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Abstract. Many features of biological populations can be described in terms of their 

heterogeneity by taking into account variations among individuals and cohorts in the 

population. In demography, the heterogeneity of populations can explain various features 

of age-dependent demographic observations including those related to mortality 

dynamics. Mortality dynamics is underlined by the Gompertz law stating that the 

mortality rate increases exponentially between sexual maturity and considerably old ages 

(i.e. between 20 and 80 years old). Deviations from the exponential increase are observed 

at early- and late-life intervals. Different models (i.e Heligman-Pollard model) were 

developed over the past decades to describe and explain these deviations. These models 

postulate that a few different processes take place in the population and affect its 

mortality dynamics. In this study we present a model based on an assumption that 

mortality dynamics is indeed underlined by the exponential law and the irregularities at 

young and very old ages are due to the heterogeneity of human population. We 

demonstrate that the model is capable of reproducing the entire pattern of mortality and 

explaining the deviations from the exponential growth. The model fitted to Swedish age-

dependent mortality rates indicates that the population should be composed of four 

subpopulations each following the exponential law of mortality increase over age. We 

also expand the idea of heterogeneity to probability density and survival functions, that is 

we adjust the model to the number of Swedish deaths and survivors instead of mortality 

rates. 
Keywords: Gompertz law, Heterogeneity, Mathematical model, Model fitting, 

Probability density, Survival function. 
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1  Introduction 
 

Analysis of the human mortality dynamics over the life-course is of 

great importance for many reasons including understanding the mechanisms of 

ageing and developing ways to control and extend the duration of lifespan. The 

mathematical modelling of the dynamics of human mortality makes a significant 

contribution to these studies. A number of studies have been performed to 

model (Makeham[21]; Siler[20]; Heligman and Pollard[12]; Lee and Carter[15]) 

and analyse (Gavrilov and Gavrilova[13]; de Magalhaes et al.[7]) mortality data 

as a function of age. Age-dependent mortality data are tabulated in life tables 

that contain essential information for the age-structure of a population (Preston 

et al.[17]).    

 Two of the basic quantities of interest tabulated in a human life table 

are the probability of death and the mortality rate. Probability of death, ,iq  is 

the probability for an individual aged i  to die before reaching age 1i +  and is 

expressed as the ratio of the number of deaths of people aged ,i  ,iN∆  divided 

by the number of individuals alive at exact age ,i iN . Death (or mortality) rate 

im  is defined as the number of deaths of people of age i  divided by the average 

number of individuals of age :i  
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where the number of deaths of people aged i  is represented as: 

1.                                              (2) i i iN N N +∆ = −  

The average number of survivors within one-year age interval approximately 

coincides with the number of survivors at the centre of the interval and therefore 

the mortality rate is commonly referred as central death rate. 

Data on mortality rates can be found in two different formats 

depending on the way the data are recorded. Data recording deaths of 

individuals born the same year and growing up together (in the sense that they 

will celebrate their i-th birthday exactly i  years after their birth) form the cohort 

data. Data recording deaths occurring during a specific year form the period 

data. In order to illustrate the difference between the period and cohort data, we 

briefly introduce the Lexis diagram. The Lexis diagram (Lexis[19]) outlines the 

stocks and flows of a population and the occurrence of demographic events 

(such as deaths) over age and time. It is a two-dimension graph (Fig. 1) in which 

the vertical axis represents the age and the horizontal axis the time, both 

measured in same units (e.g. years). Deaths occurring in a parallelogram formed 

by two diagonal lines in Fig. 1 contribute to cohort mortality, while the deaths 

occurring in a rectangle outlined by two vertical lines in Fig. 1 - to period 

mortality. 
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Fig. 1. Lexis diagram 

The diagram illustrates demographic events as distributed over age and time. Cohort 

mortality rates refer to the deaths of a cohort that are occurring in a parallelogram formed 

by two diagonal lines. Period mortality rates refer to deaths occurring within a period 

outlined by two vertical lines. 

 

The mortality rate of human populations (and other species as well) 

advances exponentially with age (i.e. follows the Gompertz law of mortality 

(Gompertz[1])) for a significant part of the age range starting from the period of 

reproductive maturity (age ~35) up to extreme old ages (age ~100). 

Mathematically, the Gompertzian dynamics of mortality is expressed as 

0 ,                                                    (3)i
im m eβ=  

where 0m  is the initial mortality at age 0i =  and parameter β  defines the rate 

of change of mortality with age (usually called rate of ageing or Gompertz 

slope). 

Graphically, mortality data are most frequently plotted in semi-

logarithmic graphs (logarithm of mortality versus age) and therefore their 

exponential increase with age, as expressed by the Gompertz law of mortality 

(equation (3)), is represented with a straight line. Fig. 2 presents data (dots) on 

period mortality rates for the Swedish 2010 population together with the solid 

line representing the Gompertz function fitting the presented data. Even if the 

exponential growth accurately represents most of the ages, some peculiarities 

are observed in young (before 35) and extremely old (after 100) ages.  



  Avraam et al. 162 

A number of mathematical models have been developed and used to 

analyse the human mortality dynamics and to clarify the deviations from the 

exponential growth. Various explanations have been given to the peculiarities of 

mortality at young and old ages. For example, the proposed explanations for the 

late-life mortality plateau include an assumption that the Gompertz law 

(exponential function) is not valid at those ages and that the mortality dynamics 

should be described by logistic, quadratic or some other mathematical functions 

(Gavrilov and Gavrilova[14]; Kannisto et al.[18]; Pham[5]). Other explanations 

take into account the heterogeneity of a population and its impact on the 

dynamics of mortality (Vaupel et al.[11]; Vaupel and Yashin[8]). The 

heterogeneity can be explained in different ways and can be described by 

different models (Lebreton[6]; Steinsaltz and Wachter[3]).  

  

 
Fig. 2. Mortality rates of the 2010-period Swedish population set in a semi-

logarithmic scale 
The data are taken from the Human Mortality Database (http://www.mortality.org). The 

Gompertz function with parameters 
6

0 8.7 10m −= ⋅  and 0.109β =  fits the data very 

well after the age of 35. Deviations from the exponential growth are observed at young 

(before 35) and considerably old (after 100) ages. 

 

In this work, we aim to analyse the dynamics of mortality in human 

populations using the mathematical model that associates the exponential law 

for mortality dynamics with the heterogeneity of populations. We also develop 

the model for continuous age, which complements the discrete model developed 

in Avraam et al.[2]. Both, the discrete and continuous models, can reproduce 

and explain the pattern formed by period or cohort mortality rates across the 
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entire lifespan and are able to explain the deviations from the exponential 

growth. The model is fitted to Swedish period data and it is shown that a 

theoretical heterogeneous population composed by four subpopulations can 

reproduce the actual data fairly well. The model proposed in Avraam et al.[2], is 

then reformulated for the analysis of the probability density and survival 

functions of the population.  

The remainder of this paper is structured as follows. In Section 2, the 

theoretical models in discrete and continuous age are introduced and their 

probability density and survival function for heterogeneous populations 

developed. Section 3 presents the fitting procedure we used. The models 

presented in Section 2 are applied to Swedish mortality rates in 2010 in Section 

4 and obtained results are discussed in Section 5. 

 

2  Mathematical model 
 
2.1. Discrete model of mortality in heterogeneous populations 

 

The main assumption of the model is that human populations are 

heterogeneous and composed of a number of subpopulations or individuals, 

which differ genetically and/or by life style factors (Vaupel et al.[10]; 

Vaupel[9]). The model that combines the heterogeneity with the Gompertz law 

of mortality (Avraam et al.[2]) has a further assumption that the mortality rate in 

each subpopulation grows exponentially (i.e. in the same way as in Gompertz 

law) with different mortality parameters ( 0 ,m β ) for each subpopulation, 

reflecting the variations in the genotype and life style. The notations 0 ,jN  0jm  

and jβ  are used for the initial size, initial mortality rate and rate of ageing of 

the j-th subpopulation respectively. The mortality or the central death rate of the 

j-th subpopulation at age i  is then expressed by the exponential function: 

0 .                                                  (4)j i

ji jm m e
β=  

Using the definition of mortality rate (equation (1)), the mortality of the entire 

heterogeneous population composed by n  subpopulations is given by: 

1

, 1

1 1

,                                         (5)

0.5

n

ji

j

i
n n

ji j i

j j

N

m

N N

=

+
= =

∆

=
 
 +
 
 

∑

∑ ∑
 

with jiN  and jiN∆  representing the number and the number of death of 

persons of age i  in subpopulation .j  By taking into account equations (1) and 

(4), equation (5) is rewritten as: 
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When dealing with period data the number of individuals aged i  is constant for 

a stationary population and therefore the mortality rate is defined as the number 

of deaths iN∆  divided by the actual size .iN  Thus, the model of mortality 

(equation (6)) for period data is simplified and can be expressed as a sum of 

weighted exponential terms: 
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where each weight jiρ  represents the proportion of the j-th subpopulation in the 

whole population at age :i  

1
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2.2. Continuous model of mortality in heterogeneous populations 

 

In the continuous model the age is defined by a real number x  

(continuous age) rather than by the integer number .i  For continuous age, the 

instantaneous mortality, xµ  at age x  (force of mortality) of a homogeneous 

population is defined as: 

0

1
( ) lim .                                     (8)

( ) ( )x

N dN
x

N x x N x dx
µ

∆ →

−∆ −
= =

∆
 

Substituting the Gompertz law in the LHS of equation (8) and solving the 

differential equation results in: 

0

( ) ,                                              (9)

xe

N x Ae

βµ
β

−
=  

where the constant of integration A  is equal to 0 /
0N e

µ β
 as estimated by the 

initial condition 0( 0) .N x N= =  This means that the expression for the 

population size N  at age x  depends on the initial mortality,  0 ,µ  and the 

mortality coefficient :β  

( )0 1

0( ) .                                         (10)
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βµ
β

−
=  
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With heterogeneous populations, formula (10) is used to describe the size of 

each subpopulation at age .x  Therefore, the subscript j  is added in each 

parameter. As a result, the mortality of the entire population in continuous age is 

formulated by: 

0
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By solving equation (11) at integer values of age ( x i= ), equation (6) is found, 

providing then a link between the dynamics of mortality in the continuous and 

discrete models. 

 

2.3. Probability density and survival function in heterogeneous populations 

 

The consideration of heterogeneity in human population can be used 

for the derivation of models for other mortality-related variables that exist in 

human life tables. Such variables are the number of survivors and the number of 

deaths at age .x  In this section, the models of probability density and survival 

function for heterogeneous populations are developed in continuous time. 

In a homogeneous population, ( )S x x+ ∆  denotes the probability of an 

individual to survive at age x x+ ∆  (usually called survival function) and is 

calculated as the difference between the probability to survive at age x  and the 

probability to die between x  and x x+ ∆ : 

( ) ( ) ( ) ( )                                   (12)S x x S x S x x xµ+ ∆ = − ∆  

( ) ( )
( ) ( ).                                 (13)

S x x S x
x S x

x
µ

+ ∆ −
⇒ = −

∆
 

The limit of LHS of equation (13) when x∆  tends to 0, is the derivative of ( )S x  

with respect to x : 

0

( ) ( ) ( )
lim ,                                      (14)
x

S x x S x dS x

x dx∆ →

+ ∆ −
=
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and therefore equation (13) can be written as the differential equation 

( )
( ) ( ).                                              (15)

dS x
x S x

dx
µ= −  

The solution of the differential equation (15) when the force of mortality ( )xµ  

follows the Gompertz law, is 

0( ) exp ,                                       (16)xS x A eβ
µ
β

 
= − 

 
 

where the constant of integration ,A  is given by the initial condition 

( 0) 1S x = =  and is equal to 0 /
.A e

µ β=   
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By multiplying the survival function with the initial size of the population 0N , 

we find the number of individuals alive at age x . Therefore, for the 

heterogeneous population, the theoretical number of survivors at age x  is given 

by: 

( )0

0 0 0

1

( ) ( ) exp 1 .                     (17)j

n
xj

j
jj

N x N S x N e
βµ

ρ
β

=
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= = −  

 
∑  

 The probability density function ( ),f x  of a heterogeneous population 

is obtained similarly. The probability ( )q x  of an individual to die by age x  is 

the complement of the probability to survive at the same age (i.e 

( ) 1 ( )q x S x= − ) and therefore the probability density function is obtained by 

differentiating the cumulative distribution function ( )q x  with respect to x : 

( )0
0( ) '( ) exp 1 .                     (18)xf x q x x eβ

µ
µ β

β
 

= = − − 
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By multiplying the probability density function with the size of the initial 

population, we have the theoretical distribution of deaths across the lifespan, 

0( ) ( ).N x N f x∆ =  

For the case of a heterogeneous population composed by n  

subpopulations, the distribution of deaths is given by the sum of the number of 

deaths of individuals from each subpopulation: 

( )0

0 0 0 0

1 1
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3  Fitting Procedure 
 

The practical and commonly-used Least Squares Method was 

performed for the estimation of the model parameters that minimize the sum of 

the squared residuals between the theoretical and observed values. Log-Linear 

regression was used for the comparison between the logarithm of actual 

mortality rates and the logarithm of the theoretical mortality rates (logarithm of 

equation (6) or (11)), while Linear-regression was used to compare the actual 

number of deaths and survivors with the theoretical number of deaths given by 

equation (19) and theoretical number of survivors given by equation (17) 

respectively. In order to select the model with the optimal number of 

subpopulations, we used the Bayesian Information Criterion (BIC) (Schwarz[4]) 

which is given by the formula 

( ) ( )2ln ln ,                                     (20)d e dBIC n k nσ= +
)

 

where dn is the number of data points, 
2
eσ

)
 is the sum of squared residuals 

divided by the number of data points and k  is the number of free parameters. 

The model with the lowest BIC value represents the optimum. Note that each 

subpopulation is characterised by three parameters (initial mortality, rate of 
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ageing and its size or proportion with respect to the whole population) and also 

the sum of the subpopulations fractions is equal to unity. Therefore, the model 

of heterogeneous population composed by n  subpopulations contains 

3 1k n= −  unknown parameters. 

 

4  Results 
 

The theoretical heterogeneous population model is fitted to three 

different sets of mortality-related data (mortality rates, number of deaths and 

number of survivors) for the 2010 period Swedish data for the entire population 

including males and females. The data come from the website of Human 

Mortality Database, (http://www.mortality.org). We first fit the model to the 

mortality rates introduced in Fig. 2. 
 

 
Fig. 3. The model of heterogeneous population fitted to the 2010 Swedish mortality 

rates 

The heterogeneous population composed by three (panel A), four (panel B) and five 

(panel C) subpopulations are presented. The observed mortality rates are denoted by the 

dot points, the mortality dynamics of the subpopulations are given by the dashed lines 

and the total mortality of the whole population by the solid curve. 

 

Fig. 3 presents the data and the fitted model composed by three (Fig. 

3A), four (Fig. 3B) and five (Fig. 3C) subpopulations. The BIC values reveal 

that the population composed by four subpopulations ( 334.07BIC = − ) fits the 

2010 period Swedish data better than the model of three ( 302.06BIC = − ) 

subpopulations and slightly better than the five-subpopulation model 
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( 315.73BIC = − ). In the four-subpopulation model (Fig. 3B), the first 

subpopulation considered as the frailest (the subpopulation with the highest 

initial mortality) explains the sharp decline of mortality pattern at infant ages. 

The second subpopulation (with initial mortality closed to 0.3) mainly forms the 

left part of the local minimum that is observed at young ages (ages 2-7). The 

third subpopulation with initial mortality around 0.001 forms the local hump 

that appears over the reproductive period (ages 20-30). This hump is frequently 

called the accidental hump since it reflects external death factors such as 

accidents (for both sexes) and maternal mortality (for females). The fourth 

subpopulation is the most robust (having the lowest initial mortality) and has the 

biggest initial fraction. It explains the exponential growth of mortality at the 

period of ageing. 

The fitting procedure is then applied to the numbers of deaths and 

survivors taken for the 2010 Swedish population, with equation (19) and 

equation (17) respectively. The BIC values indicate that the best fit to the 

observed numbers of deaths and survivors is obtained in both cases with a 

model composed by four subpopulations (Fig. 4).  

 

 
Fig. 4. The model of heterogeneous population fitted to the 2010 Swedish number of 

deaths and number of survivors 

A: The density function of heterogeneous population composed by four subpopulations is 

fitted to the actual numbers of deaths and B: The survival function of heterogeneous 

population composed by four subpopulations is fitted to the actual numbers of survivors. 

 

Consequently, the analysis shows that the assumption of population 

heterogeneity provides mathematical models that fit the mortality-related data 

(Fig. 3 and 4) better than a model of homogeneous population. On the other 

hand, the three attempts of fitting mortality-related data for the same population 

do not give the same values for the mortality parameters. The model for 

mortality rates of heterogeneous population provides the parameters that shape 

the mortality pattern of the entire lifespan, since by using the logarithm of 

mortality rates during the fitting procedure we increase the weight of young 

ages. The other two models (equations (17) and (19)) provide parameters that 

minimize the residuals mainly at adulthood span, since the differences between 

theoretical values and observations at young and extreme old ages are 

negligible. Besides, the theoretical relationships between equations (6), (11), 

(17) and (19) developed in Section 2 are valid only for cohort data with no 
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migration where the number of persons alive at age 1i +  ( 1iN + ) in year t  are 

equivalent to the number of persons alive at age i  in year 1t −  minus the 

number of persons who died at age i  in year 1,t −  .i iN N−∆  However, since 

we do not fit cohort data but period data and since the Swedish population is 

subject to migration flows, this relation does not hold, explaining partly the 

observed differences between the values of the parameters of the three fitted 

models. The mortality rates of the entire population resulting from the model 

applied to the three different sets of Swedish data are shown in Fig. 5. The 

dotted and dashed curves indicate that the parameters obtained by fitting the 

numbers of deaths and survivors, fail to accurately model the peculiarities of 

mortality pattern at early and extreme old ages. However they both create a 

smooth dip at around age 75 and thus better capture the mortality pattern at 

adult age than the curve of mortality obtained by fitting mortality rates (solid 

curve in Fig. 5). 

  

 
Fig. 5. Different fits of four-subpopulation heterogeneous model to 2010 Swedish 

mortality data 

The solid (red) curve represents the mortality pattern resulting from the heterogeneous 

model fitted to the mortality rates (same pattern as in Fig. 3B) while the dotted (green) 

and dashed (blue) curves show the mortality pattern resulting from the model fitted to the 

numbers of deaths and the numbers of survivors respectively. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the electronic version 

of this book.) 

 

 

Conclusions 
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Modelling the dynamics of human mortality has long been the focus of 

various studies aiming an understanding the ageing processes and the causes of 

mortality at different ages. A number of studies have assessed the impact of 

heterogeneity on the dynamics of mortality, in particular at young and extremely 

old ages. The assumption that the population is heterogeneous combined with 

the assumption that the mortality dynamics of each subpopulation follows the 

exponential law, have been used to model the observed mortality dynamics and 

particularly to explain the deviations of mortality dynamics from the 

exponential growth (Avraam et al.[2]). In this work, we extended the model 

developed in Avraam et al.[2], from discrete to continuous time and we use it to 

reproduce and analyse the mortality dynamics across the entire human lifespan. 

The model contains meaningful demographic parameters and is capable of 

reproducing the actual data of a human population fairly well. The heterogeneity 

of a population is also used to derive models reproducing the patterns formed by 

the numbers of deaths and survivors.  

The model reveals that we need to consider only four subpopulations to 

reproduce with sufficient accuracy the Swedish period mortality-related data 

(Fig. 3B and 4). The four-subpopulation model appears to be the optimum in all 

three fitted models we developed, that are 1) fitted model to mortality rates, 2) 

fitted model to the number of deaths and 3) fitted model to the number of 

survivors. Even though it probably underestimates the real heterogeneity of 

human populations, it shows how a simple mathematical model can well 

represent actual human mortality dynamics. Our analysis indicates that the 

contribution of heterogeneity differs across ages. The mortality model suggests 

that a small subpopulation with high initial mortality explains the decline in 

mortality at young ages as this subpopulation gradually disappears. Generally, 

the faster-ageing subpopulations are eliminated with increasing age and the 

entire population starts to act more-and-more homogeneously, as if it was 

composed by a single (with the lowest mortality) subpopulation. 

The model presented in this study allows many future developments, 

such as an analysis of the time evolution of the Gompertz parameters. Indeed, 

such study could help to better understand past mortality evolutions, such as the 

ageing process, and could provide a new approach to forecast mortality trends of 

human populations. By comparing these projections with traditional forecasting 

techniques currently used in practice, such as the Lee-Carter and the Heligman-

Pollard models (see for example Gaille[16]), the analysis of potential future 

mortality developments will be enhanced.   
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