
Nevertheless, results are in relatively good agreement, therefore it might be argued that DC
solutions approximate AC solutions fairly well in both undamaged and damaged network con-
ditions. Table 1 displays the 10 most vulnerable lines in the system, with respect to the CEI
metric. In both AC and DC flow-based approaches the ranking results are fairly similar and
similar to previous studies, see as example [23]. The most threatening lines result to be l9−10,
l8−9, l8−5, l26−30 for both cases.
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Figure 2: Normalized CEI results for N-1 line contingency. Comparison between AC solution and DC approxi-
mation solution.

Rank CEIAC CEIDC
1 l9−10 0.57365 l8−9 0.5931
2 l8−9 0.57246 l9−10 0.5931
3 l8−5 0.39562 l8−5 0.3028
4 l26−30 0.35366 l26−30 0.2549
5 l89−90 0.17620 l91−92 0.2297
6 l89−92 0.15594 l89−90 0.2066
7 l89−91 0.07426 l88−89 0.1099
8 l91−92 0.02133 l82−83 0.1056
9 l88−89 0.01678 l89−91 0.0973

10 l85−89 0.00246 l89−92 0.0691

Table 1: Ten most vulnerable lines for the IEEE 118 bus system with respect to the normalized cascading index.
The AC and DC ranking score comparison.

Uncertainty Quantification for the AC and DC Solutions

The AC and DC cascading indexes have been obtained by propagation of the uncertainty in
the load and in the emergency ratings. In accordance with previous studies, the load demand
PL,i ∀i ∈ N has been modelled as normal random variable distributed around mean µi and
with σi equal to 10 % of µi. Uniform distributions are assumed to model lack of precision in
the line maximum allowed flows. The upper and lower bounds have been set equal to 0.98 %
and 1.02 % of the design values. A single loop Monte Carlo has been employed to sample input
uncertainty and quantify its extent in the output. The number of MC samples for each uncertain
variable have been set equal to 2x103, each run counts 64 samples of load demand PL,d and
185 samples of emergency rating Pemerg,l one for each demand node and each line ∈ G in the
network. Samples have been forwarded to the AC and DC system solver and CEI(l) values
obtained as described in the previous subsection. The contingencies have been ranked based on
the expected value of the cascading metric and the 10 most vulnerable links have been selected.
The ranking scores accounting uncertainty results slightly different compared to the determin-
istic case. Nevertheless, metrics drops are affected by uncertainty and some of the lines failures
are more affected than others. In figure 3 are displayed CEI variabilities boxes for the 10 most

10



Roberto Rocchetta,Edoardo Patelli

vulnerable lines. It can be noticed that for the DC approximation CEI for lines l9−10 and l8−9

(rank 1 and 2) bear less uncertainty if compared to the AC case. In table 2 are displayed coeffi-
cients of variation (Cov) for the 5 most dangerous lines. Coefficient of variation is computed as
ratio between standard deviation and expected value and it is a standardized measure of disper-
sion for the CEI distribution. The higher values confirm that AC solutions are more sensitive
to the input uncertainty, which is probably due to the assumption made in order to apply the DC
solver.

Figure 3: Variability in the CEI for the 10 most vulnerable lines.

rank 1 2 3 4 5 6 7 8 9 10
CovAC 4.5% 4.5% 2.2% 0.0% 8.0% 8.5% 11.8% 20.7% 23.6% 81.2%
CovDC 3.2% 3.2% 2.5% 0.0% 0.5% 5.4% 1.3% 1.% 0.9% 20.2%

Table 2: Variability box-plot for the ten most vulnerable lines in the IEEE 118 bus system. Coefficients of variations
comparison when AC and DC power flows models are used.

Topology-based metrics and hybrid metrics results

Topology-based and extended hybrid metrics have been computed in both damaged and un-
damaged states. The analysis is carried as follows:

• First, adjacency matrix A and weighted adjacency matrix W are obtained for the undam-
aged network.

• The considered metricsMA andMW are computed for both A and W as described in
section 4.

• The contingency analysis is performed by removing lines from the network. The matrix
A and W corresponding to the graph of the damaged network are obtained and M(l)
computed..

11



Roberto Rocchetta,Edoardo Patelli

• Finally, vulnerabilities V(l) are computed as in equation 6 for each line failure. Topology-
based and hybrid approach used A and W matrix respectively. The line failure are ranked
based on normalized increment in the system vulnerability.

The topology-based metric which have been obtained in the approach are the graph global
efficiency EG , ΛG(A) and ρG(A). These are computed using the unweighted adjacency matrix
A in a purely topological way. Similarly, the extended hybrid metrics have been computed using
the weighted adjacency matrix W built using susceptance matrix. These approaches account
for both topology and electrical concepts. In this work RG , ΛG(W ) and ρG(W ) are the hybrid
metrics being analysed.

Furthermore, normalized Te(l) have been computed fore each line as in equation 12, used as
an additional metric for branch ranking. Table 5 shows metric values for the undamaged IEEE
118 power network.

EG(A) ρG(W ) ρG(A) ΛG(W ) ΛG(A) RG(W )
0.216 259.56 4.112 0.3 0.0274 1565.6

Table 3: Topology-based and hybrid metrics results for the undamaged original network.

Table 5 shows the 10 most relevant links with respect to Te(l) and the variation in the vulner-
ability. It can be noticed that, although different vulnerability metrics produce different scores,
most vulnerable lines are successfully spotted by many of the metrics. For instance, critical
lines are l38−65, l23−24, l65−68, l30−38 all ranked among the top 10 in 6 of the considered met-
rics. Relevant for the system are also lines l81−80 and l68−81 which have been identified among
the ten most critical lines for 5 of the considered metrics. This result suggest that for the com-
ponents ranking aims few differences can be found between hybrid and topology-based metrics.

Relative metrics drops and increments are displayed in figure 4, results have been normalized
for graphical reasons. It can be noticed that some of system failures makes drop below zero
some of the normalized vulnerability index (e.g. algebraic connectivity). A drop below zero
means an increment in the robustness of the grid which is caused by the lines removal (e.g.
line ID 146). The capability of the metrics to spot components which have unexpected negative
effects for the network robustness can have an interesting features of hybrid and topology based
metrics, exploitable to improve network robustness and future topology design.

Uncertainty Quantification for Topology-based and hybrid vulnerability metrics

Single loop Monte Carlo sampling procedure has been adopted as in the previous analysis
and uncertain input variable propagated and effects quantified in the output. The Monte Carlo
simulation number of runs and input probability distributions has been set equal to the one used
for the AC and DC power flow uncertainty quantification. Results obtained for the IEEE 118
power system shows that the rankings are the same as in the deterministic case. For sake of syn-
thesis, only results for one of the metrics are displayed, the extended betweenness.Coefficient of
variation for the Te(l) have been displayed Table 5. The results shows that considered sources
of uncertainty affect less these approaches, i.e. the maximum value for the Cov 0.5 % for the
ten most vulnerable lines. This is a rather expected result if considered that the load demand
variability do not influence any of the considered topology-based and hybrid metrics.
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Figure 4: Comparison of relative drops and increment in different vulnerability metrics for different line contin-
gencies.
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Rank VEG(A) VρG(W ) VρG(A) VΛG(W ) VΛG(A) VRG(W ) Te(l)
1 l38−65 l68−116 l69−77 l65−68 l23−24 l65−68 l65−68

2 l8−9 l65−68 l49−69 l38−65 l68−81 l38−65 l38−65

3 l85−86 l68−81 l69−75 l68−81 l81−80 l68−81 l68−81

4 l30−38 l68−69 l75−77 l81−80 l38−65 l81−80 l81−80

5 l23−24 l64−65 l47−69 l30−38 l77−82 l23−24 l30−38

6 l49−69 l65−66 l77−80 l23−24 l65−68 l30−38 l23−24

7 l65−68 l81−80 l69−70 l82−83 l69−77 l70−71 l64−65

8 l82−83 l38−65 l47−49 l77−82 l82−83 l82−83 l77−82

9 l69−77 l63−64 l49−54 l70−71 l24−70 l100−103 l65−66

10 l68−116 l69−77 l70−75 l80−98 l30−38 l105−108 l8−30

rank VEG(A) VρG(W ) VρG(A) VΛG(W ) VΛG(A) VRG(W ) Te(l)
1 0.0306 0.4956 0.0196 0.3818 0.2415 0.1945 0.3423
2 0.0251 0.0299 0.0174 0.3524 0.1782 0.1593 0.2671
3 0.0230 0.0183 0.0159 0.2718 0.1698 0.1146 0.2661
4 0.0228 0.0062 0.0145 0.2662 0.1472 0.1111 0.2631
5 0.0207 0.0005 0.0133 0.2140 0.1454 0.1062 0.2349
6 0.0204 0.0004 0.0130 0.2030 0.1340 0.1026 0.1650
7 0.0183 0.0002 0.0128 0.1085 0.1300 0.0964 0.1454
8 0.0172 4.64E − 05 0.0127 0.1016 0.1126 0.0743 0.1380
9 0.0167 1.97E − 05 0.0116 0.0868 0.0880 0.0588 0.1256

10 0.0166 1.86E − 05 0.0102 0.0722 0.0739 0.0529 0.1187

Table 4: Ten most vulnerable lines for the IEEE 118 system. Ranking comparison with respect to different metrics
and normalized drops in the vulnerability values.

Rank 1 2 3 4 5 6 7 8 9 10
Cov Te(l) 0.5 % 0.3% 0.5% 0.5% 0.3% 0.3% 0.4% 0.5% 0.4% 0.3%

Table 5: Comparison of coefficients of variations for the ten most vulnerable lines ranked using extended be-
tweenness Te(l).

6 DISCUSSION AND LIMITATIONS

A modified version of the IEEE 118 nodes power network has been analysed and lines sorted
with respect to their contribution to the grid vulnerability. The comparison between topology-
based and hybrid approaches shows similarities in the ranking results. Some of the approaches
required higher computational cost to perform the analysis, i.e. the ones based on spectral anal-
ysis of the network. The higher computational cost is required for obtain a full spectrum of
eigenvalues and eigenvector for each damaged condition (and relative W , A and L). It goes
without saying that the larger the network size, the higher the computational time required for
the analysis, nevertheless, adjacency matrix for real world power network are often sparse ma-
trix and therefore techniques [30] can be used to obtain just few eigenvalues. These can be
used to speed up the procedure when just few eigenvalues are needed, e.g. spectral radius and
algebraic connectivity.

Contingency analysis has been used to obtain a power flow-based cascading metrics, the
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CEI index. Both AC and DC power flow solver have been adopted for the calculation and
comparison between line ranking shows minor differences between the approaches. This is has
been regarded as a confirmation of well-founded DC hypothesis for the system in exam. The
comparison of the CEI index with topology-based and hybrid metrics pointed out significant
differences in the ranking results. The differences in the results are possibly explained by lack
of considerations about nodal power injections and withdraw of some of the approaches. The
considered topology-based metrics even if enhanced in hybrid metrics cannot capture in full
the operational vulnerabilities in the network. On the other hand, power-flow-based approaches
included power injection and and demands magnitudes in the calculation and are hence able to
spot critical components accounting changes in the operational state. Nevertheless, many of the
lines ranked using CEI index resulted in a null contribution to the system vulnerability (due to
null post-failure overload severity). This might be seen as a limitation of the CEI metric which
has not been able to capture all the relevant aspect and information enclosed in the line failures.

Uncertainty propagated through the AC and DC methods have been quantified in the CEI(l)
indexes. Ranking results shows good agreement with the deterministic solution and between
the different power flow solvers. The AC output seems to be more sensitive to the uncertainties
in the input, which can be intuitively explained less restrictive assumptions compared to the
DC method. The largest majority of the hybrid approaches make use of the DC assumptions.
Generally the goodness of DC approximation should be tested and model adopted carefully[14].
Especially in scenarios where grid stress is high, such as sudden component failures or attacks,
the approximation might result poor and not represent adequately the reality. Comparisons
between hybrid metrics and pure topological metrics show a good agreement in the line ranking
although some of them, i.e. ranking based on drops in spectral radius, differs substantially. This
might be due to limitation of the latter metric or computational inaccuracies.

7 CONCLUSIONS

The future electric power grid is a complex network which have to deal with uncertainty
from different sources. The correct functioning of the system and components will strongly
depend on the operational context. Therefore provide easy to follow guidances and robustness
metrics is uttermost important point. The metrics have to be capable of capturing uncertainties
and variability in the network dynamic and as well intrinsic topological weaknesses in a reliable
way. In the presented work different vulnerability metrics have been compared. The metric to be
used in the analysis have o be carefully selected accordingly to its aims and without forgetting
underling assumptions or underestimating on the uncertainty affecting the problem. The metrics
ability to spot system criticality and in ranking important components has been discussed.Link
removal and uncertainty effects have been analysed and relative drops or increments in the
metrics were computed. The IEEE 118 power grid has been used as reference case study.
The AC and DC power flow cascading metrics have been compared against topology-based and
hybrid metrics often used in power grid vulnerability studies. The power grid robustness against
cascading and vulnerable lines have been identified using different approaches and uncertainty
quantified in the output and models.
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