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1. INTRODUCTION
1.1. (Bayesian) Combinatorial Auctions with Item Bidding
Combinatorial auctions are fundamental to economic theory and have also been the
subject of much research in computer science. In a combinatorial auction m items
M = {1, . . . ,m} are sold to n bidders N = {1, . . . , n}. Each bidder i has a valuation
function (or valuation, in short) vi that assigns a nonnegative real number to every
subset of the items. vi expresses i’s preferences over bundles of items. The value vi(S)
can be thought of as specifying i’s maximum willingness to pay for S. Two standard
assumptions are made regarding vi: vi(∅) = 0 (normalization), and vi(S) ≤ vi(T ) for
every two bundles S ⊆ T (monotonicity). The objective is to find a partition of the
items among the bidders S1, . . . , Sn (where Si ∩Sj = ∅ for all i 6= j) such that the social
welfare Σivi(Si) is maximized.
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The interplay between selfishness and computation in combinatorial auctions is well
studied. In particular, much work has been devoted to the design of mechanisms that
are both truthful, i.e., incentivize bidders to report their private information, and com-
putationally efficient. Unfortunately, in general, truthfulness and computational ef-
ficiency are at odds. The celebrated VCG mechanisms [Vickrey 1961; Clarke 1971;
Groves 1973] optimize the social welfare and motivate agents to truthfully report their
private information. The caveat is that this may take exponential time [Nisan and Ro-
nen 1999; 2000] (in the natural parameters of the problem m and n). If we disregard
incentives, non-truthful algorithms obtain good approximations to the optimal social
welfare in polynomial time for restricted, yet very expressive, special cases of com-
binatorial auctions (e.g., combinatorial auctions in which bidders have submodular
valuations, also called “combinatorial auctions with submodular bidders” [Lehmann
et al. 2001; Dobzinski et al. 2005; Dobzinski and Schapira 2006; Feige 2006; Feige and
Vondrak 2006; Vondrak 2008]). Unfortunately, no truthful mechanism can approxi-
mate the optimum social welfare in combinatorial auctions with submodular bidders
within any constant factor [Dobzinski 2011], so it is natural to relax the equilibrium
condition. Also, practitioners typically resort to non-truthful auction mechanisms, e.g.,
the famous Generalized Second Price auction (GSP) for selling adwords.

We approach the central issue of reconciling selfishness and computation in auctions
from an old-new perspective: Harsanyi [1968] introduced Bayesian games as an ele-
gant way of modeling selfishness in partial-information settings. In a Bayesian game,
players do not know exactly the private information of the other players, but only have
beliefs, expressed by probability distributions over the different possible realizations
of this private information. In combinatorial auctions, this translates to probability
distributions over the possible valuation functions of the other bidders. We are inter-
ested in maximizing the social welfare in a way that is aligned with the interests of the
different bidders. We ask the following question: Can we design an auction for which
any Bayesian Nash equilibrium provides a good approximation to the optimal social
welfare? We thus seek a Bayesian analogue of the price of anarchy [Koutsoupias and
Papadimitriou 1999; Roughgarden and Tardos 2002] in this context1.

Of much theoretical and practical interest are combinatorial auctions with item bid-
ding, where the auctioneer sells the items by simultaneously running m independent
single-item auctions. Inspired by auctions on eBay, we investigate the simple auction
setting in which m items are sold in m independent second-price auctions, and each
bidder can participate in any number of these single-item auctions. This auction set-
ting induces a game in which a bidder’s strategy is the m-dimensional vector of bids
he submits in the different single-item auctions, and his payoff is his value for the set
of items he is allocated minus his payments. Unfortunately, some unnatural complica-
tions arise: Consider the scenario that m = 1, n = 2, and the two bidders have complete
information about each other. Let v1(1) = 1 and v2(1) = 0. Observe that the optimal
social welfare is 1 (assign item 1 to bidder 1). Also observe that if bidder 1 bids 0 and
bidder 2 bids 1 then this is a pure Nash equilibrium with a social welfare value of 0.
Hence, the price of anarchy of this full-information game, that is, the ratio between
the optimal solution and worst-case social welfare in equilibrium, is unbounded.

Observe that in the above scenario bidder 2 bid for (and got) an item he was not in-
terested in possessing. We argue that such situations are unlikely to occur in practice,
especially if bidders are only partially informed and are thus more inclined to avoid
risks. We therefore make the assumption that bidders ‘play it safe’, in the sense that a
bidder will not submit bids that might (in some scenario) result in getting a negative
payoff. We call this the no-overbidding assumption. A strategy of bidder i is a bid-

1See [Garg and Narahari 2005; Gairing et al. 2005] for a similar approach to ours in selfish routing problems.
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vector bi = (bi(1), bi(2), . . . , bi(m)), where bi(j) represents i’s bid for item j. A bid-vector
is called non-overbidding, if the sum of bids over any set of items S does not exceed the
value vi(S) of this set (see Definition 2.1). (We point out that the no-overbidding as-
sumption can simply be viewed as the ex-post individual-rationality assumption from
decision theory.)

1.2. Our Contributions
(Bayesian) Price of Anarchy in Auctions. We initiate the study of (Bayesian) price

of anarchy in auctions and, in particular, of combinatiorial auctions with item bid-
ding. Our main result establishes that when bidders valuations are submodular, i.e.,
exhibit decreasing marginal utilities, any (mixed) Bayes-Nash equilibrium of this auc-
tion game provides a good approximation to the optimal social welfare. A bidder i is
said to have a submodular valuation function if for all S, T ⊆M vi(S ∪T ) + vi(S ∩T ) ≤
vi(S) + vi(T ). Equivalently (see, e.g., [Lehmann et al. 2001]) vi is submodular if for
every two bundles S ⊆ T that do not contain an item j it holds that

vi(S ∪ {j})− vi(S) ≥ vi(T ∪ {j})− vi(T ).

We present the following result:

Theorem: Under no-overbidding, and when all valuations are submodular, any
(mixed) Bayes-Nash equilibrium of the auction game approximates the optimum so-
cial welfare within a factor of 2.

Our proof of the above result combines several new ideas and is interesting in its own
right. In particular, the proof involves the first application of smoothness [Roughgarden
2012a] to games with incomplete information [Roughgarden 2012b].

Moreover, this result holds for the strictly broader class “fractionally-subadditive
valuations” [Feige 2006] (defined, and termed XOS, in [Nisan 2000]). Importantly, our
result is independent of the bidders’ beliefs, i.e., the 2-approximation ratio is guar-
anteed for any common probability distribution (“common prior”) over the valuation
functions (we do require the common prior to be the product of independent probabil-
ity distributions). Our approach thus suggests a middle-ground between the classical
economic and the standard computer science approaches: Works in economics typi-
cally assume that the “input” is drawn from some specific probability distribution, and
prove results that apply to that specific distribution. In contrast, computer scientists
typically prefer worst-case analysis.

Existence and computability of pure Nash equilibria. We study the scenario of in-
terest in which the valuation function of each bidder is known to all other bidders (or,
equivalently, the common prior selects a single valuation profile with probability 1). We
show that such full-information games always possess a pure Nash equilibrium even
if the no-overbidding assumption does not hold. In fact, a simple argument establishes
that the socially-optimal allocation of items to bidders is achievable in pure equilib-
rium. Hence, while the price of anarchy in these full-information games is unbounded
(without the no-overbidding assumption), the price of stability (the social welfare of
the best Nash equilibrium relative to the optimum [Anshelevich et al. 2004]) is 1.

Optimizing the social welfare in combinatorial auctions with submodular bidders is
NP-hard [Lehmann et al. 2001]. Can a pure Nash equilibrium that provides a good
approximation to the optimal social welfare be computed in polynomial time? We give
the following answer for submodular bidders:
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Theorem: When bidders have submodular valuations, a pure Nash equilibrium of a
full-information game that approximates the optimal social welfare within a ratio of 2
can be computed in polynomial time.

The proof of this theorem shows that the 2-approximation algorithm for maximizing
social welfare in combinatorial auctions with submodular bidders, due to Lehmann et
al. [Lehmann et al. 2001], can be used to compute the bids in a pure Nash equilibrium.
We note that similar questions have been studied by Vetta in [2002]2.

We provide, for the wider class of fractionally-subadditive valuation functions, a con-
structive way of finding a pure Nash that yields a 2-approximation via a simple and
natural myopic procedure (inspired by the greedy approximation-algorithm in [Dobzin-
ski et al. 2005]). Unfortunately, while this myopic procedure does compute a pure Nash
equilibrium in polynomial time for some interesting (non-submodular) valuations, this
is not true in general. We show that the myopic procedure may take exponential time
by exhibiting a non-trivial construction of an instance on which this can occur.

1.3. Follow-Up work
Since the publication of the conference version of this paper [Christodoulou et al. 2008]
there has been a fair amount of follow-up work on studying the price of anarchy of
Bayes-Nash equilibria, and on combinatorial auctions with item bidding. Below, we
briefly discuss the most relevant references.

Bhawalkar and Roughgarden [2011] and Feldman et al. [2013] study the price of
anarchy of simultaneous second-price auctions for bidders with subadditive valuation
functions. In [Bhawalkar and Roughgarden 2011] it is shown that the price of anarchy
for pure Nash equilibria is 2, but is strictly greater than 2 for Bayes-Nash equilib-
ria. Fu, Kleinberg and Lavi [2012] extended this bound for general valuation func-
tions. [Bhawalkar and Roughgarden 2011] coined the term “combinatorial auctions
with item bidding” that refers to settings like ours in which multiple items are sold
concurrently in single-item auctions. [Feldman et al. 2013] proves upper and lower
bounds on the price of anarchy for Bayes-Nash equilibria and presents the best upper
and lower bounds to date: 2.061 and 4, respectively.

The Bayesian price of anarchy of simultaneous first-price auctions was studied in
[Hassidim et al. 2011; Syrgkanis and Tardos 2013; Feldman et al. 2013; Christodoulou
et al. 2013]. Hassidim et al. [2011] investigated the existence of pure and mixed equi-
libria in such auctions and also studied the Bayesian price of anarchy in this context.
They showed that pure Nash equilibria are always efficient (when they exist), and
they also upper bounds of 4, O(logm), and O(m), for the price of anarchy of Bayes-
Nash equilibria with XOS, subadditive and general valuations respectively. They also
presented superconstant lower bounds for auctions with superadditive valuations.
Syrgkanis and Tardos [2013], and Feldman et al. [2013], established upper bounds
of e/(e− 1) for XOS valuations and 2 for subadditive valuations, respectively. Recently
Christodoulou et al. [2013] showed tight lower bounds for both cases.

Paes Leme and Tardos [2010] initiated the study of the price of anarchy of gen-
eralized second price auctions. This work was followed in [Caragiannis et al. 2011;
Caragiannis et al. 2012] for the full information and for the Bayesian setting and even
for correlated distributions [Lucier and Paes Leme 2011]. Borodin and Lucier [2010]

2Vetta [2002] considers a general setting in which decisions are made by non-cooperative agents, and the
utility functions are submodular. He proves (among others), that in this setting the price of anarchy is
at most 2. The framework discussed there assumes players whose pure strategies are modeled by certain
subsets of a ground set (e.g., the items). Apparently, even in the full-information, and submodular case, this
framework is not applicable to our auction, where the bids on the items play a crucial role.
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study the Bayesian price of anarchy of greedy mechanisms and Roughgarden [2012b]
explores methods to bound the price of anarchy in games with incomplete information.

Markakis and Telelis [2012] studied the inefficiency of uniform price multi-unit auc-
tions. De Keijzer et al. [2013] showed bounds for the price of anarchy of Bayesian equi-
libria for several formats of multi-unit auctions with first or second pricing schemes.
Bhawalkar and Roughgarden [2012] study the effect of the price rule of a single item
in the equilibrium performance of simultaneous auctions. Alon et al. [2012] investigate
the price of anarchy in network cost sharing games in a Bayesian context.

2. BAYESIAN PRICE OF ANARCHY
In Subsection 2.1 we present the setting explored in this paper. Section 2.2 presents
our Bayesian price of anarchy result for pure and mixed Bayes-Nash equilibria. The
general proof for mixed equilibria can be found in Appendix A.

2.1. Bayesian Combinatorial Auctions with Item Bidding
The auction. m items are sold to n bidders in m independent second-price auc-
tions (with some tie-breaking rule). A bidder’s strategy is a bid-vector bi ∈ Rm

≥0 (bi(j)
represents i’s bid for item j). A (pure) strategy profile of all players is an n-tuple
b = (b1, . . . , bn). We will use the notation b = (bi, b−i), to denote a strategy profile in
which bidder i bids bi and other bidders bid as in b−i = (b1, . . . , bi−1, bi+1, . . . , bn). We
use [j] to denote the set of integers from 1 to j.

Given a strategy profile b, the items are allocated according to the second price rule,
i.e., every object is sold to the highest bidder at a price equal to the second highest bid.

For any fixed bwe denote byXi(b) the set of items obtained by player i in the auction.
For a set S ⊆M, let the sum of the highest bids be denoted by

Bids(S, b) =
∑
j∈S

max
k

bk(j),

Bids(S, b−i) =
∑
j∈S

max
k 6=i

bk(j),

and
Bids(S, bi) =

∑
j∈S

bi(j).

The utility (payoff) of player i is then given by

ui(b) = vi(Xi(b))−Bids(Xi(b), b−i).

We make two assumptions about the bidders: no-overbidding, and that the vis are
fractionally-subadditive. A valuation is fractionally-subadditive if it is the pointwise
maximum of a set of additive valuations: A valuation a is additive if for every S ⊆
M a(S) = Σj∈Sa({j}). A valuation vi is fractionally-subadditive if there are additive
valuations Ai = {a1, . . . , al} such that for every S ⊆ M vi(S) = maxa∈A a(S). (We will
call ak ∈ A a maximizing additive valuation for the set S if vi(S) = ak(S).)3

The class of fractionally-subadditive valuations is known to be strictly contained
in the class of subadditive valuations and to strictly contain the class of submodular
valuations [Nisan 2000; Lehmann et al. 2001].

3In order to have a finite (discrete) model, we can restrict acceptable bids to multiples of an arbitrary fixed ε,
and not to exceed some maximum value Bmax. In this case either we have to make the additional assump-
tion that all a(j) in the additive valuations of the sets Ai adhere to the same restrictions, or admit implicit
ε errors in the derived bounds on the price of anarchy.
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Definition 2.1. A bid vector bi is said to be non-overbidding given a valuation vi, if
for all S ⊆M vi(S) ≥ Σj∈Sbi(j).

Bayes-Nash Equilibria. For all i, let Vi denote the finite set of possible valuations of
player i. The set of possible valuation profiles of the players is then V = V1 × . . .× Vn.
There is a known probability distribution D over the valuations V (a common prior).
D can be regarded as some market statistics that is known to all bidders (and to
the auctioneer), and specifies their beliefs. We assume that D = D1 × . . . × Dn is
the cartesian product of independent probability distributions Di : any valuation pro-
file v = (v1, . . . , vn) occurs with probability D(v) = Πn

i=1Di(vi), where Di(vi) is the
probability that bidder i has the valuation function vi. We will use the short notation
V−i = ×k 6=iVk, D−i = ×k 6=iDk, and v−i = (v1, . . . , vi−1, vi+1, . . . , vn).

A bidding-function Bi for player i is a function that assigns a bid-vector bi = Bi(vi)
to every valuation function vi ∈ Vi. The reader may find it helpful to think of Bi as a
suggestion made to player i by the auctioneer as to which bid to submit. An n-tuple
of bidding-functions B = (B1, . . . , Bn) is a Bayes-Nash equilibrium if for every i ∈ N ,
and for every valuation function vi, the bid Bi(vi) maximizes i’s expected utility given
that his valuation function is vi, and that the bid of every other bidder j is Bj(vj),
where vj is drawn from Dj . That is, a Bayes-Nash maximizes i’s expected payoff for
any valuation function he may have, given his beliefs about the other bidders.

Bayesian price of anarchy. For a fixed valuation profile of the bidders v =
(v1, . . . , vn), the optimal social welfare isOPT (v) = maxS1,...,SnΣivi(Si),where the max-
imum is taken over all partitions of M into disjoint bundles S1, . . . , Sn. For given D,
the (expected) optimal social welfare SW (OPT ) is the expectation E[OPT (v)], where v
is drawn from D. That is,

SW (OPT ) =
∑
v∈V

D(v)OPT (v)

Given a valuation profile v, every pure strategy profile b induces a social welfare value
SW (b) =

∑
i∈N vi(Xi(b)). For an n-tuple of bidding-functions B = (B1, . . . , Bn), we

denote by SW (B) the expected social welfare E[SW (B1(v1), . . . , Bn(vn))], where the
v = (v1, . . . , vn) is drawn from D :

SW (B) =
∑
v∈V

D(v)SW (B(v)).

We are interested in Bayes-Nash equilibria B for which the ratio SW (OPT )
SW (B) is small.

The Bayesian price of anarchy of a game is

PoA = max
D, B Bayes−Nash

SW (OPT )

SW (B)
,

that is the maximum of the expression SW (OPT )
SW (B) , taken over all probability distribu-

tions D, and all Bayes-Nash equilibria B (for these probability distributions). Intu-
itively, Bayesian price of anarchy of α means that no matter what the bidders’ beliefs
are, every Bayes-Nash equilibrium provides an α-approximation to the optimal social
welfare.

2.2. Bayesian Price of Anarchy of 2
This subsection exhibits our main result. For the sake of readability we prove the
theorem regarding the Bayesian price of anarchy for pure Bayes-Nash equilibria. The
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extension of the theorem to mixed Bayes-Nash equilibria is presented at the end of
the section. The proof exploits the fractional subadditivity of the valuations via the
following lemma:

LEMMA 2.2. Let S be a set of items, and a be a maximizing additive valuation
of player i for this set. If i bids according to a for the elements of S (and 0 for other
elements), while all the others bid according to any pure profile b−i, then

ui(a, b−i) ≥ vi(S)−Bids(S, b−i).

PROOF. LetXi := Xi(a, b−i) be the set of items that player i is going to get. Note that
if i wins any item j 6∈ S then the maximum bid on this j was 0. Thus we can assume
w.l.o.g. that Xi ⊆ S (otherwise the proof holds with Xi ∩ S instead of Xi). Moreover,
a(j) − Bids({j}, b−i) ≤ 0 holds for every non-obtained item j ∈ S − Xi. Therefore, we
have

ui(a, b−i) = vi(Xi)−Bids(Xi, b−i)

≥
∑
j∈Xi

a(j)−Bids(Xi, b−i)

≥
∑
j∈S

a(j)−Bids(S, b−i)

= vi(S)−Bids(S, b−i).

The first inequality uses the definition of vi(Xi) as the maximizing additive valua-
tion for Xi whereas a is one of the additive valuations. The second inequality follows
from the inequality for non-obtained items.

THEOREM 2.3. Let D be a distribution over fractionally-subadditive valuations of
the bidders. If B = (B1, . . . , Bn) is a Bayes-Nash, such that each Bi maps every valua-
tion function vi to a non-overbidding bid (given vi) then SW (OPT )

SW (B) ≤ 2.

PROOF. Let v = (v1, . . . , vn) be a fixed valuation profile. We denote by Ov =
(Ov

1 , . . . , O
v
n) the optimum allocation with respect to profile v.

Now for every player i, let ai denote the maximizing additive valuation for the set
Ov

i , (we set ai(j) = 0 if j 6∈ Ov
i ). For all i, we consider ai as an alternative strategy to

Bi(vi).
Let us fix a bidder i. Let w−i be an arbitrary valuation profile of all bidders except

for i. We introduce the short notation

X
w−i

i
def
= Xi(Bi(vi), B−i(w−i)).

Furthermore, for any S ⊆M we will use

Bidsw−i(S)
def
= Bids(S,B−i(w−i)),

resp.

Bidsw(S)
def
= Bids(S,B(w)),

where w = (wi, w−i) is a complete valuation profile.
Since B is a Bayes-Nash, the strategy Bi(vi) provides higher expected utility to

player i than the strategy ai :∑
w−i∈V−i

D(w−i)ui(Bi(vi), B−i(w−i)) ≥
∑

w−i∈V−i

D(w−i)ui(ai, B−i(w−i)).
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The utility values on the left-hand side are

ui(Bi(vi), B−i(w−i)) = vi(X
w−i

i )−Bidsw−i(X
w−i

i ) ≤ vi(Xw−i

i ).

On the right-hand side, applying Lemma 2.2 yields

ui(ai, B−i(w−i)) ≥ vi(Ov
i )−Bidsw−i(Ov

i ).

By merging the inequalities above, we get∑
w−i∈V−i

D(w−i)vi(X
w−i

i ) ≥
∑

w−i∈V−i

D(w−i)[vi(O
v
i )−Bidsw−i(Ov

i )]

= vi(O
v
i )

∑
w−i∈V−i

D(w−i)−
∑

w−i∈V−i

D(w−i)Bids
w−i(Ov

i )

= vi(O
v
i ) · 1−

∑
w∈V

D(w)Bidsw−i(Ov
i )

≥ vi(O
v
i )−

∑
w∈V

D(w)Bidsw(Ov
i ).

Here the expected highest bids
∑

w−i∈V−i
D(w−i)Bids

w−i(Ov
i ), and∑

w∈V D(w)Bidsw−i(Ov
i ) are equal, because D is independent for all bidders. Fi-

nally, Bidsw−i(Ov
i ) ≤ Bidsw(Ov

i ) obviously holds, since in the latter case we consider
maximum bids over a larger set of players. We obtained

vi(O
v
i ) ≤

∑
w−i∈V−i

D(w−i)vi(X
w−i

i ) +
∑
w∈V

D(w)Bidsw(Ov
i ).

We sum over all i, and then take the expectation over all valuations v = (v1, . . . , vn) on
both sides: ∑

v∈V
D(v)

∑
i∈N

vi(O
v
i ) ≤

∑
v∈V

D(v)
∑
i∈N

∑
w−i∈V−i

D(w−i)vi(X
w−i

i )

+
∑
v∈V

D(v)
∑
i∈N

∑
w∈V

D(w)Bidsw(Ov
i ).

Note that
∑

v∈V D(v)
∑

i∈N vi(O
v
i ) = SW (OPT ). Furthermore, we claim that both sum-

mands on the right-hand side are at most SW (B), so that SW (OPT ) ≤ 2SW (B), which
will conclude the proof. The first summand solves to∑

i∈N

∑
vi∈Vi

D(vi)
∑

v−i∈V−i

D(v−i)
∑

w−i∈V−i

D(w−i)vi(X
w−i

i )

=
∑
i∈N

∑
vi∈Vi

D(vi)
∑

w−i∈V−i

D(w−i)vi(X
w−i

i )
∑

v−i∈V−i

D(v−i)

=
∑
i∈N

∑
vi∈Vi

∑
w−i∈V−i

D(vi)D(w−i)vi(X
w−i

i ) · 1

=
∑
i∈N

∑
v∈V

D(v)vi(X
v−i

i )

=
∑
v∈V

D(v)
∑
i∈N

vi(Xi(B(v))) = SW (B).
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Finally, the second summand is∑
v∈V

D(v)
∑
w∈V

D(w)
∑
i∈N

Bidsw(Ov
i ) =

∑
v∈V

D(v)
∑
w∈V

D(w)Bidsw(M)

=
∑
w∈V

D(w)Bidsw(M)
∑
v∈V

D(v)

=
∑
w∈V

D(w)Bidsw(M) · 1

=
∑
w∈V

D(w)
∑
i∈N

Bids(Xi(B(w)), Bi(wi))

≤
∑
w∈V

D(w)
∑
i∈N

wi(Xi(B(w))) = SW (B).

The last inequality holds since for all i, the Bi(wi) contains non-overbidding bids for
any set of items including the obtained set Xi(B(w)).

The bound on the price of anarchy holds in general for mixed Bayes-Nash equilibria:

THEOREM 2.4. Let D be a distribution on the valuations of the bidders. If p =
(p1, ..., pn) is a mixed Bayesian Nash, such that for every i and every valuation vi,
the pvi(= pvii ) is a probability distribution over non-overbidding bids w.r.t. vi,4 then
SW (OPT )

SW (p) ≤ 2.

The proof of the general case consists in a straightforward extension of all
(in)equalities to expectations over the mixed bidding strategies. Appendix A contains
the proof.

A simple example shows that even in the full-information setting, this Bayesian
price of anarchy result is tight:

Example 2.5. Consider the following example, with 2 items and 2 players. The first
player values the objects v1(1) = v1({1, 2}) = 2, and v1(2) = 1, and symmetrically for
the second player v2(2) = v2({1, 2}) = 2, and v2(1) = 1. In the optimum partition,
the first player gets the first object and the second player gets the second object. This
results to a social welfare of 4.

If the first player bids b1(2) = 1, b1(1) = 0, and the second b2(1) = 1, b2(2) = 0, then
the first player will get the second object, while the second player will get the first
object. This results to a social welfare of 2. In addition, b is a pure Nash equilibrium.
Consequently, the price of anarchy is at least 4/2 = 2.

3. COMPUTING PURE NASH EQUILIBRIA
In this section we consider the following full-information game: Them items are sold to
n bidders with fractionally-subadditive valuation functions in m independent second-
price auctions. The players’ valuation functions are assumed to be common knowledge.

In Subsection 3.1, we show that a pure Nash (with non-overbidding bids) that pro-
vides a good approximation to the social welfare, always exists in such games and
provide a constructive way of finding one. We also prove that the price of stability [An-
shelevich et al. 2004] is 1, i.e. the optimum can always be achieved in a Nash equi-
librium. Finally, we describe an example to demonstrate that with this procedure it
might take exponential time to find an equilibrium.

4Technically this condition can be realized so that pvi (bi) = 0 whenever bi is an overbidding bid.
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In Subsection 3.2 we show that if bidders have submodular valuation functions then
a good pure Nash can be reached in polynomial time.

3.1. Fractionally-Subadditive Valuation Functions
Despite the fact that (as shown in the Introduction) some Nash equilibria may fail to
provide good approximation to the social welfare, we present a constructive way for
finding a pure Nash that yields a 2-approximation. We introduce a natural procedure
we call POTENTIAL PROCEDURE, which always reaches such an equilibrium. The PO-
TENTIAL PROCEDURE is a simple myopic procedure for fractionally-subadditive bid-
ders.5

For every i let Ai = {ai1, ..., aili} be a set of additive valuations such that for every
S ⊆ M, vi(S) = maxa∈Ai a(S). Since vi is fractionally subadditive, such Ai must exist.
The procedure simply starts with zero bids b∗i (j), zero per-item prices rj , and an empty
set of items Si = ∅ allocated to each player i. Then it lets players best-reply one by
one, to the bids of other players by switching to new non-overbidding bids. After every
round, the sets Si of all agents form a partition (w.l.o.g.) of the item-set, and for every
player i the bids b∗i (j), on his ’own’ items from Si are determined by a maximizing
additive valuation from Ai for Si, and are zero for items not in Si. The bids of other
players we regard as current prices rj on each item j for choosing a next best response.

In each round, an arbitrary dissatisfied player k selects a new set T that maximizes
his utility given the current prices. Since prices are 0 over his own set Sk, it can be
assumed w.l.o.g., that T ⊇ Sk (otherwise T ∪ Sk could be chosen), and also that the
new bids of player k are never lower than the current price (otherwise it would be
better for him to choose a subset of T ). This T becomes his new set, i.e., he robs items
from other players, which results in a new item-partition; subsequently the bids and
prices get updated as described above. We will prove that if after such a round all
players are satisfied with their current sets, then the bids (b∗i )i∈N correspond to a
Nash equilibrium, (even in the case when overbidding is allowed).

Note that after every round the bids of all players need to be adjusted to sum up to
the exact value of the current set of the player, and be zero elsewhere. In this sense, the
procedure slightly differs from a pure best-response procedure, but can nevertheless
be understood as a natural and realistic distributed process that non-colluding agents
could use to converge to an equilibrium.

Remark 3.1. This procedure requires bidder i to be able to determine which bundle
he would prefer most, given a vector of per-item prices r = (r1, ..., rm). That is, to de-
clare a bundle S for which vi(S) − Σj∈Srj is maximized. This type of query is called a
demand query and is very common in the combinatorial auctions literature.6 In addi-
tion, the agents must be capable of responding XOS queries, in that for given S they
can choose their maximizing additive valuation over S.

POTENTIAL PROCEDURE:

(1) Initialize b∗i (j)← 0, Si ← ∅, rj ← 0, for i = 1, . . . , n and j = 1, . . . ,m.
(2) While there is a bidder k such that Sk 6= arg maxS⊆M (vk(S)− Σj∈(S\Sk)rj):

(a) Let T = arg maxS⊆M (vk(S)− Σj∈(S\Sk)rj); {w.l.o.g. Sk ⊆ T}
(b) Set Sk ← T
(c) For all i 6= k let Si ← Si\Sk

(d) For all i ∈ N do

5It can also be understood as a centralized local search procedure.
6See, e.g., [Blumrosen and Nisan 2005; Dobzinski et al. 2005; Feige 2006; Feige and Vondrak 2006].
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i. Let ai ∈ Ai be such that vi(Si) = ai(Si).
ii. Set b∗i (j)← ai(j) and rj ← ai(j) for all j ∈ Si and b∗i (j)← 0 for all j 6∈ Si

(3) Output b∗ = (b∗1, . . . , b
∗
n).

We use a potential-function argument and the fractional-subadditivity of the bidders
to show that the POTENTIAL PROCEDURE eventually converges to a “good” pure Nash.

THEOREM 3.2. If the valuation functions are fractionally subadditive, then the
POTENTIAL PROCEDURE ends in a pure Nash equilibrium that provides a 2-
approximation to the optimal social welfare.

PROOF. We divide the proof into two claims: first, we show that the procedure ter-
minates, and second, that the last bids b∗ correspond to a Nash equilibrium.

CLAIM 1. If the valuation functions are fractionally subadditive, then the POTEN-
TIAL PROCEDURE terminates after a finite number of rounds.

PROOF. We use a potential function argument. For this purpose, we use as a poten-
tial function the function that assigns to a partition of items X = (X1, . . . , Xn), the
social welfare

SW (X) =
∑
i∈N

vi(Xi).

In particular, we are going to show that whenever there is a strict improvement to
a player’s utility, this translates into a strict improvement of the social welfare. This
will prove that this procedure will terminate, as it converges to a local maximum of
the social welfare. Later we will prove that any local maximum of the social welfare,
corresponds to a pure Nash equilibrium.

Let St = (St
1, . . . , S

t
n) be the partition of the items and rtj the maximum bid for item

j, after round t = 1, 2, . . . of the POTENTIAL PROCEDURE. W.l.o.g. assume that at time
step t, player k is chosen by the procedure to improve his utility, i.e.

vk(St
k)−

∑
j∈St

k
\St−1

k

rt−1
j > vk(St−1

k ),

where St
k and St−1

k play the roles of T and Sk, respectively, in step (2) of the procedure.
For i 6= k, the prices rt−1

j for items in St−1
i are determined by a maximizing additive

valuation a ∈ Ai for St−1
i . Therefore

vi(S
t
i ) = vi(S

t−1
i \St

k) ≥
∑

j∈St−1
i
\St

k

rt−1
j = vi(S

t−1
i )−

∑
j∈St

k
∩St−1

i

rt−1
j .

The inequality holds by fractional subadditivity, since the rt−1
j are defined by some

additive valuation from Ai, whereas vi(St−1
i \St

k) is determined by the maximizing ad-
ditive valuation for this set. Since the (St−1

i )i∈N form a partition, clearly St
k\S

t−1
k =⋃

i6=k S
t
k ∩ S

t−1
i . Therefore, after summing up the above inequalities over all players i

(also for i = k), the prices cancel out and we obtain

∑
i∈N

vi(S
t
i ) > vk(St−1

k ) +
∑

j∈St
k
\St−1

k

rt−1
j
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+
∑
i 6=k

vi(St−1
i )−

∑
j∈St

k
∩St−1

i

rt−1
j


=

∑
i∈N

vi(S
t−1
i ) +

∑
j∈St

k
\St−1

k

rt−1
j −

∑
i6=k

∑
j∈St

k
∩St−1

i

rt−1
j

=
∑
k∈N

vk(St−1
k ).

Hence, the procedure will terminate, giving a partition that corresponds to a (local)
maximum of the social welfare function.

Now we will prove that the strategy profile b∗ resulting the last partition of the
POTENTIAL PROCEDURE, is a Nash equilibrium.

CLAIM 2. If the valuation functions are fractionally subadditive, then the POTEN-
TIAL PROCEDURE terminates with an n-tuple of bids that is a Nash equilibrium.

PROOF. By contradiction, let’s suppose that b∗ is not a pure Nash equilibrium, i.e.
there is a player i and a strategy bi, such that ui(bi, b∗−i) > ui(b

∗) = vi(Si). Let Xi =
Xi(bi, b

∗
−i) be the corresponding bundle of items that player i gets if he bids bi. Based

on bi, we are going to construct a non-overbidding bid vector b′i, that increases the
utility of i at least as much as bi does. We will show that b′i corresponds to a set X ′i
that would have been chosen by POTENTIAL PROCEDURE (X ′i or an even better set
T = arg maxS⊆M (vi(S)− Σj∈(S\Si)rj)).

Let a be the maximizing additive valuation that corresponds to the set Xi. For every
j /∈ Xi, we assume that bi(j) = 0 (we can decrease bi(j) to zero, without affecting player
i’s utility).

Let O be the set of all items j ∈ Xi for which a(j) < rj , and let a′ be the maximizing
additive utility of the set Xi\O. The utility that player i would get if he bid 0 for all
items in O, and a′ on Xi\O would be

vi(Xi\O)−
∑

j∈Xi\O

rj =
∑

j∈Xi\O

(a′(j)− rj)

≥
∑

j∈Xi\O

(a(j)− rj)

≥
∑

j∈Xi\O

(a(j)− rj) +
∑
j∈O

(a(j)− rj)

=
∑
j∈Xi

(a(j)− rj)

= vi(Xi)−
∑
j∈Xi

rj

= ui(bi, b
∗
−i)

> ui(b
∗)

= vi(Si).

Therefore, the POTENTIAL PROCEDURE could choose the set X ′i = Xi\O, or a set
that increases even more the utility of player i, i.e. T = arg maxS⊆M vi(S)−

∑
j∈S\Si

rj .
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This contradicts the fact that the stop condition (line 2) of the POTENTIAL PROCEDURE
has been satisfied.

The two claims and Theorem 2.3 imply that the POTENTIAL PROCEDURE results in
a pure Nash equilibrium that is a 2-approximate solution.

Remark 3.3. Notice that by the second claim the global optimum of the social wel-
fare potential function is also a pure Nash. This means that for any optimum partition
S∗ = (S∗1 , . . . , S

∗
n) there always exist non-overbidding bids that form a Nash equlibrium

(every player bids according to the maximizing additive valuation with respect to his
set S∗i ), and the price of stability is 1.

Thus, we have a natural procedure, that is essentially a myopic best response se-
quence of the players, that leads to a pure Nash equilibrium. But, how long will it
take the POTENTIAL PROCEDURE to converge? A non-trivial construction shows that
unfortunately the worst case running time is exponential in n and m.

THEOREM 3.4. There is an instance with 2 bidders, each with a fractionally-
subadditive valuation function, on which the POTENTIAL PROCEDURE halts after
Ω(2m) steps.

PROOF. Let m = 2k, and consider k pairs of items with the notation M =
{1, 1′, 2, 2′, . . . , k, k′}. We call P ⊂ M a proper set, if (|P | = k and) P contains exactly
one item from each pair (e.g., the set P = {1, 2, . . . , k} is proper). The set of all proper
sets is denoted by Π.

We define fractionally subadditive valuations v1 and v2 for the two bidders, so that
the POTENTIAL PROCEDURE should proceed as follows. Assume first, that it starts
from the partition S1 = {1, 2, 3, . . . , k} and S2 = {1′, 2′, 3′, . . . , k′}. In every two rounds
the bidders exchange a pair of items: After any even round, S1 and S2 are complemen-
tary proper sets. In the next (odd) round, bidder 2 ’robs’ an item y ∈ S1, by changing to
T = S2 ∪ y. In return, in the coming even round bidder 1 takes the pair of the robbed
item from bidder 2.

Bidder 1 (and also bidder 2) will possess each proper set exactly once. Since |Π| =
2k, it takes 2 · 2k steps for the POTENTIAL PROCEDURE to converge. In order to go
over every proper set systematically, the exchange of pairs follows the pattern of the
Gray-code. This is a complete sequence of the k-long 0-1 vectors, such that every two
consecutive vectors differ in exactly one bid. E.g., the Gray-code for k = 3 is (000, 001,
011, 010, 110, 111, 101, 100).

The jth bid being 0 in the vector means that j ∈ S1 and j′ ∈ S2; the jth bid being 1
means the opposite. When the bid in the code is changed, the items j and j′ should be
exchanged in the corresponding two steps of the procedure (observe in the code that
item j is exchanged 2j−1 times).

Next, we define fractionally subadditive valuations v1 and v2, for which the above
sequence of exchanges is realized by the POTENTIAL PROCEDURE. The valuation v1

consists of 2k additive valuations {aP }P∈Π, one for each proper set. The rows in Ta-
ble 1 show the additive valuations for k = 3, in the order in which these valuations
and the respective proper sets appear as a() and S1 in even steps of the POTENTIAL
PROCEDURE. Whenever an item x is in a proper set P , its value in the additive valua-
tion aP is aP (x) = 1+s · ε, where ε << 2−k, and the integer s indicates how many times
this item was exchanged between the bidders so far.

Similarly, the valuation v2 is the maximum of 2k − 1 additive valuations, as shown
by Table 2. The rows in the table follow the order how bidder 2 responds in odd steps of
the POTENTIAL PROCEDURE. Here the additive valuations take nonzero values on the
current proper set M\S1 of bidder 2, and on an additional item y which is just being
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1 1’ 2 2’ 3 3’
1 1 1
1 1 1 + ε
1 1 + ε 1 + ε
1 1 + ε 1 + 2ε

1 + ε 1 + ε 1 + 2ε
1 + ε 1 + ε 1 + 3ε
1 + ε 1 + 2ε 1 + 3ε
1 + ε 1 + 2ε 1 + 4ε

Table I.

The additive valuations of bidder 1, in the order in which this bidder responds in even steps of
the POTENTIAL PROCEDURE.

1 1’ 2 2’ 3 3’
1 1 1 + ε 1
1 1 + ε 1 1 + ε
1 1 + ε 1 + ε 1 + 2ε

1 + ε 1 1 + ε 1 + 2ε
1 + ε 1 + ε 1 + 3ε 1 + 2ε
1 + ε 1 + ε 1 + 2ε 1 + 3ε
1 + ε 1 + 2ε 1 + 3ε 1 + 4ε

Table II.

The additive valuations of bidder 2, in the order in which this bidder responds in odd steps of
the POTENTIAL PROCEDURE.

’robbed’ from bidder 1 in the procedure. Again, the additive value of an item x is 1+s ·ε,
where s shows how often x was exchanged so far.

It remains to prove that the procedure selects the given sets in the above order to
be the set T (see the POTENTIAL PROCEDURE). Consider first bidder 2. After an even
round he owns some proper set S2. His payoff on every item of this S2 is at least 1. On
any new item the additional profit can be at most s · ε << 1. Therefore, the new set T
will contain the current proper set S2, and at most one more item, since every additive
valuation a() of bidder 2 takes nonzero values on a set of k+ 1 items. The proper set S2

appears (with all members nonzero) in exactly two consecutive additive valuations, say
in the sets S2 ∪{y} and S2 ∪{z}. These correspond to the odd steps before, respectively
after the current even step when bidder 1 took S1 = M\S2. (E.g. the set {1, 2, 3} appears
in the sets {1, 2, 3, 3′} and {1, 2, 2′, 3} in Table 2.) Setting T = S2 ∪ {y} would be a step
back, and would mean a negative profit of −ε, since the previous response of bidder
1 increased ry by ε (e.g., r3′ = 1 + 3ε in our example). On the other hand, setting
T = S2 ∪ {z} means an additional profit of ε to the value of S2, so this is the best
response for bidder 2.

The proof that the responses of bidder 1 follow the given order is analogous: at any
step responding to bidder 2, bidder 1 has a value of k − 1 from items, that currently
only he bids for; giving up any of these would be a loss of about 1. Furthermore, he has
the choice to bid for one of the two items in the remaining pair (one of which was just
robbed by bidder 2), but he can only get the non-robbed item, because of the ε increase
in the price for the robbed item.

Finally, we show how to modify this instance so that the procedure can start with
the empty allocation S1 = S2 = ∅. We add two new items to the instance, named 0 and
0′. For player one, item 0 appears with value 1 in the first row of the table, and with
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value 0 in every other row; item 0′ has value 1 + ε in every row. Similarly, for player
two, item 0′ has value 1 in the first row, and value 0 in other rows; item 0 adds value
1 + ε to every row. Now, no matter which player responds first, the procedure follows
the same order as shown above: Bidding the additive valuation of the first row offers
a player an additional value of about 1 compared to any other row. In the next step he
loses 1 by any response of the other player, and from then on all rows are equivalent
concerning the items 0 and 0′.

Theorem 3.4 leaves us with two interesting open questions: First, will the POTEN-
TIAL PROCEDURE converge in polynomial time for submodular valuations? Second,
does the POTENTIAL PROCEDURE always run in time polynomial in the size of the
sets Ai of additive valuations that underlie every fractionally-subadditive valuation
(i.e., the number of the different additive valuations li constituting Ai)? An affirmative
answer to this question would imply that the POTENTIAL PROCEDURE runs in polyno-
mial time if the bidders have fractionally-subadditive valuations encoded in a bidding
language (see [Nisan 2000; Lehmann et al. 2001; Dobzinski et al. 2005; Dobzinski and
Schapira 2006]). Observe that in our example the size of these sets |A1| and |A2| is
exponential in n and m.

3.2. Submodular Valuation Functions
In this subsection, we focus on submodular valuation functions. We present a polyno-
mial time procedure that we call the MARGINAL-VALUE PROCEDURE, based on the
algorithm due to Lehmann et al. [Lehmann et al. 2001]. We show that it results in a
pure Nash equilibrium that also satisfies the premises of Theorem 2.3. Therefore, it
provides a 2-approximation to the optimal social welfare.

MARGINAL-VALUE PROCEDURE:

(1) Fix an arbitrary order on the items. W.l.o.g. let this order be 1, . . . ,m.
(2) Initialize Si ← ∅, and rj ← 0, for i = 1, . . . , n, and j = 1, . . . ,m.
(3) For each item j = 1, . . . ,m:

(a) Let i = arg maxt∈N vt(St ∪ {j})− vt(St). Set Si ← Si ∪ {j}.
(b) Set rj ← maxt∈N vt(St ∪ {j})− vt(St).

(4) For every bidder i set b∗i (j)← rj for all j ∈ Si and b∗i (j)← 0 for all j /∈ Si.
(5) Output b∗ = (b∗1, ..., b

∗
n).

Observe, that the resulting n-tuple of bid-vectors b∗ is such that for each item, only
one bidder offers a non-zero bid for that item. Also notice that the MARGINAL-VALUE
PROCEDURE only requires m rounds and so ends in polynomial time.

THEOREM 3.5. If the valuation functions are submodular then a pure Nash equi-
librium that provides a 2-approximation to the optimal social welfare can be computed
in polynomial time.

PROOF. We show that the execution of the MARGINAL-VALUE PROCEDURE, results
in non-overbidding bids of the players that correspond to a pure Nash equilibrium.

For any j ∈ [m] and an arbitrary set of items Y, let Y j def
= Y ∩ [j].

CLAIM 3. For every i, b∗i is non-overbidding, given vi.

PROOF. Fix a player i. Clearly, it is enough to prove that
∑

j∈U rj ≤ vi(U) for every
U ⊆ Si. For an arbitrary set of items T , the claim then follows from∑

j∈T
b∗i (j) =

∑
j∈Si∩T

rj ≤ vi(Si ∩ T ) ≤ vi(T ).
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We fix a subset U. For each item j ∈ U ⊆ Si, we define a(j) to be the marginal value
of the item, according to the given ordering, restricted to U (i.e., a(j) depends also on
the subset U ). That is, for j ∈ U

a(j)
def
= vi(U

j)− vi(U j−1).

It is easy to see that
∑

j∈U a(j) = vi(U).

We claim that rj ≤ a(j) for all j ∈ U. This will prove
∑

j∈U rj ≤ vi(U). The claim
holds by submodularity, as

vi(S
j−1
i ∪ {j})− vi(Sj−1

i ) ≤ vi(U j−1 ∪ {j})− vi(U j−1).

It follows from the MARGINAL-VALUE PROCEDURE, that on the left-hand side we
have rj . The right hand side is obviously a(j).

CLAIM 4. The output b∗ of the POTENTIAL PROCEDURE is a pure Nash equilibrium.

PROOF. For the sake of contradiction, let’s assume that b∗ is not a Nash equilibrium.
This means that player i instead of keeping his set Si = Xi(b

∗), would rather bid for
another set Ti = Xi(b

′
i, b
∗
−i), that he could get if he bid b′i. Assume that Ti is maximal,

that is, bidding for any superset of Ti would only decrease the utility of i. Player i
is improving his utility by switching to b′i, ui(b′i, b∗−i) > ui(b

∗). By construction of the
MARGINAL-VALUE PROCEDURE, the items of Si, are free for player i (since the other
players bid 0 for those items), and therefore we obtain

vi(Si) < vi(Ti)−
∑

j∈Ti\Si

rj . (1)

Note that the maximality of Ti implies Si ⊆ Ti, otherwise adding an item of Si\Ti to Ti
would not decrease vi(Ti) and would not increase the price, since the other players bid
zero for this item.

Like in the proof of Claim 3, we define a(j) on the items of the set Ti : if j ∈ Ti then
a(j)

def
= vi(T

j
i ) − vi(T j−1

i ). We show that a(j) ≤ rj for all j ∈ Ti. Using the definition of
submodularity, vi(T j−1

i ∪ {j}) − vi(T j−1
i ) ≤ vi(S

j−1
i ∪ {j}) − vi(Sj−1

i ). Note that on the
left-hand side we have a(j). Moreover, it follows from the definition of the MARGINAL-
VALUE PROCEDURE that for j ∈ Si the right hand side equals rj , whereas for j 6∈ Si it
is at most rj . Finally,

vi(Ti) =
∑
j∈Ti

a(j) ≤
∑
j∈Ti

rj =
∑
j∈Si

rj +
∑

j∈Ti\Si

rj = vi(Si) +
∑

j∈Ti\Si

rj ,

and this contradicts (1).

The combination of the two claims above, together with Theorem 2.3 concludes the
proof of Theorem 3.5.
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George Christodoulou, Annamária Kovács, and Michael Schapira. 2008. Bayesian Combinatorial Auctions.
In Automata, Languages and Programming, 35th International Colloquium (ICALP (1)). 820–832.
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A. BAYESIAN PRICE OF ANARCHY OF 2 – MIXED NASH

Theorem. Let D be a distribution on the valuations of the bidders. If p = (p1, ..., pn) is
a mixed Bayesian Nash, such that for every i and every valuation vi, the pvi(= pvii ) is a
probability distribution over non-overbidding bids w.r.t. vi, then SW (OPT )

SW (p) ≤ 2.

PROOF. Let v = (v1, ..., vn) be a fixed valuation profile. We denote by Ov =
(Ov

1 , . . . , O
v
n) the optimum allocation with respect to profile v. Now for every player

i, let ai denote the maximizing additive valuation for the set Ov
i . For all i, we consider

ai as an alternative strategy to pvi .
Let us fix a bidder i. Let w−i be an arbitrary valuation profile of all bidders except

for i, respectively w = (wi, w−i) be a complete valuation profile.
Since p is a Bayes-Nash, the mixed strategy pvi provides better expected utility to

player i than the (pure) strategy ai :∑
bi

pvi(bi)
∑

w−i∈V−i

D(w−i)
∑
b−i

pw−i(b−i)ui(bi, b−i) ≥

≥
∑

w−i∈V−i

D(w−i)
∑
b−i

pw−i(b−i)ui(ai, b−i).

The utility values on the left-hand side are

ui(b) = vi(Xi(b))−Bids(Xi(b), b−i) ≤ vi(Xi(b)).

On the right-hand side, applying Lemma 2.2 yields

ui(ai, b−i) ≥ vi(Ov
i )−Bids(Ov

i , b−i).

By merging the inequalities above, we get∑
bi

pvi(bi)
∑

w−i∈V−i

D(w−i)
∑
b−i

pw−i(b−i)vi(Xi(b)) ≥∑
w−i∈V−i

D(w−i)
∑
b−i

pw−i(b−i)[vi(O
v
i )−Bids(Ov

i , b−i)] =
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vi(O
v
i ) · 1−

∑
w−i∈V−i

D(w−i)
∑
b−i

pw−i(b−i)Bids(Ov
i , b−i) =

vi(O
v
i )−

∑
w−i∈V−i

D(w−i)
∑
b−i

pw−i(b−i)Bids(Ov
i , b−i)

∑
wi∈Vi

D(wi)
∑
bi

pwi(bi) =

vi(O
v
i )−

∑
w∈V

D(w)
∑
b

pw(b)Bids(Ov
i , b−i) ≥

vi(O
v
i )−

∑
w∈V

D(w)
∑
b

pw(b)Bids(Ov
i , b).

Here we used that
∑

wi∈Vi
D(wi)

∑
bi
pwi(bi) = 1. Furthermore, note that

Bids(Ov
i , b−i) ≤ Bids(Ov

i , b) obviously holds, since in the latter case we consider maxi-
mum bids over a larger set of players. We obtained

vi(O
v
i ) ≤

∑
bi

pvi(bi)
∑

w−i∈V−i

D(w−i)
∑
b−i

pw−i(b−i)vi(Xi(b))+

+
∑
w∈V

D(w)
∑
b

pw(b)Bids(Ov
i , b).

We sum over all i, and then take the expectation over all valuations v = (v1, ..., vn) on
both sides:

∑
v∈V

D(v)
∑
i∈N

vi(O
v
i ) ≤

≤
∑
v∈V

D(v)
∑
i∈N

∑
bi

pvi(bi)
∑

w−i∈V−i

D(w−i)
∑
b−i

pw−i(b−i)vi(Xi(b)) +

+
∑
v∈V

D(v)
∑
i∈N

∑
w∈V

D(w)
∑
b

pw(b)Bids(Ov
i , b).

On the left-hand side we have
∑

v∈V D(v)
∑

i∈N vi(O
v
i ) = SW (OPT ). Moreover, we

show below that both summands on the right-hand side are at most SW (p), so that
SW (OPT ) ≤ 2SW (p), which will conclude the proof. The first summand solves to

∑
i∈N

∑
vi∈Vi

D(vi)
∑

v−i∈V−i

D(v−i)
∑

w−i∈V−i

D(w−i)
∑
b

pvi,w−i(b)vi(Xi(b)) =

∑
i∈N

∑
vi∈Vi

D(vi)
∑

w−i∈V−i

D(w−i)
∑
b

pvi,w−i(b)vi(Xi(b)) =

∑
i∈N

∑
v∈V

D(v)
∑
b

pv(b)vi(Xi(b)) =∑
v∈V

D(v)
∑
b

pv(b)
∑
i∈N

vi(Xi(b)) = SW (p).

In the deduction above we obtained the third line from the second line by simply re-
naming w−i by v−i. Finally, the second summand is∑

v∈V
D(v)

∑
w∈V

D(w)
∑
b

pw(b)
∑
i∈N

Bids(Ov
i , b) =
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v∈V

D(v)
∑
w∈V

D(w)
∑
b

pw(b)Bids(M, b) =∑
w∈V

D(w)
∑
b

pw(b)Bids(M, b) =∑
w∈V

D(w)
∑
b

pw(b)
∑
i∈N

Bids(Xi(b), bi) ≤∑
w∈V

D(w)
∑
b

pw(b)
∑
i∈N

wi(Xi(b)) = SW (p).

The last inequality holds since pw(b) can be nonzero only if for all i the bid bi is non-
overbidding w.r.t. wi.
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