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Abstract

Background: Postoperative cognitive impairment is a common complication after cardiac and major non-cardiac surgery in
the elderly, but its causes and mechanisms remain unclear. The purpose of the current study was to use resting-state
functional magnetic resonance imaging (fMRI) to explore changes in the functional connectivity, i.e. the synchronization of
low frequency fluctuation (LFF), in an animal model of cognitive impairment in aged rats.

Methods: Aged (22 months) rats were anaesthetized with 40 mg/kg fentanyl and 500 mg/kg droperidol (intraperitoneal) for
splenectomy. Cognitive function was assessed using Y maze prior to operation and on postoperative days 1, 3 and 9. To
evaluate functional connectivity, resting-state fMRI data were acquired using a 3T MR imaging system with a 4 channel
phase array rat head coil.

Results: Cognitive function was impaired at postoperative days 1 and 3 compared with preoperative. Significant
synchronized LFF was detected bilaterally in the primary somatosensory cortex and hippocampus preoperatively. By
contrast, no significant LFF synchronization was detected in the right primary somatosensory cortex and right hippocampus
on postoperative days 1 and 3, although the pattern of functional connectivity had become almost normal by day 9.

Conclusion: Splenectomy performed under neuroleptic anaesthesia triggers a cognitive decline that is associated with
altered spontaneous neuronal activity in the cortex and hippocampus.
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Introduction

Postoperative cognitive dysfunction (POCD) is the impairment

of perception, memory, and information processing after surgery

[1]. First described over 50 years ago [2], POCD is increasingly

recognized [3–9] as a complication of non-cardiac [10] as well as

cardiac surgery [11]. The mechanisms by which anaesthesia and

surgery affect cognitive function are unknown, but risk factors for

POCD include advanced age, long duration of surgery, and

respiratory and infectious complications [12,13]. A multicenter

study found that POCD was present in 26% of patients 1 week

and in 10% of patients 3 months after surgery [14]. POCD not

only diminishes the quality of life, but also adds cost to

hospitalization and out-of-hospital care [11,15]. Thus the potential

relationship between postoperative cognitive decline and anaes-

thesia and surgery merits more study.

Functional magnetic resonance imaging (fMRI) offers a useful

perspective on brain function [16–20], and has recently been

much used to study the brain at rest. Biswal and colleagues found

that low frequency fluctuation (LFF) (,0.08 Hz) in the resting-

state fMRI signal in the motor cortices showed synchronisation

with a spatial pattern similar to the activation pattern of bilateral

finger tapping [21]. Since then synchronised LFF has been

demonstrated in motor, auditory, visual and sensorimotor cortical

systems, among others [22–26]. Reflecting spatiotemporal corre-

lations between spatially distinct regions of the brain, LFF are

believed to measure functional connectivity [27–31]. Recent
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studies have shown decreased low-frequency correlations in the

preclinical phase of mild cognitive impairment and Alzheimer’s

disease [32–34], raising the prospects that low-frequency func-

tional connectivity may prove a useful noninvasive indicator of

network function in neurodegenerative disease.

Postoperative cognitive decline has mainly been studied using

either simple neuropsychological and behavioral methods [35,36],

or molecular and cellular approaches [6,7,37,38]. Between these

two levels, neuroimaging offers a way to visualize changes in

cerebral function in vivo with high spatial resolution, and this is the

approach we take here. Recently, spontaneous LFF in resting-state

fMRI signals has been studied in the preclinical phase of

neurodegenerative disease [39–41]. Here we applied this tech-

nique to a previously-described animal model of postoperative

cognitive impairment [6] to ask whether there is a postoperative

deficit in functional connectivity, and whether this is associated

with cognitive dysfunction.

Materials and Methods

Animals and Surgical Operation
Female aged Sprague-Dawley rats (weight 400–550 g, mean age

22 months) were maintained in the temperature-, light/dark-

controlled Animal Facilities of Chinese Academy of Science at

Chengdu, China, with free access to rodent chow and water.

Animal care was approved in accordance with the guidelines for

Care and Use of Laboratory Animals in China.Splenectomy is

chosen as a standardized organ removal intervention. Rats were

anaesthetized with 40 mg/kg fentanyl and 500 mg/kg droperidol

(intraperitoneal). A small incision was made in the left upper

abdominal quadrant, the spleen was isolated, the arteries and veins

ligated, the spleen removed and the wound closed by suture.

Throughout surgery the animals were positioned over a heated

pad: core temperature was monitored and maintained at 37–38uC,

respiration rate at 80–100 breaths min21 and oxygen saturation at

95–100% (Nellcor NBP-40, CO, USA). After recovery, animals

were returned to their cages and housed individually. Surgical

procedures were approved by the Institutional Animal Use and

Care Committee of Chinese Academia of China at Chengdu.

Cognitive Testing
Cognitive function was assessed as spatial memory using a Y

maze prior to operation and on postoperative days 1, 3 and 9

according to the method developed and described in detail by

Wan [6]. All training was performed in the morning, to habituate

rats to the training environment. The Y maze consists of three

arms (80680660 cm), with a light on the wall of each and the

floor of the ‘stem’. One of the two branch arms has wires through

which an electric shock can be applied; the other branch arm

remains illuminated throughout.

fMRI Study
fMRI was carried out prior to operation and on postoperative

days 1, 3 and 9. For imaging, animals were anaesthetized with

intraperitoneal chloral hydrate 300 mg/kg and placed in the

scanner with an MR-compatible fixation device securing the head

with a tooth bar. Body temperature was maintained at 37–38uC
using warm air. fMRI data were acquired using a 3.0T MR

imaging system (ACHIEVA, Philips, Netherlands) with a 4

channel phase array rat head coil. T2-weighted images were

acquired using a 3D turbo spin echo sequence (TR/TE 2500/

240 ms, slice thickness 1 mm, matrix size 2246224630, flip angle

90u, FOV 50650 mm2). Functional images were acquired using

single shot spin echo EPI sequence (TR/TE 2000/27 ms, flip

angle 90u, matrix size 96696, FOV 50641 mm2, thickness/gap 1/

0 mm, a total of 120 volumes, 20 axial slices per volume to cover

the whole brain). The paradigm consisted of 5 dummy scans to

reach steady state followed by 120 scans during rest, for a total

experiment time of 225 seconds.

To monitor physiological responses, the femoral artery was

cannulated (n = 6), and samples of arterial blood taken at the

beginning and end of the scanning for measurement of pH, pCO2

and pO2 using a blood gas analyzer (GEM Premier-3000,

Instrumentation Laboratory, MA, USA).

Data Analysis
Image data was preprocessed using statistical parameter

mapping (SPM2, http: //www.fil.ion.ucl.ac.uk/spm/software/)

including slice timing, head-motion correction, spatial normaliza-

tion to a standard rat brain template [42] and smoothing with

FWHM of 7.8 mm; all data was scaled by a factor of 10 for

analysis. Further analyses were performed using MarsBar software

(http: //marsbar.sourceforge.net/), including low-pass filtering,

seed region identification and generation of correlation (functional

connectivity) maps. Resting state time courses were first low-pass

filtered with 0.08 Hz cutoff [21,22]. Based on the standard rat

brain template, spatially aligned to the atlas of Paxinos [43], seed

regions of interest (ROIs) (262 pixels) were selected in the left

primary somatosensory cortex (SI) (X = 24.2, Y = 22.2, Z = 20.2

in Paxinos space) and left hippocampus (Hp) (X = 24.8, Y = 22.4,

Z = 20.4 in Paxinos space), two areas known to be involved in

storage and recall of information and cognitive processing [44].

The time courses of seed region voxels were linearly de-trended to

remove linear signal drift and averaged to create a single low-

frequency reference time course. The preprocessing time courses

were used as references and cross-correlated on a voxel basis

across the whole brain to derive connectivity maps for each

resting-state data set. The resulting correlation maps were overlaid

on the standard rat brain template to exhibit the anatomical

location of significant correlations. The dependence was quanti-

tatively assessed by calculating the number of significant voxels

(correlation threshold of P,2.561025 with reference waveform,

taking into account the reduced degrees of freedom in the low-pass

filtered data) to detect areas of LFF higher than the global mean.

Cognitive testing data were analyzed by an observer blinded to

the experimental protocol. Results are expressed as mean 6SD.

Data were analyzed with one-way analysis of variance, P,0.05

being taken as statistically significant.

Results

Y Maze Results: Aversive Learning and Spatial Memory
Preoperatively, it took 2765 trials for aged rats to remember the

risk of being shocked. On postoperative days 1 and 3 this increased

significantly to 77618 and 70614 trials (P,0.01 vs preoperative),

respectively, decreasing to a number not significantly different

from preoperative on day 9 (P = 0.37; Fig. 1). Thus anaesthesia

and surgery induced a temporary impairment in spatial memory.

Physiological Measurements
There were no significant changes between the start and end of

the scan in pH (7.460.02 vs 7.460.02), in pCO2 (2862 vs

2962 mmHg) or in pO2 (16964 vs 16862 mmHg) (all P.0.4).

Resting-state Functional Connectivity Map
Excluding data from one rat which showed large nonlinear

baseline drift, the results for 17 rats are shown in Fig. 2. Before

operation (Fig. 2A) significant synchronized LFF (P,0.001,

Postoperative Cognitive Dysfunction
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uncorrected) was detected bilaterally in the primary somatosensory

cortex (SI) and hippocampus. By contrast, no significant LFF

synchronization was detected in the right primary somatosensory

cortex and right hippocampus on postoperative days 1 and 3

(Figs. 2B & 2C), although the functional connectivity pattern was

almost normal by day 9 (Fig. 2D). This pattern was consistent for

all rats. Table 1 and Table 2 show the number of significant voxels

in the primary somatosensory cortex and hippocampus on

postoperative days 1, 3 and 9, normalized by the preoperative

value, and averaged seeds in the right primary somatosensory

cortex and hippocampus respectively. The number of significant

voxels is significantly decreased (as compared with preoperative)

on postoperative days 1 and 3 (P,1029 and P,1028, respective-

ly), but recovers by day 9.

To demonstrate the synchronization of LFF in bilateral SIs

preoperatively and on postoperative day 9, Figs. 3A & 3E show the

timecourse of the seed ROI in the SI in one hemisphere compared

with the average timecourse of the SI ROI in the opposite

hemisphere; Fig. 3B & 3F show the Fourier Transforms of these

timecourses. Similarly, Figs. 3C & 3G show the timecourses in the

bilateral Hps preoperatively and on postoperative day 9; Figs. 3D

& 3H show the Fourier Transforms. Significant correlation can be

seen between the two timecourses.

Discussion

Postoperative cognitive decline, a distressing complication after

cardiac surgery or non-cardiac surgery, is independently associ-

ated with poor short- and long-term outcomes [8,11,45,46].

Although its mechanisms remain unclear, hypoxemia, hypotension

and embolism have often been cited [10]. Research has focused on

neuropsychological and behavioral tests or pathological techniques

[6,35,36,47]. The present study may help to fill the gap between

these by throwing light on neural function in vivo.

Evidence from both human and animal studies that some

regions exhibiting task-related deactivation are functionally

connected in the resting state [48,49], suggests that synchronized

LFF of the resting-state BOLD fMRI signal and the stimulus-

induced BOLD signal may share the same underlying functional

anatomy. We used synchronization of LFF to investigate the

association of functional connectivity with the development in an

animal model of cognitive impairment. Preoperatively, we found

significant synchronized LFF in the primary somatosensory cortex

(SI) and hippocampus (Hp), in agreement with previous studies

[22]. The activity in SI, in particular suggests that resting state

connectivity can identify the entire relevant network, as has been

seen in animal and human studies [22,50]. On days 1 and 3 after

surgery under neuroleptic general anaesthesia, compared with the

preoperative state, we found a lack of significant LFF synchroni-

zation in the right SI and right Hp, which however returned

almost to normal by day 9.

Synchronized LFF of BOLD fMRI signals are believed to reflect

functional connectivity, viz. spatiotemporal correlations between

spatially remote neurophysiological events. Although the origin of

synchronized LFF of BOLD has not been fully elucidated, some

investigators attribute it to spontaneous neuronal activity [51–53].

Respiration and cardiac movements may also contribute to

fluctuation of BOLD signals [54], via aliasing effects when their

frequencies (,1 Hz and ,5 Hz, respectively, in rats [22]) exceed

twice the sampling rate (0.5 Hz). It seems unlikely that the very

different temporal patterns in the cortex and the Hp networks

could arise mainly from a single central source.

In our study, to demonstrate the synchronized LFF in the

BOLD signal in bilateral Sis preoperatively and on postoperative

day 9, the timecourse of the seed ROI in the SI in one of the

hemisphere is compared with the average timecourse of the SI

ROI in the opposite hemisphere. As indicated in Figs. 3A & 3E,

there is significant correlation between the two timecourses,

demonstrating that LFF of BOLD signal in the bilateral SI in these

rats are highly connected preoperatively and on postoperative day

9. Similarly, timecourse in the bilateral Hps are also observed,

correlation between the two timecourses is evident by Fig. 3C &

3G.

During the scan we used chloral hydrate (300 mg/kg),

administered intraperitoneally (requiring no catheterization) to

produce temporary sedation and muscle relaxation [55], while

maintaining the animal in a free breathing state requiring no

intubation. This is similar to medetomidine, which is known not to

influence functional connectivity at sedative levels [22]. Although

an effect of chloral hydrate on functional connectivity cannot be

ruled out, this was used as baseline for assessment of the

postoperative data.

In our studies, the number of trials in the Y maze test was

significantly increased on postoperative days 1 and 3, consistent

with the changes in functional connectivity in the cortex and Hp.

This is interesting given that the earliest functional manifestation

of neuronal damage in the brain is a decline in the hippocampal

and cortical functions of information storage and recall and

cognitive processing [2,44]. The underlying mechanism remains to

be investigated. Although some investigators have attributed

cognitive impairment to cellular apoptosis caused by perioperative

factors such as hypoxia, hypocapnia [56], in the present study the

respiration rate and oxygen saturation were monitored and

maintained during surgery. Furthermore, synchronized LFF and

spatial learning and memory are almost back to normal on day 9,

which is hard to reconcile with cell death. What we have observed

may be a temporary deficiency in spontaneous neuronal activity,

induced by anaesthesia and surgery, in the right primary

somatosensory cortex and hippocampus.

A limitation of this study is that it did not include a group that

underwent anesthesia without surgery, or with sham surgery.

Clearly further studies are needed to establish the causation and

Figure 1. Learning and spatial memory for Y maze. Preopera-
tively and then 1, 3, 9 days after surgery, cohorts of rats were assessed
in the Y maze apparatus to determine the trial number at which the rat
first entered into the lit, unshocked arm for 9 out of 10 consecutive trial.
Results are mean 6 SD. *P,0.01 vs preoperative.
doi:10.1371/journal.pone.0064820.g001
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Figure 2. Functional connectivity assessed using fMRI by one sample t-test against 1 (P,0.001, uncorrected). SI, primary
somatosensory cortex; Hp, hippocampus. L, left; R, right. Red and yellow means significantly synchronized LFF. (A) Preoperative (coronal slices):
significant connectivity in bilateral SI and Hp. (B) Day 1 postoperative: functional connectivity virtually absent in right SI and right Hp. (C) Day 3
postoperative: functional connectivity still virtually absent in right SI and right Hp. (D) Day 9 postoperative: functional connectivity almost back to
normal (cf panels A, B, C, D, respectively).
doi:10.1371/journal.pone.0064820.g002

Table 1. Significant voxels in the primary somatosensory cortex for the 1st, 3rd and 9th postoperative day, normalized by the total
preoperative amount.

Rat Preoperative 1st postoperative day 3rd postoperative day 9th postoperative day

1 1.00 0.01 0.02 0.96

2 1.00 0.01 0.01 0.96

3 1.00 0.01 0.01 0.98

4 1.00 0.02 0.01 0.95

5 1.00 0.01 0.02 0.99

6 1.00 0.11** 0.01 0.94

7 1.00 0.01 0.01 0.95

8 1.00 0.01 0.01 0.98

9 1.00 0.01 0.01 0.99

10 1.00 0.01 0.01 0.96

11 1.00 0.01 0.01 0.98

12 1.00 0.02 0.01 0.93

13 1.00 0.01 0.01 0.97

14 1.00 0.01 0.01 1.00

15 1.00 0.01 0.01 0.95

16 1.00 0.02 0.01 0.96

17 1.00 0.01 0.01 0.95

18 1.00 0.01 0.01 0.99

Mean 0.02(60.02) 0.01(60.00) 0.97(60.02)

**Data from one rat which showed large nonlinear baseline drift.
doi:10.1371/journal.pone.0064820.t001
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Table 2. Significant voxels in the hippocampus for the 1st, 3rd and 9th postoperative day, normalized by the total preoperative
amount.

Rat Preoperative 1st postoperative day 3rd postoperative day 9th postoperative day

1 1.00 0.02 0.01 0.94

2 1.00 0.01 0.01 0.97

3 1.00 0.01 0.02 0.93

4 1.00 0.01 0.01 0.95

5 1.00 0.01 0.03 0.95

6 1.00 0.13** 0.01 0.91

7 1.00 0.02 0.01 0.95

8 1.00 0.01 0.01 0.99

9 1.00 0.03 0.02 0.92

10 1.00 0.01 0.01 0.93

11 1.00 0.01 0.02 0.95

12 1.00 0.02 0.01 0.95

13 1.00 0.01 0.02 0.98

14 1.00 0.01 0.02 0.95

15 1.00 0.01 0.01 0.96

16 1.00 0.02 0.01 0.95

17 1.00 0.01 0.02 0.97

18 1.00 0.02 0.01 0.98

Mean 0.02(60.03) 0.01(60.01) 0.95(60.02)

**Data from one rat which showed large nonlinear baseline drift.
doi:10.1371/journal.pone.0064820.t002

Figure 3. Comparisons of the timecourses from symmetrical ROIs in two hemispheres, and their Fourier Transforms. The timecourses
from left-side (blue) and right-side (red) ROIs of SI (A & E) and Hp (C & G) are displayed as percentage signal fluctuations. Panels B, D, F and H are
Fourier Transforms of panels A, C, E and G, respectively.
doi:10.1371/journal.pone.0064820.g003
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clinical relevance of our observation, including other anaesthetic

regimens, and other types of surgery.

In conclusion, in this rat model of cognitive impairment,

anaesthesia and surgery triggers a transient neurocognitive decline

(apparent on postoperative days 1 & 3, back to normal at day 9), at

the same time as reduced synchronization of temporal fMRI

correlations in the SI and Hp. Splenectomy performed during

neuroleptic anaesthesia triggers a cognitive decline that is

associated with altered spontaneous neuronal activity in the cortex

and hippocampus. The ability to detect noninvasively abnormal-

ities of functional connectivity offers a way of exploring the

mechanisms of postoperative cognitive dysfunction in patients.
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