
HOMFLY POLYNOMIALS OF GENERALIZED HOPFLINKSHUGH R. MORTON AND RICHARD J. HADJIAbstrat. Following the reent work by T.-H. Chan in [Cha00℄on reverse string parallels of the Hopf link we give an alternativeapproah to �nding the Homy polynomials of these links, basedon the Homy skein of the annulus. We establish that two naturalskein maps have distint eigenvalues, answering a question raisedby Chan, and use this result to alulate the Homy polynomialof some more general reverse string satellites of the Hopf link.IntrodutionIn [Cha00℄ T.-H. Chan disusses the Homy polynomial of reversestring parallelsH(k1; k2;n1; n2) of the Hopf link. In this paper we anal-yse their struture more losely using the Homy skein of the annulusand identify the eigenvalues and eigenvetors whih our naturally inthis approah.This allows us to readily alulate the Homy polynomial of satel-lites of the Hopf link whih onsist of a reverse string parallel aroundone omponent ombined with a ompletely general reverse string de-oration on the other.The Homy polynomial. Various versions of the Homy polynomialappear in the literature. The framed version to the fore in this paperis de�ned by the following skein relations:� = (s� s�1) ;and = v�1 ;with the Homy polynomial of the empty diagram being normalizedto 1, and that of the null-homotopi loop therefore being Æ = v�1�vs�s�1 .There is a disussion of isomorphi variants of these skein relationsgiven in [AM98℄ and [Mor℄.Date: June 28, 2001.1991 Mathematis Subjet Classi�ation. 57M25.Key words and phrases. Hopf link, satellites, reverse parallels, Homypolynomial.The seond author was supported by EPSRC grant 99801479.1
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2 HUGH R. MORTON AND RICHARD J. HADJINotation. For a link L, we denote the evaluation of its Homy polyno-mial by P (L).Remark. (i) The Homy polynomial of them-omponent unlink, Um =tmi=1 , is P (Um) = Æm.(ii) If L� is the reetion of a link L, thenP (L�)(s; v) = P (L)(s�1; v�1):Diagrams in the annulus. We shall now introdue the basi idea ofdiagrams in the annulus. Given the annulus F = S1 � I, a diagramin F onsists of losed urves (as with a standard knot diagram) witha �nite number of rossing points. At a rossing point the strandsare distinguished in the onventional way as an over-rossing and anunder-rossing.Satellites of Hopf links. The Hopf link is the simplest non-triviallink involving just two unknots linked together. When giving this linkorientation, two distint links are formed. We shall all these H+ andH�, as shown in Figure 1. The Homy polynomial an then be alu-PSfrag replaements H+ H�Figure 1. The links H+ and H�.lated using the above skein relations. We have that:H+(s; v) = �v�1 � vs� s�1�2 + v�2 � 1;and H�(s; v) = �v�1 � vs� s�1�2 + v2 � 1:We now use H+ and H� as starting points for the onstrution ofsatellite links. We do this by onsidering the two omponents of theHopf links and deorating them. For example, take P1 and P2 as dia-grams in the annulus. Now starting with H+ we deorate its two om-ponents with P1 and P2 respetively, obtaining the link H+(P1; P2), asshown in Figure 2. Now learly H+(P1; P2) and H+(P2; P1) are equiv-alent links. An analogous onstrution is possible for H�.With suh a onstrution, a great variety of links may be realised. Inpartiular, the generalized Hopf links whih are the topi of [Cha00℄ anbe onstruted. For example, if we take P1 and P2 as shown in Figure 3,then H+(P1; P2) is the link Chan refers to as H(k1; k2;n1; n2), as shownin Figure 4.With suh links in mind, we make the following observation:



HOMFLY POLYNOMIALS OF GENERALIZED HOPF LINKS 3PSfrag replaementsP1 P2Figure 2. The link H+(P1; P2).PSfrag replaements n2 n1 k2 k1Figure 3. The diagrams P1 and P2.
PSfrag replaements n1 n2 k1k2

Figure 4. The generalized Hopf link H(k1; k2;n1; n2).Observation. The linksH(k1; k2;n1; n2); H(n1; n2; k1; k2); H(k2; k1;n2; n1); H(n2; n1; k2; k1);andH�(k2; k1;n1; n2); H�(n1; n2; k2; k1); H�(k1; k2;n2; n1); H(n2; n1; k1; k2);are all equivalent links.1. The Skein of the AnnulusWe have introdued the onept of having diagrams in the annulus,and used this to onstrut satellites of the Hopf links. We now desribethe skein of the annulus, denoted by C.



4 HUGH R. MORTON AND RICHARD J. HADJIThe Homy skein of the annulus C, as disussed in [Mor93℄ andoriginally in the preprint of [Tur97℄ in 1988, is de�ned as linear ombi-nations of diagrams in the annulus, modulo the Homy skein relationsgiven above in the Introdution. We shall represent an element X 2 Cdiagramatially as in Figure 5.PSfrag replaements XFigure 5. An element X 2 C.The skein C has a produt indued by plaing one annulus outsideanother. This de�nes a bilinear produt C � C ! C, under whih Cbeomes an algebra. This algebra is learly ommutative (lift the innerannulus up and streth it so that the outer one will �t inside it).Turaev [Tur97℄ showed that C is freely generated as an algebra byfAm; m 2 Zg where Am is the skein element shown in Figure 6 and thesign of the index m indiates the orientation of the urve. A positivem denotes ounter-lokwise orientation and a negative m lokwiseorientation. The element A0 is the identity element, represented bythe empty diagram.
PSfrag replaements m�1

Figure 6. An element Am 2 C, for m 2 Z.We now de�ne two natural linear maps, ' and �', on the skein of theannulus in the following way:' : C ! C
X

7!
X

;and �' : C ! C
X

7!
X

:These two maps an be related via a map � : C ! C whih takesthe annulus and its ontents and ips it over. Clearly ��1 = �. It



HOMFLY POLYNOMIALS OF GENERALIZED HOPF LINKS 5is then lear that �' = ��1'� = �'�. However, this does not meanthat the maps ' and �' are onjugate as this does not de�ne an innerautomorphism of C.Now onsider the satellites of Hopf links disussed earlier in the In-trodution as elements of the skein C. We an then use ompositionsof the maps ' and �' to onstrut a subset of suh links. In partiular,for the element A = An11 An2�1 2 C, we have:H(k1; k2;n1; n2) = 'k1( �'k2(A)):It will therefore aid our investigation of theH(k1; k2;n1; n2) and theirHomy polynomial if we were to look more losely at the maps ' and�', in partiular at their eigenvalues. This will be ahieved throughonsidering ertain subspaes of C and the restritions of the maps 'and �' to these subspaes.2. Subspaes of CThe algebra C an be thought of as the produt of subalgebras C+and C� whih are generated by fAm : m 2 Z; m � 0g and fAm : m 2Z; m � 0g respetively.Remark. In his thesis, [Luk01℄, Luka shows how to alulate the Hom-y polynomial of any satellite of the Hopf link, when the deorationsare hosen from C+. Here we onsider the full skein C, allowing moregeneral reverse string deorations.2.1. The subspae C(n) � C+. Given linear ombinations of orientedn-tangles as shown in Figure 7, modulo the Homy skein relations, we
PSfrag replaements TnFigure 7. An oriented n-tangle.an form an algebra. Multipliation within this algebra is indued bystaking one tangle on top of another.Now take the well-known Heke algebra Hn of type An�1. It hasseveral di�erent inarnations, but is most onveniently thought of inthis ontext as having expliit presentation:Hn = *�i : i = 1; : : : ; n� 1 ������ �i�j = �j�i : ji� jj > 1;�i�i+1�i = �i+1�i�i+1 : 1 � i < n� 1;�i � ��1i = z + :



6 HUGH R. MORTON AND RICHARD J. HADJIIt is shown in [MT90℄ that Hn, with z = s� s�1 and oeÆient ringextended to inlude v�1 and s�1, is isomorphi to the skein theoretialgebra desribed above.Wiring these n-tangles into the annulus as shown in Figure 8 gives
PSfrag replaements TnFigure 8. An element of the subspae C(n).a linear subspae of C+ whih we shall all C(n). This subspae is theimage of Hn under the losure map ^ : Hn ! C(n). For an n-tangleT 2 Hn, we denote its image under the losure map ^(T ) or T̂ .The subspae C(n) is then spanned by monomials in fAmg, withm 2 Z+, of total weight n, where wt(Am) = m. It is lear that thisspanning set onsists of �(n) elements, the number of partitions of n.(The standard notation used for the number of partitions of an integern is p(n); our alternative has been hosen to avoid a lash with notationrequired later in this paper.) C+ is then graded as an algebra:C+ = 1Mn=0 C(n):Now due to the relationship between Hn and C(n) it will be usefulhere to reall some well-established fats about Hn. In partiular, weshall onentrate on fats about ertain elements in Hn.Firstly, there is a set of quasi-idempotent elements of Hn disussed�rst in [Gyo86℄ and given a geometri interpretation in [Ais96℄ (see also[AM98℄). We shall denote these elements e�, one for eah partition �of n, with ; denoting the unique partition of 0.Now, given the element T (n) 2 Hn shown in Figure 9, one an useskein theoreti tehniques to prove the following orollary of Theo-rem 19 in [AM98℄ (see [Mor℄),Corollary (of Theorem 19, [AM98℄). T (n)e� = t�e� wheret� = (s� s�1)v�1Xellsin � s2(ontent) + Æ:Moreover, the salars t� are di�erent for eah partition �.



HOMFLY POLYNOMIALS OF GENERALIZED HOPF LINKS 7
PSfrag replaements nH�Figure 9. The n-tangle T (n).Reverse the orientation of the enirling string in T (n) and all this�T (n). Then using similar tehniques, one an show,Lemma 1. �T (n)e� = �t�e� where�t� = �(s� s�1)vXellsin � s�2(ontent) + Æ:Moreover, the salars �t� are also di�erent for eah partition �.Remark. An alternative proof to this lemma ould be made using thenatural skein mirror map : C(n) ! C(n). This map swithes all ross-ings in a tangle and inverts the salars v and s in the oeÆient ring.Clearly this map an be seen to leave the skein relations unhanged.One must then note that the e� are invariant under this map and that(T (n)) = �T (n). We then apply these fats to the above Corollary andthe result follows immediately.We now link these fats to the maps ' and �', through use of thelosure map. Take an element S 2 Hn with Ŝ 2 C(n) and ompose itwith T (n). Then ^(ST (n)) = '(Ŝ). Similarly ^(S �T (n)) = �'(Ŝ).The restritions 'jC(n) and �'jC(n) learly arry C(n) to itself.Theorem 2 ([Mor℄). The eigenvalues of 'jC(n) are all distint as arethe eigenvalues of �'jC(n).Proof. We prove the �rst statement with the seond following in exatlythe same way.Set Q� = ê� 2 C(n). Then the losure of T (n)e� is '(Q�). However,T (n)e� = t�e�, hene '(Q�) = t�Q�. The element Q� is then an eigen-vetor of ' with eigenvalue t�. There are �(n) of these eigenvetors,and the eigenvalues are all distint by [AM98℄. Sine C(n) is spannedby �(n) elements we an dedue that the elements Q� form a basis forC(n) and that the eigenspaes are all 1-dimensional.This proof is quite instrutive as it establishes that the Q� with j�j = nare a basis for C(n). Hene any element in C(n) an be written as a linearombination of the Q� with j�j = n. It also follows that any element ofC(n) whih is an eigenvetor of ' (and similarly �') must be a multiple



8 HUGH R. MORTON AND RICHARD J. HADJIof some Q�. Finally, we notie that the eigenvalues of the ' and �' arethe t� and �t� we found earlier.2.2. The subspae C(n;p). We now extend our view of the skein ofthe annulus to inlude strings oriented in both diretions. We do thisthrough onsidering the losure of oriented (n; p)-tangles suh as theone shown in Figure 10. We denote the algebra formed through on-
PSfrag replaements Tn pFigure 10. An oriented (n; p)-tangle.sidering linear ombinations of suh (n; p)-tangles, modulo the Homyskein relations, by Mn;p. For further information on Mn;p see [MW℄ or[Had99℄. The image of Mn;p under the losure map shall be denotedC(n;p) � C.Unlike the ase for C(n) where C(n) \ C(n�1) = ;, we have that:C(n;p) � C(n�1;p�1) � C(n�2;p�2) � � � � � � C(n�p;0) if min(n; p) = p;C(0;p�n) if min(n; p) = n;however, it should be noted that for eah C(i;j) in the sequene, thedi�erene i� j remains onstant. Also,C(m;0) �= C(m)(�)and C(0;m) �= C(m)(+) ;where the subsripts indiate the diretion of the strings around theentre of the annulus. However, we do have that C(n1;p1) \ C(n2;p2) = ;if n1 � p1 6= n2 � p2.We �nd that C(n;p) is spanned by suitably weighted monomials infA�n; : : : ; A�1; A0; A1; : : : ; Apg:We an then see that:C(n;p) = �C(n)(�) � C(p)(+)� + C(n�1;p�1):The spanning set of C(n;p) onsists of �(n; p) elements, where�(n; p) := kXj=0 �(n� j)�(p� j)= �(n)�(p) + � � �+ �(n� k)�(p� k);



HOMFLY POLYNOMIALS OF GENERALIZED HOPF LINKS 9with k = min(n; p).Similar to the grading of C+ with the C(n), we an think of the wholeof C in terms of the C(n;p):C = 1Mk=�1 [n;p�0fC(n;p) : n� p = kg! :We now use an example to illustrate what we meant by \suitablyweighted" monomials in the Ai.Example. Consider when n = 3 and p = 2. The spanning set of C(3;2)onsists of 9 (= 3 � 2 + 2 � 1 + 1 � 1) elements sineC(3;2) = �C(3)(�) � C(2)(+)� + �C(2)(�) � C(1)(+)� + �C(1)(�) � C(0)(+)� :The spanning set is therefore:fA�3A2; A�3A21; A�2A�1A2; A�2A�1A21; A3�1A2; A3�1A21; A�2A1;A2�1A1; A�1g;where, for example, the element A�2A1 is obtained from losing anelement in M3;2 as shown in Figure 11.
PSfrag replaements = Æ

Figure 11. The generator A�2A1.Following an exatly analogous proedure inMn;p as in Hn, we de�neentral elements T (n;p) and �T (n;p) by diagrams similar to T (n) and �T (n)respetively as in Figure 12.
PSfrag replaements n pFigure 12. The (n; p)-tangle T (n;p).



10 HUGH R. MORTON AND RICHARD J. HADJIDe�nition 1 ([MW℄,[Had99℄). LetM (i)n;p denote the sub-algebra ofMn;pspanned by elements with \at least" i pairs of strings turning bak.Remark. (i) An (n; p)-tangle is said to have \at least" l pairs of stringswhih turn bak if it an be written as a produt T1T2 of an f(n; p); (n�l; p� l)g-tangle T1 and an f(n� l; p� l); (n; p)g-tangle T2 as illustratedin Figure 13.(ii) The M (i)n;p are two-sided ideals and there is a �ltration:Mn;p �= M (0)n;p �M (1)n;p � � � ��M (k)n;p ;where k = min(n; p).
PSfrag replaements

n
n

p
pT1n�l p�lT2Figure 13. A tangle with at least l pairs of stringswhih turn bak.Lemma 3. T (n;p) = T (n;p)0 + w;�T (n;p) = �T (n;p)0 + �w;where T (n;p)0 = T (n)(�) 
 1(p)(+) + 1(n)(�) 
 T (p)(+) � Æ 1(n)(�) 
 1(p)(+);�T (n;p)0 = �T (n)(�) 
 1(p)(+) + 1(n)(�) 
 �T (p)(+) � Æ 1(n)(�) 
 1(p)(+);and w; �w 2 M (1)n;p.Notation. The tensor produt S
T indiates the juxtaposition of tan-gles S and T .Proof. We prove the result for T (n;p), with the result for �T (n;p) followingin exatly the same way. Throughout this proof, we use a standardnotation setting s� s�1 = z.We �rst de�ne some elements inMn;p represented by tangles as shownin Figure 14.



HOMFLY POLYNOMIALS OF GENERALIZED HOPF LINKS 11PSfrag replaements
1 j p 1 j p� � � � � �� � � � � � A(j) :=T (j) :=

Figure 14. The tangles representing the elements T (j)and A(j) for 1 � j � p.Now applying the skein relation one to T (n;p) we obtain:= + z= T (n;p�1) 
 1(1)(+) + zv�1A(p):Repeated appliation of the skein relation in this way will learly yield:T (n;p) = T (n;0) 
 1(p)(+) + zv�1 pXj=1 A(j)= T (n)(�) 
 1(p)(+) + zv�1 pXj=1 A(j): (1)Now observe, similar to a result in [Mor℄, we an �nd:= Æ + zv�1 pXj=1 T (j): (2)Combining equations 1 and 2, we see that we are only left to showthat: zv�1 pXj=1 A(j) = zv�1 pXj=1 T (j) + w;for w 2M (1)n;p.Let w = Ppj=1w(j), so we must now show that for eah j, with1 � j � p, there exists a w(j) suh that:zv�1A(j) = zv�1T (j) + w(j):



12 HUGH R. MORTON AND RICHARD J. HADJINow,zv�1A(j) = zv�1( � z )
= zv�1( � z � z )= � � � (repeating appliation of the skein relation)= zv�1T (j) + z2v�1(� � � � � � )= zv�1T (j) + w(j):with w(j) 2M (1)n;p.The result follows.We an �nd an obvious set of quasi-idempotent elements in Mn;pgiven by e0�;� := e(�)� 
 e(+)� formed by the juxtaposition of the Gyoja-Aiston idempotents with appropriate orientations and j�j = n andj�j = p. There are then �(n)� �(p) of these.We an then use the information in the previous setion, ombinedwith Lemma 3 to prove the following proposition.Proposition 4. T (n;p)e0�;� = t�;�e0�;� + we0�;�and �T (n;p)e0�;� = �t�;�e0�;� + w0e0�;�;where,t�;� = (s� s�1)0B��vXellsin � s�2(ontent) + v�1Xellsin � s2(ontent)1CA+ Æand�t�;� = (s� s�1)0B�v�1Xellsin � s2(ontent) � vXellsin � s�2(ontent)1CA+ Æ:Here we had �xed j�j and j�j with values n and p respetively. Infat, we �nd that t�;� and �t�;� have the following property:Lemma 5. As � and � vary over all hoies of Young diagram, thevalues of t�;� are all distint; as are the values of �t�;�.Remark. An equivalent way of stating Lemma 5 is that if t�;� = t�0;�0then � = �0 and � = �0 (similarly for the �t�;�).



HOMFLY POLYNOMIALS OF GENERALIZED HOPF LINKS 13Proof. We prove the �rst part of the lemma and note that the seondpart follows immediately due to the observation that �t�;� = t�;�.Given f(s; v) = t�;� we now show how to reover the Young diagrams� and �.From the formula for t�;� in Lemma 4 we see that f(s; v) � Æ is aLaurent polynomial in s and v, and must be of the form:(s� s�1)(�vP (s) + v�1Q(s)):Now onsider P (s) and Q(s) individually. It is lear that these arealso Laurent polynomials, this time only in the variable s. We haveP (s) = X ais�2iand Q(s) = X bjs2j;where ai is the number of ells in � with ontent i, and similarly, bjis the number of ells in � with ontent j. Hene we an uniquelyonstrut � and �.Now let us return to the maps ' and �', restriting them to the skeinC(n;p).Theorem 6. The t�;� and �t�;� are eigenvalues of 'jC(n;p) and �'jC(n;p)respetively. Moreover, they our with multipliity 1.Proof. We prove the result for the t�;� with an idential argument prov-ing the result for the �t�;�.Fix an integer k suh that k = p � n and k � 0 (in other wordsp � n | the ase for p < n is idential). Write C(n;p) as C(n;k+n) anddo indution on n.For n = 0 we have that C(0;k) �= C(k). Now for j�j = 0 and j�j = k wehave that t�;� = t�. Moreover, in the proof of Theorem 2 we saw thatthe t� with j�j = k are eigenvalues of 'jC(k). Now sine C(k) �= C(0;k) �C(n;k+n) for all n, the t� are also eigenvalues of 'jC(n;k+n).Now assume that for j�j < n and j�j < k+n the t�;� are eigenvaluesof 'jC(j�j;j�j). Sine C(j�j;j�j) � C(n;k+n) the t�;� are also eigenvalues of'jC(n;k+n).Consider the t�;� with j�j = n and j�j = k + n. By the indutivehypothesis these t�;� are not eigenvalues of 'jC(n�1;k+n�1) sine we have�(n � 1; k + n � 1) eigenvalues and C(n�1;k+n�1) is spanned by �(n �1; k+n�1) elements and by Lemma 5 we have that if t�;� = t�0;�0 then� = �0 and � = �0.De�ne elements Q0�;� := Q(�)� � Q(+)� (= ^(e0�;�)) with j�j = n andj�j = k + n. Clearly Q0�;� 2 C(n;k+n).Now by Lemma 4,'jC(n;k+n)(Q0�;�) = t�;�Q0�;� + w0where w0 2 C(n�1;k+n�1).



14 HUGH R. MORTON AND RICHARD J. HADJIWe an �nd a v 2 C(n�1;k+n�1) suh that ('jC(n;k+n) � t�;�I)(v) = w0.Now onsider Q0�;� � v. This is learly non-zero. We �nd:'jC(n;k+n)(Q0�;� � v) = 'jC(n;k+n)(Q0�;�)� 'jC(n;k+n)(v) + t�;�v � t�;�v= 'jC(n;k+n)(Q0�;�)� w0 � t�;�v= t�;�Q0�;� + w0 � w0 � t�;�v= t�;�(Q0�;� � v):Hene suh t�;� are eigenvalues of 'jC(n;k+n).Hene by indution, we have that the t�;�, with j�j � n, j�j � p andj�j � j�j = n� p, are eigenvalues of 'C(n;p).Moreover, we have found at least �(n; p) eigenvalues for 'C(n;p). ButC(n;p) is known to be spanned by �(n; p) elements, so 'C(n;p) has at most�(n; p) di�erent eigenvalues. Hene it has exatly �(n; p) eigenvalueseah with multipliity one.We now state two useful orollaries.Corollary. There is a basis of C(n;p) given by:fQ�;� : j�j � n; j�j � p; j�j � j�j = n� pgsuh that: '(Q�;�) = t�;�Q�;� and �'(Q�;�) = �t�;�Q�;�:Corollary. Every eigenvetor of ' and �' is a multiple of one suhbasis element.Remark. The eigenvalues t�;� and �t�;� orrespond to the eigenvaluesof the matrix M in equation (1.1) of [Cha00℄, found there only for1 � k1 + k2 � 5 and k2 � k1. Chan uses the Homy polynomial basedon parameters l and m, whih are variants of v and z. The numberspm2 � 4 in Chan's eigenvalues �i and ��i orrespond to the parameters here with z = s� s�1, whih features strongly in our eigenvalues t�;�and �t�;�. Our use of s is the feature whih allows us to give simpleformulae for the Gyoja-Aiston elements Q� and to extend in prinipleto Q�;�.Unlike the Gyoja-Aiston elements Q� whih are known and havebeen well-studied, their generalisations the Q�;� desribed in the aboveCorollary are not well-understood. We shall show in the followingsetion how they an be found expliitly.3. The Homfly Polynomials of Some Generalized HopfLinksHere we apply the tehniques desribed above to show how om-putation of the Homy polynomial of some generalized Hopf links ispossible.



HOMFLY POLYNOMIALS OF GENERALIZED HOPF LINKS 153.1. The Homy polynomial of H(k1; k2;n; 0) (= H�(k1; k2; 0; n)).Consider H(k1; k2;n; 0) in the skein of the annulus. Then we haveH(k1; k2;n; 0) = 'k1( �'k2(An1 ):Now sine the maps ' and �' are linear maps, we know that for theQ�, 'k1( �'k2(Q�)) = tk1� �t k2� Q�:Also, sine the Q� are a basis or the skein C(n), we haveAn1 = Xj�j=n d�Q�for onstants d�. The d� an be alulated by several means, one beingounting the number of standard tableaux of shape �.Therefore, H(k1; k2;n; 0) = Xj�j=nd�'k1( �'k2(Q�))= Xj�j=nd�tk1� �tk2� Q�:So evaluating in the plane (using the work of [AM98℄), we �ndP (H(k1; k2;n; 0)) = Xj�j=n d�tk1� �tk2� 0� Y(i;j)2� v�1sj�i � vsi�jshl(i;j) � s�hl(i;j)1A ;where hl(i; j) is the hook-length of the ell (i; j), in row i and olumnj.3.2. The Homy polynomial of H(k1; k2;n1; n2). Consider, in asimilar way to above, H(k1; k2;n1; n2) as an element of the skein C.Then we have H(k1; k2;n1; n2) = 'k1( �'k2(An11 An2�1)):Similar to the restrited ase above, we have'k1( �'k2(Q�;�)) = tk1�;��t k2�;�Q�;�and An11 An2�1 = Xj�j�n2j�j�n1j�j�j�j=n2�n1 d�;�Q�;�for onstants d�;�. These onstants an be alulated in terms of ap-propriate d� and d� (see previous setion).



16 HUGH R. MORTON AND RICHARD J. HADJITheorem 7 ([Ste87℄). The numbers d�;� an be found from the follow-ing formula: d�;� = m!�n2m��n1m�d�d�;where j�j � n2, j�j � n1 and m = n2 � j�j = n1 � j�j.Therefore,H(k1; k2;n1; n2) = Xj�j�n2j�j�n1j�j�j�j=n2�n1 d�;�'k1( �'k2(Q�;�))= Xj�j�n2j�j�n1j�j�j�j=n2�n1 d�;�tk1�;��t k2�;�Q�;�:At present, we do not have a general losed formula for P (H(k1; k2;n1; n2))due to lak of information about the elements Q�;�.We an, however, make expliit alulations in individual ases asillustrated by the following example.Example. Consider H(k1; k2; 1; 2) 2 C(2;1), as shown in Figure 15.
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Figure 15. The link H(k1; k2; 1; 2) in C.Then H(k1; k2; 1; 2) = 'k1( �'k2(A1A2�1));where, by Theorem 7,A1A2�1 = Q , + 2Q ,; +Q , : (3)However, we an also �nd, by using powers of trivial Gyoja-Aistonelements Q , with appropriate orientation, thatA1A2�1 = (Q(�))2Q(+):



HOMFLY POLYNOMIALS OF GENERALIZED HOPF LINKS 17Moreover, these elements are known to satisfy the Littlewood-Rihardsonrule for multipliation of Young diagrams ([Ais96℄), soA1A2�1 = (Q(�) +Q(�))Q(+)= Q(�)Q(+) +Q(�)Q(+)= Q0 , +Q0 , : (4)Now ombining equations (3) and (4) with the observation thatQ ,; = Q0 ,; = Q(�)Q(+);and assuming symmetry under onjugation of Young diagrams, wehave: Q , = Q0 , �Q0 ,;;and Q , = Q0 , �Q0 ,;:Hene, evaluating in the plane, we �nd,P (H(k1; k2; 1; 2)) = P ('k1( �'k2(A1A2�1)))= tk1, �tk2 , P (Q , )+2tk1,;�tk2,;P (Q ,;) + tk1, �tk2, P (Q , )= tk1, �tk2 , (P (Q0 , )� P (Q0 ,;))+2tk1,;�tk2,;P (Q0 ,;) + tk1, �tk2, (P (Q0 , � P (Q0 ,;))= tk1, �tk2 , P (Q0 , )+(2tk1,;�tk2,; � tk1 , �tk2 , � tk1, �tk2, )P (Q0 ,;) (5)+tk1, �tk2, P (Q0 , )From the de�nition of the Q0�;�, we an now use the results in [AM98℄to �nd P (Q0 ,;), P (Q0 , ) and P (Q0 , ). We have:P (Q0 ,;) = v�1 � vs� s�1 ;P (Q0 , ) = � v�1 � vs2 � s�2��v�1s� vs�1s� s�1 ��v�1 � vs� s�1� ;and P (Q0 , ) = � v�1 � vs2 � s�2��v�1s�1 � vss� s�1 ��v�1 � vs� s�1� :



18 HUGH R. MORTON AND RICHARD J. HADJIThen using Proposition 4 we �nd:t ,; = �v(s� s�1) + Æ;t , = (s� s�1)(�v(1 + s�2) + v�1) + Æ;t , = (s� s�1)(�v(1 + s2) + v�1) + Æ;and �t ,; = v�1(s� s�1) + Æ;�t , = (s� s�1)(v�1(1 + s2)� v) + Æ;�t , = (s� s�1)(v�1(1 + s�2)� v) + Æ:Substitution of these values into equation (5) then gives P (H(k1; k2; 1; 2))immediately.3.3. A �nal remark. We an in priniple write any given element ofthe skein X 2 C as a linear ombination of the basis elements Q�;�.Therefore, one an �nd '(X) and �'(X), and hene readily evaluatethe Homy polynomial of H(k1; k2;X) := H+(X;Ak11 Ak2�1). The speialase X = An11 An2�1 gives H(k1; k2;n1; n2).Referenes[Ais96℄ A.K. Aiston. Skein theoreti idempotents of Heke algebras and quantumgroup invariants. PhD thesis, University of Liverpool, 1996.[AM98℄ A.K. Aiston and H.R. Morton. Idempotents of Heke algebras of type A.J. Knot Theory Ramif., 7(4):463{487, 1998.[Cha00℄ T.-H. Chan. HOMFLY polynomial of some generalized Hopf links. J. KnotTheory Ramif., 9(7):865{883, 2000.[Gyo86℄ A. Gyoja. A q-analogue of Young symmetrizers. Osaka J. Math., 23:841{852, 1986.[Had99℄ R.J. Hadji. Knots, tangles and algebras. M.S. Dissertation, University ofLiverpool, 1999.[Luk01℄ S.G. Luka. Homy skeins and the Hopf link. PhD thesis, University ofLiverpool, 2001.[Mor℄ H.R. Morton. Skein theory and the Murphy operators. Preprint:math.GT/0102098, submitted to Proeedings of Knots 2000, Korea.[Mor93℄ H.R. Morton. Invariants of links and 3-manifolds from skein theory andfrom quantum groups. In M. Bozh�uy�uk, editor, Proeedings of the NATOSummer Institute in Erzurum 1992, NATO ASI Series C 399, 107{156.Kluwer, 1993.[MT90℄ H.R. Morton and P. Trazyk. Knots and algebras. In E. Martin-Peinadorand A. Rodez Usan, editors, Contribuiones Mathematias en homenajeal profesor D. Antonio Plans Sanz de Bremond, 201{220. University ofZaragoza, 1990.[MW℄ H.R. Morton and A.J. Wassermann. String algebras and oriented tangles.Personal ommuniation of notes from the �rst author.[Ste87℄ J.R. Stembridge. Rational tableaux and the tensor algebra of gln. J. Com-bin. Theory, 46:79{120, 1987.
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