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ABSTRACT 

Domain-averaged Fermi hole analysis is carried out for the ground state of O3 at its 

equilibrium geometry using a complete-active-space self-consistent field CASSCF(18,14) 

wavefunction, based on a slightly expanded full-valence active space. This initial analysis is 

augmented with an examination of the corresponding localized natural orbitals (LNOs) and of 

the numerical values obtained with a new improved definition of three-center bond indices 

for correlated singlet systems. Much the same pattern of LNOs is observed when using 

instead a subsequent internally-contracted multiconfiguration-reference configuration 

interaction construction, which also provides very similar values for the three-center bond 

indices. This gives us confidence to use such bond indices, alongside relative energies and the 

electric dipole moment, to assess the relative merits of various combinations of spin-coupled 

(full generalized valence bond) components with ten active electrons: four π, four σ bonding 

and the two nonbonding σ electrons associated with the central O atom. These 

multi-component valence bond descriptions were generated either with or without subsequent 

orbital reoptimization. The description of the π system which emerges from all of our 

analysis conforms to a standard model of three-center four-electron π bonding that 

incorporates a nontrivial degree of (partial) diradical character. Whereas certain combinations 

of ten-electron spin-coupled components can faithfully reproduce such a picture, none of the 

individual rival components appears to have sufficient flexibility on its own. 

Keywords: π system in O3; Full-GVB and spin-coupled; QTAIM-generalized three-center 

bond index; Domain-averaged Fermi holes; Localized natural orbitals. 
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1. Introduction 

Whereas introductory texts typically describe the ozone three-center four-electron π 

system in terms of resonance between the zwitterionic Lewis structures 1a and 1b (see Fig. 

1), there is a fair amount of evidence in favor of partial diradical character, as might be 

represented by structure 1d. Additionally, by analogy to SO2, we may also envisage the 

possible participation of the Lewis-like structure 1c. In keeping with the existence of these 

different representations, it is well-established that ab initio electronic structure calculations 

based on spin-coupled (SC) theory, also known as the full-generalized valence bond (full-

GVB) approach, yield rival solutions for the electronic ground state of O3 at its equilibrium 

geometry that appear to be qualitatively somewhat different from one another, even though 

they are energetically rather close. One such solution, SCd, features a diradical-like π system 

(cf. structure 1d) whereas in the other case, SCc, the π system appears at first sight to be more 

reminiscent of the ‘closed-shell’ description of SO2 (cf. structure 1c although, as will be 

shown later, there are significant deviations from two fully-formed π bonds). The existence of 

these two closely-competing descriptions first emerged in SC(4) calculations [1], in which 

only the four electrons of the π system were treated as active, but Takeshita et al. [2] showed 

subsequently that much the same situation occurs when using SC(8) solutions, in which the 

four electrons that describe the σ bonding were also included in the active space. 

«Fig. 1 near here» 

In previous work, in which Penotti and Cooper [3] constructed also a 

two-configuration pseudo-ionic description SCI(4) (cf. the resonance between structures 1a 

and 1b in Fig. 1) and then examined various combinations of SCc(4), SCd(4) and SCI(4) 

components (with or without further orbital reoptimization), it was shown that neither of the 

SCc(4) nor SCd(4) solutions provides a satisfactory description on its own. Such an outcome, 

in which no particular SC (or full-GVB) description emerges as being the preferred one for 

ozone, is of course somewhat disappointing. Additionally, it was shown that although the 

SCI(4) wavefunction was entirely inadequate on its own, it could be of some value when 

combined with other solutions [3]. 

We reopen the problem of ozone in the present work, first extracting descriptions of 

its electronic structure from appropriate complete-active-space self-consistent field 

(CASSCF) calculations by means of the analysis of domain-averaged Fermi holes (DAFHs) 

[4-13] and of localized natural orbitals (LNOs), as well as the computation of certain two- 

and three-center bonding indices. Direct comparison is made with the analysis of an 



3 

 

analogous internally-contracted multiconfiguration-reference configuration interaction 

(icMRCI) construction, thereby demonstrating that the CASSCF wavefunction already 

captures the key qualitative features of the σ and π systems. The various numerical results can 

then be used with confidence to assess the relative quality of (combinations of) SCx(10) 

components (x = c, d, I) in which the active space used by Takeshita et al. [2] is expanded so 

as to include also the two nonbonding σ valence electrons associated with the central O atom. 

Our various calculations also enable a reassessment of the (disputed) assertions of 

Kalemos and Mavridis [14-16] that O3 is a genuine closed-shell system that lacks significant 

diradical character. Of course, most previous studies, including an examination of oriented 

quasi-atomic molecular orbitals [17], analyses of CASSCF and icMRCI wavefunctions [18, 

19], VB calculations based on so-called strictly localized orbitals [20, 21], considerations of 

increased-valence structures [22, 23], and various full-GVB or SC studies [1-3, 24], have 

tended to support the more conventional ‘partial diradical’ interpretation of the bonding in 

this molecule.  

2. Computational framework 

The orbitals of the σ system of ozone do of course transform as A1 and B2 in C2v 

symmetry, whereas the π system corresponds to B1 and A2. A key difference between the SCc 

and SCd solutions is that the two sets of π orbitals span 2 × B1
 + 2 × A2 and 3 × B1

 + 1 × A2, 

respectively. A full-valence CASSCF(18,12) expansion for ozone involves all symmetry-

allowed distributions of the 18 valence electrons in a total of 12 orbitals, even though the π 

space corresponds only to 2 × B1
 + 1 × A2. With this limitation in mind, we chose to generate 

CASSCF(18,14) wavefunctions, in which the full-valence active space is expanded by 

B1
 + A2, so as to encompass the flexibility that is inherent in the π spaces of the SCc and SCd 

solutions. We also subsequently calculated an icMRCI wavefunction based on 

CASSCF(18,14) as its reference. (For the purposes of comparison, we also carried out 

full-valence CASSCF(18,12) and subsequent icMRCI calculations.) 

As has been described many times before, domain-averaged Fermi hole (DAFH) 

analysis [4-13] for a chosen domain Ω involves the construction of a matrix representation 

GΩ of the so-called domain-averaged ‘hole’, gΩ(r), which can be defined according to 

𝑔Ω(𝒓1) = 𝜌(𝒓1) ∫ 𝜌(𝒓2)𝑑𝒓2

Ω

− 2 ∫ 𝜌(𝒓1, 𝒓2)𝑑𝒓2

Ω

 

(1) 
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The quantities ρ(r1) and ρ(r1,r2) which appear in this expression are the ordinary spinless 

first-order electron density and the pair density, respectively, but the majority of applications 

to date have used wavefunctions that are based exclusively on doubly-occupied orbitals 

(whether SCF or Kohn-Sham), thereby avoiding the requirement for ρ(r1,r2) to be available. 

Nevertheless, an increasing number of studies (including this one) have used Eq. (1) directly 

for more general correlated descriptions, such as those from CASSCF and SC calculations, 

expressing the wavefunctions as natural orbital expansions with non-integer occupation 

numbers (ωI), and making explicit use of the correlated pair density matrix. Each GΩ matrix, 

conveniently expressed in the basis of the canonical natural orbitals (I), is typically 

constructed for the active space of the relevant calculation. In the next step of the analysis, 

the eigenvalues and eigenvectors of the GΩ matrix for a given domain Ω are subjected to an 

implementation of the isopycnic localization procedure of Cioslowski [25], so as to re-

express gΩ(r) in terms of so-called DAFH functions 𝜑𝑖
Ω with corresponding occupation 

numbers 𝑛𝑖
Ω: 

𝑔Ω(𝒓) = ∑ 𝑛𝑖
Ω |𝜑𝑖

Ω|
2

𝑖

 

(2) 

The insights into correlated electronic structure that are provided by DAFH analysis 

are mostly extracted by examining pictorial depictions of the 𝜑𝑖
Ω functions, alongside their 

occupation numbers. A large body of evidence has shown that it can be particularly useful to 

identify each Ω with an atomic domain that is generated by means of Bader’s virial 

partitioning of the total electron density, i.e. to use the quantum theory of atoms in molecules 

(QTAIM) [26]. This is the approach that we follow here and so the DAFH analysis can be 

expected to give a clear indication of the broken or dangling valences that are created by 

notionally splitting bonds, so as to formally isolate the given ‘atom’ from the rest of the 

molecule, as well as to provide information about the electron pairs that remain intact within 

a given QTAIM domain. 

Alongside the natural orbital representation (I, ωI) of a given wavefunction and the 

availability of its pair density matrix expressed in this basis, QTAIM-based DAFH analysis 

also requires the full set of domain-condensed overlaps: 

⟨𝜙𝐼|𝜙𝐽⟩
Ω

= ∫ 𝜙𝐼(𝒓)𝜙𝐽(𝒓)𝑑𝒓

Ω

 

(3) 
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Such quantities are readily available when performing QTAIM analysis. Of course, instead of 

identifying Ω with a single QTAIM domain, we could choose to use instead the union of 

multiple QTAIM domains. In the special case that Ω is taken to be the union of all such 

domains, so that it corresponds to the whole molecule, then GΩ becomes the diagonal matrix 

with elements ωI. As a consequence, DAFH analysis for an entire molecule is formally 

equivalent to subjecting the canonical natural orbitals I to Cioslowski’s isopycnic 

transformation procedure [25], so as to generate a set of localized natural orbitals (LNOs). 

The SCc(10) and SCd(10) valence bond (VB) wavefunctions considered in the present 

work take the following general form: 

Ψ𝑆𝐶𝑥(10) = 𝒜̂ [(∏ 𝜅𝑖𝛼𝜅𝑖𝛽

7

𝑖=1

) (∏ 𝜎𝜇

6

𝜇=1

) (∏ 𝜋𝜈

4

𝜈=1

) (∑ 𝑐𝑘Θ𝑘
10

42

𝑘=1

)] 

(4) 

in which the singly-occupied nonorthogonal active orbitals σμ and πν have been denoted 

according to their symmetries and the Θ𝑘
10 are the full set of Kotani spin functions for a 

ten-electron singlet system [27] (vide infra). The doubly-occupied inactive orbitals 𝜅i, which 

accommodate the essentially O(1s2) cores and the nonbonding σ electrons on the two terminal 

atoms, were obtained by means of a Boys localization of a CASSCF(4,3) wavefunction. The 

inactive orbitals 𝜅i were then kept fixed in the SC(10) calculations, whereas the various σμ 

and πν active orbitals and the spin-coupling coefficients, ck, were simultaneously freely 

optimized, being subject only to any symmetry requirements. 

Kotani spin functions are in principle constructed sequentially by coupling each time 

the spin of a single electron to the total spin of a group of n<N electrons according to the 

usual rules for combining angular momenta. A branching diagram, as shown in Fig. 2, 

provides a straightforward means of visualizing such spin functions as rightwards paths from 

the origin to the required combination of N and S. The values in the circles are the total 

numbers of such paths and thus the dimensions of the full spin spaces for a given N and S. As 

a shorthand for a given path, we may use the symbols α for a rightwards step up and β for a 

corresponding single-electron step down. The lowest path for a ten-electron singlet system, 

denoted αβαβαβαβαβ, represents the perfect-pairing mode of spin coupling and it coincides 

with the corresponding function in the Rumer basis; it is the last function (k = 42) in the 

standard ordering of Kotani spin functions [27]. 

«Fig. 2 near here» 
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For the corresponding pseudo-ionic SCI(10) construction (cf. the resonance between 

structures 1a and 1b in Fig. 1), we optimized instead a wavefunction consisting of two 

configurations which transform into one another under reflection in the σv(xz) mirror plane. In 

either of these configurations, two of the π orbitals were expanded only in terms of basis 

functions on one of the terminal atoms and the other two π orbitals were restricted only to use 

basis functions associated with the other two atoms. There were no such restrictions on the 

active σ orbitals in a given configuration. The resulting two-configuration SCI(10) 

wavefunction, featuring different but symmetry-related sets of σ orbitals, should in principle 

have sufficient flexibility so as to be able to provide a representation of the model suggested 

by Kalemos and Mavridis [14], were it to be energetically favored. Those authors described 

O3 as a genuine closed-shell singlet species that is notionally formed from a combination of 

O2(a
1Δg) and O(1D) excited states (using dative bonding). 

In order to quantify certain aspects of the bonding in the σ and π systems of ozone, 

whether using CASSCF, icMRCI or VB wavefunctions, it proves useful in the present work 

to use particular definitions of two- and three-center indices that are closely related to one 

another. A useful starting point is the following definition of a basic two-center 

Wiberg-Mayer bond index, WAB [28]: 

𝑊𝐴𝐵 = ∑ ∑[(𝑷𝑺)𝜇𝜈(𝑷𝑺)𝜈𝜇 + (𝑷S𝑺)𝜇𝜈(𝑷S𝑺)𝜈𝜇]

𝜈∈𝐵𝜇∈𝐴

 

(5) 

in which P, Ps and S are the spinless one-electron density matrix, spin-density matrix and 

overlap matrix, respectively, and the notation μ  A signifies that the relevant summation is 

restricted to the basis functions associated with atomic center A. Mayer has suggested for 

singlet correlated systems that the spin-density matrix Ps should be substituted by a matrix R, 

so that Eq. (5) becomes [29]: 

𝑊𝐴𝐵 = ∑ ∑[(𝑷𝑺)𝜇𝜈(𝑷𝑺)𝜈𝜇 + (𝑹𝑺)𝜇𝜈(𝑹𝑺)𝜈𝜇]

𝜈∈𝐵𝜇∈𝐴

 

(6) 

in which the matrix R is defined by the following sequence [29]: 
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𝒖𝑺 = 2𝑷𝑺 − (𝑷𝑺)2 

𝒖𝜆 = 𝑺½(𝒖𝑺)𝑺−½ 

𝑹 = 𝑺−½(𝒖𝜆)
½

𝑺−½ 

(7) 

When they are expressed in the basis of (real) orthonormal natural orbitals I with 

corresponding occupation numbers ωI, the matrices P and R are diagonal, with elements ωI 

and RII
 = [ωI

 (2 − ωI)]
½, respectively, and S is of course a unit matrix. As a consequence, the 

corresponding QTAIM-generalized [30] Wiberg-Mayer index for a correlated singlet system 

[29] takes the following simple form [13]: 

𝑊𝐴𝐵 = ∑ ∑(𝜔𝐼𝜔𝐽 + 𝑅𝐼𝐼𝑅𝐽𝐽)⟨𝜙𝐼|𝜙𝐽⟩
Ω𝐴

⟨𝜙𝐼|𝜙𝐽⟩
Ω𝐵

𝐽𝐼

 

(8) 

This is the specific definition of WAB that was used in the present work. Note that the sum of 

all possible WAB values is necessarily equal to the total number of electrons. Furthermore, in 

the special case of a planar molecule such as ozone, we may identify the separate 

contributions from the σ and π systems to the total value of WAB. 

It is straightforward to write down the three-center analogue of Eq. (5) [28], to replace 

Ps by R [29] in the case of a correlated singlet system, to switch to the basis of natural 

orbitals and then to construct the QTAIM generalization of this index [31, 32]. This leads to 

the following definition: 

𝑋𝐴𝐵𝐶 =
1

4
∑ ∑ ∑ (

𝜔𝐼𝜔𝐽𝜔𝐾 + 𝜔𝐼𝑅𝐽𝐽𝑅𝐾𝐾

+𝑅𝐼𝐼𝜔𝐽𝑅𝐾𝐾  + 𝑅𝐼𝐼𝑅𝐽𝐽𝜔𝐾
) ⟨𝜙𝐼|𝜙𝐾⟩Ω𝐴

⟨𝜙𝐼|𝜙𝐽⟩
Ω𝐵

⟨𝜙𝐽|𝜙𝐾⟩
Ω𝐶

𝐾𝐽𝐼

 

 

(9) 

However, in the present work, we have chosen to use instead a new, alternative approach that 

takes its inspiration from the specific forms of Eqs. (5)–(8). In particular, we consider an 

index YABC that takes the following form: 

𝑌𝐴𝐵𝐶 =
1

8
∑ ∑ ∑[(𝑷𝑺)𝜇𝜈(𝑷𝑺)𝜈𝜆(𝑷𝑺)𝜆𝜇 + (𝑸𝑺)𝜇𝜈(𝑸𝑺)𝜈𝜆(𝑸𝑺)𝜆𝜇]

𝜆∈𝐶𝜈∈𝐵𝜇∈𝐴

+
1

8
∑ ∑ ∑[(𝑷𝑺)𝜇𝜈(𝑷𝑺)𝜈𝜆(𝑷𝑺)𝜆𝜇 + (𝑸𝑺)𝜇𝜈(𝑸𝑺)𝜈𝜆(𝑸𝑺)𝜆𝜇]

𝜆∈𝐵𝜈∈𝐶𝜇∈𝐴

 

 

(10) 
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in which the matrix Q is defined by the following sequence: 

𝒕𝑺 = 4𝑷𝑺 − (𝑷𝑺)3 

𝒕𝜆 = 𝑺½(𝒕𝑺)𝑺−½ 

𝑸 = 𝑺−½(𝒕𝜆)
⅓

𝑺−½ 

(11) 

Working in the basis of (real) orthonormal natural orbitals I with occupation numbers ωI, the 

matrix Q turns out to be diagonal, with elements QII
 = [ωI

 (2 + ωI)
 (2 − ωI)]

⅓, so that the 

QTAIM generalization of Eq. (10) takes the following simple form: 

𝑌𝐴𝐵𝐶 =
1

4
∑ ∑ ∑(𝜔𝐼𝜔𝐽𝜔𝐾 + 𝑄𝐼𝐼𝑄𝐽𝐽𝑄𝐾𝐾)⟨𝜙𝐼|𝜙𝐾⟩Ω𝐴

⟨𝜙𝐼|𝜙𝐽⟩
Ω𝐵

⟨𝜙𝐽|𝜙𝐾⟩
Ω𝐶

𝐾𝐽𝐼

 

(12) 

Note that the various permutations of the three indices necessarily yield identical values of 

YABC, and so it is more convenient when all three indices are different to quote instead a 

single value of Y(A,B,C) = 3! YABC. Comparing Eqs. (8) and (12), and similarly Eqs. (7) and 

(11), it is clear that our chosen two- and three-center bond index definitions are closely 

related to one another, as desired. Another distinct advantage of this particular formulation is 

that the sum of all possible YABC values is equal to the total number of electrons, essentially 

by construction. The same is not true of the sum of all possible XABC values, although we do 

find for a number of correlated singlet systems, including ozone, that the value of Y(A,B,C) 

for a given triad usually only differs from X(A,B,C) = 3! XABC in the third decimal place. As 

was the case for WAB, defined by Eq. (8), the form of Eq. (12) allows us to identify for a 

planar molecule such as ozone the separate contributions to the total value of YABC from the σ 

and π systems. (For all cases that we quote values of Y(O1,O2,O3) in this paper, the 

corresponding values of X(O1,O2,O3) are shown in Table S2 in the Supplementary Material.) 

The majority of the CASSCF calculations [33, 34] and all of the icMRCI calculations 

[35, 36] were carried out using the MOLPRO package [37, 38]. QTAIM analysis [26] of total 

electron densities was performed using AIMAll [39], with the DAFH analysis, generation of 

LNOs and calculation of bond indices carried out for the active spaces of the various 

wavefunctions using our own codes. All of the SCx(10) wavefunctions, as well as various 

combinations of them, were calculated using the generalized multiconfiguration spin-coupled 

(GMCSC) program developed by Penotti [40-43]. Integrals over basis functions and the 

Boys-localized CASSCF(4,3) inactive orbitals that were required for these GMCSC 
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calculations were generated using the GAMESS-US package [44, 45]. All of the 

wavefunction calculations were carried out at an experimentally-derived geometry [46] 

(rOO
 = 1.2716 Å and θ = 117.47°) using standard cc-pVQZ Gaussian basis sets in spherical 

form. When assessing the relative weights of different components in our various VB 

wavefunctions, we employed both the Chirgwin-Coulson [47] and Gallup-Norbeck [48] 

definitions. Pictorial depictions of DAFH functions, LNOs and SC active orbitals were 

produced from Virtual Reality Markup Language (VRML) files that were generated using 

MOLDEN [49]. 

3. Results and discussion 

3.1. CASSCF(18,14) description 

It is useful to start with an examination of the localized natural orbitals (LNOs) that 

are generated by applying the isopycnic localization procedure to the canonical natural 

orbitals of the CASSCF(18,14) wavefunction. As can be seen from Fig. 3, there are four 

almost doubly-occupied nonbonding σ LNOs (ψ1, ψ2, ψ4 and ψ5) on the terminal O atoms, 

one almost doubly-occupied nonbonding σ function (ψ3) on the central atom and two 

symmetry-equivalent almost doubly-occupied two-center σ bonding orbitals (ψ6 and ψ7). As 

such, this description of the σ system corresponds rather well to two rather ordinary 

two-center two-electron O−O σ bonds plus the anticipated pattern of nonbonding σ orbitals. 

Two further symmetry-related σ LNOs (ψ11 and ψ12), not shown in Fig. 3, have occupations 

of just 0.06 each. 

«Fig. 3 near here» 

The corresponding description of the π system is, however, not so immediately 

straightforward. As can be seen from Fig. 3, LNO ψ8 (occupancy 1.52) is clearly a 

three-center π function, but with its strongest allegiance to the central O atom, whereas ψ9 

and ψ10 (occupancy 1.23 each) are two symmetry-equivalent mostly two-center π functions, 

but with a small out-of-phase component on the opposing terminal atom. Such a pattern of π 

LNOs is suggestive of three-center four-electron π bonding and so, in order to gain further 

insight, we turn now to the DAFH analysis of this CASSCF(18,14) wavefunction before 

examining the corresponding values of the three-center index Y for the σ and π systems. (As 

was mentioned earlier, we also analyzed an icMRCI construction based on CASSCF(18,14) 

as its reference. The LNOs for this icMRCI wavefunction, which are shown in Fig. S1 in the 
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Supplementary Material, are very difficult to distinguish by eye from those for the 

CASSCF(18,14) wavefunction, but there are small changes to the occupation numbers.) 

DAFH functions for the domain of the central atom (O1) are depicted in the first 

column of Fig. 4, together with their occupation numbers, and the corresponding functions 

and occupation numbers for the domain of one of the terminal atoms (O2) are shown in the 

second column. We observe for the O1 domain a pair of symmetry-equivalent two-center σ 

functions (𝜑3
O1 and 𝜑4

O1) with occupancy 1.13 which can be considered as the broken or 

dangling valences of the two formally split O−O σ bonds. Clearly associated with these two 

functions are the symmetry-equivalent functions 𝜑4
O2 and 𝜑4

O3 (occupation 0.91 each) which 

emerge from the DAFH analysis for the domain of the respective terminal atom. Taken 

together, the forms and complementary occupation numbers of 𝜑3
O1, 𝜑4

O1, 𝜑4
O2 and 𝜑4

O3 are 

strongly suggestive of two approximately doubly-occupied two-center O−O σ bonds. 

«Fig. 4 near here» 

For each of the three QTAIM domains, the DAFH function with the highest 

occupation takes the form of an almost doubly-occupied nonbonding σ function that is 

localized in the respective domain. These σ functions resemble very closely the 

corresponding σ LNOs shown in Fig. 3. Indeed, the overlaps ⟨𝜑1
O1|𝜓3⟩ and ⟨𝜑1

O2|𝜓1⟩ =

⟨𝜑1
O3|𝜓2⟩ exceed 0.999. DAFH analysis for the O2 domain also produces a nonbonding 

2pσ-like function (𝜑2
O2, occupation 1.89) that has an overlap with LNO 𝜓4 that exceeds 0.999. 

All in all, the DAFH analysis of the CASSCF(18,14) wavefunction corresponds fairly closely 

to our usual notions of two rather ordinary two-center two-electron σ bonds, alongside the 

anticipated pattern of nonbonding σ electrons. On the other hand, just as was the case for the 

LNOs, the corresponding DAFH-based description of the π system is, again, less 

straightforward. 

We observe from Fig. 4 a DAFH π function (𝜑2
O1) for the O1 domain (occupation 

1.35) that closely resembles LNO 𝜓8 and a π function (𝜑3
O2) for the O2 domain (occupation 

1.21) that closely resembles LNO 𝜓9. The overlaps ⟨𝜑2
O1|𝜓8⟩ and ⟨𝜑3

O2|𝜓9⟩ = ⟨𝜑3
O3|𝜓10⟩ are 

0.999. The only other σ or π DAFH function with an occupation greater than 0.09 is for the 

domain of O1; it takes the form of the out-of-phase (antibonding) combination of 2pπ 

functions on the terminal atoms, each deformed towards the central atom, but the occupation 

of 𝜑5
O1 is just 0.14. Taken together, the forms and occupation numbers of DAFH functions 

𝜑2
O1, 𝜑3

O2, 𝜑3
O3 and 𝜑5

O1 (as well as those of LNOs 𝜓8, 𝜓9 and 𝜓10) are strongly suggestive of 
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three-center four-electron π bonding in this molecule. As such, we should expect the value of 

Y(O1,O2,O3) for the π system to be negative [50, 51]. 

Values of the two-center QTAIM-generalized Wiberg-Mayer index WAB (Eq. (8)) and 

of the three-center index Y(O1,O2,O3) are reported in Table 1, together with the total 

energies and the computed electric dipole moments. In addition to the CASSCF(18,14) 

wavefunction itself, we also analyzed an icMRCI wavefunction based on CASSCF(18,14) as 

its reference. Results are also reported in Table 1 for the corresponding CASSCF(4,5) 

wavefunction in which all of the σ orbitals are inactive and the π active space spans 

3 × B1
 + 2 × A2 (i.e. the full-valence π space expanded by B1

 + A2). (The corresponding results 

for CASSCF(4,3) (full-valence π) and for CASSCF(18,12) (full-valence) descriptions are 

available in Table S1 in the Supplementary Material, alongside the values obtained from an 

icMRCI expansion based on CASSCF(18,12) as its reference. Comparing Table 1 with Table 

S1, we notice that whereas the icMRCI wavefunction that is based on CASSCF(18,14) gives 

a dipole moment of 0.510 D, the corresponding construction based on CASSCF(18,12) gives 

0.537 D, which is closer to the experimentally-derived value of 0.53373 D [46], but the total 

energy is poorer. Using the same geometry and basis set, CCSD(T) (using CFOUR [52]) 

gives a dipole moment of 0.524 D; our two icMRCI calculations bracket this value.) 

«Table 1 near here» 

Looking first at the CASSCF(18,14) bond index values in Table 1, we observe a 

σ-only bond order between adjacent atoms (W12) of close to unity, with a much smaller value 

(W23) between the two terminal atoms. The σ-only value of Y(O1,O2,O3) is fairly small, but 

negative, suggesting a small degree of three-center four-electron σ character that is consistent 

with the small σ-only value of W23. The π system is clearly rather different, being 

characterized by π-only values of W12 and W23 that are somewhat closer to one another (ca. 

0.43 and 0.24) and, correspondingly, a somewhat larger magnitude for the π-only value of 

Y(O1,O2,O3) (ca. −0.14). Such a value of Y(O1,O2,O3) is consistent with the significant 

degree of three-center four-electron π character that was suggested by the forms of the LNOs 

and by the results of the DAFH analysis. 

Comparing the two final columns of Table 1, it is clear that the subsequent icMRCI 

calculations leads only to relatively small changes in any of the bond index values that we 

have considered. On the other hand, the CASSCF(4,5) construction, in which only the π 

system was included in the active space, gives smaller magnitudes for the corresponding 

π-only W and Y values, and the estimate of the dipole moment is particularly poor. The 
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occurrence of such large differences suggests that the dipole moment could be a useful 

quantity to monitor when comparing the various modern VB descriptions with one another. 

Given the apparently relatively ordinary nature of the σ system in ozone, it makes most sense 

when comparing the bond index values for these VB constructions to focus our attention on 

the variations in the π-only W and Y values. 

3.2. Combining SCc(10), SCd(10) and SCI(10) descriptions 

Various numerical results for the SCc(10), SCd(10) and SCI(10) wavefunctions are 

reported in Table 2. The total energies of the SCc(10) and SCd(10) descriptions turn out to be 

fairly similar to one another, with SCc being slightly preferred, whereas it is clear that the 

SCI(10) wavefunction is entirely inadequate on its own. This last observation is not consistent 

with the model suggested by Kalemos and Mavridis [14, 15] (vide supra). 

Comparing Tables 1 and 2, we observe that the SCc(10) and SCd(10) π-only values of 

WAB and Y(O1,O2,O3) are fairly similar to the CASSCF(4,5) results while the corresponding 

values for SCI(10) are somewhat more consistent with those from the CASSCF(18,14) and 

subsequent icMRCI wavefunctions. Whereas the SCc(10) and SCd(10) dipole moments are 

still too small, the SCI(10) value is clearly far too large. All in all, none of the SCc(10), 

SCd(10) and SCI(10) wavefunctions seems to be satisfactory on its own when they are all 

assessed from the joint perspectives of the π-only bond index values, the computed dipole 

moments and the relative energies. As a consequence, it seems worthwhile to consider also 

the relative merits of various combinations of these three wavefunctions. 

For the most part, we consider here the variationally-determined combinations of the 

SCc(10), SCd(10) and SCI(10) configurations in which all of the various spin-coupling 

coefficients are treated as free parameters, being subject only to any symmetry-induced 

constraints, but none of the orbitals are reoptimized. As such, it is important to start by 

examining the forms of the active spin-coupled orbitals in each of the separate SC 

configurations, so as to understand how they differ from one another. Comparing the orbitals 

shown in Fig. 5 for SCc(10) (top two rows) with those for SCd(10) (middle two rows), it is 

clear that the two sets of σ orbitals are fairly similar to one another and that the same is true, 

to a large extent, for the π orbitals localized on the terminal atoms. The main qualitative 

difference between these two sets of orbitals is thus for the two π orbitals that are formally 

associated with the central oxygen atom. For SCc(10), there are two symmetry-related 

predominantly pπ functions, with one deformed towards one terminal atom and one towards 

the other. For SCd(10), on the other hand, one of the π orbitals remains fairly localized on the 
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central atom whereas the other is clearly delocalized over all three centers. For the most part, 

the SCc(10) and SCd(10) π orbitals are very reminiscent of those from earlier π-only SCc(4) 

and SCd(4) calculations [1-3]. Much the same is true of the SCI(10) π orbitals [3], but the 

symmetry-unique SCI(10) σ orbitals (see the final two rows of Fig. 5) do of course no longer 

transform into one another under the symmetry operations of the molecular point group, 

because of the (enforced) asymmetry in the π space. So, whereas the relative performance of 

the fixed-orbital combination of SCc(10) with SCd(10), which we denote SCcSCd, will 

primarily be due to differences in the two sets of π orbitals, the corresponding combinations 

of SCc(10) and/or SCd(10) with SCI(10) could also be sensitive to the differences in the 

descriptions of the σ system. 

«Fig. 5 near here» 

Two- and three-center π-only bond index values, W and Y, as well as the total energies 

and dipole moments, are reported in Table 3 for the various fixed-orbital combinations of the 

SCx(10) components (x = c, d, I). We observe that SCcSCI is the energetically preferred of 

the ‘binary’ combinations and that the π-only W and Y values, as well as the computed dipole 

moment, are considerably closer to the CASSCF(18,14) results than was the case for any of 

the separate SCx(10) components. The relative weights of SCc(10) and SCI(10) in this 

SCcSCI combination are 62%:38% (Chirgwin-Coulson) or 69%:31% (Gallup-Norbeck). 

We notice from Table 3 that although the energetically less favored SCcSCd and 

SCdSCI combinations turn out to be rather close to one another in terms of the total energy, 

the corresponding bond index and dipole moment values demonstrate that there are somewhat 

more substantial differences between these two constructions. This observation points to the 

possible utility of the combination of all three of the SCx(10) components. As can be seen 

from Table 3, the energy lowering of the fixed-orbital SCcSCdSCI construction relative to 

the SCcSCI combination is less than 4 millihartree but the π-only W and Y values and the 

computed dipole moment change in the second decimal place, mostly so as to be slightly 

closer to the corresponding CASSCF(18,14) values. We note that whereas the 

Chirgwin-Coulson weights in the SCcSCdSCI combination are fairly similar to one 

another, being 35%, 34% and 31% for SCc(10), SCd(10) and SCI(10), respectively, the rival 

Gallup-Norbeck definition paints a somewhat different picture (19%, 11% and 70%, 

respectively), suggesting instead that SCI(10) is more important in SCcSCdSCI than it was 

in the SCcSCI construction. 
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Given that all of the various spin-coupling coefficients were treated as free parameters 

in these combinations of SCx(10) components, it is important to check for any large changes 

in the preferred modes of spin coupling. This does indeed turn out to the case. For example, 

we observe for the fixed-orbital SCcSCdSCI combination that whereas the perfect-pairing 

mode (k = 42 in the Kotani spin basis) accounts for more than 70% of the respective total spin 

functions for SCd(10) and for each of the symmetry-related parts of SCI(10), the 

corresponding value for SCc(10) is now just 18%. (For the latter component, the k = 28 mode 

contributes 28%. This spin function, which corresponds to the path αβαβαβααββ on the 

branching diagram (see Fig. 2), still represents perfect pairing for the spins of the σ electrons 

but, with this ordering of the orbitals, there are now two π-electron triplets (coupled, of 

course, to an overall singlet). The perfect-pairing mode accounts for 54% of the total spin 

function in the original SCc(10) wavefunction.) 

We subsequently attempted to generate various combinations of the SCx(10) 

components in which all of the active orbitals were reoptimized. On the whole, such 

calculations proved difficult to converge, often with orbitals in different configurations 

starting to become nearly identical. Nevertheless, it is informative to mention briefly the 

fully-optimized SCdSCI combination, as an example of one of the more successful of these 

calculations. We found that the resulting symmetry-unique orbitals for the SCI-like 

component do of course still exhibit the (enforced) asymmetry in the π space, but that the 

same is no longer so clear cut for the σ orbitals which, for the most part, are relatively similar 

to those for the (reoptimized) SCd-like component. The Gallup-Norbeck weights are 33% and 

67% for the SCd-like and SCI-like components, respectively. (Orbitals for the fully-optimized 

SCdSCI combination are depicted in Fig. S2 in the Supplementary Material.) 

We observe from the various numerical values that are reported in Table 4 that 

whereas the fully-optimized SCdSCI combination performs well in terms of its total energy, 

the corresponding magnitudes of the π-only two- and three-center bond indices are somewhat 

smaller than those from the CASSCF(18,14) and corresponding icMRCI calculations (see 

Table 1). This suggests that the fully-optimized SCdSCI combination does not provide as 

good a description of the three-center four-electron bonding in the ozone π system as do these 

CASSCF(18,14) and icMRCI constructions or even, perhaps, as does the fixed-orbital 

SCcSCdSCI combination. (As an aside, we note that the perfect-pairing mode of spin 

coupling dominates (at 89%) the SCd-like component of the fully-optimized SCdSCI 

combination but that the corresponding value for each part of the SCI-like component is 49%, 
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with the k = 28 mode accounting for 42%. The perfect-pairing contribution in each part of the 

original SCI(10) wavefunction is 83%.) 

All in all, little appears to have been achieved for the quality of the description of the 

π system by allowing the fully-optimized SCdSCI wavefunction to have so much flexibility 

for the active σ orbitals, in spite of a significant improvement in the total energy. With this in 

mind, we also examined a fully-variational SCcSCdSCI combination that is based instead 

on a common set of active σ orbitals. The relative weights of the SCc-like, SCd-like and 

SCI-like components are 44%:26%:30% (Chirgwin-Coulson) or 33%:35%:32% 

(Gallup-Norbeck), so that none of these three components dominates the total wavefunction. 

As can be seen from Table 4, the resulting energy of this orbital-relaxed common-σ 

combination is lower than that of the fixed-orbital SCcSCdSCI construction (Table 3) but, 

from the perspective of the π-only two- and three-center bond indices, it appears to offer 

much the same description of the π system as does the fully-optimized SCdSCI 

combination. (Orbitals for the fully-optimized SCcSCdSCI combination based on a 

common set of active σ orbitals are depicted in Fig. S3 in the Supplementary Material. The 

perfect-pairing mode accounts for a fair proportion of the respective total spin functions for 

the SCc-like component (74%) and for each of the symmetry-related parts of the SCI-like 

component (nearly 58%); for the latter component, there is roughly 15% from each of k = 28 

and k = 41. The latter spin function, which corresponds to the path ααββαβαβαβ on the 

branching diagram (see Fig. 2), represents two σ-electron triplets (coupled to an overall 

singlet), for this ordering of the orbitals, but then perfect pairing for the remaining electron 

spins. The SCd-like component of this fully-optimized SCcSCdSCI combination behaves 

rather differently, in the sense that the perfect-pairing contribution drops substantially so as to 

be just 23%, whereas it is 89% in the original SCd(10) wavefunction.) 

4. Conclusions 

We expanded the π active space of the full-valence CASSCF description of O3 from 

2 × B1
 + 1 × A2 to 3 × B1

 + 2 × A2 so as to encompass the corresponding 2 × B1
 + 2 × A2 and 

3 × B1
 + 1 × A2 π active spaces, respectively, for the rival SCc and SCd solutions. 

Domain-averaged Fermi hole analysis of the resulting CASSCF(18,14) construction suggests 

that the π system of ozone features three-center four-electron bonding, whereas the σ system 

is rather more ordinary, with a familiar pattern of fairly ordinary two-center two-electron 

O−O σ bonds and nonbonding σ orbitals. A similar picture emerges from an examination of 
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the LNOs generated by applying Cioslowski’s isopycnic localization transformation [25] to 

the CASSCF(18,14) canonical natural orbitals. Moreover, much the same pattern of LNOs is 

observed for an icMRCI calculation that uses CASSCF(18,14) as its reference. Numerical 

values of two- and three-center bond indices for the CASSCF(18,14) wavefunction also turn 

out to be rather similar to those from the subsequent icMRCI calculation. This gives us the 

confidence to use such bond indices, alongside relative energies and the electric dipole 

moment, to assess the relative merits of different SCx(10) components and of various 

combinations of them. 

For the two-center bond index WAB [13] we used a QTAIM generalization [30] of 

Mayer’s improved definition of two-center bond orders for correlated singlet systems [29]. 

The sum of all possible WAB values is equal to the total number of (active) electrons. The 

derivation of the expression for WAB formally involves replacing the spin-density matrix Ps by 

a particular matrix R [29]; the use of much the same strategy for the corresponding 

three-center bond index leads to the definition of XABC in Eq. 9 [31, 32]. However, directly 

inspired by the simple form of the final expression for WAB (Eq. 8) [13], we have instead 

introduced here a new three-center bond index, which we denote YABC (see Eq. 12). Whereas 

it turns out to be true for various systems, including ozone, that the value of 

Y(A,B,C) = 3! YABC for a given triad tends to be rather similar to that of X(A,B,C) = 3! XABC, our 

new definition does have the clear advantage that the sum of all possible YABC values 

necessarily matches the total number of (active) electrons, N. The same is not true for XABC, 

although the deviation from N is often fairly small. 

The σ-only bond order W12 between adjacent atoms is close to unity for the 

CASSCF(18,14) and subsequent icMRCI calculations, with the σ-only value of W23 (i.e. the 

bond order between the two terminal atoms) being much smaller. Although also fairly small, 

the magnitude (and sign) of the σ-only value of Y(O1,O2,O3) is suggestive of a small degree 

of three-center four-electron character in the σ framework. The π system is clearly rather 

different: the π-only W12 and W23 values are closer to one another and the magnitude of the 

(negative) π-only Y(O1,O2,O3) index is somewhat larger, corresponding to a significant 

degree of three-center four-electron π character, just as was suggested by the forms of the 

LNOs for these wavefunctions and by the results of the DAFH analysis. We observed that a 

π-only CASSCF(4,5) calculation, based on 3 × B1
 + 2 × A2, gives a particularly poor value for 

the dipole moment. Furthermore, we found that the π-only WAB values and especially the 

π-only Y(O1,O2,O3) value can be rather sensitive to whether or not the σ system is treated as 

active in the wavefunction calculations, indicating that it was indeed important to increase the 
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number of active electrons in the various SC calculations from four (π-only) to ten. (Entirely 

analogous behavior was observed for the ‘full-valence’ sequence of CASSCF(4,3), 

CASSCF(18,12) and subsequent icMRCI calculations, and also when using values of 

X(O1,O2,O3) instead of those of Y(O1,O2,O3).) 

Earlier SC (or full-GVB) calculations for the ground state of O3 at its equilibrium 

geometry treated as active either four electrons (i.e. π only) [1-3] or eight electrons (four π 

and four σ bonding) [2]. We have extended such calculations to ten electrons in the present 

study, treating as active also the two nonbonding σ electrons associated with the central O 

atom. Whereas some authors have emphasized the importance of the SCd type of description 

[2, 24], others have asserted that neither of the SCc nor SCd configurations provides a very 

satisfactory account on its own of the bonding in the π system [1, 3]. It does in fact turn out 

that SCc(10) is energetically very slightly preferred over SCd(10). However, instead of 

focusing on fairly small energy differences, or picking one description over another 

according to its suitability for a particular type of explanation, we chose here to look instead 

at the two- and three-center bond indices for the π system and also at the electric dipole 

moment, thereby enabling direct comparison with the CASSCF(18,14) and icMRCI 

calculations. As well as the SCc(10) and SCd(10) wavefunctions, we generated an SCI(10) 

construction that consists of a pair of symmetry-related pseudo-ionic configurations, each 

with its own set of suitably-polarized σ orbitals, so that it should have sufficient flexibility to 

encompass the model advocated by Kalemos and Mavridis [14, 15], were that to be 

energetically favored. After assessing each of these SCx(10) (x = c, d, I) components 

separately, we examined the qualities of various combinations of them, with or without 

subsequent orbital reoptimization. 

Given the apparently relatively ordinary nature of the σ system, it made most sense 

when assessing the quality of the various VB wavefunctions to focus on the variations in the 

π-only bond indices. We found that the performance of the SCc(10) and SCd(10) 

wavefunctions for the quantities that we monitored most closely matches that of the π-only 

CASSCF(4,5) calculation, except for improved total energies and, in the case of SCd(10), a 

slightly better estimate of the dipole moment. Comparing the various SCx(10) values with 

those from the CASSCF(18,14) and icMRCI calculations, we observe that only the SCI(10) 

construction gives good estimates of the π-only bond indices. On the other hand, not only is 

the dipole moment greatly overestimated by the SCI(10) wavefunction, but the total energy is 

so poor that we have to conclude that this description is totally inadequate on its own. It did, 

however, turn out to be useful in fixed-orbital combinations with SCc(10) and especially with 
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SCd(10). According to the direct comparison with the CASSCF(18,14) and icMRCI two- and 

three-center π-only bond indices, there is relatively little to choose between the quality of the 

fixed-orbital SCdSCI and SCcSCdSCI combinations, although the latter does appear to 

yield a somewhat better estimate of the dipole moment. (Note that although the orbitals are 

fixed, there is significant relaxation of some of the spin-coupling coefficients.) On the whole, 

various subsequent orbital optimizations resulted, rather disappointingly, in somewhat 

inferior π-only Y(O1,O2,O3) indices, in spite of some significant improvements in the total 

energy. According to the majority of our multi-component VB constructions, the weight of 

the SCd type of description in the total wavefunction is on the order of ⅓. 

The description of the π system which emerges from all of our various forms of 

analysis conforms, perhaps unsurprisingly, to a standard model of three-center four-electron π 

bonding that incorporates a nontrivial degree of (partial) diradical character. Using mostly the 

values of the new three-center bond index Y(A,B,C) to judge their relative qualities, we find 

that certain combinations of the SCx(10) (x = c, d, I) components can faithfully reproduce such 

a picture of the π bonding, whereas none of the individual SCx(10) wavefunctions appears to 

be have sufficient flexibility on its own. 

Appendix A. Supplementary material 

Supplementary data associated with this article can be found, in the online version, at 

DOI. 
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Table 1 

Two- and three-center bond index values (W and Y), total energies (E) and dipole moments 

(μ) for various CASSCF and icMRCI wavefunctions that are described in the text. These 

icMRCI calculations are based on a CASSCF(18,14) reference. 

Quantity CASSCF(4,5) CASSCF(18,14) icMRCI 

W12 σ-only  1.077 1.067 

W12 π-only 0.386 0.426 0.417 

W12  1.503 1.485 

W23 σ-only  0.144 0.146 

W23 π-only 0.188 0.240 0.237 

W23  0.383 0.383 

Y(O1,O2,O3) σ-only  −0.028 −0.026 

Y(O1,O2,O3) π-only −0.092 −0.141 −0.142 

Y(O1,O2,O3)  −0.169 −0.168 

E / hartree −224.47534 −224.63469 −225.15086 

μ / debye 0.288 0.505 0.510 
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Table 2 

Two- and three-center bond index values (W and Y), total energies (E) and dipole moments 

(μ) for the various SCx(10) wavefunctions that are described in the text. 

Quantity SCc(10) SCd(10) SCI(10) 

W12 π-only 0.396 0.370 0.428 

W23 π-only 0.186 0.188 0.235 

Y(O1,O2,O3) π-only −0.098 −0.084 −0.141 

E / hartree −224.54286 −224.53633 −224.47739 

μ / debye 0.245 0.380 1.411 
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Table 3 

Two- and three-center bond index values (W and Y), total energies (E) and dipole moments 

(μ) for various fixed-orbital combinations of SCx(10) configurations, as described in the text. 

Quantity SCcSCd SCcSCI SCdSCI SCcSCdSCI 

W12 π-only 0.391 0.437 0.432 0.426 

W23 π-only 0.186 0.266 0.238 0.256 

Y(O1,O2,O3) π-only −0.096 −0.152 −0.145 −0.144 

E / hartree −224.55586 −224.56634 −224.55511 −224.57001 

μ / debye 0.401 0.564 0.634 0.518 
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Table 4 

Two- and three-center bond index values (W and Y), total energy (E) and dipole moment (μ) 

for fully-optimized SCdSCI and SCcSCdSCI combinations, with the latter based on a 

common set of active σ orbitals. 

Quantity SCdSCI SCcSCdSCI 

W12 π-only 0.403 0.406 

W23 π-only 0.201 0.207 

Y(O1,O2,O3) π-only −0.116 −0.114 

E / hartree −224.59855 −224.57850 

μ / debye 0.539 0.477 
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Figure captions 

Figure 1 

Selected Lewis-like structures for O3. 

Figure 2 

Branching diagram for the visualization of Kotani spin functions. The values in the circles are 

the total numbers of spin functions for each allowed combination of N and S. 

Figure 3 

CASSCF(18,14) LNOs and occupation numbers for ozone. Symmetry-related counterparts 

are identified in parentheses. 

Figure 4 

CASSCF(18,14) DAFH functions and occupation numbers for the domain of the central atom 

O1 (first column) and for the domain of terminal atom O2 (second column). 

Symmetry-related counterparts within these domains are identified in parentheses. 

Figure 5 

Active orbitals from separate spin-coupled calculations for ozone: SCc(10), top two rows, 

SCd(10), middle two rows, and SCI(10), final two rows. Only the symmetry-unique orbitals 

have been shown in the case of SCI(10). 
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Fig. 1. Selected Lewis-like structures for O3. 
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Fig. 2. Branching diagram for the visualization of Kotani spin functions. The values in the 

circles are the total numbers of spin functions for each allowed combination of N and S. 
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Fig. 3 – color for online version. CASSCF(18,14) LNOs and occupation numbers for ozone. 

Symmetry-related counterparts are identified in parentheses. 
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Fig. 4 – color. CASSCF(18,14) DAFH functions and occupation numbers for the domain of 

the central atom O1 (first column) and for the domain of terminal atom O2 (second column). 

Symmetry-related counterparts within these domains are identified in parentheses. 
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Fig. 5 – color for online version. Active orbitals from separate spin-coupled calculations for 

ozone: SCc(10), top two rows, SCd(10), middle two rows, and SCI(10), final two rows. Only 

the symmetry-unique orbitals have been shown in the case of SCI(10). 
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Fig. 3 – b/w for printed version. CASSCF(18,14) LNOs and occupation numbers for ozone. 

Symmetry-related counterparts are identified in parentheses. 
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Fig. 4 – b/w. CASSCF(18,14) DAFH functions and occupation numbers for the domain of 

the central atom O1 (first column) and for the domain of terminal atom O2 (second column). 

Symmetry-related counterparts within these domains are identified in parentheses. 
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Fig. 5 – b/w for printed version. Active orbitals from separate spin-coupled calculations for 

ozone: SCc(10), top two rows, SCd(10), middle two rows, and SCI(10), final two rows. Only 

the symmetry-unique orbitals have been shown in the case of SCI(10). 

 


