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Abstract (387 words) 

Background:  

Eukaryotic chromosomal ends are linear and are protected by nucleoprotein complexes 

known as telomeres.  The complex structural anatomy and the diverse functions of telomeres 55 

as well as the unique reverse transcriptase enzyme, telomerase that maintains telomeres are 

under intensive scientific scrutiny. Both are involved in many human diseases including 

cancer, but also in ageing and chronic disease such as diabetes. Their intricate involvement in 

many cellular processes and pathways is being dynamically deciphered in many organs 

including the endometrium. This review summarises our current knowledge on the topic of 60 

telomeres and telomerase and their potential role in providing plausible explanations for 

endometrial aberrations related to common gynaecological pathologies.  

Objective and rationale:  

This review outlines the recent major findings in telomere and telomerase functions in the 

context of endometrial biology. It highlights the contemporary discoveries in hormonal 65 

regulation, normal endometrial regeneration, stem cells and common gynaecological diseases 

such as endometriosis, infertility, recurrent reproductive failure and endometrial cancer.  

Search methods: 

Authors carried out systematic PubMed (Medline) and Ovid searches using the key words: 

telomerase, telomeres, telomere length, hTERT, TERC, with endometrium, hormonal 70 

regulation, endometrial stem/progenitor cells, endometrial regeneration, endometriosis, 

recurrent miscarriage, infertility, endometrial hyperplasia, endometrial cancer, and uterine 

cancer. Publications used in this review date from 1995 until 31st June 2016.  

Outcomes:  
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The human endometrium is a unique somatic organ, which displays dynamic telomerase 75 

activity related to the menstrual cycle. Telomerase is implicated in almost all endometrial 

pathologies and appears to be crucial to endometrial stem cells. In particular, it is vital for 

normal endometrial regeneration, providing a distinct route to formulate possible curative, 

non-hormonal therapies to treat chronic endometrial conditions. Furthermore, our current 

understanding of telomere maintenance in endometrial cancer is incomplete. Data derived 80 

from other malignancies on the role of telomerase in carcinogenesis cannot be extrapolated to 

endometrial cancer because unlike in other cancers, telomerase activity is already present in 

proliferating healthy endometrial cells.  

Wider implications:  

Since telomerase is pivotal to endometrial regeneration, further studies elucidating the role of 85 

telomeres, telomerase, their associated proteins and their regulation in normal endometrial 

regeneration as well as their role in endometrial pathologies are essential. This approach may 

allow future development of novel treatment strategies that are not only non-hormonal but 

potentially curative. 

 90 

Key words: endometrium, telomerase, telomere, stem cells, endometriosis, endometrial 

cancer, infertility, recurrent miscarriage, progesterone, estrogen 

 

Introduction 

All eukaryotic chromosomal ends consist of specialised heterochromatin nucleoprotein 95 

complexes, termed telomeres containing repeated nucleotide sequences ((TTAGGG)n) and 
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associated specific proteins (Blackburn and Gall 1978). The intact telomeres prevent the 

chromosomal ends from being recognised as DNA strand break and protects the loss of 

genomic DNA as well as end-to end fusion and degradation of chromosomes. Telomeric 

DNA is lost with each round of DNA replication (Lundblad 2012; Olovnikov 1971; Watson 100 

1971) and shortening of telomeres beyond a critical length results in a permanent cell cycle 

arrest. This is due to initiation of sustained DNA damage signalling, resulting in activation of 

either senescence or apoptosis pathways (Blackburn and Gall 1978; Blackburn, Epel, and Lin 

2015). Telomere shortening and telomerase dysfunction are therefore implicated as universal 

features of cellular senescence, ageing as well as age related decrease in tissue regeneration 105 

and lifespan restriction in long lived mammals (Djojosubroto et al. 2003; Mikhelson and 

Gamaley 2012).  

The action of the reverse transcriptase enzyme telomerase is the main mechanism that 

counteracts telomere shortening in cells. Human cells such as embryonic stem cells, germline 

cells and cancer cells with unlimited replicative capacity express high levels of telomerase 110 

activity (TA) which maintains and elongates telomeres; compensating for telomeric erosion 

(Counter et al. 1992; Meena, Rudolph, and Gunes 2015; Yang and Huang 2014). In contrast, 

adult stem and progenitor cells (SPCs) have the potential to up-regulate telomerase but these 

cells also undergo telomere shortening with age (Hiyama and Hiyama 2007; Rane et al. 2016; 

Flores et al. 2008). Most human somatic cells do not express significant levels of TA 115 

(Opresko and Shay 2016) and age related telomere shortening is commonly described in 

many human proliferative tissues (Djojosubroto et al. 2003) while telomere shortening in 

post-mitotic tissues is negligible (Benetos et al. 2011). . Therefore, most work on the 

functional relevance of telomerase is confined to the aforementioned specialised cells that 

express telomerase, such as cancer and stem cells.  120 
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The human endometrium is a unique organ in terms of regeneration and ageing. It is a 

dynamic somatic tissue; undergoing repetitive monthly cycles of growth, differentiation, 

shedding, and regeneration throughout a woman’s reproductive life. This cycle of 

endometrial cell proliferation and growth is regulated by ovarian steroid hormones 

(Hapangama, Kamal, and Bulmer 2015). Every month, the endometrium grows from 1 mm in 125 

thickness at the end of the menstrual shedding, to a 15mm in thickness measured in the mid-

secretory phase of the cycle (Dallenbach-Hellweg 2010),  thus endometrial regeneration 

capacity is unparalleled amongst other adult tissues. At the menopause, with the cessation of 

ovarian steroid hormone synthesis, the endometrium becomes proliferatively quiescent. 

However, a fully functional endometrium can be regenerated from the remaining thin post-130 

menopausal endometrium with the provision of exogenous ovarian steroid hormones 

(Paulson et al. 2002). Thus, it is the only female reproductive organ not showing irreversible 

age-related changes. Although being a somatic organ, endometrium expresses dynamic TA 

associated with the menstrual cycle. Therefore, the apparent endometrial age-defiance might 

include a physiological regulation of telomeres and telomerase distinct from other human 135 

tissues.  

 

This review focuses particularly on recent findings in endometrial telomere and telomerase 

biology in the context of the inexhaustible proliferative and regenerative capacity of the 

human endometrium. This may provide an explanation for the seemingly eternal 140 

‘youthfulness’ retained by the endometrium throughout a woman’s life when compared with 

other female reproductive organs. Furthermore, there is mounting evidence that telomerase 

and telomere dysfunctions might play important roles in endometrial pathologies. 

Method:  
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We performed systematic PubMed (Medline) and Ovid searches using key words: 145 

telomerase, telomeres, telomere length (TL), telomerase reverse transcriptase (TERT), 

telomeric RNA component (TERC), with endometrium, endometrial stem/progenitor cells, 

endometrial regeneration, endometriosis, recurrent miscarriage, infertility, endometrial 

hyperplasia, endometrial cancer, and uterine cancer. All studies investigating telomerase, 

telomere biology in endometrium in women, animals and respective cell lines, either primary 150 

cells or tissue explants in culture published from 1995 until 30th July 2016 were considered. 

Further manuscripts published before 1995 were also reviewed for specific topic areas and 

are included as appropriate. 

 

  155 



8 

 

Telomeres: 

Structure  

The mammalian telomere complex consists of a tandemly repeated telomeric DNA sequence 

d(TTAGGG)n and its complementary strand. This is, followed by a short (35-600 nucleotide) 

single stranded 3’ guanosine-rich protruding overhang; known asthe G-tail (Royale 2006; 160 

Blackburn, Epel, and Lin 2015). Telomeres are associated with a complex of six well 

described shelterin proteins; Telomeric Repeat Factor 1 and 2 (TRF1, TRF2), 

Repressor/Activator Protein I (RAP1, encoded by TERF2IP gene), TRF1-Interacting Nuclear 

Protein 2 (TIN2), Tripeptidyl Peptidase I (TPP1) and Protection of Telomeres I (POT1). 

TRF1, and TRF2 bind directly to the double stranded telomeric sequence, and POT1 binds 165 

the single stranded overhang, these proteins are therefore telomere DNA binding proteins. 

They interact with and bind to the remaining 3 shelterin proteins: TIN2 to TRF1, RAP1 to 

TRF2 and TPP1 to POT1.   

The single stranded overhang forms a D-loop (displacement) (Griffith et al. 1999) that 

prevents the access of telomerase outside of late S-phase when the overhang becomes 170 

accessible (Figure 1A) (de Lange 2005; Palm and de Lange 2008; Shay 2016). In addition, 

the whole telomere forms a large duplex structure (T-loop) via the strand invasion from the 3’ 

single stranded overhang (Griffith et al. 1999; Blackburn et al. 2000) providing proper 

telomere capping. The T-loop size is believed to be proportional to the length of the 

respective telomere (Cimino-Reale et al. 2001). Thus, in addition to telomere shortening the 175 

dysfunction of telomere capping can also initiate a DNA damage response (DDR) (Yoo and 

Chung 2011; Bodvarsdottir et al. 2012; Griffith et al. 1999).  

The shelterin complex is ubiquitously expressed and remains associated to telomeres during 

the cell cycle (Takai et al. 2011; Royale 2006). In addition to the 6 shelterin proteins there are 
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various additional proteins (e.g. NBS1/MRE11/Rad50, tankyrase, PinX1, Ku) located at the 180 

telomere that are involved in DNA damage response and repair processes but also have non-

telomeric functions (Kuimov 2004; De Boeck et al. 2009).  

Telomere Shortening 

Telomere shortening with age is a general observation in human proliferating tissues.  In cell 

culture, with each cell division, about 20- 50 base pairs (bp) of telomeric DNA is lost due to 185 

“the end replication problem” (Olovnikov 1973) (Watson 1972). This term describes the fact 

that DNA polymerases can only synthesise in 5’-3’ direction and thus can only synthesise the 

leading DNA strand un-interrupted. The lagging strand is synthesised by a series of Okazaki 

fragments which requires the help of short RNA primers and that are finally ligated together 

by ligases. However, at the very end of the lagging strand, the terminal RNA primer is 190 

removed resulting in the 3’ overhang and loss of the DNA in the next round of replication 

(Lundblad 2012; Mikhelson and Gamaley 2012; Blackburn 1984; Blackburn, Epel, and Lin 

2015; Olovnikov 1973; Watson 1972). In addition to the end replication, environmental 

conditions such as oxidative stress are an additional mechanism of telomere shortening (von 

Zglinicki et al. 1995; von Zglinicki 2000). The progressive loss of mean TL is a hallmark of 195 

replicative senescence of proliferating cells while the amount of telomere shortening can vary 

in different tissues and organs during ageing and disease conditions depending on cell 

proliferation (Benetos et al. 2011) (Benetos et al. 2011)and oxidative stress (von Zglinicki et 

al. 2000).  Human mean TLs are 12-15 kb at birth and shorten down to a minimal TL of 

around 5kb when a DNA damage response and cell cycle arrest are signalled, which can lead 200 

to cellular senescence (Kipling and Cooke 1990; Calado and Dumitriu 2013). Shorter 

telomeres in lymphocytes have been associated with mortality, disease and poor-survival as 

well as reproductive ageing in humans (Cawthon et al. 2003; von Zglinicki et al. 2000; Shay 

2016). Thus, TL in human peripheral blood monocytes (PBMCs) has been proposed as a 
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useful biomarker for human ageing and disease (von Zglinicki et al. 2000; von Zglinicki 205 

2002; Bekaert, De Meyer, and Van Oostveldt 2005).  

Although the mean TL of PMBCs had been employed in age determination in forensic 

medicine, the veracity of this approach is questionable due to the fact that TL is also 

inherited. In addition, more subtle methods for TL measurements considering initial TL as 

well as telomere shortening rates have been proposed (Benetos et al. 2011; Benetos et al. 210 

2013).  TL shortening starts during early gestation in many human tissue types such as heart, 

kidney and brain due to the down-regulation of TA (Ulaner and Giudice 1997; Ulaner et al. 

1998, 2001) and fast postnatal organ specific growth accounts for most of the observed 

differential organ-specific telomere shortening rates (Carneiro et al. 2016).  

Function of telomeres: 215 

The main functions of telomeres are:  

1) Prevention of recognition of linear chromosomal ends as double stranded DNA breaks: 

The shelterin complex and the telomeric loop structure prevent telomeres from being 

identified as a DNA break that would signal a DNA damage response (DDR). TRFs and 

POT1 prevent DDR activation due to the formation of the T-loop (Palm and de Lange 2008); 220 

TRF2 prevents end-to end fusion (Cesare and Karlseder 2012) and POT1 helps to prevent the 

single stranded telomeric 3’ end from being recognised by the DDR complex by forming a 

displacement (D-) loop with the remaining double strand (Yang et al. 2008; Kibe et al. 2010; 

Jacob et al. 2007; Baumann and Price 2010). 

2) Protecting ends of chromosomes from degradation and end-to end fusion: Telomeres 225 

protect chromosomal ends from degradation by nucleases. Different DNA damage 

checkpoint proteins act together with EXO1 and MRE11 nucleases to inhibit proliferation of 

cells undergoing telomere attrition (Xue et al. 2016; Keijzers, Liu, and Rasmussen 2016). 
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Without the protective capping structure of telomeres, chromosomal ends would fuse together 

and form anaphase bridges during the mitosis leading to a fuse-breakage-fuse cycle. This 230 

process would greatly increase the risk of genomic instability and may result in 

tumourigenesis (Djojosubroto et al. 2003; Meena, Rudolph, and Gunes 2015; Terali and 

Yilmazer 2016; Shay 2016).   

3. Telomeres are sentinels for DNA damage: Telomeres are more susceptible to DNA 

damage than genomic DNA (Petersen, Saretzki, and von Zglinicki 1998) due to their high 235 

guanine content (Henle et al. 1999; Wang et al. 2010) and lack of DNA repair mechanisms 

(Petersen, Saretzki, and von Zglinicki 1998). Telomere-associated DNA damage in the form 

of TIFs (telomere dysfunction-induced foci) or TAFs (telomere associated foci) is hardly ever 

repaired (Takai, Smogorzewska, and de Lange 2003; d'Adda di Fagagna et al. 2003; Takai et 

al. 2011; Hewitt et al. 2012; Fumagalli et al. 2012). This telomere associated damage can 240 

have the same function as critically shortened telomeres in signalling cell cycle arrest.  As the 

“first responders” to hazards of genomic instability, the damaged telomeric DNA initiates a 

sustained DNA damage response, resulting in a cell cycle arrest, and inducing senescence or 

apoptosis thereby protecting the organism from dangerous genetic aberrations and mutations 

(Shay 2016; Blackburn, Epel, and Lin 2015). Telomeres have thus been proposed to be 245 

sentinels for DNA damage (von Zglinicki 2002) and epigenetic sensors of general stress in 

DNA metabolism (Cesare and Karlseder 2012). 

4. Regulation of telomerase access: Shelterin (Fig 1) has a dual role in recruitment of 

telomerase and blocking its access to telomeres (Smogorzewska and de Lange 2004; Palm 

and de Lange 2008; Nandakumar and Cech 2013; Zhang et al. 2013; Schmidt and Cech 250 

2015). POT1 prevents telomerase accessing an intact telomere complex but after hetero-

dimerisation with TPP1, it allows telomerase to become active at telomeres and to extend the 
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3’ overhang in late S-phase (Wang et al. 2007; Zhang et al. 2013; Chu, D'Souza, and 

Autexier 2016).  

5. Regulation of gene transcription/telomere position effect: Telomeres may also regulate 255 

gene transcription via a telomere position effect (TPE) (Robin et al. 2014), whereby genes 

located close to the telomeres are transcribed at a reduced rate. This allows changeable 

epigenetic transcriptional repression permitting genes the ability to switch their transcription 

rate. TPE has been reported to affect the expression of genes involved in stress, growth and 

recognition by the immune system in various invertebrate organisms and in cultured human 260 

cells (Robin et al. 2014). It has recently also been connected to human diseases (Stadler et al. 

2013). Further work examining the role of TPE in gene regulation in human tissues and 

during telomere shortening is needed to unravel its involvement in endometrial diseases.  

6. Non-telomeric functions of telomere associated proteins: Some shelterin proteins also have 

non-telomeric, genomic binding sites that allow extra-telomeric functions such as regulating 265 

transcription of various genes. For example; RAP1 has been shown to regulate female 

obesity, a function unrelated to telomeres (Martinez et al. 2013). Cell type, subcellular 

localisation and development stage specific pathways may regulate the shelterin complex. 

TIN2 has been found in mitochondria (Chen et al. 2012) and a reduction in TIN2 expression 

inhibited glycolysis and reactive oxygen species (ROS) production, enhanced ATP levels and 270 

oxygen consumption in cancer cells. This suggests a link between some shelterin proteins and 

metabolic control, providing an additional mechanism by which telomeric proteins might 

regulate the cellular processes beyond their function at telomeres. Additional non-telomeric 

functions for embryonic development have also been described for TIN2 (Chiang et al. 

2004). 275 
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Telomere maintenance 

Cells can maintain their telomeres via a telomerase dependent pathway or a telomerase 

independent alternative lengthening of telomeres (ALT) pathway (Brien et al. 1997; Bryan et 

al. 1997). Although the latter pathway activation has been limited to particular types of 

cancers (sarcomas) and immortalised cell lines, there are suggestions that the ALT process 280 

may occur under physiological conditions in undifferentiated cells such as stem cells or even 

normal somatic cells (Bojovic et al. 2015; Neumann et al. 2013). There is a general consensus 

that in telomerase competent cells and in most normal cells, the ALT process is redundant 

and hence repressed (Henson et al. 2002). Therefore, in the context of the endometrium, ALT 

is less likely to be relevant and this review focuses mainly on telomerase dependent telomere 285 

maintenance. 

Telomerase: 

Telomerase is a reverse-transcriptase (RNA dependent DNA polymerase) that employs an 

integral RNA subunit harbouring a template sequence to add G-rich telomeric repeats to the 

3’ single-stranded overhang of telomeres (Lingner et al. 1997). The telomerase holoenzyme 290 

has a dimeric structural configuration, where each half contains a human telomerase reverse 

transcriptase (hTERT) and human telomeric RNA component (hTERC) connected by a hinge 

region in the middle (Blackburn 2011; Blackburn and Collins 2011) (Figures 1B & 1C). The 

main components of the telomerase complex are hTERT, hTERC and dyskerin (DKC1) 

(Venteicher et al. 2009) (Figure 1C). In addition, there are various telomerase associated 295 

proteins that interact with these core components (Figure 1). There are 184 telomeres and 

approximately 250 molecules of telomerase and in a cancer cell in late S phase, when 

telomerase is actively recruited to telomere ends (Mozdy and Cech 2006; Xi and Cech 2014; 

Schmidt and Cech 2015). When not active at telomeres, telomerase is localised to Cajal 
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bodies in the nucleus for most of the cell cycle. After the telomerase/telomere interaction, 300 

every single telomerase activation event is thought to add 50–60 nucleotides to most 

telomeres in cancer cells with short TLs in vitro (Zhao et al. 2009; Schmidt and Cech 2015). 

Since the telomere lengthening action is limited to the nucleus, shuttling of the telomerase 

protein hTERT out of the nucleus prevents any telomeric extension.  This shuttling is 

regulated by different domains on the hTERT protein, for example a nuclear localisation 305 

signal (NLS) at amino acid residues 222-240 of hTERT (Chung, Khadka, and Chung 2012), a 

nuclear export signal (Seimiya et al. 2000) as well as a mitochondrial localisation signal 

(Santos et al. 2004) have been described. Furthermore, recent data also suggest that the 

ability of telomerase in extending telomeres may be dependent on pH levels (Ge et al. 2016). 

Acidic pH (6.8) encourages preferential lengthening of short telomeres yet telomerase 310 

lengthens telomeres independent of their lengths at higher pH levels (7.2, 7.4). 

Telomerase components 

Telomerase reverse transcription activity has been demonstrated in an in vitro cell free 

system with just hTERT and hTERC (Weinrich et al. 1997). However, some compounds such 

as dyskerin actively associate with the telomerase complex in a cellular environment and are 315 

important for stability, maturation and function of the enzyme (Cohen et al. 2007). 

hTERT:  

hTERT is the catalytic subunit of telomerase and is often the main rate-limiting factor for 

telomerase enzyme activity (Zhou et al. 2006; Zhang et al. 2013). The hTERT gene is located 

on chromosome 5p15.33 (Shay 2010) and consists of 16 exons and 15 introns spanning ∼35 320 

kb (Cong, Wen, and Bacchetti 1999). There are over 20 spliced variants of hTERT but only 

the wild type (full lengths protein, Figure 1B) exhibits reverse transcriptase activity 

(Hrdlickova, Nehyba, and Bose 2012). The balance between the full lengths hTERT and its 
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different splice variants has been shown to affect its function (Listerman, Gazzaniga, and 

Blackburn 2014; Radan et al. 2014). In addition to telomere maintenance, hTERT is 325 

implicated in increasing the anti-apoptotic capacity of cells, maintaining pluripotency of stem 

cells and regulating gene expression (for review see (Saretzki 2014)).  

hTERC:  

TERCs are species specific in size and sequence, but highly conserved in their structure and 

all contain a short complementary sequence to the telomeric TTAGGG hexanucleotide repeat 330 

sequence. Human TERC is relatively short (451 nucleotides (nt) compared with >1000nt in 

yeast) ((Theimer and Feigon 2006). The 3’ stabilising element shares an H/ACA motif with 

small nucleolar and small Cajal body RNAs (snoRNA, scaRNA), and in turn associates with 

all four H/ACA RNP components, dyskerin, NOP10, NHP2, and GAR1 (Egan and Collins 

2010) (Figure 1A). hTERC is a non-coding RNA transcribed by RNA polymerase II 335 

(Gallardo and Chartrand 2008; Smekalova et al. 2012). It undergoes subsequent 

exonucleolytic cleavage up to the boundary formed by the H/ACA domain, meaning its co-

transcriptional association with dyskerin is essential for stabilisation, preventing further 

cleavage and nuclear retention (Feng et al. 1995; Fu and Collins 2003; Kiss, Fayet-Lebaron, 

and Jady 2010). This H/ACA domain is mutated in dyskeratosis congenita, where the 340 

disease-associated hTERC variants impair hTERC accumulation. Disease-associated hTERC 

variants with sequence changes outside the H/ACA domain do not affect hTERC RNA 

processing or stability; they instead impose a catalytic defect (Fu and Collins 2003). The 

tetrameric complex of the accessory proteins dyskerin, NOP10, NHP2 and chaperone NAF1 

(which later is replaced by GAR1) bind to hTERC and this association is crucial for normal 345 

telomerase activity.    
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Dyskerin:  

Dyskerin is an evolutionarily conserved 58kDa, 514-amino-acid large protein (Knight et al. 

1999). In humans, it is encoded by the DKC1 gene located on chromosome Xq28 (Cerrudo et 

al. 2015) and it is generally located in the nucleus. Dyskerin is an essential protein for cellular 350 

survival; thus DKC1 deletion is lethal (Angrisani et al. 2014; Rocchi et al. 2013). In the 

context of telomerase dyskerin plays an established role in the maintenance of telomere 

integrity by stabilising hTERC in the telomerase holoenzyme that is assembled in Cajal 

bodies (Cohen et al. 2007; Gallardo and Chartrand 2008; Gardano et al. 2012). Dyskerin is 

the only component to co-purify with active, endogenous human telomerase (Gardano et al. 355 

2012). Loss of dyskerin binding leads to hTERC degradation and reduction in TA in vivo 

(Shukla et al. 2016). Furthermore, dyskerin has other non-telomerase associated functions 

essential to elementary cellular events such as mRNA translation, growth and proliferation. 

Dyskerin may regulate these functions via directing the isomerisation of specific uridines to 

pseudouridines by acting as a catalytic pseudouridine synthase and by acting through the 360 

snoRNA-derived miRNA regulatory pathway, thus affecting different biological processes 

(reviewed in (Angrisani et al. 2014)).  

Other accessory proteins of telomerase 

Apart from NOP10, NHP2, and GAR1 which form the H/ACA motif-associated tetramer 

with dyskerin (Fig 1), there are a plethora of other proteins (some are listed in Table 1) 365 

associated with telomerase with roles including: assembly, processing of telomerase, 

localisation and accessibility to telomeres. In addition to these proteins telomerase interacts 

with many others which are required for the formation of the appropriate structure and its 

stabilization, however their importance in TA is unknown (Smekalova et al. 2012). It is 

important also to appreciate the close relationship of telomerase with many cell cycle 370 
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regulating, tumour suppressor, pluripotency and EMT (epithelial to mesenchymal transition) 

related proteins and pathways, such as Wnt/β-catenin, Cyclin D1, BCL-2, OCT-4, p53, 

EGFR etc (Ding et al. 2011; Tang et al. 2016; Listerman, Gazzaniga, and Blackburn 2014; 

Xue et al. 2016). Interestingly, recent data has suggested that the DNA damage response 

kinases ATM and ATR are required to recruit telomerase to telomeres via a TRF1 regulated 375 

pathway (Tong et al. 2015), while Carol Greider’s group has further highlighted a central role 

of the ATM pathway in regulating telomere addition (Lee, Bohrson, et al. 2015). In yeast, 

there exists a counting mechanism involving the shelterin RAP1, which prevents ATM 

accessing/activating telomerase on long telomeres thereby regulating TL(Yuan et al. 2013). 

However, whether a similar feedback mechanism exists in human cells is not yet 380 

known(Runge and Lustig 2016). These findings are only beginning to unravel the intricate 

cellular pathways that are converging to regulate telomerase and telomere biology.   

Functions of telomerase 

1) Telomere maintenance: In eukaryotic cells, TA counteracts the end-replication problem 

and elongates the 3’ single strand in the absence of a DNA template. The subsequent 385 

replication of the complementary strand then will be possible by the conventional DNA 

replication in the next S-phase. The human telomerase complex consisting of hTERC and 

hTERT is targeted to telomeres specifically in the late S phase of the cell cycle (Hug and 

Lingner 2006). Recent work has suggested that hTERT remains bound to hTERC for most of 

the cell cycle (Vogan and Collins 2015). The telomerase holoenzyme Cajal body-associated 390 

protein, TCAB1, is released from hTERC during cell cycle progression in mitotic cells 

coincident with TCAB1 delocalization from Cajal bodies (Vogan and Collins 2015). This 

observation proposes that TCAB1 and hTERC association may license the catalytically active 

hTERT-hTERC holoenzyme for recruitment to telomeres in the G1 phase of the cell cycle. 

TRF1 is the shelterin protein that is primarily responsible for regulation of an efficient 395 
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replication of telomeric DNA (Sfeir et al. 2009). Apparently not all telomeres are required to 

be elongated by telomerase in each DNA replication round but there might be preferential 

lengthening of the shortest telomeres in telomerase active cells to ensure all the TLs remain 

above a critical length that would otherwise initiate activation of apoptotic and cell cycle 

arresting pathways (Fakhoury et al. 2010; D'Souza et al. 2013). The exact mechanism of how 400 

telomerase extends telomeres with various lengths differentially is still not well understood. 

2) Non-telomeric functions of the telomerase component hTERT. Although telomere 

protection/lengthening is the most widely studied function of telomerase, there has been a 

considerable amount of evidence on non-telomeric functions of the protein subunit hTERT 

such as promoting cellular proliferation/growth, survival, retaining an undifferentiated status, 405 

as well as increasing of motility and metabolism (reviewed in (Saretzki 2014) and (Terali and 

Yilmazer 2016)). Recent evidence also suggests that hTERT stimulates ribosomal DNA 

transcription, particularly under hyper-proliferative conditions (Gonzalez et al. 2014). 

Protection of mitochondrial function under oxidative stress has been proposed as an 

important role of hTERT in various cell types, it was associated with reduction in oxidative 410 

stress and sensitivity to apoptosis as well as a reduction in DNA damage (Ahmed et al. 2008; 

Singhapol et al. 2013). While initial studies on the beneficial role of mitochondrial hTERT 

were conducted mainly in vitro in cell culture, recent data describe a beneficial effect also in 

vivo, for example in vascular function (Beyer et al. 2016). Telomerase may interact with 

various well established proliferative pathways including EGFR signalling (Smith, Coller, 415 

and Roberts 2003), MYC and Wnt/β-catenin pathways (Park et al. 2009; Hoffmeyer et al. 

2012)./ Telomerase has been shown to promote cell survival by blocking the death receptor 

(Dudognon et al. 2004) as well as down regulating pro-apoptotic genes such as BAX and 

BCL-2 (Del Bufalo et al. 2005; Massard et al. 2006) in addition to suppressing mitochondrial 

and endoplasmic reticulum stress induced cell death (Zhou et al. 2006). Telomerase inhibition 420 
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in stem cells has induced differentiation and loss of pluripotency genes, suggesting a role as a 

pluripotency gene in embryonic stem cells maintaining an undifferentiated status (Saretzki et 

al. 2008; Yang et al. 2008; Liu et al. 2013).  

The endometrium  

Human endometrium lines the uterine cavity and is organised into two functionally distinct 425 

layers: the superficial functionalis and deeper basalis (Valentijn et al. 2013); (Hapangama, 

Kamal, and Bulmer 2015). The transient, exquisitely hormone responsive functionalis exists 

only during the reproductive life of a woman, whereas the permanent, relatively hormonally 

unresponsive basalis layer persists throughout her whole life. The endometrial menstrual 

cycle is an exclusive phenomenon to upper order primates and is regulated by ovarian steroid 430 

hormonal signals (Hapangama, Kamal, and Bulmer 2015; Kamal, Tempest, et al. 2016; 

Kamal, Bulmer, et al. 2016) (Figure 2A).  

Endometrium is the primary target organ for ovarian steroid hormones and the endometrial 

cell cycle is intricately regulated by them. The reproductive life span of a woman is dictated 

by ovarian function. It commences with the menarche and finishes with the menopause. 435 

During that period, an average woman endures about 400 menstrual cycles in which the 

functionalis layer of the endometrium undergoes a well-defined cycle of proliferation, 

differentiation, menstrual shedding followed by regeneration. Ovarian steroid hormones 

regulate this endometrial cycle via their cognate receptors (reviewed in (Hapangama, Kamal, 

and Bulmer 2015; Kamal, Tempest, et al. 2016)). It is generally accepted that estrogen is the 440 

trophic hormone of the endometrium, where it induces cellular growth and proliferation; 

whilst progesterone influences cellular differentiation, and counteracts proliferation and other 

estrogenic effects (Hapangama 2003). The third ovarian steroid hormone, androgen, is also 

postulated to impact on the endometrial cycle, yet unlike the aforementioned hormones, the 
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exact details of androgenic regulation of the endometrium are yet to be fully elucidated. The 445 

huge regenerative potential seen with the monthly endometrial cycle is unparalleled by other 

tissues; and the exact reason for this menstrual shedding, which is biologically a very 

expensive process, is yet unknown.  

Telomerase and Telomeres in endometrial tissue: functional relevance 

TA is high in the premenopausal endometrial functionalis (Kyo et al. 1997) (Figure 2C-D). 450 

Its dynamic changes regulated by the ovarian cycle are well established and correlate with 

glandular proliferation (Williams et al. 2001; Hapangama, Turner, Drury, Quenby, et al. 

2008; Hapangama et al. 2009). Our recent work further demonstrates similar dynamic 

changes in the mean endometrial TLs across the menstrual cycle (Valentijn et al. 2015) 

(Figure 2B). Once the ovarian hormone production has ceased, the relatively quiescent 455 

postmenopausal endometrium expresses low levels of TA (Brien et al. 1997) (Tanaka et al. 

1998).  

When examining distinct cellular compartments within the endometrium, stromal cells 

regardless of the cycle phase maintained longer TLs compared with the epithelial cells. 

However they demonstrated absent or significantly lower TA (Figure 3A-C) and hTERC 460 

expression compared with the epithelial cells (Yokoyama et al. 1998; Tanaka et al. 1998; 

Valentijn et al. 2015), (Vidal et al. 2002). Data from a previous study which employed in situ 

assessment of endometrial TLs also demonstrates that glandular epithelium of the 

endometrial functionalis to possess the shortest TL (Cervello et al. 2012) (Figure 3D). 

Furthermore, the proliferating endometrial epithelial cells have the highest TA that correlates 465 

negatively with TL (Valentijn et al. 2015) (Figure 3B). This suggests that in the epithelial 

cells the high TA preferentially preserves the short telomeres in order to avoid a critically 

short length. In rodents, estrogen increases the pH in the uterine fluid, while progesterone has 
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the opposite effect (Chinigarzadeh, Muniandy, and Salleh 2016). It can therefore be 

speculated that low pH in the proliferative phase may preferentially direct telomerase 470 

function to the short telomeres in endometrial epithelial cells. This is in accordance with the 

recent evidence regarding pH dependent telomerase function (Ge et al. 2016). Further studies 

would be required to fully investigate and confirm this possibility.    

Moreover, endometrial hTERT may have extra-telomeric functions. Direct in vitro inhibition 

of TA with the TERC inhibitor ‘imetelstat’ inhibited endometrial cell proliferation and 475 

disrupted gland formation by healthy epithelial cells (Valentijn et al. 2015). In contrast, 

overexpressing hTERT in endometrial stromal cells did not increase cell proliferation rate or 

hormone responsiveness (Barbier et al. 2005) similar to the other non-endometrial fibroblasts 

(Ahmed et al. 2008). Thus, there might be a specific co-regulation of TA and proliferative 

capacity limited to the endometrial epithelial cells or epithelial cells in general.. Other groups 480 

have found a correlation between TA in ovarian granulosa cells and their proliferation and 

differentiation status which is also under the control of growth factors and steroid hormones, 

similar to endometrial epithelium (Chronowska 2012). Importantly, although it has been 

possible to immortalise benign endometrial stromal cells by over-expressing hTERT (Krikun, 

Mor, and Lockwood 2006), immortalisation of endometrial epithelial cells using a similar 485 

process has not been equally successful. This might be due to the fact that epithelial cells are 

likely to require an additional inhibition of the p16INK4a tumour suppressor in order to be 

immortalised by hTERT overexpression (Kiyono et al. 1998; Farwell et al. 2000; Novak et al. 

2009; Shao et al. 2008).  

Previously reported immortalisation of benign human endometrial epithelial cells with 490 

hTERT overexpression (Kyo et al. 2003), has not been successfully replicated.  This is an 

important fact, as the only other immortalised benign endometrial epithelial cell line that was 

subsequently generated by telomerase over-expression (Hombach-Klonisch et al. 2005) was 
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later confirmed to be the misidentified breast cell line MCF-7(Korch et al. 2012). This 

particular cell line was widely available to several groups leading to many publications e.g. 495 

(King et al. 2010). Unfortunately, the reportedly immortalised epithelial cell line generated 

by Kyo and colleagues (Kyo et al. 2003) has not undergone similar scrutiny and has not been 

available to other groups for further confirmatory studies for authenticity. In summary, we 

conclude that there are fundamental differences in telomerase function between endometrial 

epithelial and stromal cells. Mere presence of telomerase may result in a survival advantage 500 

for stroma, while epithelial cell proliferation may be regulated by telomerase. Additional 

factors than TA seem to be necessary for the long term survival and immortalisation of 

epithelial cells in culture.  

We are just beginning to understand the importance of extra-telomeric functions of telomere 

and telomerase components; for example, RAP1 has an extra-telomeric function on stromal 505 

cell decidualisation in the rat endometrium (Kusama et al. 2014). Further examination of 

extra-telomeric functions of telomerase/telomeric proteins in the endometrium is warranted to 

further reveal their interplay with other cell cycle regulators specific to the endometrium.  

Hormonal regulation of telomerase in epithelial cells 

TA can be regulated at multiple levels e.g. transcription, splicing, epigenetic and post-510 

translational modification (reviewed in (Fojtova and Fajkus 2014); (Lewis and Tollefsbol 

2016) (Akincilar, Unal, and Tergaonkar 2016)). Most human somatic tissue has absent or low 

levels of TA which is tightly regulated compared with the high and easily detectable levels 

seen in cancer cells and in germ line/stem cells. Thus, the initial studies on telomerase 

regulation were conducted in the context of developmental/ stem cell biology or in cancer 515 

cells (reviewed in (Batista 2014); (Huang et al. 2014), (Gladych, Wojtyla, and Rubis 2011)). 
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However, in this review, we focus primarily on the hormonal regulation of telomerase at a 

normal, physiological level in the endometrium which is pivotal to its function.   

Estrogen  

Early work on the hormone responsive breast cancer cell line MCF-7 showed that estrogen 520 

up-regulates TA and hTERT gene expression via direct and indirect effects on the hTERT 

promoter (Kyo et al. 1999). Gel shift assays on MCF-7 cells further revealed that there is an 

imperfect palindromic estrogen-responsive element (ERE) in the hTERT promoter that 

specifically binds to estrogen receptor (ER) and is responsible for transcriptional activation 

by ligand-activated ER (Kyo et al. 1999). Further confirmation of 17β-estradiol (E2) induced 525 

transcription of hTERT via ERα was also reported in various other cell types, including 

ovarian epithelial cells (Kimura et al. 2004; Gladych, Wojtyla, and Rubis 2011); ovarian 

stromal cells (Misiti et al. 2000), mesenchymal stem cells (Cha et al. 2008), and human 

umbilical vein endothelial cells (HUVECs) (Hiyama and Hiyama 2007). Although ChIP 

assays in prostate cells suggested a recruitment of both ER subtypes to the hTERT promotor, 530 

its induction by ERβ in other cells remains controversial (Nanni et al. 2002). 

There is some evidence that longer exposure to endogenous estrogen (length of reproductive 

years of life) might correlate with greater TLs and TA in PBMCs (Pines 2013). In other 

words, longer TLs seem to be present in different tissues and be associated with longer 

reproductive life. E2 increased TA and TERT mRNA in heart, liver and brain tissue in an 535 

ovariectomised rat model (Cen et al. 2015). However, mature peripheral T cells do not 

respond to E2 with changes in expression or function of telomerase (Benko, Olsen, and 

Kovacs 2012) suggesting that the effect of estrogen on telomerase is tissue/cell specific. 

Finally, the relative longevity of women compared with men has been speculated to be 

related to the effects of estrogen induced telomerase on telomere protection (Leri et al. 2000; 540 
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Gopalakrishnan et al. 2013; Barrett and Richardson 2011; Calado et al. 2009; Cen et al. 

2015). More active telomerase was found in cardiac myocytes from female rats which seems 

to correspond to higher myocyte numbers in older women compared to myocyte loss in older 

men (Leri et al. 2000). Others have suggested that reduction of oxidative stress by estrogens 

may result in longer telomeres in tissues such as brain and liver (Vina et al. 2005).  Greater 545 

female longevity is suggested to possibly be connected to the female exposure to estrogens 

(Muezzinler, Zaineddin, and Brenner 2013). However, a recent longitudinal study reports a 

higher rate of PBMC TL attrition in the premenopausal period than in the postmenopausal 

period (Dalgard et al. 2015) with the authors proposing the opposite effect of estrogen on 

leucocyte turnover and menstrual bleeding. Thus, the influence of estrogen on TL and female 550 

longevity is still controversial.  

There is in vivo and in vitro evidence suggesting that estrogens are able to induce TA and 

hTERT expression in the endometrium (Tanaka et al. 1998; Kyo et al. 1999; Vidal et al. 

2002). In contrast, postmenopausal endometrium and endometrium treated with anti-estrogen 

drugs exhibited decreased TA (Tanaka et al. 1998). Furthermore, long term treatment with 555 

clinically relevant doses of conjugated E2 increased TERC expression preferentially in 

endometrial glands of ovariectomized female cynomolgus macaques (Macaca fascicularis) 

(Vidal et al. 2002). Increased TERC levels also correlate with higher proliferation and 

progesterone receptor expression in the endometrium of treated animals (Vidal et al. 2002). 

Both these parameters are known to be regulated by estrogen in the endometrium 560 

(Hapangama, Kamal, and Bulmer 2015). In the ER positive, hormone responsive endometrial 

epithelial adenocarcinoma cell line (Ishikawa cells) E2 induced TA and hTERT mRNA levels 

via a MAPK dependent pathway in an ERα dependent fashion (Zhou et al. 2006). In contrast, 

isolated primary epithelial cells (Tanaka et al. 1998) or intact endometrium in short-term 

explant culture did not show a significant response to E2 on TA (Valentijn et al. 2015). 565 
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Conversely, co-cultured primary endometrial epithelial and stromal cells responded to E2 or a 

mitogenic FGF stimulus, suggesting that the E2 effect on telomerase induction may be 

enhanced or mediated by stroma and/or the duration of E2 treatment (Oshita et al. 2004).   

Progesterone  

Although progesterone has diverse effects on hTERT mRNA expression in progesterone 570 

receptor (PR) expressing breast and endometrial cancer cell lines, the mechanisms by which 

hTERT expression is regulated by progesterone appear to be complex. The hTERT promoter 

lacks a canonical progesterone-responsive element (Wang et al. 2000), therefore classical PR 

mediated direct effects are less likely. The role of recently described progesterone receptor 

membrane components (PGRMC) 1 and 2 on telomerase regulation has not yet been 575 

demonstrated (Bunch et al. 2014). In a breast cancer cell line synthetic progestogen, 

medroxyprogesterone acetate (MPA), inhibited hTERT mRNA transcription even in the 

presence of estrogen (Wang et al. 2000; Lebeau et al. 2002) and arrested cells in late G1phase 

(Lebeau et al. 2002) with the induction of p21 (Lange, Richer, and Horwitz 1999; Wang et al. 

2000). There is evidence for cell cycle-dependent regulation of telomere synthesis and 580 

telomerase gene expression in healthy hormone responsive human cells by progesterone 

(Wang et al. 2000; Tomlinson et al. 2006).  

Since endometrial TA, hTERT mRNA/protein and hTERC levels reach their nadir during the 

progesterone dominant mid-secretory phase; progesterone is thought to negatively regulate 

endometrial telomerase (Williams et al. 2001; Hapangama, Turner, Drury, Quenby, et al. 585 

2008; Hapangama et al. 2009; Valentijn et al. 2015). The shortest endometrial TL were also 

measured in the mid-secretory phase indicating a telomere lengthening/maintenance function 

for endometrial TA (Valentijn et al. 2015). Exogenous progestogen administration is known 

to inhibit endometrial epithelial proliferation (Kurita et al. 1998; Shimizu et al. 2010) and we 
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have recently shown this progestogen-induced decreased endometrial cell proliferation to be 590 

associated with a significant decrease in TA (Valentijn et al. 2015). Interestingly, the 

inhibition of TA in the progesterone-dominant secretory phase is associated with an induction 

of endometrial p21 and corresponds to a non-DNA damage induced cell cycle arrest function 

of p21 (Toki et al. 1998) (Yoshimura et al. 2007). We can speculate that progesterone 

induced telomerase suppression might result in short endometrial epithelial telomeres 595 

(Hapangama et al. 2009) (Valentijn et al. 2015) and perhaps influence changes in endometrial 

epithelial cell cycle via p21 induction (Aix et al. 2016). Taken together, the hTERT gene may 

be a target of progesterone and the well-established progesterone induced down-regulation of 

the endometrial cell cycle may involve telomerase.   

Androgens 600 

Androgens such as dihydrotestosterone (DHT) induced TA at the G1 phase of the cell cycle 

in the androgen sensitive prostate cancer cell line LnCAP (Thelen et al. 2004). However, 

there was no modulation of TA by androgens in either androgen insensitive prostate cancer 

cell lines (TSU-Pr1, DU145), or in normal human prostate cells (Soda et al. 2000). In a recent 

study in men, serum DHT and E2 levels were shown to correlate with TL in PMBC, 605 

suggesting that both hormones may have a synergistic influence on TA (Yeap et al. 2016). 

However, caution should be taken when interpreting this observation as the authors have not 

demonstrated a direct regulatory effect. Oral treatment with Danazol (a synthetic steroid with 

weak androgenic properties) for 2 years resulted in universal leucocyte telomere elongation in 

both male and female patients with diseases such as bone marrow failure, liver cirrhosis and 610 

pulmonary fibrosis known to involve telomeres (Townsley et al. 2016). The intra-cellular 

metabolism of testosterone to estrogens is well described (Sasano et al. 2008). Androgens 

appear to regulate telomerase expression and activity mainly by aromatisation of testosterone 

to estrogens through ERα in normal peripheral blood lymphocytes and human bone marrow-
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derived CD34(+) cells in vitro (Calado et al. 2009). Therefore, it is difficult to clearly 615 

ascertain if the observed effects of androgenic compounds were related to the direct effects 

on the androgens receptor (AR) or indirectly mediated via ER.  

Endometrium expresses AR yet the direct specific effects of androgens in normal 

endometrium are only beginning to be understood. There is no published work yet examining 

the effects of androgens in endometrial telomerase regulation. 620 

Other hormones relevant for the endometrium 

Melatonin appears to regulate hTERT and hTERC expression in MCF-7 cells (Leon-Blanco 

et al. 2004) while dexamethasone reduced TA through the inhibition of TERT expression 

before induction of apoptosis (Akiyama et al. 2002). In contrast, hydrocortisone did not affect 

TA in human leucocytes (Calado et al. 2009). Therefore, the evidence for other non-ovarian 625 

steroidal hormones having a potential regulatory function of endometrial telomerase is 

limited and they will not be further discussed in this review.   

Endometrial stem cells and telomerase 

The involvement of stem/progenitor cells (SPCs) in the endometrial regenerative process has 

been suggested for a long time (Prianishnikov 1978). After menstrual shedding, a new 630 

functionalis layer is thought to  regenerate from the remaining SPC rich basalis (Valentijn et 

al. 2013; Hapangama, Kamal, and Bulmer 2015) and SPCs in many other tissues have the 

potential to activate telomerase (Hiyama and Hiyama 2007). Interestingly, the available 

evidence for the differences in TA between the endometrial basalis and the functionalis is 

controversial. A study in which different endometrial layers were crudely isolated by 635 

scraping (using a curette or a scalpel) suggested that TA is lower in the basalis (Bonatz et al. 

1998); whereas isolated basalis epithelial cells, identified by expression of the surface marker 

SSEA1 from primary endometrial epithelial cells in short term culture showed higher TA 
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than  functionalis epithelial cells (Valentijn et al. 2013). Our study examined only sorted 

endometrial epithelial cells and telomerase expression and TA are limited mainly to the 640 

epithelial cells (Tanaka et al. 1998; Yokoyama et al. 1998; Valentijn et al. 2015).  Therefore 

both studies should have demonstrated similar results. The reasons for this contradictory 

observation could be due to the fact that epithelial SPC cells are likely to be activated during 

isolation and cultivation in the latter study, which removed the epithelial SPC cells from its 

niche, a process known to induce telomerase (Engelhardt et al. 1997). Furthermore, the 645 

presumed basalis tissue obtained by scraping the myometrium in the former study might have 

contained a higher proportion of myometrial tissue with low TA levels.  

The available evidence suggests that the endometrium contains multiple progenitor cell 

populations. Cells with some stem cell properties have been isolated from the human 

endometrium expressing phenotypical markers of epithelial, stromal, leucocyte and vascular 650 

origin (Chan, Schwab, and Gargett 2004; Masuda et al. 2010; Cervello et al. 2011). Freshly 

isolated undifferentiated side population cells containing all these primitive cell types from 

human endometrium also expressed TA (Cervello et al. 2011). Presence of TA in the most 

widely characterised and studied endometrial SPC cell subtype; the endometrial stromal 

(mesenchymal) SPCs (Gargett, Schwab, and Deane 2016), is yet to be fully described. 655 

Human mesenchymal stem cells (hMSC) from other locations are known to have negative or 

very low TA (Zimmermann et al. 2003; Tichon et al. 2009; Ogura et al. 2014). However, 

there is a report suggesting that early passages of endometrial stromal SPCs isolated on the 

basis of their expression of the putative mesenchymal stem cell marker CD146 express 

hTERT protein and mRNA but the authors did not measure TA (Yang X 2011). Furthermore, 660 

isolated primary endometrial stromal cells had low but measurable TA in our recent study 

(Valentijn et al. 2015). Our unpublished data also suggest that TA in isolated primary stromal 

cells positively correlated with mean TLs, suggesting that telomerase expression may have a 
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telomere lengthening function in these cells (Figure 3). It will be interesting in the future to 

confirm these preliminary findings and examine the functional relevance of TA to TL in the 665 

different endometrial SPC subtypes. However, the low amount of TA in stromal cells and 

problems with the specificity of the currently available anti-hTERT antibodies that are 

suitable for IHC/IF make this task  difficult. Interestingly, in a recent study, there were rare 

telomerase expressing cells in murine endometrial stroma that may represent SPC cells 

(Deane et al. 2016). However, due to the fact that telomerase is expressed constitutively in 670 

many mouse tissues unlike in humans , it is difficult to evaluate the significance/relevance of 

this finding in the context of the human endometrium.  

The only characterised human endometrial epithelial cell subpopulation (cells that express 

surface marker SSEA-1, nuclear SOX9 and nuclear β-catenin) that exhibits progenitor 

properties in vitro, also showed high TA and longer TL compared with their more 675 

differentiated epithelial cell counterparts (Gargett, Schwab, and Deane 2016; Valentijn et al. 

2013). Importantly, these cells with high TA were able to produce endometrial gland like 

structures in 3D in vitro culture and when confronted with a 2D environment they were able 

to produce a monolayer, functionally akin to the re-epithelialisation of the denuded 

endometrial surface after shedding of the functionalis (Valentijn et al. 2015). Finally, in a 680 

study employing immunofluorescence microscopy, the potential stem cell marker Mushashi 1 

also co-localised with the telomerase protein hTERT in the endometrial epithelium (Gotte et 

al. 2008). However, Mushashi1 expressing cells have not been shown yet to have stem cell 

characteristics in functional studies. 

Taken together, the above data suggests that endometrial SPC cells (basalis SSEA1+ 685 

epithelial cells and possibly stromal SPCs) have TA (Valentijn et al. 2015). The exact 

function of telomerase in the epithelial and in stromal SPCs is not fully understood yet. 

Similar to the intestine, epidermis and other epithelial tissues and organs, endometrium may 
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also have multiple, heterogeneous epithelial stem cell populations with or without a 

functional hierarchy (Goodell, Nguyen, and Shroyer 2015; Pirvulet 2015; Schepers et al. 690 

2011) and they may have corresponding differential telomerase activation states. Active, 

more differentiated progenitor cells involved in normal physiological regeneration might 

have higher TA; while the true, dormant/quiescent stem cell population do not express any or 

very low levels of TA until they are activated. The quiescent stem cell population may have 

low TA during normal physiological regeneration of endometrium and only show high TA if 695 

challenged by extensive tissue disruption or when progenitors are compromised, such as after 

iatrogenic endometrial ablation (Hiyama and Hiyama 2007; Biswas et al. 2015). Further 

studies on telomere biology and telomerase function in the endometrial stem cell population 

are required in order to elucidate altered pathways relevant to endometrial proliferative 

diseases. Since stem cells are hypothesised to harbour defects specific to chronic endometrial 700 

pathologies (Gargett et al. 2014; Sourial, Tempest, and Hapangama 2014; Figueira et al. 

2011), treatment strategies directed towards them may prove to be curative.  

Role of telomerase in the pathological conditions of the endometrium: 

Endometriosis 

Endometriosis is a common chronic inflammatory disease, defined by the existence of 705 

endometrial like stroma and epithelial tissue in ectopic sites, outside the uterine cavity. Since 

endometrial tissue is intensely responsive to ovarian hormones, the main stimulus for the 

growth of ectopic endometriotic lesions is estrogen (Hapangama, Kamal, and Bulmer 2015; 

Hapangama and Bulmer 2016; Kamal, Tempest, et al. 2016; Sourial, Tempest, and 

Hapangama 2014) and progesterone resistance has been proposed as a fundamental feature of 710 

ectopic endometriotic lesions (Bulun et al. 2006). The endometrium of women with 
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endometriosis has been shown to be different to that of healthy fertile women (Hapangama et 

al. 2012; Mathew et al. 2016).  

There is a large body of evidence demonstrating that high TA, expression of hTERT and 

protein levels associated with longer mean endometrial TLs are features of the eutopic 715 

secretory endometrium of women with endometriosis (Hapangama et al. 2010; Hapangama et 

al. 2009; Hapangama, Turner, Drury, Quenby, et al. 2008; Kim et al. 2007; Valentijn et al. 

2013; Valentijn et al. 2015; Mafra et al. 2014). These changes have been proposed to 

contribute to the functional endometrial abnormalities that result in clinical manifestation of 

subfertility as well as propagating ectopic lesions. Considering the known pro-survival 720 

function of telomerase, the high TA in late-secretory endometrium of women with 

endometriosis (Hapangama, Turner, Drury, Quenby, et al. 2008) might be responsible for the 

survival of cells that are shed into the peritoneal cavity during retrograde menstruation 

(Hapangama et al. 2010). The preferential survival of these cells and their enhanced 

replicative capacity due to high TA could facilitate implantation/establishment of ectopic 725 

lesions (Hapangama et al. 2010; Valentijn et al. 2015) (Figure 4). This corresponds well with 

the finding of high TA and hTERT mRNA/protein levels in active peritoneal ectopic 

endometriotic lesions. In addition, ectopic epithelial cells display also longer relative TL 

compared with eutopic epithelial cells from the same patient (Valentijn et al. 2015; 

Hapangama, Turner, Drury, Quenby, et al. 2008). This observation seems to be in agreement 730 

with the progesterone resistance described in the pathogenesis of endometriosis (Bulun et al. 

2006; Sourial, Tempest, and Hapangama 2014), where the development of ectopic 

endometriotic lesions may increase TA due to the failure of endogenous progesterone to 

inhibit telomerase at the ectopic site. We have already shown that dysregulation of telomerase 

is an important early change in endometriotic cells since high TA was required for the early 735 
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establishment of ectopic lesions in a baboon model of induced endometriosis (Hapangama et 

al. 2010) (Figure 4).(Afshar et al. 2013)   

Furthermore, in the baboon model establishment of ectopic lesions was associated with 

induction of high TA and TERT expression in the eutopic endometrium (Hapangama et al 

2010). Interestingly, the initial induction of endometriosis was associated with activation of 740 

EGF signalling in the eutopic endometrium of the baboon model (Afshar et al. 2013) and 

EGF signalling was associated with up-regulation of TA in normal ovarian surface epithelial 

cells (Bermudez et al. 2008). A similar scenario might be happening in the eutopic 

endometrium in the baboon model. Eutopic endometrial cells with high TA can subsequently 

initiate more ectopic lesions after retrograde menstruation contributing to a self-propagation 745 

cycle of the disease (Hapangama et al. 2010) (Figure 4). Ovarian endometriotic epithelial 

cells were successfully immortalised by combinatorial transfection of human cyclinD1, cdk4 

and hTERT genes, whereas the introduction of hTERT alone, or together with cdk4, was 

insufficient for immortalisation of these cells (Bono et al. 2012). Therefore, telomerase alone 

may not be sufficient for the apparent survival advantage displayed by the endometriotic cells 750 

(Fig 4). 

SPCs are suggested to play a key role in the pathogenesis of endometriosis (Figueira et al. 

2011; Gargett et al. 2014; Sourial, Tempest, and Hapangama 2014). Intriguingly, the 

epithelial cells of ectopic lesions show phenotypic similarities with SSEA1 expressing basalis 

epithelial cells (Valentijn et al. 2013; Valentijn et al. 2015). Recent data also suggests that the 755 

tumour suppressor protein ARID1A might negatively regulate hTERT transcription and TA. 

Induction of ARID1A repressed transcription of hTERT via binding to a regulatory element 

on the hTERT promoter, and promoted a repressive histone mode via occupying SIN3A and 

H3K9me3 (Rahmanto et al. 2016). ARID1A is a member of the SWI/SNF chromatin 

remodelling complex, and is reported to be frequently mutated in two epithelial ovarian 760 
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carcinoma subtypes: ovarian clear cell carcinomas and endometrioid ovarian carcinomas 

(Samartzis et al. 2013; Grandi et al. 2015). These cancers have been molecularly and 

epidemiologically linked to endometriosis with approximately 20% of benign ovarian 

endometriosis lesions having a loss of BAF250a (encoded by ARID1A) expression (Xiao, 

Awadallah, and Xin 2012). Therefore, it is conceivable that hTERT expression may be 765 

potentially involved in carcinogenesis associated with the loss of ARID1A. However, the 

seemingly vigorous endometrial regulation of telomerase via ovarian hormones and the fact 

that TA levels are high and constitutively expressed in proliferating endometrial epithelial 

cells may be responsible for the apparently rare incidence of such transformation (Zafrakas et 

al. 2014; Ness et al. 2015). TL in peripheral lymphocytes of women with endometriosis 770 

compared to healthy controls did not differ in our studies (Hapangama, Turner, Drury, 

Quenby, et al. 2008; Hapangama et al. 2009) while others have reported longer telomeres in 

PBMCs from women with endometriosis (Dracxler et al. 2014). The reason for this observed 

difference could be attributed to the influence of different demographic features known to 

affect PMBC TL such as age, BMI and ethnicity. These factors were not accounted for and 775 

significantly differ between the 2 patient groups in the latter study and may account for the 

different TLs observed rather than endometriosis. Our studies controlled for these 

demographical parameters as well as the menstrual cycle phase and did not show an 

endometriosis associated significant difference in PMBC TLs (Hapangama et al. 2009; 

Hapangama, Turner, Drury, Quenby, et al. 2008).  780 

Endometriosis shares some of the typical features of increased synthesis of pro-inflammatory 

cytokines and the imbalance between pro-inflammatory and anti-inflammatory cytokines 

with other chronic inflammatory diseases (Figure 4, Souriel et al 2014). Interestingly, 

telomere attrition and decreased TA have been associated with many chronic inflammatory 

diseases (Zhang et al. 2016).  Although opposite changes in endometrial telomere regulation 785 
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and involvement of high TA in endometriosis have been confirmed by various studies to date 

(Hapangama et al. 2009; Hapangama, Turner, Drury, Quenby, et al. 2008; Hapangama et al. 

2010; Kim et al. 2007; Valentijn et al. 2013; Valentijn et al. 2015; Mafra et al. 2014), this 

knowledge is yet to be translated into a therapeutic solution. Since endometriosis is 

postulated to be a progesterone resistant condition (Bulun et al. 2006) and since telomerase 790 

inhibition is a downstream effector of progesterone (Valentijn et al. 2015) the option of  

telomerase inhibition must be further explored as an attractive, non-hormonal treatment for 

endometriosis.  

Endometrial polyps 

Endometrial polyps are defined as abnormal outgrowth of hypertrophic endometrial tissue 795 

consisting of a monoclonal overgrowth of endometrial stromal cells with inclusion of a non-

neoplastic glandular component (Hapangama and Bulmer 2016). Endometrial stimulation by 

estrogen is postulated as the main driving force for endometrial polyp formation and this is 

supported by the observation that the use of tamoxifen, which acts as an ER agonist on the 

endometrium, increases the risk of developing endometrial polyps. Lower levels of hTERT 800 

protein in endometrial polyps have been reported compared with normal endometrium in the 

proliferative phase (Hu and Yuan 2011). CD146 expressing mesenchymal SPCs derived from 

endometrial polyps did not express any hTERT (Ding et al. 2011). Jointly these studies 

suggest that benign endometrial polyps with increased stromal growth have low telomerase 

and TA is less likely to play an essential role in them. However, telomerase biology in polyps 805 

with epithelial hyperplasia/atypia remains to be explored in future studies.     

Reproductive failure 

Embryo implantation occurs during the window of implantation in the mid-secretory phase. 

The mid-secretory phase is defined by the dominant action of progesterone with maximum 
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cell differentiation in an environment where endometrial glandular proliferation indices are at 810 

their nadir. This period is also associated with the lowest endometrial TA and the shortest 

mean TL (Williams et al. 2001; Valentijn et al. 2015) suggesting a requirement in low 

endometrial TA for the establishment of an early pregnancy. This suppression of TA in the 

endometrium of fertile women has been proposed as a necessary process in order to allow 

endometrial cells to undergo differentiation with cellular apoptosis/senescence required to 815 

make space for the invading embryo (Williams et al. 2001; Hapangama et al. 2009; 

Hapangama, Turner, Drury, Quenby, et al. 2008; Hapangama et al. 2010). It is therefore not 

surprising that significantly high telomerase expression and TA was observed in endometrial 

tissue of women with recurrent reproductive failure (Hapangama, Turner, Drury, Martin-

Ruiz, et al. 2008; Long et al. 2016). The mid-secretory endometria of women with recurrent 820 

miscarriages, recurrent embryo loss and recurrent implantation failure all showed high 

endometrial TA (Hapangama, Turner, Drury, Martin-Ruiz, et al. 2008; Long et al. 2016) and 

a trend for longer mean endometrial TLs in endometrial epithelium (Hapangama, Turner, 

Drury, Martin-Ruiz, et al. 2008). However, this preliminary evidence needs to be confirmed 

in independent studies. It is plausible that persistent proliferation and high TA of endometrial 825 

cells may interfere with the embryo implantation and trophoblastic invasion, all of which are 

known to be involved in the establishment of early pregnancy. The question of why TA is 

down-regulated in the endometrium of successful pregnancies but not so in unsuccessful 

cases implies a difference in telomerase regulation. So far, the underlying mechanisms for the 

differential (dys)regulation is not understood.  In a further case controlled study, infertile 830 

women with deep infiltrating endometriosis also had high endometrial telomerase expression 

further suggesting a detrimental effect of high levels of TA on conception/embryo 

implantation (Mafra et al. 2014). Progesterone is commonly employed to treat women with a 

variety of reproductive failures; from infertility, luteal phase defects to recurrent 
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miscarriages, yet the available evidence on the effectiveness of this therapy is inconclusive 835 

(Coomarasamy et al. 2016). Most of these conditions are multifactorial and the lesions from 

women included in clinical trials therefore are heterogeneous. This prevents elucidation of 

the true effectiveness of progesterone treatment in subgroups of women with apparently 

similar clinical manifestation. Further examination of downstream effectors of progesterone 

treatment such as telomerase may enable the stratification of women in the future in order to 840 

identify those who may benefit from the administration of the hormone.    

Polycystic Ovarian Syndrome (PCOS) 

PCOS is a common gynaecological condition defined by the clinical manifestations of 

hormonal aberrations of hyperandrogenism and insulin resistance (Clark et al. 2014; Lizneva 

et al. 2016). It is often associated with anovulation and subsequently increased risk of 845 

endometrial hyperplasia with risk of progression to endometrial cancer (Hapangama, Kamal, 

and Bulmer 2015; Hapangama and Bulmer 2016; Kamal, Tempest, et al. 2016). A genome-

wide association study in Korean women with PCOS has identified susceptibility loci for 

polycystic ovarian syndrome (Lee, Oh, et al. 2015). The authors reported the strongest signal 

to be located upstream of KH domain containing, RNA binding, signal transduction 850 

associated 3 (KHDRBS3). KHDRBS3 was found to regulate TA in colon cancer cells (Zhang 

et al. 2006). With this evidence, the authors concluded that telomerase may be an important 

driving force in developing PCOS and related phenotypes (Lee, Oh, et al. 2015). Considering 

the suggested role that unopposed estrogen and excessive androgens have on TA (Boggess et 

al. 2006) (Nourbakhsh et al. 2010) and cellular proliferation in various  carcinoma cells 855 

including endometrial cancer cells (Chao et al. 2013; Dumesic and Lobo 2013; Hapangama 

and Bulmer 2016; Kamal, Tempest, et al. 2016; Plaza-Parrochia et al. 2014), studies 

examining the involvement of telomerase in the endometrium of women with PCOS may 

unravel novel avenues for therapeutic manipulation. 
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Malignant conditions of the endometrium  860 

Constitutively high levels of hTERT expression and TA have been identified in over 90% of 

human cancers including hepatocellular carcinoma, colorectal cancer and endometrial cancer 

(Saini et al. 2009; Bertorelle et al. 2014; Lehner et al. 2002). High levels of TA in tumour 

cells contribute to increased cell proliferation, cellular immortality, carcinogenesis and cancer 

progression, while activity of telomerase and hTERT expression are usually suppressed in 865 

most human somatic tissues (Cong, Wen, and Bacchetti 1999). The involvement of 

telomerase in cellular immortality is further highlighted by the fact that most cell lines, 

including the first ever “immortal cell line”, cervical HeLa cells express very high levels of 

TA (Pandita et al. 1997). The involvement and activation of telomerase and telomere 

maintenance during tumorigenesis has been intensely studied over the years. In HeLa cells as 870 

in many cervical cancers the mechanism of telomerase activation is regulated by specific 

proteins from human papilloma virus (HPV) types 16 and 18 (Kyo et al. 1996; Sakamoto et 

al. 2000; James, Lee, and Klingelhutz 2006). Other cancers that do not involve viral infection 

in the pathogenesis also demonstrate high TA but the exact mechanism of their telomerase 

activation is not fully understood. Telomerase suppressing mechanisms that are downstream 875 

of hTERT transcription and mRNA splicing are present in rapidly proliferating embryonic 

tissue (Ulaner et al. 2000), but these are lost during neoplastic transformation (Ulaner et al. 

2000). Therefore, the tight physiological mechanisms of telomerase regulation do not exist in 

cancer cells where TA levels remain constitutively high. 

There are reports of shorter or longer TLs in different cancer cells compared with their 880 

benign counterparts. Short TLs in cancer cells may result from excessive cell proliferation 

prior to telomere stabilisation (with TA or an alternative telomere maintenance mechanism 

(ALT)). Telomere attrition can result in genomic instability which can subsequently initiate 

carcinogenesis. Absolute TL is therefore not relevant for cancer cells as long as telomeres are 
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sufficiently maintained in a capped state in order to supply the cells with an indefinite 885 

proliferation capacity. There are at least 4 activating mutations reported in TERT, POT1, 

TPP1 and TERF2IP (RAP1) genes of the telomerase and telomere complexes which can 

result in longer TLs while several other telomere and telomerase associated gene mutations 

(including repressor mutations in POT1 and activating mutations of TRF1/2) result in short 

TL (reviewed in (Mengual Gomez DL 2016)).  Since either lengthening or shortening of 890 

telomeres can result in abnormal cell proliferation or genomic instability, they can be 

implicated in carcinogenesis (reviewed in (Mengual Gomez DL 2016; Holysz et al. 2013; 

Shay 2016)).  In this review we examine the available evidence for specific aberrations in 

telomeres/telomerase in the pre-malignant and malignant conditions of the endometrium.  

Endometrial Hyperplasia 895 

Endometrial hyperplasia (EH) is characterised by irregular proliferation of endometrial 

glands that may precede or co-exist with endometrial carcinoma (Hapangama and Bulmer 

2016; Kamal, Tempest, et al. 2016). Hyperplastic glands show extremely high proliferative 

indices in comparison to either stromal cells or normal glands during the proliferative phase 

(Dallenbach-Hellweg 2010). EH is almost always due to exposure to high estrogen level and, 900 

typically accompanied with a chronic insufficiency of progesterone. Classical causes 

therefore include corpus luteum insufficiency/anovulatory cycles, PCOS, obesity with 

metabolic syndrome (extra-ovarian aromatisation of androgens), and inappropriate 

postmenopausal hormone therapy (tamoxifen, insufficient dosage of 

progestagens)(Hapangama and Bulmer 2016; Kamal, Tempest, et al. 2016).  905 

High TA levels were detected in EH, including the simple, complex and complex with atypia 

subtypes (Shroyer et al. 1997). It was also suggested that TA could be a useful diagnostic tool 

to screen postmenopausal women with endometrial premalignant and malignant lesions 



39 

 

(Maida et al. 2002). However, there is a considerable proportion of EH samples included in 

these studies that lack TA (Shroyer et al. 1997) and the absence of detectable TA did not have 910 

a specific negative predictive value (Shroyer et al. 1997). Considering the method used to 

sample the endometrium (for example, an outpatient endometrial biopsy typically samples 

approximately 4% of the uterine cavity), it is unlikely that a small area of EH is reliably 

sampled and detected with this approach. Furthermore, since TA is a feature of normal 

proliferating endometrial cells, including simple hyperplasia, the level of TA is unlikely to be 915 

a sufficient discriminator to detect malignant or pre-malignant conditions of the human 

endometrium.     

Endometrial cancer (EC) 

Most previous research on endometrial telomerase had been focussed on EC that is associated 

with high TA. EC is the commonest gynaecological malignancy and is an estrogen driven 920 

disease (Kamal, Tempest, et al. 2016). The risk factors for EC include advanced age, obesity, 

and exposure to unopposed estrogen (or progesterone deficiency). It is of interest that despite 

the high estrogenic milieu associated with the premenopausal period where most vigorous 

proliferative and regenerative activity takes place in the endometrium, carcinogenesis 

commonly occurs in the relatively quiescent, hypo-estrogenic postmenopausal period 925 

(Kamal, Tempest, et al. 2016; Hapangama and Bulmer 2016).  

Very low but detectable TA levels are reported in the postmenopausal endometrium (Tanaka 

et al. 1998). Estrogen induces telomerase in a dose dependent manner (Kyo et al. 1999). 

Various risk factors (such as obesity) for EC will marginally increase the weak estrogen 

(estrone) levels in the postmenopausal endometrium (reviewed in (Kamal, Tempest, et al. 930 

2016)). Intermittent and low levels of estrogen associated with these conditions (Kamal, 

Tempest, et al. 2016) may be sufficient for inducing low TA levels to initiate epithelial 
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proliferation in the postmenopausal endometrial cells. Furthermore, both obesity and ageing 

are chronic inflammatory conditions that are associated with oxidative stress, thus  

accelerating telomere shortening in proliferating cells (von Zglinicki et al. 1995; von 935 

Zglinicki 2000; Kamal, Tempest, et al. 2016). Therefore the most likely mechanism to 

explain EC associated telomere aberrations is the insufficient TA/ short-TL/ damaged 

telomeres theory. We propose that the hypo-estrogenic hormonal maelstrom in high risk 

postmenopausal endometrium may be associated with a potentially deficient amount of TA 

that is insufficient to maintain the short endometrial TLs and their integrity during cell 940 

division. Therefore, the ongoing proliferation in postmenopausal epithelial cells with short 

TLs may render them vulnerable to subsequent genetic instability and carcinogenic 

transformation similar to various other cancer types (Bertorelle et al. 2014; Greider and 

Blackburn 1996; Meena, Rudolph, and Gunes 2015). In line with the above hypothesis, short 

TLs have been reported in most sporadic ECs.  945 

Lynch syndrome is an autosomal dominant condition characterised by germline mutation in 

DNA mismatch repair genes resulting in increased risk of developing a variety of cancers 

including EC. Long telomeres were associated with familial cancer syndromes such as 

familial melanoma (Horn et al. 2013; Akbay et al. 2008). However, short TLs and hTERT 

gene polymorphisms predicted initiation of EC in Lynch patients (Segui et al 2013)..  950 

High TA, hTERT and hTERC expression as well as high hTERT protein levels have been 

described by many groups in ECs (Kyo et al. 1996; Saito et al. 1997; Ebina et al. 1999; 

Maida et al. 2002) . Some preliminary data in a very small patient population also suggests 

that hTERT mRNA in PBMCs can be used to diagnose early micro-metastases of EC (Liang 

et al. 2016). This observation needs further validation in an appropriately powered study. 955 

Frequent PTEN mutations and P53 loss known to occur in ECs could be associated with 

telomerase up-regulation but the exact mechanism through which these different events 
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interact is not yet clear (Zhou et al. 2006; Akbay et al. 2013). Further recent work also 

showed hTERT to be involved in epithelial mesenchymal transition (EMT), cell motility and 

metabolism, which are processes associated with cancer metastasis (reviewed in (Saretzki 960 

2014)). In a mouse model simultaneous deletion of p53 and POT1 resulted in precursor 

lesions of endometrial epithelium and induced ECs with non-endometrioid, type II 

phenotype; suggesting that telomeric instability has a critical role to play in type II ECs 

(Akbay et al. 2013). TERT promoter mutations seem to be rare in ECs (Wu et al. 2014), 

except for the clear cell (type II EC) subtype (Huang et al. 2015). Activating TERT promotor 965 

mutations are a feature of cancers derived from tissues with low relative cellular turnover 

such as the brain, therefore such mutations are not expected in the highly regenerative 

endometrial epithelium (Killela et al. 2013; Shay 2016).   

There are limited reports suggesting that the ALT pathway may be active in some 

endometrial carcino-sarcomas or uterine sarcomas (Lee, Park, and Lee 2012), but its 970 

prevalence in endometrioid ECs appears to be low (Heaphy et al. 2011). Further studies are 

required to dissect out the exact function high TA plays in ECs and how telomerase 

regulation in the postmenopausal endometrium may induce carcinogenesis, particularly, in 

the context of the high risk hormonal environment present. In the light of many reported 

alterations in the components of the telomere complex, telomerase holoenzyme and their 975 

associated proteins in cancer (Greider and Blackburn 1996; Shay 2016) in addition to the 

complex interactions of these changes with numerous tumour suppressor proteins and 

oncogenes, more detailed studies are required to fully understand the role of alterations in 

telomere maintenance pathways particular to all subtypes of EC.   

Future directions and wider implications of interventions into 980 

telomerase biology 
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hTERT has been reported to be up-regulated by various pharmaceutical and metabolic agents 

such as ACE inhibitors (Donnini et al. 2010), essential fatty acids (Das 2008), beta blockers 

(Wang et al. 2011) and calcium channel blockers (Hayashi et al. 2014) in a variety of tissue 

types. Telomerase inhibition has been reported as an off-target effect of various 985 

chemotherapeutic agents, however this it could be a secondary effect to apoptosis or 

senescence induction (Saretzki 2010). Imetelstat is the only clinically applicable synthetic 

telomerase inhibitor, which is a lipid based conjugate of the oligonucleotide GRN163 that 

binds with high affinity to the hTERC component of telomerase (Roth, Harley, and 

Baerlocher 2010; Salloum et al. 2016). Imetelstat had shown promising pre-clinical 990 

telomerase inhibitory activity across a wide range of cancer types (Roth, Harley, and 

Baerlocher 2010). However, despite high expectations, all reported data on its clinical 

effectiveness in at least 6 different clinical cancer trials have been disappointing (Salloum et 

al. 2016) with treatment resulting in significant side effects such as myelo-suppression. 

Findings from a recent small clinical pilot study demonstrate a possible specific beneficial 995 

effect of Imetelstat in clinical outcomes in myelo-proliferative conditions that needs to be 

further confirmed in larger trials (Baerlocher, Burington, and Snyder 2015). The side effect 

profile of this drug however, precludes its use in benign endometrial conditions. The 

examination of different compounds with off target inhibitory effects on TA and a more 

favourable side effect profile is required before clinical application in endometrial disease.    1000 

Our understanding of telomerase and telomere biology is rapidly expanding with many 

groups working towards developing this exciting field, as telomeres and telomerase pertain to 

a diverse range of cellular functions and processes. In addition, telomerase regulation and 

function in the human endometrium appears to be unique. The majority of treatments we 

have available at present for common benign and chronic diseases of the endometrium such 1005 

as heavy menstrual bleeding, infertility, polyps, endometriosis and endometrial hyperplasia 
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are directed towards terminally differentiated endometrial cells of the endometrial 

functionalis. The functionalis is shed each month with menstruation, thus requiring 

continuous therapy for each new functionalis layer that is regenerated. Most currently 

available therapeutic options therefore include ovarian or other hormonal analogues to 1010 

manipulate the ovarian cycle resulting in considerable side effects. Since telomerase appears 

to be involved in almost all endometrial pathologies, it provides a distinctive route to 

formulate possible curative (involving stem cells), non-hormonal therapies to treat them. 

Furthermore, current understanding of telomere and telomerase biology in ECs is far from 

comprehensive and the fact that high TA is present in normal proliferating endometrial cells 1015 

makes it difficult to extrapolate the data from other cancers to ECs. TA in normal 

endometrium has strict physiological regulation, mainly by hormones. During tumourigenesis 

this regulation becomes dysfunctional, supplying cells with a constitutively high amount of 

TA, conferring a selective advantage and a high proliferative capacity. In addition, 

telomerase and telomere biology of the endometrial cells may be modified by the cellular 1020 

interactions in a new environment (e.g. endometriotic lesions growing in the peritoneal 

cavity). A better understanding of these processes may facilitate formulating new 

interventions. Further studies in this field for both benign and malignant diseases of the 

endometrium should therefore focus on understanding the precise regulation mechanisms for 

telomerase which could potentially reveal novel targets for new treatment strategies based on 1025 

telomerase in endometrial disease. 

 

Conclusion 
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We are only beginning to understand the central role of telomeres and telomerase in the 

biology of the endometrium. Since telomerase is pivotal to endometrial regeneration, further 1030 

studies elucidating the involvement of telomere and telomerase associated proteins and their 

regulation in normal endometrial regeneration, and in endometrial pathologies will help to 

develop novel treatment strategies that are not only non-hormonal but potentially curative. 
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Figure Legends 

Figure 1. Schematic illustration of the main telomerase subunits and their interaction 1790 

with the telomere complex 

Fig 1A. Illustration of the human telomere complex and telomerase (only one half of the 

dimeric holoenzyme complex is shown for clarity). Out of the shelterin proteins, Telomere 

repeat binding factors 1 (TRF1), and 2 (TRF2) bind directly to the double-stranded telomeric 

sequence, and protection of telomeres protein-1 (POT1) binds the single-stranded overhang 1795 

hence are named telomere binding proteins and interact with remaining shelterin proteins 

TIN2 (binds to TRF1), RAP1 (binds to TRF2) and TPP1 (binds to POT1).   

Fig 1B. The four functional domains of hTERT: the telomerase N-terminal (TEN) domain has 

roles in recruiting telomerase to telomeres as well as telomeric repeat synthesis, TERC-

binding domain (TBD) interacts with hTERC, and both the reverse transcriptase (RT) domain 1800 

and C-terminal extension (CTE) contribute to the reverse transcriptase enzyme activity 

(Blackburn and Collins 2011; Nakamura et al. 1997).  

Fig 1C. Diagram of the core elements of hTERC; 5’ region containing (A) the pseudoknot 

domain and (B) stem terminus element-loop that contains the 11 nucleotide RNA template 

and (C) the template boundary element (Theimer and Feigon 2006). Both A & B domains are 1805 

important for in vivo stability of hTERC and they interact with hTERT. The RNA stabilising 
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3’ region contains (D) an H/ACA motif which interacts with dyskerin or any of the four 

H/ACA RNP components, and (E) trans-activating domain containing CR4/5C that also binds 

hTERT (Webb and Zakian 2016). The template boundary element together with the 3’ end 

prevents DNA synthesis beyond the template (Feng et al. 1995; Fu and Collins 2003; Kiss, 1810 

Fayet-Lebaron, and Jady 2010). 

 

Figure 2. Correlation of typical ovarian hormonal changes with the observed changes in 

endometrial telomerase activity, mean telomere length and endometrial  hTERT protein 

expression 1815 

A. Estrogen and Progesterone (ovarian hormones) show typical cyclical variations during the 

menstrual cycle in premenopausal women.  

B. Endometrial TA levels increase steadily under the influence of estrogen in the proliferative 

phase, whereas the levels plummet in the progesterone dominant secretory phase of the cycle 

(Kyo et al. 1997; Saito et al. 1997; Williams et al. 2001; Hapangama et al. 2009; Hapangama, 1820 

Turner, Drury, Quenby, et al. 2008).  

C. Our recent work further demonstrates that similar dynamic changes in the mean 

endometrial TLs across the menstrual cycle (Valentijn et al. 2015).  

D. In full thickness endometrial tissue sections, hTERT protein expression studied with 

immunohistochemistry employing a monoclonal mouse anti-human telomerase antibody 1825 

(ab27573, Abcam, Cambridge UK), detection with ImmPRESS anti-mouse/rabbit polymer 

and visualization with ImmPACT DAB (Vector Laboratories, Peterborough, UK). Positive 

hTERT staining was observed in functionalis and basalis epithelial cells in the proliferative 

phase but the brown positive staining is limited to the basalis epithelium in the secretory 

phase. Magnification X200, Scale bar 10μm. 1830 



62 

 

  



63 

 

Figure 3; 

Telomere lengths and telomerase activity in the human endometrium.  

A. Endometrial TA (measured by TRAP assay) with endometrial TL (measured by qPCR) 

during the proliferative and the secretory phase of the cycle in healthy women with proven 1835 

fertility (Valentijn et al 2015).  

B. TA correlated negatively with TL in isolated epithelial cells in the proliferative phase (n= 

5, r =-0.994, ***P = 0.0005);  

C.  TA correlated positively with TL in endometrial stromal cells in the secretory phase (n = 

5, r = +0.974, ***P = 0.0005); no correlation was seen between these parameters during the 1840 

proliferative phase in the stroma or the secretory phase of the epithelium. Epithelia represent 

Epcam+ epithelial fraction (positive selection) and stroma represents Epcam- stromal cell 

fraction from the dissociated endometrial biopsies /single cell suspension were purified using 

Epcam microbeads  (negative selection). (Valentijn et al 2015).  

(D) Telomeres identified in an endometrial sample during the proliferative phase by 1845 

fluorescence in situ hybridization (FISH) using a peptide nucleic acid (PNA) telomere probe 

(Panagene, Japan). Note the brighter (red) telomere signal in the stromal cells compared to 

the epithelial cells. Scale bar 50µM 
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Figure 4 1850 

Telomerase is suggested to play a key role in our proposed model for the pathogenesis of 

endometriosis:  

(1) Ectopic endometriotic deposits are initiated by an increase in retrograde menstruation or 

an increased activity in genes that promote angiogenesis and adhesion. (2) The ectopic 

endometriotic deposits induce a local inflammatory response and secrete various cytokines. 1855 

(3) The cytokines (or other substances) act on the eutopic endometrium to induce the pro-

proliferative markers. (4) The induced eutopic endometrial cells express telomerase and adopt 

the pro-proliferative, apoptosis-resistant phenotype, which has a survival advantage in the 

peritoneal cavity. (5) Finally, retrograde menstruation of induced eutopic endometrium with 

the pro-proliferative phenotype together with other genes that also promote cell survival gives 1860 

rise to further endometriotic deposits and maintains the disease. Adapted from (Hapangama 

et al. 2010). 

 


