
HOMFLY POLYNOMIALS OF GENERALIZED HOPFLINKSHUGH R. MORTON AND RICHARD J. HADJIAbstra
t. Following the re
ent work by T.-H. Chan in [Cha00℄on reverse string parallels of the Hopf link we give an alternativeapproa
h to �nding the Hom
y polynomials of these links, basedon the Hom
y skein of the annulus. We establish that two naturalskein maps have distin
t eigenvalues, answering a question raisedby Chan, and use this result to 
al
ulate the Hom
y polynomialof some more general reverse string satellites of the Hopf link.Introdu
tionIn [Cha00℄ T.-H. Chan dis
usses the Hom
y polynomial of reversestring parallelsH(k1; k2;n1; n2) of the Hopf link. In this paper we anal-yse their stru
ture more 
losely using the Hom
y skein of the annulusand identify the eigenvalues and eigenve
tors whi
h o

ur naturally inthis approa
h.This allows us to readily 
al
ulate the Hom
y polynomial of satel-lites of the Hopf link whi
h 
onsist of a reverse string parallel aroundone 
omponent 
ombined with a 
ompletely general reverse string de
-oration on the other.The Hom
y polynomial. Various versions of the Hom
y polynomialappear in the literature. The framed version to the fore in this paperis de�ned by the following skein relations:� = (s� s�1) ;and = v�1 ;with the Hom
y polynomial of the empty diagram being normalizedto 1, and that of the null-homotopi
 loop therefore being Æ = v�1�vs�s�1 .There is a dis
ussion of isomorphi
 variants of these skein relationsgiven in [AM98℄ and [Mor℄.Date: June 28, 2001.1991 Mathemati
s Subje
t Classi�
ation. 57M25.Key words and phrases. Hopf link, satellites, reverse parallels, Hom
ypolynomial.The se
ond author was supported by EPSRC grant 99801479.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80779427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 HUGH R. MORTON AND RICHARD J. HADJINotation. For a link L, we denote the evaluation of its Hom
y polyno-mial by P (L).Remark. (i) The Hom
y polynomial of them-
omponent unlink, Um =tmi=1 , is P (Um) = Æm.(ii) If L� is the re
e
tion of a link L, thenP (L�)(s; v) = P (L)(s�1; v�1):Diagrams in the annulus. We shall now introdu
e the basi
 idea ofdiagrams in the annulus. Given the annulus F = S1 � I, a diagramin F 
onsists of 
losed 
urves (as with a standard knot diagram) witha �nite number of 
rossing points. At a 
rossing point the strandsare distinguished in the 
onventional way as an over-
rossing and anunder-
rossing.Satellites of Hopf links. The Hopf link is the simplest non-triviallink involving just two unknots linked together. When giving this linkorientation, two distin
t links are formed. We shall 
all these H+ andH�, as shown in Figure 1. The Hom
y polynomial 
an then be 
al
u-PSfrag repla
ements H+ H�Figure 1. The links H+ and H�.lated using the above skein relations. We have that:H+(s; v) = �v�1 � vs� s�1�2 + v�2 � 1;and H�(s; v) = �v�1 � vs� s�1�2 + v2 � 1:We now use H+ and H� as starting points for the 
onstru
tion ofsatellite links. We do this by 
onsidering the two 
omponents of theHopf links and de
orating them. For example, take P1 and P2 as dia-grams in the annulus. Now starting with H+ we de
orate its two 
om-ponents with P1 and P2 respe
tively, obtaining the link H+(P1; P2), asshown in Figure 2. Now 
learly H+(P1; P2) and H+(P2; P1) are equiv-alent links. An analogous 
onstru
tion is possible for H�.With su
h a 
onstru
tion, a great variety of links may be realised. Inparti
ular, the generalized Hopf links whi
h are the topi
 of [Cha00℄ 
anbe 
onstru
ted. For example, if we take P1 and P2 as shown in Figure 3,then H+(P1; P2) is the link Chan refers to as H(k1; k2;n1; n2), as shownin Figure 4.With su
h links in mind, we make the following observation:



HOMFLY POLYNOMIALS OF GENERALIZED HOPF LINKS 3PSfrag repla
ementsP1 P2Figure 2. The link H+(P1; P2).PSfrag repla
ements n2 n1 k2 k1Figure 3. The diagrams P1 and P2.
PSfrag repla
ements n1 n2 k1k2

Figure 4. The generalized Hopf link H(k1; k2;n1; n2).Observation. The linksH(k1; k2;n1; n2); H(n1; n2; k1; k2); H(k2; k1;n2; n1); H(n2; n1; k2; k1);andH�(k2; k1;n1; n2); H�(n1; n2; k2; k1); H�(k1; k2;n2; n1); H(n2; n1; k1; k2);are all equivalent links.1. The Skein of the AnnulusWe have introdu
ed the 
on
ept of having diagrams in the annulus,and used this to 
onstru
t satellites of the Hopf links. We now des
ribethe skein of the annulus, denoted by C.



4 HUGH R. MORTON AND RICHARD J. HADJIThe Hom
y skein of the annulus C, as dis
ussed in [Mor93℄ andoriginally in the preprint of [Tur97℄ in 1988, is de�ned as linear 
ombi-nations of diagrams in the annulus, modulo the Hom
y skein relationsgiven above in the Introdu
tion. We shall represent an element X 2 Cdiagramati
ally as in Figure 5.PSfrag repla
ements XFigure 5. An element X 2 C.The skein C has a produ
t indu
ed by pla
ing one annulus outsideanother. This de�nes a bilinear produ
t C � C ! C, under whi
h Cbe
omes an algebra. This algebra is 
learly 
ommutative (lift the innerannulus up and stret
h it so that the outer one will �t inside it).Turaev [Tur97℄ showed that C is freely generated as an algebra byfAm; m 2 Zg where Am is the skein element shown in Figure 6 and thesign of the index m indi
ates the orientation of the 
urve. A positivem denotes 
ounter-
lo
kwise orientation and a negative m 
lo
kwiseorientation. The element A0 is the identity element, represented bythe empty diagram.
PSfrag repla
ements m�1

Figure 6. An element Am 2 C, for m 2 Z.We now de�ne two natural linear maps, ' and �', on the skein of theannulus in the following way:' : C ! C
X

7!
X

;and �' : C ! C
X

7!
X

:These two maps 
an be related via a map � : C ! C whi
h takesthe annulus and its 
ontents and 
ips it over. Clearly ��1 = �. It



HOMFLY POLYNOMIALS OF GENERALIZED HOPF LINKS 5is then 
lear that �' = ��1'� = �'�. However, this does not meanthat the maps ' and �' are 
onjugate as this does not de�ne an innerautomorphism of C.Now 
onsider the satellites of Hopf links dis
ussed earlier in the In-trodu
tion as elements of the skein C. We 
an then use 
ompositionsof the maps ' and �' to 
onstru
t a subset of su
h links. In parti
ular,for the element A = An11 An2�1 2 C, we have:H(k1; k2;n1; n2) = 'k1( �'k2(A)):It will therefore aid our investigation of theH(k1; k2;n1; n2) and theirHom
y polynomial if we were to look more 
losely at the maps ' and�', in parti
ular at their eigenvalues. This will be a
hieved through
onsidering 
ertain subspa
es of C and the restri
tions of the maps 'and �' to these subspa
es.2. Subspa
es of CThe algebra C 
an be thought of as the produ
t of subalgebras C+and C� whi
h are generated by fAm : m 2 Z; m � 0g and fAm : m 2Z; m � 0g respe
tively.Remark. In his thesis, [Luk01℄, Luka
 shows how to 
al
ulate the Hom-
y polynomial of any satellite of the Hopf link, when the de
orationsare 
hosen from C+. Here we 
onsider the full skein C, allowing moregeneral reverse string de
orations.2.1. The subspa
e C(n) � C+. Given linear 
ombinations of orientedn-tangles as shown in Figure 7, modulo the Hom
y skein relations, we
PSfrag repla
ements TnFigure 7. An oriented n-tangle.
an form an algebra. Multipli
ation within this algebra is indu
ed bysta
king one tangle on top of another.Now take the well-known He
ke algebra Hn of type An�1. It hasseveral di�erent in
arnations, but is most 
onveniently thought of inthis 
ontext as having expli
it presentation:Hn = *�i : i = 1; : : : ; n� 1 ������ �i�j = �j�i : ji� jj > 1;�i�i+1�i = �i+1�i�i+1 : 1 � i < n� 1;�i � ��1i = z + :



6 HUGH R. MORTON AND RICHARD J. HADJIIt is shown in [MT90℄ that Hn, with z = s� s�1 and 
oeÆ
ient ringextended to in
lude v�1 and s�1, is isomorphi
 to the skein theoreti
algebra des
ribed above.Wiring these n-tangles into the annulus as shown in Figure 8 gives
PSfrag repla
ements TnFigure 8. An element of the subspa
e C(n).a linear subspa
e of C+ whi
h we shall 
all C(n). This subspa
e is theimage of Hn under the 
losure map ^ : Hn ! C(n). For an n-tangleT 2 Hn, we denote its image under the 
losure map ^(T ) or T̂ .The subspa
e C(n) is then spanned by monomials in fAmg, withm 2 Z+, of total weight n, where wt(Am) = m. It is 
lear that thisspanning set 
onsists of �(n) elements, the number of partitions of n.(The standard notation used for the number of partitions of an integern is p(n); our alternative has been 
hosen to avoid a 
lash with notationrequired later in this paper.) C+ is then graded as an algebra:C+ = 1Mn=0 C(n):Now due to the relationship between Hn and C(n) it will be usefulhere to re
all some well-established fa
ts about Hn. In parti
ular, weshall 
on
entrate on fa
ts about 
ertain elements in Hn.Firstly, there is a set of quasi-idempotent elements of Hn dis
ussed�rst in [Gyo86℄ and given a geometri
 interpretation in [Ais96℄ (see also[AM98℄). We shall denote these elements e�, one for ea
h partition �of n, with ; denoting the unique partition of 0.Now, given the element T (n) 2 Hn shown in Figure 9, one 
an useskein theoreti
 te
hniques to prove the following 
orollary of Theo-rem 19 in [AM98℄ (see [Mor℄),Corollary (of Theorem 19, [AM98℄). T (n)e� = t�e� wheret� = (s� s�1)v�1X
ellsin � s2(
ontent) + Æ:Moreover, the s
alars t� are di�erent for ea
h partition �.
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PSfrag repla
ements nH�Figure 9. The n-tangle T (n).Reverse the orientation of the en
ir
ling string in T (n) and 
all this�T (n). Then using similar te
hniques, one 
an show,Lemma 1. �T (n)e� = �t�e� where�t� = �(s� s�1)vX
ellsin � s�2(
ontent) + Æ:Moreover, the s
alars �t� are also di�erent for ea
h partition �.Remark. An alternative proof to this lemma 
ould be made using thenatural skein mirror map : C(n) ! C(n). This map swit
hes all 
ross-ings in a tangle and inverts the s
alars v and s in the 
oeÆ
ient ring.Clearly this map 
an be seen to leave the skein relations un
hanged.One must then note that the e� are invariant under this map and that(T (n)) = �T (n). We then apply these fa
ts to the above Corollary andthe result follows immediately.We now link these fa
ts to the maps ' and �', through use of the
losure map. Take an element S 2 Hn with Ŝ 2 C(n) and 
ompose itwith T (n). Then ^(ST (n)) = '(Ŝ). Similarly ^(S �T (n)) = �'(Ŝ).The restri
tions 'jC(n) and �'jC(n) 
learly 
arry C(n) to itself.Theorem 2 ([Mor℄). The eigenvalues of 'jC(n) are all distin
t as arethe eigenvalues of �'jC(n).Proof. We prove the �rst statement with the se
ond following in exa
tlythe same way.Set Q� = ê� 2 C(n). Then the 
losure of T (n)e� is '(Q�). However,T (n)e� = t�e�, hen
e '(Q�) = t�Q�. The element Q� is then an eigen-ve
tor of ' with eigenvalue t�. There are �(n) of these eigenve
tors,and the eigenvalues are all distin
t by [AM98℄. Sin
e C(n) is spannedby �(n) elements we 
an dedu
e that the elements Q� form a basis forC(n) and that the eigenspa
es are all 1-dimensional.This proof is quite instru
tive as it establishes that the Q� with j�j = nare a basis for C(n). Hen
e any element in C(n) 
an be written as a linear
ombination of the Q� with j�j = n. It also follows that any element ofC(n) whi
h is an eigenve
tor of ' (and similarly �') must be a multiple



8 HUGH R. MORTON AND RICHARD J. HADJIof some Q�. Finally, we noti
e that the eigenvalues of the ' and �' arethe t� and �t� we found earlier.2.2. The subspa
e C(n;p). We now extend our view of the skein ofthe annulus to in
lude strings oriented in both dire
tions. We do thisthrough 
onsidering the 
losure of oriented (n; p)-tangles su
h as theone shown in Figure 10. We denote the algebra formed through 
on-
PSfrag repla
ements Tn pFigure 10. An oriented (n; p)-tangle.sidering linear 
ombinations of su
h (n; p)-tangles, modulo the Hom
yskein relations, by Mn;p. For further information on Mn;p see [MW℄ or[Had99℄. The image of Mn;p under the 
losure map shall be denotedC(n;p) � C.Unlike the 
ase for C(n) where C(n) \ C(n�1) = ;, we have that:C(n;p) � C(n�1;p�1) � C(n�2;p�2) � � � � � � C(n�p;0) if min(n; p) = p;C(0;p�n) if min(n; p) = n;however, it should be noted that for ea
h C(i;j) in the sequen
e, thedi�eren
e i� j remains 
onstant. Also,C(m;0) �= C(m)(�)and C(0;m) �= C(m)(+) ;where the subs
ripts indi
ate the dire
tion of the strings around the
entre of the annulus. However, we do have that C(n1;p1) \ C(n2;p2) = ;if n1 � p1 6= n2 � p2.We �nd that C(n;p) is spanned by suitably weighted monomials infA�n; : : : ; A�1; A0; A1; : : : ; Apg:We 
an then see that:C(n;p) = �C(n)(�) � C(p)(+)� + C(n�1;p�1):The spanning set of C(n;p) 
onsists of �(n; p) elements, where�(n; p) := kXj=0 �(n� j)�(p� j)= �(n)�(p) + � � �+ �(n� k)�(p� k);



HOMFLY POLYNOMIALS OF GENERALIZED HOPF LINKS 9with k = min(n; p).Similar to the grading of C+ with the C(n), we 
an think of the wholeof C in terms of the C(n;p):C = 1Mk=�1 [n;p�0fC(n;p) : n� p = kg! :We now use an example to illustrate what we meant by \suitablyweighted" monomials in the Ai.Example. Consider when n = 3 and p = 2. The spanning set of C(3;2)
onsists of 9 (= 3 � 2 + 2 � 1 + 1 � 1) elements sin
eC(3;2) = �C(3)(�) � C(2)(+)� + �C(2)(�) � C(1)(+)� + �C(1)(�) � C(0)(+)� :The spanning set is therefore:fA�3A2; A�3A21; A�2A�1A2; A�2A�1A21; A3�1A2; A3�1A21; A�2A1;A2�1A1; A�1g;where, for example, the element A�2A1 is obtained from 
losing anelement in M3;2 as shown in Figure 11.
PSfrag repla
ements = Æ

Figure 11. The generator A�2A1.Following an exa
tly analogous pro
edure inMn;p as in Hn, we de�ne
entral elements T (n;p) and �T (n;p) by diagrams similar to T (n) and �T (n)respe
tively as in Figure 12.
PSfrag repla
ements n pFigure 12. The (n; p)-tangle T (n;p).



10 HUGH R. MORTON AND RICHARD J. HADJIDe�nition 1 ([MW℄,[Had99℄). LetM (i)n;p denote the sub-algebra ofMn;pspanned by elements with \at least" i pairs of strings turning ba
k.Remark. (i) An (n; p)-tangle is said to have \at least" l pairs of stringswhi
h turn ba
k if it 
an be written as a produ
t T1T2 of an f(n; p); (n�l; p� l)g-tangle T1 and an f(n� l; p� l); (n; p)g-tangle T2 as illustratedin Figure 13.(ii) The M (i)n;p are two-sided ideals and there is a �ltration:Mn;p �= M (0)n;p �M (1)n;p � � � ��M (k)n;p ;where k = min(n; p).
PSfrag repla
ements

n
n

p
pT1n�l p�lT2Figure 13. A tangle with at least l pairs of stringswhi
h turn ba
k.Lemma 3. T (n;p) = T (n;p)0 + w;�T (n;p) = �T (n;p)0 + �w;where T (n;p)0 = T (n)(�) 
 1(p)(+) + 1(n)(�) 
 T (p)(+) � Æ 1(n)(�) 
 1(p)(+);�T (n;p)0 = �T (n)(�) 
 1(p)(+) + 1(n)(�) 
 �T (p)(+) � Æ 1(n)(�) 
 1(p)(+);and w; �w 2 M (1)n;p.Notation. The tensor produ
t S
T indi
ates the juxtaposition of tan-gles S and T .Proof. We prove the result for T (n;p), with the result for �T (n;p) followingin exa
tly the same way. Throughout this proof, we use a standardnotation setting s� s�1 = z.We �rst de�ne some elements inMn;p represented by tangles as shownin Figure 14.



HOMFLY POLYNOMIALS OF GENERALIZED HOPF LINKS 11PSfrag repla
ements
1 j p 1 j p� � � � � �� � � � � � A(j) :=T (j) :=

Figure 14. The tangles representing the elements T (j)and A(j) for 1 � j � p.Now applying the skein relation on
e to T (n;p) we obtain:= + z= T (n;p�1) 
 1(1)(+) + zv�1A(p):Repeated appli
ation of the skein relation in this way will 
learly yield:T (n;p) = T (n;0) 
 1(p)(+) + zv�1 pXj=1 A(j)= T (n)(�) 
 1(p)(+) + zv�1 pXj=1 A(j): (1)Now observe, similar to a result in [Mor℄, we 
an �nd:= Æ + zv�1 pXj=1 T (j): (2)Combining equations 1 and 2, we see that we are only left to showthat: zv�1 pXj=1 A(j) = zv�1 pXj=1 T (j) + w;for w 2M (1)n;p.Let w = Ppj=1w(j), so we must now show that for ea
h j, with1 � j � p, there exists a w(j) su
h that:zv�1A(j) = zv�1T (j) + w(j):



12 HUGH R. MORTON AND RICHARD J. HADJINow,zv�1A(j) = zv�1( � z )
= zv�1( � z � z )= � � � (repeating appli
ation of the skein relation)= zv�1T (j) + z2v�1(� � � � � � )= zv�1T (j) + w(j):with w(j) 2M (1)n;p.The result follows.We 
an �nd an obvious set of quasi-idempotent elements in Mn;pgiven by e0�;� := e(�)� 
 e(+)� formed by the juxtaposition of the Gyoja-Aiston idempotents with appropriate orientations and j�j = n andj�j = p. There are then �(n)� �(p) of these.We 
an then use the information in the previous se
tion, 
ombinedwith Lemma 3 to prove the following proposition.Proposition 4. T (n;p)e0�;� = t�;�e0�;� + we0�;�and �T (n;p)e0�;� = �t�;�e0�;� + w0e0�;�;where,t�;� = (s� s�1)0B��vX
ellsin � s�2(
ontent) + v�1X
ellsin � s2(
ontent)1CA+ Æand�t�;� = (s� s�1)0B�v�1X
ellsin � s2(
ontent) � vX
ellsin � s�2(
ontent)1CA+ Æ:Here we had �xed j�j and j�j with values n and p respe
tively. Infa
t, we �nd that t�;� and �t�;� have the following property:Lemma 5. As � and � vary over all 
hoi
es of Young diagram, thevalues of t�;� are all distin
t; as are the values of �t�;�.Remark. An equivalent way of stating Lemma 5 is that if t�;� = t�0;�0then � = �0 and � = �0 (similarly for the �t�;�).



HOMFLY POLYNOMIALS OF GENERALIZED HOPF LINKS 13Proof. We prove the �rst part of the lemma and note that the se
ondpart follows immediately due to the observation that �t�;� = t�;�.Given f(s; v) = t�;� we now show how to re
over the Young diagrams� and �.From the formula for t�;� in Lemma 4 we see that f(s; v) � Æ is aLaurent polynomial in s and v, and must be of the form:(s� s�1)(�vP (s) + v�1Q(s)):Now 
onsider P (s) and Q(s) individually. It is 
lear that these arealso Laurent polynomials, this time only in the variable s. We haveP (s) = X ais�2iand Q(s) = X bjs2j;where ai is the number of 
ells in � with 
ontent i, and similarly, bjis the number of 
ells in � with 
ontent j. Hen
e we 
an uniquely
onstru
t � and �.Now let us return to the maps ' and �', restri
ting them to the skeinC(n;p).Theorem 6. The t�;� and �t�;� are eigenvalues of 'jC(n;p) and �'jC(n;p)respe
tively. Moreover, they o

ur with multipli
ity 1.Proof. We prove the result for the t�;� with an identi
al argument prov-ing the result for the �t�;�.Fix an integer k su
h that k = p � n and k � 0 (in other wordsp � n | the 
ase for p < n is identi
al). Write C(n;p) as C(n;k+n) anddo indu
tion on n.For n = 0 we have that C(0;k) �= C(k). Now for j�j = 0 and j�j = k wehave that t�;� = t�. Moreover, in the proof of Theorem 2 we saw thatthe t� with j�j = k are eigenvalues of 'jC(k). Now sin
e C(k) �= C(0;k) �C(n;k+n) for all n, the t� are also eigenvalues of 'jC(n;k+n).Now assume that for j�j < n and j�j < k+n the t�;� are eigenvaluesof 'jC(j�j;j�j). Sin
e C(j�j;j�j) � C(n;k+n) the t�;� are also eigenvalues of'jC(n;k+n).Consider the t�;� with j�j = n and j�j = k + n. By the indu
tivehypothesis these t�;� are not eigenvalues of 'jC(n�1;k+n�1) sin
e we have�(n � 1; k + n � 1) eigenvalues and C(n�1;k+n�1) is spanned by �(n �1; k+n�1) elements and by Lemma 5 we have that if t�;� = t�0;�0 then� = �0 and � = �0.De�ne elements Q0�;� := Q(�)� � Q(+)� (= ^(e0�;�)) with j�j = n andj�j = k + n. Clearly Q0�;� 2 C(n;k+n).Now by Lemma 4,'jC(n;k+n)(Q0�;�) = t�;�Q0�;� + w0where w0 2 C(n�1;k+n�1).



14 HUGH R. MORTON AND RICHARD J. HADJIWe 
an �nd a v 2 C(n�1;k+n�1) su
h that ('jC(n;k+n) � t�;�I)(v) = w0.Now 
onsider Q0�;� � v. This is 
learly non-zero. We �nd:'jC(n;k+n)(Q0�;� � v) = 'jC(n;k+n)(Q0�;�)� 'jC(n;k+n)(v) + t�;�v � t�;�v= 'jC(n;k+n)(Q0�;�)� w0 � t�;�v= t�;�Q0�;� + w0 � w0 � t�;�v= t�;�(Q0�;� � v):Hen
e su
h t�;� are eigenvalues of 'jC(n;k+n).Hen
e by indu
tion, we have that the t�;�, with j�j � n, j�j � p andj�j � j�j = n� p, are eigenvalues of 'C(n;p).Moreover, we have found at least �(n; p) eigenvalues for 'C(n;p). ButC(n;p) is known to be spanned by �(n; p) elements, so 'C(n;p) has at most�(n; p) di�erent eigenvalues. Hen
e it has exa
tly �(n; p) eigenvaluesea
h with multipli
ity one.We now state two useful 
orollaries.Corollary. There is a basis of C(n;p) given by:fQ�;� : j�j � n; j�j � p; j�j � j�j = n� pgsu
h that: '(Q�;�) = t�;�Q�;� and �'(Q�;�) = �t�;�Q�;�:Corollary. Every eigenve
tor of ' and �' is a multiple of one su
hbasis element.Remark. The eigenvalues t�;� and �t�;� 
orrespond to the eigenvaluesof the matrix M in equation (1.1) of [Cha00℄, found there only for1 � k1 + k2 � 5 and k2 � k1. Chan uses the Hom
y polynomial basedon parameters l and m, whi
h are variants of v and z. The numberspm2 � 4 in Chan's eigenvalues �i and ��i 
orrespond to the parameters here with z = s� s�1, whi
h features strongly in our eigenvalues t�;�and �t�;�. Our use of s is the feature whi
h allows us to give simpleformulae for the Gyoja-Aiston elements Q� and to extend in prin
ipleto Q�;�.Unlike the Gyoja-Aiston elements Q� whi
h are known and havebeen well-studied, their generalisations the Q�;� des
ribed in the aboveCorollary are not well-understood. We shall show in the followingse
tion how they 
an be found expli
itly.3. The Homfly Polynomials of Some Generalized HopfLinksHere we apply the te
hniques des
ribed above to show how 
om-putation of the Hom
y polynomial of some generalized Hopf links ispossible.



HOMFLY POLYNOMIALS OF GENERALIZED HOPF LINKS 153.1. The Hom
y polynomial of H(k1; k2;n; 0) (= H�(k1; k2; 0; n)).Consider H(k1; k2;n; 0) in the skein of the annulus. Then we haveH(k1; k2;n; 0) = 'k1( �'k2(An1 ):Now sin
e the maps ' and �' are linear maps, we know that for theQ�, 'k1( �'k2(Q�)) = tk1� �t k2� Q�:Also, sin
e the Q� are a basis or the skein C(n), we haveAn1 = Xj�j=n d�Q�for 
onstants d�. The d� 
an be 
al
ulated by several means, one being
ounting the number of standard tableaux of shape �.Therefore, H(k1; k2;n; 0) = Xj�j=nd�'k1( �'k2(Q�))= Xj�j=nd�tk1� �tk2� Q�:So evaluating in the plane (using the work of [AM98℄), we �ndP (H(k1; k2;n; 0)) = Xj�j=n d�tk1� �tk2� 0� Y(i;j)2� v�1sj�i � vsi�jshl(i;j) � s�hl(i;j)1A ;where hl(i; j) is the hook-length of the 
ell (i; j), in row i and 
olumnj.3.2. The Hom
y polynomial of H(k1; k2;n1; n2). Consider, in asimilar way to above, H(k1; k2;n1; n2) as an element of the skein C.Then we have H(k1; k2;n1; n2) = 'k1( �'k2(An11 An2�1)):Similar to the restri
ted 
ase above, we have'k1( �'k2(Q�;�)) = tk1�;��t k2�;�Q�;�and An11 An2�1 = Xj�j�n2j�j�n1j�j�j�j=n2�n1 d�;�Q�;�for 
onstants d�;�. These 
onstants 
an be 
al
ulated in terms of ap-propriate d� and d� (see previous se
tion).



16 HUGH R. MORTON AND RICHARD J. HADJITheorem 7 ([Ste87℄). The numbers d�;� 
an be found from the follow-ing formula: d�;� = m!�n2m��n1m�d�d�;where j�j � n2, j�j � n1 and m = n2 � j�j = n1 � j�j.Therefore,H(k1; k2;n1; n2) = Xj�j�n2j�j�n1j�j�j�j=n2�n1 d�;�'k1( �'k2(Q�;�))= Xj�j�n2j�j�n1j�j�j�j=n2�n1 d�;�tk1�;��t k2�;�Q�;�:At present, we do not have a general 
losed formula for P (H(k1; k2;n1; n2))due to la
k of information about the elements Q�;�.We 
an, however, make expli
it 
al
ulations in individual 
ases asillustrated by the following example.Example. Consider H(k1; k2; 1; 2) 2 C(2;1), as shown in Figure 15.

PSfrag repla
ements
k1k2

Figure 15. The link H(k1; k2; 1; 2) in C.Then H(k1; k2; 1; 2) = 'k1( �'k2(A1A2�1));where, by Theorem 7,A1A2�1 = Q , + 2Q ,; +Q , : (3)However, we 
an also �nd, by using powers of trivial Gyoja-Aistonelements Q , with appropriate orientation, thatA1A2�1 = (Q(�))2Q(+):



HOMFLY POLYNOMIALS OF GENERALIZED HOPF LINKS 17Moreover, these elements are known to satisfy the Littlewood-Ri
hardsonrule for multipli
ation of Young diagrams ([Ais96℄), soA1A2�1 = (Q(�) +Q(�))Q(+)= Q(�)Q(+) +Q(�)Q(+)= Q0 , +Q0 , : (4)Now 
ombining equations (3) and (4) with the observation thatQ ,; = Q0 ,; = Q(�)Q(+);and assuming symmetry under 
onjugation of Young diagrams, wehave: Q , = Q0 , �Q0 ,;;and Q , = Q0 , �Q0 ,;:Hen
e, evaluating in the plane, we �nd,P (H(k1; k2; 1; 2)) = P ('k1( �'k2(A1A2�1)))= tk1, �tk2 , P (Q , )+2tk1,;�tk2,;P (Q ,;) + tk1, �tk2, P (Q , )= tk1, �tk2 , (P (Q0 , )� P (Q0 ,;))+2tk1,;�tk2,;P (Q0 ,;) + tk1, �tk2, (P (Q0 , � P (Q0 ,;))= tk1, �tk2 , P (Q0 , )+(2tk1,;�tk2,; � tk1 , �tk2 , � tk1, �tk2, )P (Q0 ,;) (5)+tk1, �tk2, P (Q0 , )From the de�nition of the Q0�;�, we 
an now use the results in [AM98℄to �nd P (Q0 ,;), P (Q0 , ) and P (Q0 , ). We have:P (Q0 ,;) = v�1 � vs� s�1 ;P (Q0 , ) = � v�1 � vs2 � s�2��v�1s� vs�1s� s�1 ��v�1 � vs� s�1� ;and P (Q0 , ) = � v�1 � vs2 � s�2��v�1s�1 � vss� s�1 ��v�1 � vs� s�1� :



18 HUGH R. MORTON AND RICHARD J. HADJIThen using Proposition 4 we �nd:t ,; = �v(s� s�1) + Æ;t , = (s� s�1)(�v(1 + s�2) + v�1) + Æ;t , = (s� s�1)(�v(1 + s2) + v�1) + Æ;and �t ,; = v�1(s� s�1) + Æ;�t , = (s� s�1)(v�1(1 + s2)� v) + Æ;�t , = (s� s�1)(v�1(1 + s�2)� v) + Æ:Substitution of these values into equation (5) then gives P (H(k1; k2; 1; 2))immediately.3.3. A �nal remark. We 
an in prin
iple write any given element ofthe skein X 2 C as a linear 
ombination of the basis elements Q�;�.Therefore, one 
an �nd '(X) and �'(X), and hen
e readily evaluatethe Hom
y polynomial of H(k1; k2;X) := H+(X;Ak11 Ak2�1). The spe
ial
ase X = An11 An2�1 gives H(k1; k2;n1; n2).Referen
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