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Methods 

Liver injury assessment after drug administration in mice 

The degree of liver injury in mice was assessed by the ALT and AST enzyme activities in mouse 

plasma following the manufacturer’s instructions (TECO Diagnostics, Anaheim, CA). Reaction 

products were read in a Beckman DU800 spectrophotometer at 340nm wavelength (250nm 

background). Specimens were analyzed in duplicate on the day of collection. Samples collected 

at night were kept at 4°C and analyzed the next morning. This colorimetric method has an 

acceptable accuracy (1, 2). Liver injury was also studied by histology H&E staining. Sections of 

mouse livers were preserved in 10% buffered formalin for H&E staining and image 

interpretation in the Department of Pathology at the University of Washington. Briefly, 

following fixation, tissues were processed into paraffin, sectioned and placed on slides. Tissue 

sections were then deparaffinized in xylene, hydrated through graded ethanol and stained with 

Mayer’s hematoxylin followed by eosin Y. The slides were then dehydrated with graded ethanol, 

cleared in xylene and coverslipped using Permount.   

Construction of mouse and human liver-enriched protein list  

Liver-enriched proteins for mouse and human were generated respectively with multiple 

microarray and RNA-Seq datasets. Gene Atlas microarray datasets include 3 human and 3 mouse 

multi-tissue transcriptome series: NCBI/GEO: GSE1133, for both human and mouse (3), 

GSE3526, human (4), GSE2361, human (5), GSE9954, mouse (6) and GSE10246, mouse (7). 

For the mouse and human liver-enriched gene list, microarray raw data were processed with 

R:Bioconductor (8) and normalized with the Robust Multi-Array Average expression measure 

method (9). For each series, the liver-enrichment of each transcript was computed as the log10-

ratio of the liver sample against the maximal value of the other tissues combined. The 
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distribution of log10 ratios is used to compute the distribution and respective p-value. The 165 

mouse transcripts with >10-fold liver enrichment over the maximal value of the rest of any 

tissues (not-liver) and p-value <10 
-6

 were filtered as liver-enriched.  

 

The human liver-enriched protein list, in addition to microarray data analysis, data mining results 

from Illumina Body Map and an in-house ISB human-tissue atlas were incorporated. 

Transcriptomes of normal human tissues were obtained from Illumina 75 bp single-end raw 

RNAseq data of 16 normal adult human tissues (NCBI/GEO GSE30611, Illumina Body Map). 

We also used an in-house ISB TranscriptomeAtlas of 75 bp single-end transcriptomes with 50 

normal embryonic and adult human tissues totaling 2,014,386,871 sequence reads (> 2 TB data) 

[Caballero, manuscript in preparation]. Datasets were preprocessed, filtered, mapped with 

BLAT (10) and assembled with Cufflinks (11) through an in-house RNAseq pipeline. We 

quantified the expression patterns of 32,313 genes (Ensembl 62 annotation) and 136,825 

isoforms thereof, as well as 12,803 putative novel genes and their 23,677 isoforms. For each 

series, we computed the liver-enrichment as the log10-ratio of the liver sample and the maximal 

RPKM value of the other tissues combined. The distribution of log10-ratios is used to compute 

the distribution and respective p-value. We filtered the results by selecting genes with >10-fold 

liver enrichment over the maximal value of the rest of any tissues (not-liver) and p-value<10
-6

.  

SRM method generation and optimization 

As described previously (12), target peptides and transitions were selected to ensure they are 

proteotypic to the protein of interest. ISB proteomics databases, e.g., PeptideAtlas for mouse (13) 

and SRMAtlas for human (14), were used to facilitate this process.  
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In the mouse study, three steps were involved in target peptide filtering and transition selection. 

First, an initial test was performed to assess the detectability of peptides selected from liver-

enriched proteins in pooled depleted plasma under our SRM conditions. Up to 5 peptides for 

each protein were selected and tested. For each peptide, both charge 2 and charge 3 precursors 

and as many as possible suitable transitions were monitored by SRM without heavy-labeled 

internal standards. The initial list contained a total of 547 peptides derived from 131 liver-

enriched proteins. Peptides eluting within a window of ±3 min of the expected RT and with all 

monitored Q1/Q3 transitions observed were counted as “possibly detected”. 

 

Second, crude unpurified peptide standards corresponding to the possibly detected light peptide 

analogues were synthesized with heavy isotopic lysine (
13

C6
15

N2) or arginine (
13

C6
15

N4) at the C-

termini (heavy PEPscreen® peptides, Sigma-Aldrich, St. Louis, MO, USA). SRM method 

conditions were optimized and titration curves were generated for each peptide. 

 

Third, successfully detected heavy peptides were spiked into the pooled mouse samples to verify 

the correct identification of the light peptides detected in the first step. An example of the 

selection and verification for peptide VNEAACDIAR selected from a liver enriched-protein, 

BHMT1, is shown in Supplementary Figure 2. Similar steps were employed in the human study. 

Since we noticed a great agreement of transition rank and peak intensities between our results 

and SRMAtlas, only the top 2 peptides from each protein (a few proteins only have one good 

representative peptide) and top 4 transitions from each peptide were chosen, resulting in 

significantly less peptides and transitions tested in step one in the human study. Validated 
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peptides and transitions were used for the SRM final tests in mouse or human samples. The 

numbers of proteins and peptides in each step are summarized in Supplementary Table 3. 

 

Detailed information including gene symbol, protein name, Uniprot ID, peptide sequence, 

precursor m/z, protein cellular location, function, process and pathway, and secretion signal 

prediction of the 52 mouse and 66 human proteins is summarized in Supplementary Table 

S4_Mouse and S4_Human.  

Collision energy optimization and titration of heavy standards  

Collision energies (CE) calculated with the instrument vendor-provided default formula 

(CE=0.036*m/z − 4.8) were optimized for the 134 mouse peptides as charge 2 and charge 3 

precursors with 4 additional CE conditions (±5V, ±10V). In general, charge 2 precursors 

performed better with the calculated default or a higher CE (default plus 5V). This is in 

agreement with the previous observation that the default formula worked well for charge 2 

precursors (15). As for charge 3 precursors, a 5V lower CE (CE values between default and 

default minus 5V were not tested) contributed to stronger signal intensity for the majority of the 

132 peptides investigated (Supplementary Figure 3). The best precursors and each of their best 4 

transitions under optimized conditions were selected for the SRM analysis on mouse samples. 

Human heavy peptide standards selected based on SRMAtlas were tested with the calculated CE 

without further optimization. Heavy peptides were titrated in a mouse plasma or human serum 

background to generate titration curves for the determination of the linear relationship between 

peak area under the curve (AUC) and the desired spike-in peptide amount of each peptide 

standard.  
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Figure legends 

Supplemental Figure 1. Characterizing individual SRM assays for the 5 informative proteins 

and ALT, AST in APAP overdose patients. The calibration curves were generated in a reference 

depleted serum matrix. Error bars at each point are one standard deviation from the mean. The 

two vertical grid lines in each figure represent the detected range (Min and Max) in 

APAP overdose patients. The insets show a zoomed portion of the curve fitting around the limit 

of detection. The vertical dot lines in inserts are estimated limit of quantification (LOQ), which 

is lower than the targeted range in APAP overdose patients. With a relatively low LOD, all 

peptides spanned a linear region in 2-3 orders of magnitude (n = 2 for each transition at all 

concentration points).   

 

Supplementary Figure 2. BHMT1 (peptide VNEAACDIAR) transitions were detected from 

NOD mouse plasma samples treated with APAP or CCl4 and later confirmed with corresponding 

synthetic heavy peptide standards. A1: Light (endogenous) peptide was not detected in plasma 

from drug vehicle-treated mice, only non-specific peaks are shown; A2: light peptide was 

detected in plasma from APAP-treated mouse plasma; A3: heavy peptide standard peptide shown 

similar retention time (RT) and transition peaks as light peptides in A2.  B1-B3: same as A1-A3 

except that mice were treated with CCl4. 

 

Supplementary Figure 3. Both charge 2 and charge 3 precursors of 185 peptides were 

optimized as described in methods. Peptides were tested under default CE (calculated) and 

default -10V, default – 5V, default + 5V and default +10V CEs. Some peptides were detected 

only as charge 2 or charge 3 precursors. 3A. Most of the 168 charge 2 precursor ions tend to 
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perform better with default CE or higher CE (default plus 5 or 10V).  3B. Most of the 166 charge 

3 precursors performed better by lowering the CE 5V from default (default minus 5), a few 

performed better at default minus 10V. Each bar represents the normalized average value of 

duplicate runs of total AUC of the peptide tested at indicated CE value. Red line is the average 

AUC of all peptides tested at each CE value with one standard deviation error bars. X-axis, 

collision energy, Y-axis, normalized total area under curve for each charge 2 or charge 3 peptide 

measured with indicated CE.  
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Supplementary Figure 1 
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Supplemental Figure 3 
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