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The inaccessibility of the brain poses a problem for neuroscience. Scientists have 
traditionally responded by developing biomarkers for brain physiology and disease. 
The retina is an attractive source of biomarkers since it shares many features with the 
brain. Some even describe the retina as a ‘window’ to the brain, implying that retinal 
signs are analogous to brain disease features. However, new analytical methods 
are needed to show whether or not retinal signs really are equivalent to brain 
abnormalities, since this requires greater evidence than direct associations between 
retina and brain. We, therefore propose a new way to think about, and test, how 
clearly one might see the brain through the retinal window, using cerebral malaria as 
a case study.
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Background
The appeal of the retina as a research 
tool
There is a great temptation to describe the 
retina as a ‘window to the brain’. For example, 
a recent review of neurological conditions was 
titled ‘The retina as a window to the brain – 
from eye research to CNS disorders’ [1]. A pop-
ular textbook on retinal anatomy and physiol-
ogy is called: ‘The retina – an approachable 
part of the brain’  [2]. Similar language and 
concepts are present in recent literature on 
Alzheimer’s disease  [3], schizophrenia  [4] and 
stroke [5].

The appeal of the retina as a neuroscientific 
research tool arises from three points: first, 
it is difficult to directly observe the brain in 
living patients. This limits the amount and 
type of information that can be collected 
about the CNS in health and disease. Sec-
ond, the retina is thought to be similar to the 
brain  [6,7]. Although important differences 
exist (e.g., photoreceptor and neuron metabo-
lism) [2], the retina is part of the central ner-
vous system (CNS) and has similar embryo-
logical origins, anatomy and physiology to 

other CNS regions. This leads to a related idea 
that retinal disease manifestations ought to be 
associated with brain disease manifestations 
– at least for certain conditions, where both 
organs are exposed to the same insults. Finally, 
unlike the brain, direct observation of the 
retina is relatively simple. Several noninvasive 
high resolution techniques to measure retinal 
structure and/or function are available [8], and 
technological advances are likely to increase 
the range and power of such modalities.

Given these points, it is not surprising that 
the retina has been the subject of a significant 
amount of biomarker research, leading to 
many reports of associations between retina 
and brain. Prominent associations include 
relationships between retinal parameters and 
outcomes from several neurological condi-
tions, including stroke  [9], cognitive impair-
ment  [3,10], multiple sclerosis  [11] and others 
(reviewed in [1,8]).

It is clear that associations between retina 
and brain exist for a range of neurological 
and neurovascular conditions of varying eti-
ologies. This is consistent with the hypoth-
esis that the retina and brain are similar, 
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and respond similarly to disease. However, although 
evidence of consistency with a hypothesis is valuable, 
associations between retina and brain cannot – on 
their own – justify the stronger conclusion that retinal 
markers mirror analogous brain features, or, in some 
sense, provide a window to the brain.

The reason for this has to do with what it would 
mean for the retina to be a window to the brain.

The retina as a window to the brain
Reasoning from an analogy between retina & 
brain
The phrase ‘window to the brain’ suggests that some 
characteristic in the retina, or retinal manifestation of 
disease, is the same as an analogous characteristic or 
manifestation in the brain. It suggests that when one 
observes a retinal feature, one is also observing, for all 
practical purposes, an equivalent or identical disease 
effect that is occurring in the brain. If this was true, we 
should certainly expect the given retinal and brain vari-
ables to be strongly positively correlated. But proof of 
equivalence requires evidence beyond direct association.

Consider two variables, S and T. If S and T are 
materially equivalent (symbolized S⇔T), then S is 
necessary and sufficient for T, and vice versa. If the 
retina is essentially a transparent ‘window to the brain’, 
this type of relationship ought to exist between reti-
nal and brain variables. To the best of our knowledge, 
existing reports of retinal biomarkers of brain disease 
usually describe univariate or multivariate associations 
between retinal and brain variables, but this does not 
show that a retinal marker is necessary and sufficient 
for an analogous brain feature.

The point to take from this is not that authors 
describing the retina as a window are wrong – direct 
associations between retina and brain are important. 
On the contrary, this is an opportunity. Considering 
the many biologically important characteristics shared 
by retina and brain, we ought to be able to describe 
retina–brain relationships in much stronger terms than 
those of simple associations.

What would this kind of description look like? 
The strict logic of material equivalence may not be 
appropriate for analysis of a biological system. Even 
if a retinal variable really was necessary and sufficient 
for an analogous brain variable, there are many rea-
sons why this relationship might not be demonstrable. 
These include measurement error of key variables, and 
complexity introduced by other related factors such as 
confounders. Biology is a noisy science.

Define equivalence (S⇔T) to mean: S contains the 
same information as T. The information contained in 
S (and also T) is necessarily relative to information 
outside itself. About what does S inform us? We are 

interested in retinal biomarkers because they might 
inform us about other variables. These might include:

•	 A systemic disease process (A);

•	 Analogous manifestation(s) of this disease process 
in the brain (T);

•	 The ultimate outcome of the disease process 
(e.g., risk of death) (Z).

If S⇔T means S contains the same information as 
T, then this can be expressed as:

•	 S and T contain the same information about each 
other and, in addition,

•	 S and T both contain the same information about 
A and Z.

However, since biology is noisy, we might want to 
define equivalence in even more pragmatic terms. Instead 
of defining equivalence on the basis of whether or not S 
and T contain alI the same information about each other, 
A and Z, we can define it in terms of the degree to which 
S informs about T, with respect to A and Z.

In this case, a retinal feature could be considered 
equivalent to an analogous brain feature, if the retinal 
feature contained a large amount of the information 
about disease exposure (A), and/or disease outcome 
(Z), as that contained in an analogous brain feature 
(T). The retinal feature (S) and brain feature (T) should 
also contain a large amount of information about each 
other. These relationships are illustrated in Figure 1.

These considerations of what it might mean for the 
retina to be a window to the brain lead to a definition of 
equivalence that moves some way beyond existing anal-
yses of prospective retinal biomarkers in terms of simple 
associations with brain variables or outcomes. However, 
they are not unique to questions about retina–brain 
associations.

Similar analogical reasoning is used when assess-
ing the suitability of animal models, and in evaluating 
potential surrogate markers in randomized controlled 
trials (RCTs). In each of these examples, the real object 
of interest is out of reach. This is the target (T) – for 
example, the human subject, or the true clinical end 
point. What is available is an imperfect source of 
information (S) – a candidate model, or prospective 
surrogate marker. S may (or may not) provide useful 
information about the real object of interest (T). In 
both cases, the biological plausibility of relationships 
between S, T, A and Z gives an essential a priori con-
text to any empirical evaluation of S as a good source 
of information about T – whether S is an experimental 
model, surrogate marker or ‘window’ to another organ.
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Figure 1. Modified directed acyclic graph illustrating 
how equivalence between retina and brain variables 
can be thought of in terms of information contained 
in the retina (S) about the brain (T) with respect to 
disease exposures and effects (A and Z, respectively). 
Arrows indicate hypothesized causal relationships; 
broken lines indicate direct associations that are 
assumed not to be causal. A: disease exposure; S: source 
domain variable (e.g., a retinal variable); T: target 
domain variable (e.g., a brain variable); Z: clinical 
outcomes. If a retinal feature (S) is analogous to a 
brain feature, it ought to contain a large amount 
of information about the brain feature (T) both 
independently and with respect to the mechanism 
causing disease manifestations (A) and the clinical 
outcome (Z). This figure also illustrates a biological 
paradigm relating disease exposure (A) to disease 
manifestations in retina (S) and brain (T), and finally to 
clinical outcome (Z) for pediatric cerebral malaria. Note, 
there is no direct path from A to Z. This implies that in 
cerebral malaria, the disease (A) only causes death (Z) 
through manifestations in the brain (T). The paradigm 
can be modified to include different assumptions, and 
these pathways can be represented mathematically 
as a series of simultaneous equations in a structural 
equation model. S can be evaluated in terms of how 
much information it contains about A or Z, compared 
with T (cf. LRF, or PIG). It can also be evaluated in terms 
of the ratio of coefficients: A → S / A → T, or S – Z / T → 
Z (cf. relative effect).

S

T

A Z

Causal relationship

Association (not causal)
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Recognizing that analogical reasoning is used in 
other areas of medical science suggests the possibil-
ity that existing statistical methods might be adapted 
for use in observational studies of retinal variables as 
potential biomarkers for brain disease. Taking statisti-
cal techniques developed to assess surrogacy in RCTs, 
and extending them to observational studies, could 
potentially allow important new inferences to be made 
about the pathogenesis and prognosis of neurological 
diseases from retinal data. Indeed, this methodology 
could be applied much more broadly. For example, 
a recent study used similar methods to simultane-
ously estimate the effect of bacteria strain on both 
biomarkers and mortality [12].

However, questions about whether or not retinal 
observations reflect cerebral disease processes are dif-
ferent from questions about treatment effect in an 
RCT. Direct application of statistical methods from 
RCTs to observational studies are, in general terms, 
not usually appropriate. Analytical approaches that 
allow fuller exploration of potentially causal relation-
ships are more suitable – for example, structural equa-
tion modeling (SEM) methods. SEM has the advan-
tage of allowing researchers to declare assumptions 
about relationships between exposures, outcomes, 
and potential confounders, and take account of these 
relationships when estimating coefficients (for more 
details, see [13,14]).

Even if one or more statistical methods for evalu-
ating surrogacy in RCTs are appropriate for use in 
observational studies, certain theoretical misconcep-
tions about surrogacy must be avoided. For example, 
Walker et al. [12] discuss how, because their methodol-
ogy is conceptually similar to assessment of surrogate 
end points, they can conclude that the associations they 
describe represent causal relationships. This is incor-
rect. A surrogate marker may, or may not be on the 
causal pathway between treatment (or disease) and true 
end point. Mediation is not a necessary condition for 
surrogacy [15,16].

This comment may seem esoteric, but it has very 
practical implications when considering the retina as 
a model of the brain. It does not make biological sense 
to think of the retina mediating the effect of a systemic 
process on the brain. If mediation is logically necessary 
for surrogacy, retinal manifestations might be better 
thought of as epiphenomena than glimpses of the brain 
through the supposed window of the eye.

A further caution about surrogate evaluation is 
relevant. Surrogate end points are attractive because 
they are easier, quicker or cheaper to measure than 
the true clinical end point, while providing effectively 
the same information. New medicines can potentially 
reach the market more quickly and cheaply if licens-

ing is based on surrogate outcomes rather than true 
clinical end points such as mortality. This was true 
of early antiretroviral drugs, where CD4+ count was 
used as a surrogate for development of AIDS (dis-
cussed in [17]). On the other hand, there is also a seri-
ous danger of being misled by a surrogate, because 
apparently good surrogate end points can produce 
paradoxical results. This occurred to disastrous effect 
when antiarrhythmic drugs were licensed because 
they suppressed arrhythmia, but were later found to 
increase mortality (discussed in [18,19]). If this type of 
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Table 1. Several definitions of what it means for a biomarker to be a valid surrogate end point are listed. Each row 
describes one statistical approach, with operational criteria and comments. An explanation of statistical notation is 
given at the end of the table.

Operational criteria or statistic Comments Ref.

Prentice’s criteria (as expressed 
by VanderWeele [2013])  
f(T|S) ≠ f(T) 
f(T|S,Z) = f(T|S)

A valid surrogate S should:
 • Be associated with the true outcome T
 • Completely capture the effect of treatment A on the true outcome T

[16]

A candidate surrogate should be invalid if it fails to meet these criteria  

  Potentially more useful for excluding poor surrogates (given enough power) than 
validating good ones

 

  The criteria (and related statistics) are not able to rule out the surrogate paradox [16]  

Proportion explained (PE) 
(Freedman et al. [1992])

A valid surrogate S should:
 • Have a PE close to 1

[23]

PE = 1 – βs/β Reflects the degree of treatment effect captured by the surrogate, rather than ruling 
out candidate surrogates that do not capture the entire treatment effect

 

  Can be applied to many types of data [24]  

  The statistic is difficult to interpret, since it can lie outside 0–1, and will often have 
wide confidence intervals

 

  As well as describing the association between A and T given S, the PE also depends on 
the association between A and S. It operates best when there is little or no association 
between A and S [20,23,25]

 

Likelihood reduction factor 
(LRF) (Alonso et al. [2004]) as 
interpreted by (Qu and Case 
[2007])
LRF = 1 – exp(-LRT(A,S:A)/n)
LRFadj = LRF/LRFmax

A valid surrogate (at the ‘individual level’) should:
 • Have an LRF close to 1

[26]

Reflects the degree of treatment effect captured by the surrogate, which is 
conceptually similar to the association between surrogate and true outcome, adjusted 
for treatment effect (both are expressed by f(T|S,A))

[25]

The LRF reduces to the meta-analytic statistic R2
indiv for normally distributed end 

points [26]
 

  Can be applied to many types of data [26]  

  As with the PE, a strong association between A and S will cause the LRF to approach 0. 
This is not the case for the LRFadj in simulations [25]

 

Proportion of information gain 
(PIG) (Qu and Case [2007])

A valid surrogate should:
 • Have a PIG close to 1

[25]

PIG = LRT(S : 1)/LRT(S,A : 1) A more straightforward way of expressing the LRFadj [25]  

Notation is defined as follows:
Prentice’s criteria
A: Treatment; S: Surrogate end point; T: True outcome.
f(T) signifies the probability distribution of T.
f(TIS) signifies the probability distribution of T, given S.
f(TIA) ≠ f(T) means the probability distribution of T given A is not equal to the probability distribution of T alone. That is, T is associated with Z.
f(T|S,A) = f(T|S) means the probability distribution of T given S and A is not different from the probability distribution of T given S. That is, A has no effect on T after 
adjustment for S.
Proportion of treatment effect (PE)
βs is the regression coefficient of a model of A on T, adjusted for S.
β is the regression coefficient of a model of A on T unadjusted S.
Likelihood reduction factor (LRF)
LRT(A,S:A) is the likelihood ratio test statistic comparing a model of T given S and A, with a model of T given A
n = number of subjects.
LRFmax is the LRF of the best possible fitted model.
Proportion of information gain (PIG)
LRT(S : 1) is the likelihood ratio test comparing a model of surrogate and intercept with a model including only the intercept.
LRT(S,A : 1) is the likelihood ratio test comparing a model of surrogate, treatment and intercept with a model including only the intercept.
Relative effect, adjusted association (RE, AA)
β is the unadjusted estimate of the effect of A on T.
α is the unadjusted estimate of the effect of A on S.
β and α are estimated by separate logistic regression models.
γA is the effect of S on T adjusted for A, that is, f(T|A,S).
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paradox can occur in the context of RCTs, it can cer-
tainly cause problems for interpreting the meaning of 
retinal markers of brain disease.

Evaluation of analogical reasoning: 
surrogate end points
Evaluation of surrogate end points is an active area of 
statistical research, and several definitions and opera-
tional criteria have been proposed (reviewed in  [15–
17,20,21]). We summarize some of the more prominent 
approaches, with the aim of identifying statistical 
methods to investigate relationships between retina 
and brain within the context of a particular disease 
exposure and outcome (Table 1).

Prentice’s definition & criteria
Prentice  [22] suggested a highly influential definition 
for surrogate end points, with operational criteria by 
which a variable could be tested statistically (Table 1). 
This became a fundamental reference point for many, 
if not all, subsequent authors on statistical evaluation 
of surrogate end points. His definition was based on 
the intuitive concepts that a good surrogate should:

•	 Be associated with the true end point, and also,

•	 ‘Capture treatment differences as they affect the 
true end point’ ([22], page 433).

Prentice’s definition and criteria formalized an 
important intuition about what it means for a sur-
rogate outcome to be valid and were foundational to 
later discussions about how to evaluate surrogate end 
points. However they suffer from several major prob-
lems. The main requirement is that the surrogate acts 
as a perfect confounder for the relationship between 
treatment and true outcome. This is a very high, and 
probably unrealistic standard. Formulation in terms 
of hypothesis testing means that although the criteria 
may be suitable for invalidating poor surrogates (given 
adequate power), they can never truly validate a good 
surrogate, since this requires the null hypothesis to be 
proved true instead of false  [23]. The criteria are only 
equivalent to Prentice’s definition of validity for binary 
end points [24]. They do not allow for confounders of 
the relationship between surrogate and true outcome, 
and do not exclude the type of surrogate paradox 
involved in the infamous arrhythmia trials [16].

Operational criteria or statistic Comments Ref.

Relative effect (RE)
Adjusted association (AA)
(Buyse and Molenberghs 
[1998])
RE = α /β
AA = γA

A valid ‘trial level’ surrogate should:
 • Have RE = 1, or any precisely estimated value

[24]

Accurate estimation is likely to require data from multiple trials, or multilevel analysis 
of a single large trial. The meta-analytic statistic is R2

trial

 

A valid ‘individual level’ surrogate should:
• Have AA = ∞ or 1 (depending on type of data)

 

The AA is closely related to the LRF. The meta-analytic statistic is R2
indiv  

  The RE and AA have the potential to give useful information in certain contexts. They 
cannot exclude the surrogate paradox [16]

 

Notation is defined as follows:
Prentice’s criteria
A: Treatment; S: Surrogate end point; T: True outcome.
f(T) signifies the probability distribution of T.
f(TIS) signifies the probability distribution of T, given S.
f(TIA) ≠ f(T) means the probability distribution of T given A is not equal to the probability distribution of T alone. That is, T is associated with Z.
f(T|S,A) = f(T|S) means the probability distribution of T given S and A is not different from the probability distribution of T given S. That is, A has no effect on T after 
adjustment for S.
Proportion of treatment effect (PE)
βs is the regression coefficient of a model of A on T, adjusted for S.
β is the regression coefficient of a model of A on T unadjusted S.
Likelihood reduction factor (LRF)
LRT(A,S:A) is the likelihood ratio test statistic comparing a model of T given S and A, with a model of T given A
n = number of subjects.
LRFmax is the LRF of the best possible fitted model.
Proportion of information gain (PIG)
LRT(S : 1) is the likelihood ratio test comparing a model of surrogate and intercept with a model including only the intercept.
LRT(S,A : 1) is the likelihood ratio test comparing a model of surrogate, treatment and intercept with a model including only the intercept.
Relative effect, adjusted association (RE, AA)
β is the unadjusted estimate of the effect of A on T.
α is the unadjusted estimate of the effect of A on S.
β and α are estimated by separate logistic regression models.
γA is the effect of S on T adjusted for A, that is, f(T|A,S).

Table 1. Several definitions of what it means for a biomarker to be a valid surrogate end point are listed. Each row 
describes one statistical approach, with operational criteria and comments. An explanation of statistical notation is 
given at the end of the table (cont.).
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Proportion explained
Several adaptations of Prentice’s criteria have been pro-
posed. Freedman et al. (1992) [23] developed the ‘pro-
portion explained’ (PE) (Table 1). This uses Prentice’s 
definition of a valid surrogate, but instead of testing 
whether or not the surrogate captures the entire effect 
of treatment on the true end point, the statistic mea-
sures the degree to which a surrogate end point captures 
treatment effect. It was designed as a ratio of treatment 
effect on the true outcome, given the surrogate, to 
unadjusted treatment effect on the true outcome.

This addresses one of the main criticisms of Pren-
tice’s criteria. Unfortunately, this statistic also suffers 
from several major problems. It is not a true ratio – it 
is larger than one if control for the surrogate changes 
the direction of treatment effect on the true outcome. 
Confidence intervals will be large unless the treat-
ment effect on the true outcome is also very large (>4 
standard errors). These issues make interpretation of 
the PE difficult  [24]. Furthermore, a close association 
between the treatment and surrogate leads to large vari-
ability in the numerator. Although one might expect a 
good surrogate outcome to be closely associated with 
the treatment, the PE functions best when there is no 
interaction between treatment and surrogate [20,25].

Likelihood reduction factor & proportion of 
information gain
Another approach to Prentice’s criteria is the ‘likeli-
hood reduction factor’ (LRF)  [26] (Table 1). This was 
proposed within the context of a different concept 
of surrogacy, often referred to as the ‘meta-analytic 
approach’ (discussed below) [16]. Alonso et al. [26] sug-
gested that the LRF could bridge these two concepts 
– on one hand, providing a statistic to evaluate Pren-
tice’s main criterion (treatment effect on the true out-
come is captured by the surrogate), and on the other, 
an expression of ‘individual level surrogacy’ that could 
be applied to a range of data types from a single trial.

Like the PE, the LRF compares two models: a model 
of treatment effect on the true outcome (controlling for 
the surrogate), and an unadjusted model of treatment 
effect on the true outcome. The PE compares coefficients 
of the models; the LRF compares the log likelihoods of 
fitted models. In some families of model (e.g., logistic), 
the LRF can only take a value between zero and a num-
ber less than one. An adjusted version of the LRF (LRF

adj
) 

will always lie between zero and one. Unlike the PE and 
LRF, the LRF

adj
 appears to be relatively unaffected by 

interaction between treatment and surrogate [25].
Qu & Case (2007)  [25] proposed a variation of the 

LRF
adj

. This statistic, the ‘proportion of information 
gain’ (PIG), compares models using the likelihood ratio 
test (Table 1). Results from these tests are then used to 

produce a ratio. PIG is closely related to the LRF
adj

. 
Like the LRF

adj
, the PIG is unaffected by collinearity 

between treatment and surrogate [25].

Meta-analytic approach: relative effect (RE, 
cf. R2

trial) & adjusted association (AA, cf. 
R2

indiv)
Buyse & Molenberghs (1998) [24] proposed two sepa-
rate statistics in place of the PE: the relative effect 
(RE) and the adjusted association (AA) (Table 1). In 
contrast to Prentice, they reasoned that a useful surro-
gate should allow investigators to predict the treatment 
effect on a true end point, given knowledge only of the 
treatment and surrogate. This is the concept behind 
the RE, which is the ratio of the effect of treatment on 
true outcome over treatment on surrogate. An RE = 1 
would indicate that the same magnitude of treatment 
effect operates on both the true outcome and surrogate 
end point, at a population, or ‘trial’ level. However, a 
value less than one would still allow prediction of treat-
ment effects on the true outcome, provided the RE is 
estimated with little residual error. This may require 
large numbers of subjects. With this in mind, a similar 
statistic (R2

trial
) can be derived from multiple trials, or 

multilevel analysis of a single-large trial  [27]. The RE 
relies on variability in the treatment effect on both sur-
rogate and true end points. For an ideal trial level sur-
rogate, α and β would have a monotonic relationship, 
with minimal residual error regardless of whether α 
and β are related linearly or nonlinearly [15].

Interestingly, the concept of an ideal trial level sur-
rogate appears to be similar to that of nomic isomor-
phism. This is a special case of analogy, where source 
and target domains are interpretations of one physical 
theory. For example, volumetric flow and electric cur-
rent are not only analogous concepts, they are also both 
described by the same mathematical equation [28].

Buyse and others also suggested that a useful sur-
rogate should allow prediction of the true outcome for 
a particular individual, given knowledge of the treat-
ment and surrogate. This is the idea behind the AA, 
which is the association between surrogate end point 
and true outcome, adjusted for the treatment. A perfect 
‘individual level’ surrogate end point has a value for AA 
indicating no effect of treatment on the relationship 
between surrogate and true end points (∞ for binary 
end points, 1 for continuous end points) [24]. The cor-
responding meta-analytic statistic is R2

indiv
 [27]. As men-

tioned above, the AA is closely linked to the LRF [26]. 
Both RE and AA (R2

trial
 and R2

indiv
) can be applied to 

binary, ordinal and continuous end points [27].
Relationships envisioned by Buyse & Molenberghs 

(1998) [24] between treatment, surrogate and true end 
points can be illustrated (Figure 2).
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Figure 2. Modified directed acyclic graph showing 
relationships between treatment (A), surrogate (S) 
and true end point (T). A is assumed to influence T 
both directly, and also through S. The influence of 
unmeasured confounders is not included. α represents 
the association between A and S; β the association 
between A and T; and γ the association between S and 
T. β/α is the ratio of coefficients between A → S and A 
→ T (the relative effect); γA is the association between 
S and T controlling for A (the adjusted association). 
Note that, in an RCT, the true end point (T) is usually 
the same as the clinical outcome (Z), and so there is 
only one triangle (connecting A, S and T) whereas in 
Figure 1, there are two (connecting A, S, T; and S, T 
and Z). Observational studies of associations between 
retina and brain allow the relationship between S and 
T to be evaluated in terms of both A and Z, while in an 
RCT the S → T relationship is only evaluated in terms 
of A. 
Redrawn from Figure 2 in [24].

S

A

T

γA

α
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γ
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The meta-analytic approach has the potential to give 
information about candidate surrogate end points that 
is more practical than hypothesis tests of Prentice’s 
criteria, or the PE. However in practice, evaluation of 
validity remains difficult  [29], and although these sta-
tistics may give some useful information, they do not 
rule out the surrogate paradox [16].

Qualitative evaluation of validity
Some authors recognize that it is not possible for a 
purely statistical definition of validity to fully evalu-
ate whether or not a candidate surrogate end point is 
likely to be safe and effective [16,26]. At least two quali-
tative approaches have been proposed. These might be 
used instead of, or in addition to, attempts to measure 
statistical properties such as the LRF, PIG, AA or RE.

Wu et al. [30] described operational criteria to assess 
whether the direction of treatment effect on the sur-
rogate is the same as that on the true end point. These 
are based on counterfactual terms, but can be assessed 
using procedures available in commercial statistical 
packages (e.g., generalized linear models).

Vanderweele [16] discussed conditions that would be 
sufficient to ensure the surrogate paradox is avoided, 
and proposed three questions to assess the danger of 
being misled by a prospective surrogate (Figure 3):

•	 Might there be a negative direct effect of treatment 
on the true end point, not through the surrogate?

•	 Might the positive surrogate–true end point asso-
ciation be due to confounding?

•	 Might treatment affect the surrogate for different 
people than for whom the surrogate affects the true 
end point (i.e., a lack of transitivity)?

If the answer to all the three questions is ‘probably 
not’, one can have greater confidence that the surrogate 
end point does indeed reflect the true end point. This is 
a subjective assessment, based on a priori background 
information about relationships between treatment, 
surrogate, true end point and potential confounders.

For both Wu et al. [30] and VanderWeele [16], the con-
ditions being assessed are sufficient, but not necessary. 
Failure to meet one (or more) does not prove a prospec-
tive surrogate is invalid. The criteria of Wu et al.  [30] 
make use of data from previous RCTs, while Vander-
Weele’s questions  [16] rely on a priori knowledge of 
relationships between treatment, surrogate and true 
outcome.

This takes us back to considering the importance of 
the biological context, and the plausibility of analogy 
between what is measurable (e.g.,  the surrogate, the 
model animal), and what we would like to know with 

certainty but can only infer (e.g.,  the true end point, 
human biology). Like judgements about the validity 
of analogical inferences in general [28], when consider-
ing a surrogate end point the assessment of biological 
plausibility is ultimately subjective. The advantage of 
the questions proposed by VanderWeele is that they 
provide a systematic way to evaluate this context.

Adaptation of surrogate methodology to 
evaluate retinal biomarkers of brain disease
Strengths, weaknesses & theoretical pitfalls
Thinking of retinal variables as ‘surrogate-
like’surrogate-like entities (or proxy markers) and ana-
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Figure 3. Directed acyclic graph showing relationships 
between treatment (A), surrogate (S) and true 
end point (T). Unmeasured confounders (U) of 
the relationship between S and T are included. 
Relationships between A and S, and A and T are 
assumed to be estimated under conditions of 
experimental randomization, and therefore not 
subject to confounding in the same way as S → T. The 
surrogate paradox can arise through: positive A → S 
→ T effect, combined with a negative direct A → T 
effect; confounding of S → T by U; a lack of transitivity. 
In observational studies, A is not randomized and so 
the relationships A → S and A → T are also subject to 
unmeasured confounders. These should be described, 
as far as possible, in a structural model on the basis of 
a priori information about the biological context. 
Redrawn from Figure 2 in [16].
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lyzing them in terms of brain manifestation, disease 
exposure and outcome has several potential advantages.

By forcing researchers to explicitly describe the bio-
logical paradigm being assumed, this approach incor-
porates information about disease specific biological 
context into analyses of retina–brain associations. 
There is no guarantee that the assumed biological para-
digm is correct. But discovering that a well-established 
retina–brain association does not hold when consid-
ered within the conventional biological context would 
be extremely useful, and could be investigated further 
by trying alternative frameworks that describe the data 
more accurately.

Showing that retinal variables are effectively equiva-
lent to one or more brain variables (S⇔T), rather than 
just being directly associated, would allow investiga-
tors to reach much stronger conclusions about the 
meaning of retinal observations for a given disease. 
And, even if a retinal variable (S) did not contain a 
large amount of the information in the brain variable 

(T), with respect to exposure (A) and clinical outcome 
(Z), the assessment of these relationships would still 
provide a more detailed view of the links between ret-
ina and brain than that provided by simple univariate 
tests of S → T.

Having listed some strengths, several caveats should 
also be considered:

Imperfect measurement of disease exposure
An RCT has an unambiguous treatment variable. It is 
clear who had treatment or placebo, and information 
about treatment assignment is fully captured by the 
treatment variable. In contrast, an observational study 
of disease mechanisms may measure several variables 
that are somehow related to disease severity, but neither 
any single variable nor the combination of all available 
variables may capture all the important information 
about the disease exposure acting on observed mani-
festations of the disease, or on the clinical outcome. 
In other words, definition of A is simple for a clinical 
trial but might be very complex for an observational 
study. This has implications for estimating coefficients 
between A and S, T or Z. A situation similar to the 
surrogate paradox could arise if A describes aspects of 
the disease that act to greater or lesser extent on S com-
pared with T. For example, if A and S were positively 
associated, S and T were positively associated, but A 
and T were negatively associated (cf. VanderWeele’s 
first question).

This could be addressed through thorough research 
of the disease in question before deciding what vari-
ables to measure for A, S, T and Z. Investigators could 
consider using SEM to describe A as a latent variable, 
in order to summarize several observed variables that 
each describe part of a disease. They could also consider 
repeating the study in a separate validation cohort. In 
any case, publications arising from the analysis should 
clearly describe the rationale for choosing a particu-
lar variable to represent A, and explain the hazard of 
being misled, if this variable doesn’t fairly represent the 
disease in question with respect to S and T.

Incorrect paradigm relating disease, retina, brain 
& outcome
VanderWeele’s first question [16] addresses the possibil-
ity of the surrogate paradox arising if there is a negative 
direct effect of A on T that is not mediated by S. In 
addition to imperfect disease exposure measurement, 
this situation could also occur if the theoretical frame-
work relating A, S, T and Z did not account for real 
direct effects of A on Z.

This could be addressed by assessing alternative 
frameworks that include or exclude direct paths from 
A to Z.
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Lack of experimental randomization
In an RCT, the relationships A → S and A → T are 
estimated under experimental randomization, and 
the influence of confounders is controlled by design. 
Confounding could still occur for the relationship S 
→ T, potentially resulting in the surrogate paradox 
(cf. VanderWeele’s second question). However, in an 
observational study, there is no experimental random-
ization and all relationships are susceptible to con-
founding. Statistical control cannot substitute for a 
lack of experimental control  [15]. With this in mind, 
note that the approach of Wu et al. [30] involves infer-
ences from pairwise measurements of association that 
can only be made under randomization, or by making 
untestable assumptions, and so is probably not suitable 
for observational data.

Again, this may be addressed by beginning with a 
thorough understanding of the biological context for 
the disease in question, and then designing a study to 
collect data on all known confounders of relationships 
between A, S, T and Z, so that these can be included 
in the analysis. Investigators could consider repeating 
the study in a separate validation cohort. The increased 
risk of bias and confounding inherent in observational 
studies compared with RCTs  [31], should be clearly 
described, and specifically, that this particular analy-
sis assumes there are no unmeasured confounders of 
relationships between A, S, T and Z.

Lack of transitivity
The third route to the surrogate paradox [16] involves a 
situation where the relationship A → S is positive for 
different people than for whom S → T is positive (a 
lack of transitivity). This situation ought to be avoid-
able if paired data for A, S, T and Z are collected on 
subjects in an observational study.

Proposed analytical framework
We now take pediatric cerebral malaria (CM) as a case 
study to illustrate how these concepts might be applied 
in practice.

Biological context of CM
CM is a severe complication of infection with Plasmo-
dium falciparum, characterized by coma, peripheral 
P.  falciparum parasitemia, and absence of any other 
identified cause of coma [32]. It predominantly affects 
children in sub-Saharan Africa, and is an important 
contributor to the estimated 584,000 deaths worldwide 
from malaria in 2013 [33].

The mechanisms that allow the intravascular malaria 
parasite to cause coma and death remain unclear. 
However, sequestration of parasitized erythrocytes in 
the microvasculature of the CNS is accepted as the 

chief pathological feature of the disease  [34]. It seems 
that, somehow, neurovascular sequestration causes 
injury to CNS parenchyma, which causes death. This 
constitutes a thumbnail sketch of a plausible biological 
paradigm for pediatric CM.

Measuring the severity of neurovascular sequestra-
tion in living patients is difficult. It may be possible 
to estimate total body parasite biomass by measuring 
a parasite-specific protein – HRP2 [35]. But, although 
HRP2 does seem able to predict and diagnose 
CM  [36,37], plasma HRP2 cannot distinguish neuro-
vascular sequestration from sequestration occurring in 
the rest of the body.

Several associations exist between retinal and 
brain manifestations of pediatric CM. For example, 
the presence of a characteristic malarial retinopathy 
accurately identifies true cases of pediatric CM from 
conditions with otherwise identical presentation  [38], 
and the severity of retinal hemorrhages is directly cor-
related with the severity of cerebral hemorrhages at 
autopsy  [39]. The severity of malarial retinopathy was 
recently shown to be directly associated with the sever-
ity of sequestration in both the retina and brain in fatal 
cases [40], suggesting that the retina may provide good 
biomarkers for cerebral sequestration and parenchy-
mal injury in living patients. Furthermore, these asso-
ciations are biologically plausible. They make sense 
in terms of anatomical and physiological similarities 
between discrete regions of retina and brain [6].

Having considered the biological context of malarial 
retinopathy in pediatric CM, how might we test ret-
ina–brain associations to evaluate the equivalence of 
retinal and cerebral tissue damage in this disease?

Structure of disease paradigm & evaluation
Hypothetical relationships between disease severity 
(A), retina (S), brain (T) and outcome (Z) are illus-
trated in Figure 1. In this paradigm, both retina and 
brain are subject to proportional disease effects. Dis-
ease manifestations in retina and brain are directly 
associated, but cerebral disease manifestations alone 
cause death.

This framework can be evaluated in a number of ways, 
including simple tests of association between S and T 
that disregard other variables. Additional analyses could 
use surrogate-type statistics, such as the LRF or PIG, to 
estimate the degree to which S and T are interchangeable 
with regard to their relationship with A or Z. The ratio 
of coefficients for A → S and A → T could be calculated 
to derive a statistic similar in spirit to the RE. Impor-
tantly, both specific coefficients as well as the global fit 
of the whole paradigm can be evaluated using SEM, 
and the global fit can be compared with that of alter-
native frameworks (e.g., one including a direct A → Z 



700 Biomark. Med. (2015) 9(7) future science group

Perspective    MacCormick, Czanner & Faragher

path). The advantage of SEM is that it takes account 
of more complex (and realistic) relationships between 
variables than methods such as linear regression. Fail-
ure to include the correct confounding variables creates 
multivariate models that are prone to bias  [41]. On the 
other hand, employing information about the biological 
context to specify a fuller model structure may provide a 
way to both limit bias and test the goodness of fit for the 
hypothetical biological paradigm.

Conclusion & future perspective
Our approach of treating retinal variables as proxy 
markers of brain disease has the potential to describe 
relationships between prospective retinal biomarkers 
and brain disease features much more richly than simple 
tests of association, or even multiple regression models. 
Careful attention must be given to the biological con-
text within which retina–brain associations are being 
tested, since inadequate variable measurement, and the 
impact of unmeasured confounders could lead to mis-
leading results. However, this risk is arguably no greater 
than for conventional approaches. The risk may even be 
less, since the demand for an explicit description of the 
biological paradigm being hypothesized should at least 
help to clarify where assumptions might be less reliable.

Neurological biomarkers will be demanded with 
increasing urgency as industrialized populations con-
tinue to age, and growing numbers of people require 
investigations and treatments for neurodegenerative 

disease. So far, the retina has largely been investigated as 
a source of variables that are associated with brain dys-
function. If, as many authors seem to think, the retina 
truly is analogous to the brain, then we must develop 
methods to gain the clearest and most panoramic view 
through this biological window.
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Executive summary

•	 The retina is often described as a ‘window to the brain’, implying that retinal features are analogous to 
equivalent brain features.

•	 Current research on retinal disease markers emphasizes direct associations between retinal and brain 
variables, without explicitly including information about biological context in the analysis.

•	 Proof of equivalency demands extra evidence, in addition to strong direct retina–brain associations.
•	 Thinking of retinal variables as proxy markers (or surrogate-like entities), that ought to provide a high 

proportion of information about corresponding brain variables, suggests that a range of existing statistical 
methods could find novel applications in the field of biomarker research.

•	 Our approach is illustrated, using pediatric cerebral malaria as an example.
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