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Abstract

In this work we consider temporal graphs, i.e. graphs, each edge of which is assigned a
set of discrete time-labels drawn from a set of integers. The labels of an edge indicate the
discrete moments in time at which the edge is available. We also consider temporal paths
in a temporal graph, i.e. paths whose edges are assigned a strictly increasing sequence of
labels. Furthermore, we assume the uniform case (UNI-CASE), in which every edge of a
graph is assigned exactly one time label from a set of integers and the time labels assigned
to the edges of the graph are chosen randomly and independently, with the selection
following the uniform distribution. We call uniform random temporal graphs the graphs
that satisfy the UNI-CASE. We begin by deriving the expected number of temporal paths
of a given length in the uniform random temporal clique. We define the term temporal
distance of two vertices, which is the arrival time, i.e. the time-label of the last edge, of the
temporal path that connects those vertices, which has the smallest arrival time amongst
all temporal paths that connect those vertices. We then propose two statistical properties
of temporal graphs. One is the maximum expected temporal distance which is, as the
term indicates, the maximum of all expected temporal distances in the graph. The other
one is the temporal diameter which, loosely speaking, is the expectation of the maximum
temporal distance in the graph. Since uniform random temporal graphs, except for the
clique, have at least a pair of vertices whose temporal distance is infinity, we assume the
existence of a slow way to go directly from any vertex to any other vertex in order for the
above measures to have a finite value. We derive the maximum expected temporal distance
of a uniform random temporal star graph as well as an O(

√
n log2 n) upper bound, and a

greedy algorithm which computes in polynomial time the path that achieves it, on both
the maximum expected temporal distance and the temporal diameter of the normalized
version of the uniform random temporal clique, in which the largest time-label available
equals the number of vertices. Finally, we provide an algorithm that solves an optimization
problem on a specific type of temporal (multi)graphs of two vertices.
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1. Introduction

A temporal graph (or otherwise called temporal network) is, loosely speak-
ing, a graph that changes with time. This concept incorporates a variety of
both modern and traditional networks such as information and communica-
tion networks, social networks, transportation networks, and several physical
systems. The presence of dynamicity in modern communication networks,
i.e. in mobile ad hoc, sensor, peer-to-peer, and delay-tolerant networks, is of-
ten very strong. We can also find that kind of dynamicity in social networks,
where the topology usually represents the social connections between a group
of individuals. Those connections change as the social relationships between
the individuals or even the individuals themselves change. Temporal graphs
can also be associated with transportation networks. In a transportation
network, there is usually some fixed network of routes and a set of trans-
portation units moving over these routes. In such networks, the dynamicity
refers to the change of positions of the transportation units in the network
as time passes. Concerning physical systems, dynymicity may be present in
systems of interacting particles.

In this work, embarking from the foundational work of Kempe et al.
[KKK00], we consider the time to be discrete, that is, we consider networks in
which changes can only occur at discrete moments in time, e.g. days or hours.
This choice not only gives to the resulting models a purely combinatorial
flavor but also naturally abstracts many real systems. In particular, we
consider those networks that can be described via an underlying graph G
and a labeling L assigning a set of discrete labels to each edge of G. This
is a generalization of the single-label-per-edge model used in [KKK00], as
we allow many time-labels to appear on an edge, although in this work we
mainly focus on single-labeled temporal graphs. These labels are drawn from
the natural numbers and indicate the discrete moments in time at which the
corresponding connection is available, i.e. the corresponding edge exists in
the graph. For example, in a communication network, the availability of
a connection at some time t may indicate that a communication protocol is
allowed to transmit a data packet over that connection at time t. A temporal
path (or journey) in a temporal graph is a path, on the edges of which we
can find strictly ascending time labels. The number of edges on the latter
is called length of the temporal path. This, for a communication network,
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would mean that it is possible to transmit a data packet along the network
nodes that belong to such a path from the first node in order to the last one,
as time progresses. The time label on the last edge of a temporal path is
called its arrival time and, in the above example of a connection network, it
would indicate the time at which the transmitted data packet would arrive
at the last node of the path.

In this work, we initiate the study of temporal graphs from a probabilistic
and statistical viewpoint. In particular, we consider the case in which every
edge of a graph is assigned exactly one time label from a set L0 = {1, 2, . . . , a}
of integers. The time labels assigned to the edges of the graph are chosen
randomly and independently from one another from the set L0 and the prob-
ability that an edge is assigned a time label i ∈ L0 is equal to 1

a
, for every

i ∈ L0. We use the term UNI-CASE for the above described case and for
any graph that satisfies UNI-CASE’s properties we use the term Uniform
Random Temporal Graph. We focus on examining three statistical proper-
ties of such graphs. The first one, called expected number of temporal paths
of a given length, is the number of temporal paths, of a given length, that we
expect to have in a graph, given that every edge is assigned a label satisfying
UNI-CASE. The second one, called the Maximum Expected Temporal Dis-
tance, is the maximum of all temporal distances in the graph. By temporal
distance of two vertices we denote the arrival time of the temporal path that
connects those vertices, which has the smallest arrival time amongst all tem-
poral paths that connect those vertices. The last property that we examine is
called the Temporal Diameter of a uniform random temporal graph. Loosely
speaking, it is the expected value of the maximum temporal distance in the
graph, which of course is in correspondence with the diameter of a graph, as
we know it up to now.

The motivation of the definitions we initiate and the work we carry out
here comes from the natural question on how fast we can visit a particular
destination, i.e. arrive at a particular network node, starting from a given
point of origin, i.e. another network node, when the connection between a
pair of nodes only exists at one moment in time.

1.1. Related work

Labeled Graphs. Labeled graphs are becoming an increasingly useful fam-
ily of Mathematical Models for a broad range of applications both in Com-
puter Science and in Mathematics, e.g. in Graph Coloring[MR02]. In our
work, labels correspond to time moments of availability and the properties of
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labeled graphs that we study are naturally temporal properties. However, we
can note that any property of a graph that is assigned labels from a discrete
set of labels can correspond to some temporal property. Take for example a
proper edge-coloring in a graph, i.e. a coloring of the graph’s edges in which
no two adjacent edges have the same color. This corresponds to a temporal
graph in which no two adjacent edges have the same time label, that is no
two adjacent edges exist at the same time.
Single-labeled and multi-labeled Temporal Graphs. The model of
temporal graphs that we consider in this work has a direct relation with the
single-labeled model studied in [KKK00] as well as the multi-labeled model
studied in [MMCS13]. The main results of [KKK00] and [MMCS13] have to
do mainly with connectivity properties and/or cost minimization parameters
for temporal network design. In this work we study temporal graphs from a
statistical view and mainly focus on how fast we expect to arrive at a target
vertex in a temporal graph. In [KKK00], a temporal path is considered to
be a path with non-decreasing labels on its edges. In this work, we follow
the assumption of [MMCS13] and consider a temporal path to be a path
with strictly increasing labels. This choice is also motivated by recent work
on dynamic communication systems, in which if it takes one time unit for
the transmition of a data packet over a link, then a packet can only be
transmitted over paths with strictly increasing labels.
Continuous Availabilities (Intervals). Some authors have assumed the
availability of an edge for a whole time-interval [t1, t2] or multiple such time-
intervals. Although this is a clearly natural assumption, in this work we focus
on the availability of edges at discrete moments and we design and develop
techniques which are quite different from those needed in the continuous case.

1.2. Roadmap and contribution

In Section 2, we formally define the model of temporal graphs under con-
sideration and provide all further necessary basic definitions. In Section 3,
we make some general remarks on the expected number of temporal paths
in any graph and proceed to the study of the expected number of temporal
paths of a given length in the uniform random temporal clique of n vertices,
Kn. For this matter, we distinguish two cases. In Section 3.1, we study
the first case, where we set the largest label available for assignment to be
a = n−1 and we search for the expected number of temporal paths of length
k = n − 1. In Section 3.2, we study the second case, where we loosen the
parameters a and k and we look at the expected number of temporal paths
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of length k < a, when the largest label available for assignment is a = n− 1.
In Section 4, we formally define the maximum expected temporal distance of
a uniform random temporal graph and we make some preliminary notations.
In Section 4.1, we look at some known graphs’ maximum expected temporal
distance. In particular, in Section 4.1.1, we study the case of the uniform
random temporal star graph and we provide its exact maximum expected
temporal distance. In Section 4.1.2, we study the case of the uniform ran-
dom temporal clique, focusing on its normalized version, where the largest
label, a, available for assignment is equal to the number of vertices, n. We
also give a simple (greedy) algorithm which can, with high probability, find
a temporal path with small expected arrival time from a given source to a
given target vertex in the normalized uniform random temporal clique. In
Section 5, we formally define the temporal diameter of a uniform random
temporal graph and provide an inequality relation between the latter and
the maximum expected temporal distance as well as the relevant proof. Fur-
thermore, we provide an upper bound for both the temporal diameter and
the maximum expected temporal distance of the nomalized uniform random
temporal clique. In Section 6, we study an optimization problem on a specific
type of temporal (multi)graphs of two vertices. We prove that the problem
can by polynomially solved and provide an algorithm that gives the solution,
along with the proof of its correctness. Finally, in Section 7 we conclude and
give further research horizons opened through our work.

2. Preliminaries

Definition 1. A temporal graph is an ordered triplet G = {V,E, L}, where:
• V stands for a nonempty finite set (called set of vertices)

• E stands for a set of m elements, each of which is a 2-element subset
of V (called set of edges), and

• L = {Le, ∀e ∈ E} = {Le1, Le2 , . . . , Lem}, is a set of m elements,
Lei, 1 ≤ i ≤ m, each of which is a set of positive integers mapped
to the edge ei ∈ E (called assignment of time labels or simply assign-
ment)

We also denote the temporal graph G = {V,E, L} by G′(L) or (G′, L),
where G′ = {V,E} is the graph, on the edges of which we assign the time
labels, and L = {Le, e ∈ E(G′)} is the assignment.
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The values assigned to each edge of the graph are called time labels of
the edge and indicate the times at which we can cross it (from one end to
the other).

2.1. Further Definitions

We can now talk about temporal edges (or time edges) that are considered
to be triplets (u, v, l), where u, v are the ends of an edge in the temporal graph
and l ∈ L{u,v} is a time label of this edge. That is, if an edge e = {u, v} has
more than one time labels, e.g. has a set of three time labels, Le = {l1, l2, l3},
then this edge has three corresponding time edges, (u, v, l1), (u, v, l2) and
(u, v, l3).

Definition 2. A journey j from a vertex u to a vertex v ((u, v)- journey)
is a sequence of time edges (u, u1, l1), (u1, u2, l2), . . . , (uk−1, v, lk), such that
li < li+1, for each 1 ≤ i ≤ k − 1.
We call the last time label of journey j, lk, arrival time of the journey.

Definition 3. A (u, v)-journey j in a temporal graph is called foremost jour-
ney if its arrival time is the minimum arrival time of all (u, v)-journeys’
arrival times, under the labels assigned on the graph’s edges.

Now, consider any temporal graph G = {V,E, L}. Let every edge receive
exactly one time label, chosen randomly, independently of one another from
a set L0 = {1, 2, . . . , a}, where a ∈ N, with the probability of an edge label
to be i, ∀i ∈ L0, equal to

1
a
. (UNI-CASE)

Definition 4. A temporal graph that satisfies UNI-CASE is called Uniform
Random Temporal Graph (U-RTG).

In the special case, where the largest label, a, that can be assigned to the
edges of a graph is equal to the number of its vertices, the graph is called
Normalized Uniform Random Temporal Graph (Normalized U-RTG).

Note. There could be prospective study of cases in which each edge of a
graph may receive several time labels, selected randomly and independently
of one another from the set L0 = {1, 2, . . . , a}, where a ∈ N, with the selection
following a distribution F. (F-CASE)
In such cases, the graphs under consideration would be called F-Random
Temporal Graphs (F-RTG) respectively.

In the following sections, we will look for the expected number of journeys
of length k in some well-known graphs that satisfy UNI-CASE. For the sake
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of brevity, we often call such journeys “k edges temporal paths”. We also
study the Expected (or Temporal) Diameter and the Maximum Temporal
Distance of a graph, as defined in the following paragraphs.

3. Expected number of temporal paths

In this section we will search for the expected number of k edges temporal
paths in a clique of n vertices, Kn, that satisfies UNI-CASE.

It is obvious that for there to exist a temporal path of length k in any
graph, the number of edges, k, has to be at most equal to the maximum label
of the set L0, a, that can be assigned to the various edges. Otherwise, it is
impossible for a k edges temporal path to exist (see Figure 1).

L0 = {1, 2, 3(= a)}

k = 4

1 2
3 ;

Figure 1: There is no temporal path, when k > a

3.1. Special case: G = Kn, k = n− 1, a = n− 1

Initially, we focus our interest in the case of the clique (complete graph)
of n vertices, Kn, that satisfies UNI-CASE with a = n − 1 (i.e. with L0 =
{1, 2, . . . , n − 1}), in which we seek the expected number of n − 1 edges
temporal paths.

Obviously, there can only be one assignment of labels of L0 on the k =
n − 1 edges of any path starting from a random initial vertice v0 ∈ V (Kn)
in the clique Kn such, that we can find a journey on the edges of this path.
This assignment gives label 1 on the 1st edge, label 2 on the 2nd edge, . . . ,
label n− 1 on the (n− 1)th edge.

Each edge can receive exactly one label from a set of n− 1 labels. There-
fore, the total number of assignments that can be made on these n− 1 edges
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is:
#assignments = (n− 1)n−1

Consequently, given a path of n−1 edges starting from v0, the probability
for there to exist the corresponding temporal path (i.e. the one arising on
the simple path after the assignment of the time labels) is:

P (temporal path of length n− 1 starting from v0) =
1

(n− 1)n−1

The number of paths of length n − 1, starting from v0 in the clique Kn

is equal to the number of permutations of the n− 1 vertices remaining (i.e.
except the start v0) to construct such a path. That is, the number of paths
of length n− 1 that start from v0 in the clique Kn is:

(n− 1)!

Therefore, since the clique Kn has n vertices, and due to the linearity of
expectation, the expected number of temporal paths of length k = n− 1 in
the clique Kn is:

E(#temporal paths of length n−1) = n ·(n−1)! · 1

(n− 1)n−1
=

n!

(n− 1)n−1

Comments. Let us observe that when n is too large (n → +∞), then, by
Stirling’s formula, we result in the following:

E(#temporal paths of length n− 1) =

√
2πn

(
n
e

)n

(n− 1)n−1

=

√
2πnnn

en(n− 1)n−1
−−−−→
n→+∞

0

Of course, this is more or less obvious when we consider the fact that it
is difficult to find n − 1 edges temporal paths in the clique of n vertices
when n is too large. This is because in order to have a temporal path of
such length, the (so many) time labels should be assigned on the edges so
that they maintain the desired strictly increasing sequence, something that
is increasingly less likely to happen as n increases.
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3.2. Special case: G = Kn, k < a, a ≥ n

Now let’s see what happens in the case of the clique Kn, that satisfies
UNI-CASE, when we look at the expected number of temporal paths of
length k < a and the maximum label that can be assigned to any edge of the
clique is a ≥ n.

Starting from a vertex v0 ∈ V (Kn) and along the path of k edges, we can
construct, as explained in Figure 2, a number of assignments equal to:

#assignments = ak

. . . . . .

↓
a choises for the label

assigned to the ith edge

v0
e1 e2 ei ek

Figure 2: Number of assignments on a path of length k, when k < a

The number of assignments that can be made on the k edges, where the
time labels assigned are distinct (different from each other) is:

#distinct time labels assignments = a · (a− 1) · . . . · (a− k+1) =
a!

(a− k)!

We will now calculate the number of paths of length k that can be starting
from v0 ∈ V (Kn). We have n − 1 options for how to select v1, the vertex
following v0 on the path, n−2 options for how to select v2, the vertex following
v1 on the path, etc., and finally n − k options for how to select vk, the last
vertex on the path.

Therefore, the number of paths of length k that can be starting from
v0 ∈ V (Kn) is:

#paths of length k starting from v0 = (n−1)·(n−2)·. . .·(n−k) =
(n− 1)!

(n− k − 1)!

We call A the event that “we have the right labels” assignment on the k
edges of any path of length k starting from v0”.
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That is, if l1, l2, . . . , lk are the time labels assigned to the 1st, the 2nd, . . .,
the kth edge of the path, respectively, with li ∈ L0 = {1, 2, . . . , a}, ∀i =
1, 2, . . . , k, A is the event that:

l1 < l2 < . . . < lk

We call φ the probability that A occurs. That is:

φ = P (A) = P (l1 < l2 < . . . < lk)

Let us note that the number of assignments of k labels, lai , i = 1, . . . , k,
such that

la1 < la2 < . . . < lak

is k! and each one has a probability equal to P (A) to happen.
Therefore, if we consider B to be the event that “at least two of the labels
assigned on the k edges of the path are equal”, then the following applies:

k! · P (A) + P (B) = 1 ⇔

k! · φ+ 1− P (⌉B) = 1 (1)

The probability that the event ⌉B occurs, that is there are no two equal
labels assigned on the k edges of the path, is:

P (⌉B) =
#distinct time labels assignments

#assignments
=

=

a!
(a−k)!

ak

=
a!

ak · (a− k)!

Consequently, the relation (1) becomes:

k! · φ+ 1− a!

ak · (a− k)!
= 1 ⇔

⇔ φ =
a!

k! · ak · (a− k)!

Let us recall that φ is the probability to have a proper assignment on the
k edges of any path of length k starting from any vertice v0 of the clique Kn.
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Also, recall that the number of paths of length k that can be starting from
any vertice v0 of the clique Kn is (n−1)!

(n−k−1)!
.

Therefore, the expected number of paths of length k that start from a ran-
dom vertex v0 and on which there are labels assigned so that there exists a
temporal path on them, is:

E(#temporal paths of length k starting from v0) =
(n− 1)!

(n− k − 1)!
· φ

Eventually, since the clique Kn has a number of n vertices, the expected
number of paths of length k, on which labels are assigned in a way that there
exists a temporal path on them, is:

E(#temporal paths of length k) = n · (n− 1)!

(n− k − 1)!
· φ

=
n · (n− 1)!

(n− k − 1)!
· a!

k! · ak · (a− k)!

=
n! · a!

(n− k − 1)! · k! · ak · (a− k)!

Comments. Let us observe that the probability φ is:

φ =
1

k!
·

k factors
︷ ︸︸ ︷

a(a− 1) . . . (a− k + 1)

a · . . . · a
︸ ︷︷ ︸

k factors

and so, if a is very large in comparison with k, then we have φ ≈ 1
k!
.

Hence, if a is far larger than k, then the expected number of temporal paths
of length k in the clique Kn, is:

E(#temporal paths of length k) ≈ n!

k!(n− k − 1)!
=

n · (n− 1) · . . . · (n− k)

k!

4. The Maximum Expected Temporal Distance

In this section, we will define and study a new concept, that of the max-
imum expected temporal distance of a U-RTG.
Henceforth, we make the following assumption. For every pair of vertices in
any U-RTG, there exists a slow journey that connects them, whose arrival
time is a fixed, for each graph, number n′ ∈ N, where n′ is greater than the
expected value of any edge’s label, l. That is n′ ≥ E(l).
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Definition 5. Consider an instance G(L) of a U-RTG. Given two vertices
s, t ∈ V

(
G(L)

)
, we define:

• δ′(s, t) = a(j), where j is a foremost (s, t)−journey, to be called dis-

tributional temporal distance from source vertex s to target vertex
t under the assignment L. If there exists no (s, t)−journey in G, then
δ′(s, t) → ∞

• δ(s, t) = min{δ′(s, t), n′} to be called temporal distance from source
vertex s to target vertex t under the assignment L, and

• MD = maxs,t∈V (G)E
(
δ(s, t)

)
to be called Maximum Expected Tem-

poral Distance of G

Remark. If the U − RTG is a path itself, then its maximum expected tem-
poral distance is obviously n′.

s t

5 3 4 1 2

Figure 3: MD of a U − RTG, which is a path itself, equals n′.

This can be easily understood if we consider that for any two vertices
u and v in the path, if there exists a (u, v)-journey, then the time labels
assigned to its edges form a strictly increasing sequence and thus there is
no (v, u)-journey in it, apart from the slow journey which we assume that
exists. Therefore, δ′(v, u) → +∞ and δ(v, u) = min{δ′(v, u), n′} = n′. (see
Figure 4).

4.1. Known graphs’ maximum expected temporal distance

Next, we study the maximum expected temporal distance of two known
graphs, the star graph of n vertices, which we denote by Gstar (see Figure 5)
and the clique of n vertices, Kn (see Figure 6).
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u v

u v
3 4

. . .
3 4

. . .

δ′(u, v) = 4

δ′(v, u) → ∞

Figure 4: Example of temporal distance, from source vertex to target vertex,
equal to n′.

4.1.1. Case: G = Gstar

It is easy to understand that, even if the temporal star graph does not
satisfy UNI-CASE, but satisfies any F-CASE, as defined in Section 2.1, it is:

maxs,t∈V (Gstar)EF

(
δ(s, t)

)
≥ 2, for any distribution F

We will calculate the exact maximum expected temporal distance, MD,
of a uniform random temporal star graph. It is:

MD(Gstar) = maxs,t∈V (Gstar)E
(
δ(s, t)

)

= E
(
δ(s, t)

)
, for any two vertices s, t ∈ V (Gstar)

= E(l2| l2 > l1) · P (l2 > l1) + n′ · P (l2 ≤ l1) (2)

We calculate the expected value of label l2, given that l2 > l1, that is
E(l2| l2 > l1):

E(l2| l2 > l1) =

a∑

i=1

E(l2| l2 > i) · P (l1 = i)

=
a∑

i=1

( a∑

i′=i

(
P (l2 = i′ + 1) · (i′ + 1)

))

· P (l1 = i)

=

a∑

i=1

( a∑

i′=i

(i′ + 1) · 1
a

)

· 1
a

=
1

a2
·

a∑

i=1

a∑

i′=i

(i′ + 1)
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t

s

. . . l2

l1

Figure 5: A star graph

=
1

a2
·
( a∑

i′=1

(i′ + 1) +
a∑

i′=2

(i′ + 1) + . . .+
a∑

i′=a

(i′ + 1)
)

=
1

a2
·
((

2 + 3 + . . .+ (a+ 1)
)
+
(
3 + 4 + . . .+ (a+ 1)

)
+ . . .+

(
(a+ 1)

))

=
1

a2
·
(

1 · 2 + 2 · 3 + 3 · 4 + 4 · 5 + . . .+ a · (a + 1)
)

=
1

a2
·

a∑

i=1

(

i · (i+ 1)
)

=
1

a2
·

a∑

i=1

(

i2 + i
)

=
1

a2
·

a∑

i=1

i2 +

a∑

i=1

i

=
1

a2
·
(a · (a+ 1) · (2a+ 1)

6
+

a · (a+ 1)

2

)

=
1

a2
· a · (a + 1) · (2a+ 1) + 3 · a · (a + 1)

6

=
a · (a+ 1) · (2a+ 4)

6 · a2

Therefore, relation (2) becomes:

MD(Gstar) =
(a+ 1)(a+ 2)

3a
· P (l2 > l1) + n′ · P (l2 ≤ l1) (3)
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It holds that:

P (l2 ≤ l1) =
a∑

i=1

P (l2 ≤ i) · P (l1 = i)

=

a∑

i=1

i

a
· 1
a

=
1

a2

a∑

i=1

i

=
a+ 1

2a

Therefore, it is:

P (l2 > l1) = 1− P (l2 ≤ l1)

=
a− 1

2a

Relation (3) now becomes:

MD(Gstar) =
(a+ 1)(a+ 2)

3a
· a− 1

2a
+ n′ · a + 1

2a

Eventually, the star graph’s maximum temporal distance is:

MD(Gstar) =
(a− 1)(a+ 1)(a+ 2)

6a2
+ n′ · a + 1

2a

4.1.2. Case: G = Kn

We will now study extensively the clique’s case. First, let us observe that
δ′(s, t) ≤ a, and therefore δ(s, t) ≤ a, for any two vertices s, t in a clique.
Hence:

MD(Kn) = maxs,t∈V (Kn)E
(
δ(s, t)

)
≤ a

Normalized uniform random temporal clique. Let G = Kn be a clique of n
vertices and let us consider its normalized U-version. That is, every edge
e ∈ E(Kn) is given a single availability label and those labels are chosen
randomly and independently from one another from the set L0={1, 2, . . . , n},
with the probability that an edge’s label equals i being equal to 1

n
, ∀i ∈ L0.

For any two vertices s, t in the clique, we have:

E
(
l(e = {s, t})

)
=

n

2
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. . .

Figure 6: A clique

In the specific case of the normalized uniform random temporal clique
of n vertices, there is actually no need for us to assume any slow journey
to connect any pair of vertices since we already have such a journey, with
arrival time equal to E

(
l(e = {s, t})

)
= n

2
. But, for the sake of consistency,

we can set the fixed number n′ to be equal to n
2
.

It holds that:

MD(normalized Kn) = maxs,t∈V (Kn)E
(
δ(s, t)

)
≤ n

2

Since this is only an upper bound, we wonder if we can find temporal
paths with smaller arrival time than that bound. Indeed, we give a simple
(greedy) algorithm which can, with high probability, find a journey with small
expected arrival time from a given source vertex s to a given target vertex t
in the normalized uniform random temporal clique.
Note. From here on, the notation “log” will denote the natural logarithm.
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Algorithm 1 The normalized U-RTG clique short journey finding algorithm,
Extend-Try

1: procedure Extend-Try(clique Kn, s, t, c1, k)
2: for i = 0 ... c1

√
n logn do

3: si := undefined;
4: end for
5: s0 := s;
6: for i = 0 ... c1

√
n logn do

7: if l({si, t}) ∈
(
c1
√
n(log n)k, c1

√
n(log n)k +

√
n
)
then

8: Follow directly the edge {si, t}; Success!
9: go to line 20
10: else
11: if ∃u ∈ U \ {t} (where U stands for the set of the unvisited

vertices) such, that l({si, u}) ∈
(
k · i, k(i+ 1)

)
then

12: si+1 = u;
13: go to line 6
14: else
15: follow directly the edge {si, u} with the smallest l({si, u})

among all u ∈ U ; Failure!
16: go to line 23
17: end if
18: end if
19: end for
20: for i = 0 ... c1

√
n logn do

21: return si;
22: end for
23: end procedure

Analysis of Extend-Try. Next, we analyze algorithm 1, looking for the prob-
ability that it succeeds.

The probability that the time label of the edge {si, t} belongs to the
interval (c1

√
nk, c1

√
nk+

√
n) and thus the algorithm succeeds in the (i+1)th

iteration, is:

P
(

l({si, t}) ∈
(
c1
√
n(log n)k, c1

√
n(log n)k +

√
n
))

=

√
n

n
=

1√
n

17



Let εj1 be the following event:

“The algorithm finds a proper journey s0s1, s1s2, s2, s3, . . . , sj−1sj”

meaning that it finds a temporal path, on the temporal edges of which
we find strictly ascending time labels and in fact the ith temporal edge’s
time label correctly belongs to the interval ((i − 1)k, ik). The time labels
are given to the edges independently from one another, thus the proba-
bility that the event εj1 occurs is the product of the following probabili-

ties: P
(

∃s1 unvisited vertex : the edge {s0, s1} has time label l({s0, s1}) ∈

(0, k)
)

P
(

∃s2 unvisited vertex : the edge {s1, s2} has time label l({s1, s2}) ∈ (k, 2k)

...
P
(

∃sj unvisited vertex : the edge {sj−1, sj} has time label l({sj−1, sj}) ∈
(
(j − 1)k, jk

)

For any ith probability of the above, it holds that:

P
(

∃si unvisited vertex : the edge {si−1, si} has l({si−1, si}) ∈ ((i− 1)k, ik)
)

= 1− P
(

6 ∃si unvisited vertex : the edge {si−1, si} has l({si−1, si}) ∈ ((i− 1)k, ik)
)

= 1− P
(

∀si unvisited vertices : the edge {si−1, si} has l({si−1, si}) /∈ ((i− 1)k, ik)
)

= 1−
(

P
(
the edge {si−1, si} has l({si−1, si}) /∈ ((i− 1)k, ik), si unvisited vertex

))n−i

= 1−
(

1− P
(
the edge {si−1, si} has l({si−1, si}) ∈ ((i− 1)k, ik), si unvisited vertex

))n−i

= 1−
(

1− k

n

)n−i

Therefore, the probability that εj1 occurs, is:

P (εj1) =

(

1−
(

1− k

n

)n−1
)

·
(

1−
(

1− k

n

)n−2
)

· . . . ·
(

1−
(

1− k

n

)n−j

)

≥

18



≥
(

1−
(

1− k

n

)n−j

)j

≥

≥
(

1− e−k
(

1− k

n

)−j

)j

For j ≤ c1
√
n log n, we have:

(

1− k

n

)−j

≤
(

1− k

n

)−c1
√
n logn

⇔

⇔1− e−k
(

1− k

n

)−j

≥ 1− e−k
(

1− k

n

)−c1
√
n logn

and:
(

1− e−k
(

1− k

n

)−j

)j

≥
(

1− e−k
(

1− k

n

)−c1
√
n logn

)c1
√
n logn

As a result, for j ≤ c1
√
n log n, it is:

P (εj1) ≥
(

1− e−k
(

1− k

n

)−c1
√
n logn

)c1
√
n logn

P (εj1) ≥ 1− e−k
(

1− k

n

)−c1
√
n logn

It holds asymptotically:

c1
√
n log n ≤ n ⇔

(

1− k

n

)c1
√
n logn

≥
(

1− k

n

)n

⇔
(

1− k

n

)−c1
√
n logn

≤
(

1− k

n

)−n

⇔

1− e−k
(

1− k

n

)−c1
√
n logn

≥ 1− e−k
(

1− k

n

)−n

Therefore:

P (εj1) ≥ 1− e−k
(

1− k

n

)−n

and since k ≥ 1, we have:

P (εj1) ≥ 1− e−k
(

1− 1

n

)−n
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= 1− e−ke

= 1− e1−k

For k = r log n, r > 1, we have:

P (εj1) ≥ 1− e1−r logn

= 1− en−r

The probability that we fail in every iteration i = 0, . . . , c1
√
n log n to

find a vertex si such, that l({si, t}) ∈ (c1
√
nk, c1

√
nk +

√
n) is:

P (allfail) =

c1
√
n logn factors

︷ ︸︸ ︷
(

1− 1√
n

)

·
(

1− 1√
n

)

· . . .
(

1− 1√
n

)

=
(

1− 1√
n

)c1
√
n logn

= e−c1 logn = n−c1

The probability that we succeed in some iteration of the algorithm is:

P (success) =
(

1− P (allfail)
)

P (εj1)

≥
(

1− n−c1

)(

1− en−r
)

Therefore, the following theorem holds:

Theorem 1. For any constants c1, r > 1, given two vertices s, t, s 6= t, of
the normalized uniform random temporal clique, Kn, the probability to arrive,
starting from s, to t at time at most

t0 = c1
√
n(log n)k +

√
n, where k = r log n

is at least (

1− n−c1

)(

1− en−r
)

.

Remark. For the “on-line” case, where a traveller starts from s and wants to
find a small journey to t, but he can only see the edges (arcs) out of visited
vertices, we conjecture that Algorithm 1 gives a very tight bound on the
expected arrival time.
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5. Temporal Diameter

In this section, we study the concept of the temporal diameter of a uniform
random temporal graph.

Definition 6. Consider an instance G(L) of a U-RTG. We denote the max-
imum of all distributional temporal distances between all pairs of vertices of
G(L) by d(G(L)):

d(G(L)) = maxs,t∈V (G)δ
′(s, t).

We define diam(G(L)) = min{d(G(L)), n′}. Then, the Expected or Temporal
Diameter of G, denoted by TD, is given by the following formula:

TD(G) = E
(

diam
(
G(L)

))

=
∑

L

diam
(
G(L)

)
· P (L)

, where P (L) is the probability for labelling L to occur.

We can easily prove that every temporal graph’s temporal diameter, TD,
is equal or greater than its maximum expected temporal distance, MD.

Theorem 2. It holds that:

TD(G) ≥ MD(G), for every temporal graph G.

Proof. To prove this, we use the Reverse Fatou’s Lemma[D10]:

Theorem (Reverse Fatou’s lemma). If Xn ≥ 0, for all n, then

E(limnsupXn) ≥ limnsupE(Xn).

In other words, the expected value of the maximum of a set of random
variables is at least equal to the maximum of the expected values of those
variables.

Now, notice that the Temporal Diameter of a temporal graphG is actually
the expected value of the maximum of all distributional temporal distances,
that is E(maxs,t∈V (G)δ

′(s, t)), in the case where we have δ′(s, t) ≤ n′, for every
pair of vertices s, t ∈ V (G). In that case, the Maximum Expected Temporal
Distance of G is actually the maximum of the expected values of all pairs
of vertices’ distributional temporal distances, that is maxs,t∈V (G)E(δ′(s, t)).

21



Therefore, in that case, using the above described Reverse Fatou’s Lemma,
we conclude that:

TD(G) ≥ MD(G).

In the case, where there is at least one pair of vertices s, t ∈ V (G) such,
that δ′(s, t) ≥ n′, both the temporal diameter and the maximum expected
temporal distance of G are equal to n′.

Thus, we conclude that it generally applies that:

TD(G) ≥ MD(G), for every temporal graph G.

We will now prove that the time t0 − o(t0) (see. Theorem 1) is an upper
bound of the normalized uniform random temporal clique’s temporal diam-
eter, TD, and, thus, is an upper bound of its maximum expected temporal
distance, MD.

Theorem 3. The quantity t0 − o(t0) is an upper bound of both the temporal
diameter, TD, and the maximum expected temporal distance, MD, of the
normalized U-RT clique.

Proof. Let s, t be two vertices of the normalized U-RT clique. We call Est

the following event:

“We arrive, starting from s, to t at time at most to”

where t0 = c1
√
n(log n)k +

√
n, c1 > 1, k = r log n, r > 1.

It holds that:

P (Est) ≥
(

1− n−c1

)(

1− en−r
)

≥ 1− n−c1 − en−r

For r = c1, the above relation becomes:

P (Est) ≥ 1− n−c1 − en−c1

≥ 1− 2en−c1
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Therefore, the probability that the complement of Est occurs is:

P (Est) = 1− P (Est)

≤ 2en−c1

Thus, the probability that there exist two vertices s, t such that we arrive,
starting from s, to t at time greater than t0 is:

P (∃s, t : Est) ≤ n(n− 1)2en−c1

≤ 2en−c1−2

Let us denote by T the max{ast, s, t ∈ V (Kn)}, where ast is the greatest
arrival time amongst all (s, t)-journeys’ arrival times. Then, we have:

P (∃s, t : Est) = P (T > t0)

≤ 2en−c1−2

It is:

TD ≤ E(max{ast, s, t ∈ V (Kn)})
≤ (1− 2en−c1−2) · t0 + n · 2en−c1−2

≤ t0 − o(t0)

Since TD(G) ≥ MD(G), for every temporal graph G, we conclude that
in the case of the normalized U-RT clique, it is:

MD ≤ TD ≤ t0 − o(t0)

6. An optimization problem: The Bridges’ problem

We will now study an optimization problem concerning the temporal
multigraph shown in Figure 7.
The problem

n people are located on one bank of a river (see vertex s, Figure 7) and want
to go to the other side (see vertex t, Figure 7). Each one can go across one
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...

n

Figure 7: The bridges’ problem

of a total of n bridges that connect the two riversides, paying individual cost

equal to 1 +
i

mi

, where i stands for the number of the bridge they pass and

mi stands for the total sum of people that cross that bridge. Thus, the total
cost payed by m people to cross the ith bridge, i = 1, 2, . . . , n, is:

cost[i] = mi + i

We denote by maximum cost payed the maximum, over all bridges i, cost
mi + i:

maximum cost payed = max{mi + i, i = 1, 2, . . . , n : bridge}

How should the n people be assigned to the bridges so, that the maximum
cost payed is minimized?
We denote the minimum, over all assignments of n people to n bridges,
maximum cost payed by OPT , that is:

OPT = minall assignments{maximum cost payed}

Remark. In another interpretation of the bridges’ problem, as we call the
above described problem, we consider the multi-labeled temporal digraph of
two vertices s, t and one single edge {s, t} which is assigned the discrete time
labels 1, 2, . . . , n (see figure 8).
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s t
1, 2, . . . , n

Figure 8: The bridges’ problem (another interpretation)

Here we have a single bridge which is available everyday from day 1 to day
n. As time progresses the cost someone needs to pay to move from s to t

increases. Again, one has to pay individual cost equal to 1 +
i

mi

, where i

stands for the day on which he decides to move from s to t and mi stands
for the total sum of people decide to move from s tot on that same day.
Therefore, the total cost payed by m people who move from s to t on the ith

day, i = 1, 2, . . . , n, is:
cost[i] = mi + i

Theorem 4. We can compute the assignment of n persons to n bridges that
achieves the OPT in polynomial time O(n2).

Proof. We provide Algorithm 2 and show that it computes the assignment
that achieves OPT .

Algorithm 2 The bridges problem solving algorithm

1: procedure Bridges(n)
2: cost[] is a 1×n array which holds the bridges’ costs;
3: content[] is a 1×n array which holds the bridges’ contents; ⊲ a.k.a
4: how
5: many people
6: are on each
7: bridge
8: m := n; ⊲ m is the number of bridges
9: for i = 1 ... m do
10: content[i] := 0; ⊲ Initializations
11: cost[i] := i;
12: end for
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Algorithm 2 The bridges problem solving algorithm (continued)

13: for i = 1 ... n do
14: bridge := 1; ⊲ Initialize the bridge that the ith person will pass
15: for j = 2 ... m do ⊲ Find the bridge that gives the minimum
16: possible cost
17: if cost[j] < cost[bridge] then
18: bridge := j;
19: end if
20: end for
21: content[bridge] := content[bridge]+1; ⊲ Add the ith person to
22: the selected
23: bridge’s content
24: cost[bridge] := cost[bridge]+1; ⊲ Calculate the right new cost
25: end for
26: for i = 1 ... m do
27: if content[i] == 0 then
28: cost[i] := 0;
29: end if
30: if content[i] == 1 then
31: Write content[i] , “ person passes bridge #”, i , “ who

therefore has to pay cost equal to ”, cost[i];
32: else
33: Write content[i] , “ people pass bridge #”, i , “ who therefore

have to pay cost equal to ”, cost[i];
34: end if ⊲ Print the bridges’ costs
35: end for
36: end procedure

The algorithm assigns the ith person to the bridge, for which the current
minimum cost is payed. If there are more than one such bridges, the algo-
rithm assigns the ith person to the first one in order. It is trivial to see that
the algorithm’s running time is O(n2).

Proof of correctness We will prove the validity of the algorithm 2 by
induction on the number n of persons.

• For n = 1, the algorithm sets the number of bridges to be m = 1 and
the sole bridge’s content and cost to be equal to 1. In the main loop,

26



the sole person is assigned to the bridge, paying cost equal to:

cost[1] = 2

So, actually, the algorithm solves the problem for n = 1 person.

• Assume that the algorithm solves the problem for n = k people.

• We will show that the algorithm solves the problem for n = k + 1
people.

Before continuing, let us consider the following: Let n1, n2 ∈ N numbers
of people, with n1 > n2. It is obvious that the minimum possible
maximum cost for n = n1 people is at least equal to the minimum
possible maximum cost for n = n2 people.

Let us observe now that the procedures performed by the algorithm
in the main loop for k people, and the results obtained through these,
are identical to those performed and obtained respectively for k + 1
people, except that for k + 1 people, there is a (k + 1)th bridge, which
throughout the execution of these processes has zero content, and there
is also an additional execution of the loop. At the beginning of this
(k+1)th execution, the algorithm has already assigned the k people to
the brisges in a way that we obtain the minimum possible maximum
cost.

The algorithm, by construction, assigns the people to the bridges in a
way that their costs are ordered by (not necessarily strictly) descending
order and indeed one of the following two possible events occur:







all the bridges have the same cost, denoted by OPT
or
some bridges have cost OPT and some others have cost OPT − 1.

In the second case, the algorithm is obviously going to assign the (k +
1)th person to the first in order bridge that has cost equal to OPT − 1,
thereby maintaining the maximum cost that occurs on the bridges to
a minimum, that is OPT .

In the first case, if r ≤ k + 1 is the number of the last bridge that has
positive content, content[r], then it is:
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{
r + content[r] = OPT
But: content[r] ≥ 1 and so: r + content[r] ≥ r + 1

}

⇒ OPT ≥ r+1

Also, since the(r + 1)th bridge has zero content, it is:

cost[r + 1] = r + 1

The algorithm checks which of the k+1 bridges has the minimum cost
to assign the (k + 1)th person to that bridge. If OPT = r + 1, then
the algorithm assigns the last person to the 1st bridge. Otherwise, it
assigns it to the (r + 1)th bridge. This way, it ensures the minimum
possible maximum cost for the k + 1 bridges.

Therefore, the algorithm solves the problem for n = k + 1 people.

We will now calculate the value of the OPT . Again, let us denote by r
the number of bridges that have a positive content, i.e. are not empty, in the
optimal case which the Algorithm 2 computes. For the sake of brevity, let
us also denote by li the content of the ith bridge. Since the average cost of
the non empty bridges is equal or less than the maximum cost that occurs
on those bridges, the following holds for the optimal case:

r∑

i=1

(i+ li)

r
≤ OPT

Therefore, we have:
r∑

i=1

(i+ li) ≤ rOPT (4)

Furthermore, it is easy to see that since, in the optimal case that the
algorithm computes, the OPT is greater than any bridge’s cost by at most
one, it holds that:

rOPT − r ≤
r∑

i=1

(i+ li) (5)
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By the relations (4) and (5), we have:

rOPT − r ≤
r∑

i=1

(i+ li) ≤ rOPT⇔

rOPT − r ≤
r∑

i=1

i+

r∑

i=1

li ≤ rOPT⇔

rOPT − r ≤ r(r + 1)

2
+ n ≤ rOPT⇔

OPT − 1 ≤ (r + 1)

2
+

n

r
≤ OPT

Now, the quantity (r+1)
2

+ n
r
is minimized at r =

√
2n and at that point,

its value is equal to
√
2n+ 1

2
. Therefore, we conclude that:

OPT = ⌈
√
2n+

1

2
⌉

7. Conclusions and further research

There are several open problems related to the findings of the present
work. We initiated here the random availability of edges where the selection
of time-labels, and thus the selection of moments in time at which the edges
are available, follows the uniform distribution. There are still other inter-
esting approaches concerning what distribution the selection of time-labels
could follow (see F-CASE in Section 2.1). Another approach that is yet to
be examined is that of the multi-labeled temporal graphs, on which we could
search for statistical properties respective to the ones we studied within the
present work. Yet another interesting direction which we did not consider
in this work is to find upper bounds on the maximum expected temporal
distance and the temporal diameter of any U-RTG (or F-RTG). Further re-
search could also focus on calculating the actual value of these properties,
e.g. in the case of the normalized uniform random temporal clique.
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