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ABSTRACT

One of the greatest challenges faced by modern medicine is the increasing prevalence of

cancers. Oesophageal cancer has one of the fastest rising incidences in the western world

and is often undiagnosed before it has reached an advanced and inoperable state. Early,

accurate diagnosis and detailed understanding are crucial in the war on cancer, requiring the

development of novel investigative and analytical techniques. The application of infrared (IR)

microscopy and spectroscopy to the study of the development, diagnosis, and understanding

of cancer has become well established in recent decades, and techniques such as Fourier

transform infrared (FTIR) spectroscopy have great potential to further this �eld. The spatial

resolution obtainable by IR techniques, however, is limited by the fundamental di�raction

limit of optics to length-scales comparable to typical cellular sizes, limiting the information

that can be accessed. There is, therefore, a great need for the development of complimentary

techniques that are able to circumvent the di�raction limit and probe the behaviour and

progression of cancer on a sub-cellular level.

This thesis describes the development of a �bre-based IR scanning near-�eld optical

microscope (SNOM) with an IR free electron laser (FEL) source, applied to the study of

oesophageal cancer tissue samples and cell cultures, with the potential to be applied to many

di�erent biological problems. As with the development of any new instrument and technique

there were many unforeseen technical di�culties encountered during this work, related to

the �bres used, the adaptation of the source and the data acquired during imaging. These

were overcome in a coherent and logical process presented in this thesis. This development

is reinforced by investigations into di�erent possible analysis techniques using FTIR hyper-

spectral imaging results obtained on the same tissue samples. The imaging results obtained

by the combination of an IR-FEL and �bre-based SNOM demonstrate the potential of this
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technique to acquire high spatial and spectral resolution images on cancerous tissues and cells

and progress our understanding of cancer. A further study involving many more high spatial

resolution images acquired on �ve di�erent cell lines taken with the IR-SNOM developed in

this work is now in progress and the SNOM instrument developed has the capability to be

applied to a wide range of biological problems.
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CHAPTER 1

INTRODUCTION

Advances in modern medicine have extended life expectancy and increased survival rates

for many previously deadly diseases. With the resulting increasingly ageing population,

coupled with modern lifestyles, one of the major medical challenges faced in modern times

is the increasing incidence of cancers.

The cancer with one of the fastest rising incidences in the western world is oesophageal

cancer [1], which, though it represents only 3.2% of global malignancies [2], is often only

diagnosed after the cancer has spread, usually becoming fatal. The life and death deci-

sion of diagnosing cancers is typically dependent on time-consuming, qualitative histological

interpretations of stained sections of biopsies endoscopically retrieved from the a�ected tis-

sue. Such interpretations are prone to both inter- and intra-observer variability [3] with

life-changing outcomes from incorrect diagnoses.

Infrared (IR) techniques are well known to have the potential to provide better, more

reliable diagnoses of cancerous tissue than the traditional methods [4] but are limited in their

spatial resolution by di�raction e�ects to super-cellular length scales and Mie scattering of

the radiation. There is great interest, therefore, in near-�eld imaging techniques to give

spectroscopic images at sub-di�raction limited spatial resolutions.

In order to probe the sub-cellular behaviour of cancerous tissues a high intensity, high

spectral resolution IR light source is required in order to give images combining high spectral

and high spatial resolution at a low spectral density. IR free electron lasers (IR-FEL) are

ideal to provide this type of output, giving very high output powers over a continuously

tunable range of wavelengths.
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Thesis Structure

This thesis gives, to the author's knowledge, the �rst application of �bre-based infrared

scanning near-�eld optical microscopy (IR-SNOM) with an IR-FEL to the study of cancer.

Initial experimental investigations into the tissue samples and image analysis techniques us-

ing Fourier transform infrared (FTIR) spectroscopy are presented in chapter 4, which led

to the development of possible tissue classi�cation methods that could be used for SNOM

images. As with any new methodology there were unforeseen problems with the SNOM

instrument that needed to be tackled sequentially as they arose, some of which were known,

and some of which arose as a consequence of the development and re�nement of the in-

strumentation and imaging methods. This thesis is concerned with the development of the

instrumentation for SNOM studies on an IR-FEL and describes sequentially how these prob-

lems were discovered and solved in chapter 5. As a result of this, a major part is concerned

with instrument development but this does lead to a viable experimental methodology for

obtaining images of cancerous tissue and cells with a required combination of high spatial

and spectral resolution, as demonstrated in chapter 6.

To clarify the di�erent stages of development, the various experimental and technological

hurdles encountered, as well as how di�erent elements of this work impact on the others,

�gure 1.1 gives a roadmap of the events described in this work. Experimental steps are given

as rectangles, experimental hurdles are rounded rectangles and ellipses give the experimental

adaptations and developments that took place.
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Figure 1.1: A schematic roadmap of the experimental work (rectangles), problems en-
countered (rounded rectangles) and developmental changes as a result (ellipses) during
this work, with arrows indicating in�uence and consequences.
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CHAPTER 2

INFRARED MICROSCOPY AND SPECTROSCOPY

Contents

2.1 Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Interaction of Light with an Object . . . . . . . . . . . . . . . . . 5

2.2.1 Re�ection and Transmission . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 IR Microscopy and Spectroscopy . . . . . . . . . . . . . . . . . . . 7

2.3.2 Fourier Transform Spectroscopy . . . . . . . . . . . . . . . . . . . 8

2.3.3 Microspectroscopy: Hyperspectral Imaging . . . . . . . . . . . . . 9

2.4 The Di�raction Limit . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 De�ning Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Di�raction Limited Microscopy . . . . . . . . . . . . . . . . . . . . 10

2.4.3 Pushing the Di�raction Limit . . . . . . . . . . . . . . . . . . . . . 11

2.5 Breaking the Di�raction Limit . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Scanning Near-Field Optical Microscopy . . . . . . . . . . . . . . . 13

2.5.2 Applications of SNOM . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.3 Infrared SNOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Oesophageal Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.1 Barrett's Oesophagus . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.2 Diagnosis and Treatment of Oesophageal Adenocarcinoma . . . . . 18

2.6.3 Oesophageal Tissue Samples . . . . . . . . . . . . . . . . . . . . . 19

2.6.4 Application of IR Spectroscopy to Tissue Characterisation . . . . . 20

2.1 Microscopy

Optical microscopy is arguably the most widely used imaging technique, employed across

many �elds of research. Its popularity may be attributed to its speed, non-destructiveness
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2.2. INTERACTION OF LIGHT WITH AN OBJECT

and �exibility, as well as the intuitive nature of the imaging method and information it

gathers. Attributing the invention of the microscope to an individual is virtually impossible,

as many di�erent de�nitions of what constitutes a microscope exist. Certainly the �rst

instrument to be called a `microscope' was a two lens system consisting of a concave and

a convex lens secured inside a hollow tube, created by Galileo Galilei in the mid 1620s,

around the time of the �rst compound telescopes [5]. A principle aim of microscopy is to

create images of objects on much smaller length scales than otherwise attainable, which is

generally achieved through the use of magnifying optics, like the lens system employed by

Galileo.

2.2 Interaction of Light with an Object

The interaction of an electromagnetic (EM) wave with an object is governed by the

object's complex refractive index n = n + iκ. The real (n) and imaginary (κ) components

of this index lead to the processes of re�ection, transmission and absorption, demonstrated

in �gure 2.1.

Figure 2.1: The interaction of EM waves with the bulk and boundary between di�erent
materials. The complex refractive indices n = n+ iκ lead to three processes: re�ection
(R) and transimssion (T) at the boundary between two di�erent media, and absorption
(A) within the bulk of each medium. R and T are determined by the real component
of n while absorption is given by the imaginary component.

The portion of a beam that is transmitted through a boundary undergoes a change in

direction, called refraction, due to the di�erence in the speed of light. The angle of refraction,
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2.2. INTERACTION OF LIGHT WITH AN OBJECT

θt in �gure 2.1, is governed by Snell's Law:

n1 sin(θi) = n2 sin(θt) (2.1)

where n1 and n2 are the real components of the refractive indices of the two media and θi is

the angle of incidence at the boundary.

2.2.1 Re�ection and Transmission

The proportion of the EM wave re�ected or transmitted from a boundary between two

media, the re�ectance R and transmittance T, are determined by the value of the real part

of the refractive indices of the two media, labelled n, which is given by the relative speed of

light in the medium compared to a vacuum: n = cvac/cmedium. The re�ectance of a surface

is polarisation dependent and is given by the Fresnel Equations [6]:

Rs =

(
n1 cos(θi)− n2 cos(θt)

n1 cos(θi) + n2 cos(θt)

)2

Rp =

(
n1 cos(θt)− n2 cos(θi)

n1 cos(θt) + n2 cos(θi)

)2

(2.2)

where Rs and Rp are the re�ectances for s- and p-polarised light at the boundary. For normal

incidence this simpli�es to give

R =

(
n1 − n2
n1 + n2

)2

(2.3)

The transmittance of the boundary is given by conservation of energy such that T = 1−R.

2.2.2 Absorption

As an EM wave propagates through a medium, it undergoes an exponential decay in

amplitude determined by the absorbance, A, of the material. The absorbance is governed

by the imaginary component of the material's refractive index, κ, according to:

α =
4πκ

λ
(2.4)

where α is the attenuation coe�cient of the medium and λ is the wavelength of the EM

wave. The absorbance of a medium is a function of the path length through the medium, l

and is given by

A = αl (2.5)
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2.3. SPECTROSCOPY

To measure the absorbance of a material, a sample's transmittance is usually measured,

comparing the intensity transmitted through the sample with the original intensity, and the

absorbance calculated using the Beer-Lambert Law:

T = 10−A (2.6)

2.3 Spectroscopy

In general, the real and imaginary components of the complex refractive index are not

constant, but can vary dramatically with wavelength. Spectroscopy is a complimentary

technique to microscopy where the focus is on probing the varying properties of a sample at

di�erent wavelengths. The ability to measure the dependence of the re�ection, transmission,

absorption, �uorescence or other optical e�ects of a sample on the wavelength of the incident

radiation can characterise many di�erent properties of the sample and has led to much of

our understanding of the physical world.

2.3.1 IR Microscopy and Spectroscopy

The mid-Infrared (IR) regime of EM radiation, with wavelengths between 1 and 10 µm is

of particular interest for spectroscopy as the energies of IR wavelengths, given by E = hc/λ

where h is Planck's Constant and c is the speed of light in a vacuum, correspond to the energy

gaps between many di�erent molecular vibrational states. IR spectroscopy therefore probes

the chemical properties of a sample, via its transmission and re�ection properties.

Chemical bonds with a signi�cant di�erence in electronegativity between the two bonded

atoms produce a molecular electric dipole due to the distortion in the electron clouds of

the two atoms [7]. IR photons can interact with these oscillating molecular electric dipole

moments if the energy of the IR photon is equal to the energy gap between the molecule's

current vibrational state and another, higher energy vibrational state. By absorbing the

photon the molecule can be excited to this higher state and the photon is lost, leading to

a measurable decrease in the transmittance of the sample at that wavelength. The exact

energy, and therefore wavelength, that the photon requires depends not only on the two

bonded atoms but also on the speci�c chemical environment of the bond.

IR microscopy and spectroscopy are therefore able to give the �ngerprint of the chemical
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2.3. SPECTROSCOPY

species present within a sample based on this absorption mechanism. IR microscopy involves

illuminating a sample with a single wavelength and imaging the spatial dependence of the

absorption at the corresponding energy. IR spectroscopy uses either a broadband or tunable

source to measure the dependence of the absorption on wavelength, giving a spectrum of

absorbance against wavelength, and determine the di�erent bonds present within a sample.

The most widely used IR spectroscopy technique is Fourier transform infrared spectroscopy

(FTIR), a type of Fourier transform spectroscopy (FTS).

2.3.2 Fourier Transform Spectroscopy

Figure 2.2: Schematic representation of a FTIR Spectrometer. A sample is irradiated
with a broadband beam of IR light which then passes into a Michelson interferometer
where one half of the beam is incident on a �xed mirror while another is incident on
an oscillating mirror of known position with time. The recombined beams encode the
spectral information of the sample absorbance in the time domain as each wavelength
constructively and destructively interferes with the varying mirror position.

FTS is a powerful spectroscopic technique that uses a broadband source and a Michelson

interferometer to measure the absorbance spectrum at a wide range of wavelengths simulta-

neously. The schematic for FTS is shown in �gure 2.2. A broadband source of IR radiation,

typically a GloBar blackbody source, is used to irradiate a sample and the resulting trans-

mitted light passes into a Michelson interferometer, where the beam is split in two, with one

half incident on a �xed mirror and the other on a mirror oscillating at a known frequency

and know position over time. When the two beams recombine they interfere constructively

or destructively to di�erent degrees for di�erent wavelengths in the beam, giving the spectral

information of the constituent wavelengths of the beam in a time-domain signal called an

interferogram, f(t), collected by a detector. To represent this information in the frequency-

domain, F (ν̃) where ν̃ is the spectroscopic wavenumber ν̃ = 1/λ, a Fourier transform is
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2.3. SPECTROSCOPY

applied:

F (ν̃) =

∫ ∞
−∞

f(t)e2πiν̃tdt (2.7)

FTS can be performed with a wide area of irradiance of the sample, giving an average

spectrum over that area, or with a small aperture to restrict the area that is probed.

2.3.3 Microspectroscopy: Hyperspectral Imaging

By combining the spatial resolving power of microscopy with the spectral measurement

of spectroscopy, microspectroscopy, also known as hyperspectral imaging (HSI), acquires

spectroscopic data over an image area. The intention of HSI is to give the information in

the spectral values a spatial component of variation as well, making it a powerful technique.

In order to acquire such data, a focussing lens is used with an array of detectors in its focal

plane. Often called a focal plane array (FPA), the series of detectors de�nes pixels of the

image area, with the pixel size determined by the focusing optics.

The advantage of this technique over point spectrum acquisition FTIR is obvious in that

it acquires a whole image area simultaneously, rather than requiring many separate mea-

surements to obtain a similar type of image. In either case, it is important to consider the

resolution of the images - the smallest length scale over which two objects can be distin-

guished. The �rst restriction of the resolution is the magnifying lens for the FPA: if a more

powerful lens is used, the FPA has a smaller �eld of view for the same number of detectors

and hence a smaller pixel size. The quality of the optics used is also a key factor, as the

�eld of view of the FPA will depend on the numerical aperture (NA) of the lens, the range

of angles over which the lens can successfully focus. By using stronger optics and better

quality optics both of these factors can be reduced, giving increasingly smaller pixel sizes

and thus probing smaller and smaller length scales in the sample. A third restriction on the

resolution, however, comes from a hard physical limit placed on every focussing optic: the

di�raction limit.
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2.4. THE DIFFRACTION LIMIT

2.4 The Di�raction Limit

2.4.1 De�ning Resolution

The resolution of a system is governed by the spatial frequencies that it can measure.

A system with a high resolution is able to image small objects with su�ciently high spatial

frequencies to construct the image. The smaller the object, the higher the spatial frequency

required. This idea is encapsulated by the point spread function (PSF) [8], which describes

the signal measured for a point-like signal. The width of the PSF for a given system gives

a measure of its resolution, often by using the full width at half maximum (FWHM). The

di�culty with using this method of determining the resolution is that the PSF is impossible

to measure. An easier measure to determine can be derived from the edge response (ER),

the signal measured by the system over a line discontinuity. It is possible to determine the

resolution of a system via the ER by taking the range over which the signal changes from

10−90% of the maximum but, for noisy signals especially, this can be unreliable and di�cult

to determine [8].

A more appropriate method of determining the resolution of an imaging system is to use

the system's frequency response [8]. From the ER the one-dimensional line spread function

(LSF), similar to the PSF, can be found by taking the derivative with respect to distance:

LSF =
∂ER

∂x
(2.8)

Applying a Fourier transform to the LSF gives the modulation transfer function (MTF)

of the system. The MTF describes how well the system responds to increasing spatial

frequency, and by taking the spatial frequency at which the system response has decayed to

10% another, more reliable measure of resolution can be obtained from the corresponding

spatial period. Signals on this length scale are detected with a threshold 10% sensitivity.

2.4.2 Di�raction Limited Microscopy

The resolution of an instrument is determined not only experimentally by the quality of

the optics used, but also fundamentally by the so-called `di�raction limit' imposed upon all

optical systems [9]. The discovery of the di�raction limit is often attributed to Ernst Abbe

[9, 10] who, in 1873, discussed the resolution limit for visible light microscopy, describing it
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2.4. THE DIFFRACTION LIMIT

as half the wavelength of blue light. This can be generalised for any wavelength, λ, of the

EM spectrum using equation 2.9a:

∆dlimit =
λ

2n sin θ
(2.9a)

where ∆dlimit is the smallest resolvable length scale, n is the real component of the refractive

index of the ambient medium (∼ 1 for air) and θ is the objective lens half aperture angle.

For an ideal lens
(
θ = π

2

)
this simpli�es to

∆dlimit =
λ

2
(2.9b)

It is crucial to note the distinction between the limit imposed by the imperfection in the

lenses, which can be improved upon, and the intrinsic physical limit placed upon the reso-

lution by the imaging method itself.

For visible light the di�raction limit de�nes a minimum length scale of ∼ 200 nm, su�-

ciently small to image the nuclei of cells (on average for human cells ≈ 6000 nm [11]), and

even mitochondria (typically > 500 nm [12]) though smaller structures become di�cult to

resolve.

2.4.3 Pushing the Di�raction Limit

There have been several methods proposed to decrease, overcome or bypass the di�rac-

tion limit placed upon resolution. The �rst and simplest solution is to merely image using a

shorter wavelength, giving a smaller minimum length scale. This has an obvious advantage

in that the technique used is identical in principle to the original method employed, and

so carries many of the above bene�ts, but introduces the di�culty of manufacturing the

necessary optics to focus the light, a task that increases in di�culty the shorter the wave-

length used. In addition to these considerations, imaging with di�erent wavelengths (and

therefore energies) of light is likely to change the origin of image contrast as new absorption

mechanisms and energy regimes (such as infrared vibrational bands of organic molecules)

are accessed; on one hand this increases the possible information that can be obtained by

microscopy, but on the other hand the images produced at invisible wavelengths may be

harder to interpret, and may not even contain the desired information at all.

A related approach is to use the same wavelength of radiation, but perform the measure-
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ment inside a medium with a much higher refractive index, thus reducing the wavelength

without altering the energy of the radiation and thus the information accessed. Attenuated

total re�ectance (ATR) is a spectroscopy technique that uses a prism of high refractive index,

typically germanium or zinc selenide [13], on which the sample is mounted to perform the

measurement. Total internal re�ection at the prism-sample interface creates an evanescent

�eld within the sample which undergoes absorption and in�uences the re�ected beam.

In addition to imaging using shorter wavelengths of electromagnetic radiation, it is pos-

sible to use a di�erent form of radiation for which it is easier to achieve a shorter wavelength,

such as electrons in a transmission electron microscope (TEM) or scanning electron micro-

scope (SEM). By using a beam of electrons, the wavelength of the incident radiation can be

easily controlled: their de Broglie wavelength is given by the accelerating energy E applied

to the beam. Applying a relativistic correction to the de Broglie condition gives [14]:

λ ≈ h√
2m0E

(
1 + E

2m0c2

) (2.10)

where m0 is the rest mass of the electrons, h is Planck's constant and c is the speed of light

in vacuum. Such techniques therefore give a di�raction limit on the order of 1 pm for an

accelerating voltage of 100 kV but this exceeds the ability of the focussing components, so

this cannot be utilised. More typical resolutions are around 1 nm. Despite the huge increase

in spatial resolution, these techniques lose a signi�cant amount of the intuitiveness and ease

of use that conventional microscopy possesses, due to the often restricted conditions required

for imaging and the change in contrast mechanism.

While the above methods improve the possible resolution by essentially reducing the size

of the di�raction limit by using shorter wavelength radiation, they are still di�raction limited.

In order to circumvent the di�raction limit entirely, a modi�ed microscopy technique must

be used. A metamaterial lens was proposed by JB Pendry [15] which uses negative refraction

to form a non-di�raction-limited image by focusing all the Fourier components of the object.

This has been demonstrated for microwave radiation [16] but the engineering di�culties in

producing metamaterials makes re�ning this a signi�cant challenge. Imaging in, or using, the

near-�eld, that is the non-propagating component of the electromagnetic �eld at a distance

from the object z << λ, is a more achievable technique that allows the non-propagating

evanescent waves, which are not subject to the di�raction limit, to be accessed without the
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need for the di�raction limiting lens systems of conventional microscopes, forming images

with much higher spatial resolution [17].

2.5 Breaking the Di�raction Limit

The concept of near-�eld imaging was appreciated as early as 1928 [17], despite this, the

�rst demonstration was not until 1972, by Ash and Nicholls [18] using an illuminating beam

shone through a small hole in a screen, modulated at a �xed frequency by oscillating the

sample such that the aperture was periodically closed by the sample. This was done at a

wavelength of ≈ 3 cm as the constraints were then easier to meet than at visible wavelengths

by a factor of several hundred, but the spatial resolution obtained, λ
60 , signi�cantly exceeded

that given by the di�raction limit.

2.5.1 Scanning Near-Field Optical Microscopy

The technique of SNOM uses a small aperture (a < λ), typically an optical �bre with

some form of tip, brought close (z << λ) to a sample to either illuminate or collect light

from the surface. The tip and sample are then scanned laterally with respect to each other,

and a constant tip-sample distance maintained through some feedback mechanism, usually

by maintaining a constant shear force at the tip as in atomic force microscopy (AFM)

[19] as this places the least constraints on the tip/sample materials and geometry, though

electron tunnelling [20] and capacitance [21] can be used for conductive samples and tips. By

monitoring the height of the tip, simultaneous optical and topographical images are recorded

across the scan area. SNOM has a further advantage in that no special conditions, such as

ultra high vacuum (UHV) or low temperatures, are required.

It was some time after its �rst demonstration that SNOM was achieved at visible wave-

lengths by Pohl et al. in 1984 [22]. The delay was chie�y due to the technological ad-

vancements required to control the lateral scanning of the sample on the nanometric scale

required for visible light. This advancement came in the form of the piezoelectric technology

employed by Binnig and Rohrer in their new scanning tunnelling microscope (STM) in 1982

[23] and allowed the development of a whole new range of techniques, given the general

label SPM, which consist of a small probe brought close to a sample surface and scanned

laterally over it, with a feedback mechanism maintaining the separation between tip and
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sample, using piezoelectric drivers to reach nano-scale resolution. In addition to SNOM and

STM are AFM [24], scanning capacitance microscopy (SCM) [19] and many others. Possibly

the closest SPM technique to SNOM is non-contact AFM, where an oscillating metal probe

interacts with the nearby surface via Van der Waals forces, damping the oscillation of the

probe and leading to a reduction in the amplitude. The AFM feeds back on this reduction,

driving the tip closer or further away from the sample surface using a piezoelectric driver to

maintain a constant deviation from the natural frequency and keep a constant tip-sample

separation. By reading the z-position of the tip, the height and other parameters of the

surface can be measured.

SNOM does have several drawbacks that are a consequence of the method of acquisition

of the images. The main drawback is that the imaging is much slower than conventional

microscopy or microspectroscopy, taking pixels one at a time can take many minutes to take

even a small image. There are many experimental di�culties associated with SNOM derived

from its SPM nature, especially the dependence of imaging on the quality of the tips and

reliability of the feedback mechanisms used. Despite the technical di�culties, SNOM still

retains the �exibility and non-destructive nature of far-�eld microscopy that made it the

powerful technique it is.

2.5.2 Applications of SNOM

Since its development, SNOM has been applied to a wide range of sample types and

in a variety of di�erent con�gurations. Initially SNOM was used to image metal surfaces

[22, 25, 26] as these provide a large optical contrast, but has also extensively been applied to

thin �lms and layered structures [27, 28], and semiconductors [29]. More recently the focus

has shifted to imaging biological samples, speci�cally: cells and biological thin �lms [30, 31],

neurons [32], and cancerous tissue [33].

There are four principal con�gurations (see �gure 2.3) which fall into two categories: us-

ing the tip for illuminating in the near-�eld and collecting at a far-�eld detector (illumination

mode), or illuminating in the far-�eld and using the tip to collect in the near-�eld (collection

mode). In addition to these modes, the light that is collected can either be transmitted

through the sample (transmission mode) or re�ected from the surface (re�ection mode).

Each con�guration has advantages and limitations, for example transmission mode bears

much more resemblance to conventional microscopy in its geometry, and so the images pro-
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Figure 2.3: The four general con�gurations of SNOM. Images can be collected either
in Illumination, where the tip transmits light to the sample in the near-�eld to be
collected in the far-�eld, or Collection mode, where the tip collects far-�eld radiation
from a source in the near-�eld. Both of these modes may be operated in transmission or
re�ection with the sample, making SNOM very adaptable to a wide variety of di�erent
sample types and experimental geometries.

duced are often more intuitive to interpret, while for opaque samples, re�ection SNOM is nec-

essary [19]. Most initial SNOM experiments were done in illumination mode [22, 26, 27, 34]

possibly due to the di�culty in coupling the �bre to a detector, and mainly in transmission,

meaning that the most common con�guration in past literature is transmission-illumination,

with re�ection-collection also relatively common [32, 35].

There are additional modes of operation beyond the basic four shown in �gure 2.3 in-

cluding illumination-collection mode [29] in which the tip acts as both source and detector

in the near-�eld. A family of similar techniques use a metal tip in the near-�eld of the sam-

ple to in�uence the far-�eld, apertureless-SNOM (a-SNOM) or scattering-SNOM (s-SNOM)

[36, 37, 38] scatters the near-�eld component of a sample illuminated and imaged in the far-

�eld. Atomic force microscopy infrared (AFM-IR) uses the tip to measure the local thermal

expansion of the sample when irradiated with pulses of IR light [39]. The collection of all of

these techniques represent a combination of spectroscopy with sub-di�raction limit imaging.

A similar technique to a-SNOM is tip enhanced Raman spectroscopy (TERS) [40] which

used the same principle of interacting in the sample near-�eld to enhance the resolution of

Raman spectroscopy. The drawback of using Raman spectroscopy is that the spatial reso-

lution that can be obtained is limited by the ine�ciency of generating the Raman signal,
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necessitating such a high illuminating power density to obtain su�cient resolution that the

sample is likely to su�er thermal damage [41].

As mentioned above, there are signi�cant technological hurdles associated with SNOM,

not least of which is the �ne motor control required to scan the tip close to the sample

surface on a nanometric scale. The structure and creation of tips is another di�culty that

has received considerable attention. In general, SNOM tips comprise an optical �bre, brought

to a tapered end either by chemical etching [42] or thermal pulling [43], and then coating

with an optically opaque layer, such as aluminium, leaving a sub-wavelength aperture at

the tip. Another di�culty is the weak signal strength; evanescent waves are by their nature

weak, and coupling these with the �bre is an intrinsically high-loss process, meaning that a

very intense light source is required.

By using a tunable light source, it is possible to use SNOM for spectroscopic measure-

ments, either by imaging the same area at several wavelengths [30, 33], or by sweeping the

wavelength at a single point [44, 29]. This is one of the most powerful applications of SNOM;

because it has the ability to take spectroscopic information on a local scale at sub-di�raction-

limit resolution, it is able to provide a much richer source of information than conventional

spectroscopic techniques.

2.5.3 Infrared SNOM

While signi�cant work with SNOM is performed at visible wavelengths, the application

of SNOM to IR wavelengths is particularly powerful, because for many samples of interest,

especially tissues and cells, in the IR the length scales involved are on the order of the size

of the wavelength. By circumventing the di�raction limit, sub wavelength imaging can give

a much deeper insight into many di�erent types of samples.

IR-SNOM has been applied to organic thin �lms [44] and keratinocyte cells from human

skin [35] showing successful imaging at length scales much less than the wavelength of IR

light. By imaging oesophageal tissue biopsy samples with IR-SNOM the subcellular devel-

opment of oesophageal cancer can be investigated without the need for stains or �uorophores

and with the potential to provide more quantitative measures of the samples.

IR-SNOM presents several additional challenges compared to visible SNOM. The neces-

sity for an intense, tunable source is more challenging at IR wavelengths. Perhaps the best

type of light source, in terms of both intensity and tunability, is a free electron laser (FEL)
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[45] which uses synchrotron radiation emitted from an oscillated beam of electrons in a laser

cavity as the lasing mechanism, are capable of very high powers and are continuously tunable

over a range of wavelengths. This gives a high degree of �exibility and easily provides the

intensity of light required [33, 46]. In recent years the development of the quantum cascade

laser (QCL) has provided another potentially viable option [38] though the pulse structure of

a FEL, giving a higher peak power and lower average power, is advantageous when imaging

tissue samples to avoid damage to the sample. Another particular challenge for IR-SNOM

is the use of IR transmitting optical �bres. The chalcogenide glasses As
2
Se

3
and As

2
S
3
are

the best candidates for making these �bres with, but they are extremely fragile materials,

making the creation of tips and sample imaging much more di�cult.

2.6 Oesophageal Cancer

Oesophageal adenocarcinoma (OAC) is a cancer with one of the fastest rising incidences

in the western world [1] and with a particularly asymptomatic clinical presentation. It is

more often than not diagnosed too late for e�ective treatment [47]. In the UK the crude

incidence and mortality rates of oesophageal cancer were found to be 14 and 12.6 per 100,000

population respectively by the GLOBOCAN 2012 project [2]. The prevalence of Barrett's

Oesophagus in the general population is di�cult to quantify, with many cases being unsymp-

tomatic, but is likely higher than 376 per 100,000 [48]. Many factors can contribute to the

development of OAC, particularly drinking, smoking and obesity, and in particular, people

with a condition called Barrett's oesophagus are 30-40 times as likely to develop OAC as the

general public [49] with around 0.5% of people with Barrett's Oesophagus developing OAC

per year [48]. Due to this signi�cant e�ect, Barrett's oesophagus is considered a precursor

condition to OAC and patients with Barrett's oesophagus attend regular endoscopies where

biopsies of the a�ected areas of the oesophagus are taken. These biopsy samples are then

examined by a histologist to assess the state of disease.

2.6.1 Barrett's Oesophagus

Barrett's oesophagus is characterised by the metaplasia (where mature cells of one type

are replaced with those of another) for the normal strati�ed squamous epithelium (�gure

2.4a) that lines the oesophagus into a columnar epithelium that more closely resembles
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the lining of the stomach (�gure 2.4b) [50]. Barrett's oesophagus is most often caused

by gastro-oesophageal re�ux disease (GORD) which leads to chronic acid re�ux into the

oesophagus. The cells at the junction between the oesophagus and the stomach respond

to the change in their environment, adapting to more closely match the stomach lining.

The columnar epithelium is a glandular tissue and creates deep, rounded pits called crypts

in the normally smooth lining. At the bottom of these crypts, the glycoprotein mucin is

created in specialised cells known as goblet cells. The metaplastic tissue can then become

dysplastic (abnormally developed) which is considered a pre-cancerous stage (�gure 2.4c).

There are many de�nitions of how dysplasia presents. In general it is a term used to describe

the morphological changes that occur in the tissue and comprises many changes such as

deformations of the glandular crypt structures and larger, more disordered and irregular

nucleii. Montgomery et al. [47] found that 'High Grade' dysplasia was strongly indicative

of the development of cancerous tissue, and thus should be the stage at which the patient

undergoes treatment. This �nal stage of development is known as neoplasia, an abnormal

growth of new cells invasive to the surrounding tissues (�gure 2.4d). The form of the cancer

can vary dramatically from patient to patient, leading to a grading that represents how well

di�erentiated the tumour cells are, or how closely they resemble the microscopic appearance

and structure of the original cells they developed from. Poorly di�erentiated cancers bare

little resemblance to the original tissue, with the cells appearing immature and unstructured,

more closely resembling, and expressing more characteristics of, embryonic stem cells [51]. As

such, poorly di�erentiated cancers tend to be more aggressive and have a poorer prognosis.

2.6.2 Diagnosis and Treatment of Oesophageal Adenocarcinoma

The chief aim of the routine biopsies that Barrett's oesophagus patients undergo is to

assess the presence and progression of any dysplasia within the Barrett's tissue. The as-

sessment is performed by taking a thin section of the biopsy and staining it with a suitable

tissue stain to reveal the underlying structures of the tissue, which is otherwise transparent

and colourless. One such stain that is frequently used is Hematoxylin and Eosin (H&E)

which highlights the Deoxyribonucleic Acid (DNA) and protein components of the tissue, as

shown in �gure 2.5. This stained section is then examined under an optical microscope by a

trained histologist who must then gauge the grade of the tissue based on a loose collection of

guidelines. This evaluation is highly subjective and qualitative and as such is prone to inter-
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Figure 2.4: Microscope images of tissue samples, stained with a Hematoxylin and Eosin
stain showing the stages of Barrett's oesophagus and oesophageal adenocarcinoma from
(a), strati�ed squamous epithelium, through (b), metaplasia to Barrett's oesophagus,
and (c), dysplasia, to (d) oesophageal adenocarcinoma. While the initial and �nal
states are easily distinguished, the task of determining which samples will become
cancerous, before they have already fully transitioned, is much harder. Labelled in (b)
are the two principal tissue components, the epithelium and stroma.

and intra-observer variability [3]. A study in [47] found that for 138 patients, a group of 12

histologists reached a majority conclusion in only 99 cases (72%). The di�culty in reaching

a reliable diagnosis is particularly problematic given the serious implications of misdiagnosis:

a false positive leads to unnecessary and potentially dangerous surgery, while a false negative

leads to a patient that potentially has an invasive carcinoma going unnoticed and delaying

treatment. Any delay in treatment for any cancer has serious consequences, and so reliably

grading and diagnosing the presence of dysplasia and adenocarcinoma of the oesophagus is

of vital importance.

2.6.3 Oesophageal Tissue Samples

The oesophageal samples used in this work were biopsy samples taken during routine en-

doscopy from patients with Barrett's oesophagus and OAC, a procedure called an oesophago-

gastro-duodenoscopy (OGD). Several biopsies were taken in the procedure and each sample

consists of a number of biopsies. Sample information, including ethical approval and prepa-
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Figure 2.5: An example of Hematoxylin and Eosin (H&E) stain with two serial sections
of a biopsy, (a) unstained and (b) stained with H&E to highlight the DNA (blue) and
protein (red). This and other such stains can reveal the chemical information in the
sample, but only lend themselves to qualitative analysis using a microscope.

ration are given in appendix A 1. Before imaging the wax was removed from the samples

using Xylene and the disks were allowed to air dry for two hours (see appendix B.1 for the

dewaxing protocol used). This procedure also removed the lipids (fatty compounds) from

the sample as they are also soluble in xylene, but left the rest of the tissue intact.

2.6.4 Application of IR Spectroscopy to Tissue Characterisation

The use of IR spectroscopy to study biological samples is well established. The various

organic molecules that comprise the tissues and cells imaged in this work express charac-

teristic absorption bands that can be used to explore the structures and concentrations of

di�erent biological components. Previous IR studies in both far- and near-�eld directed at

the understanding and diagnosis of cancer tissues have included investigations of breast can-

cer [52], colon cancer [53], prostate cancer [54], melanoma [55], brain cancer [56] and many

others. The wealth of information provided by IR spectroscopic techniques such as FTIR

and Raman spectroscopy has made them a staple of biomedical research.

Figure 2.6 shows a typical spectrum obtained on a Barrett's oesophagus sample, dis-

playing two spectral regions. The functional group region contains relatively few absorption

bands, typically consisting of stretching modes with the strongest from C−H, O−H and

N−H bonds. The �ngerprint region contains many absorption bands mostly corresponding

to various bending modes of di�erent molecular species.

A common approach towards the interpretation of the �ngerprint region is through the

1All sample staining and sectioning was performed by Mr David Berry, Institute of Translational Medicine,

University of Liverpool
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Figure 2.6: The IR absorbance spectrum from a point on a Barrett's oesophagus tissue
sample. The spectrum can be divided into two regions, the functional group region and
the �ngerprint region. The latter region contains many characteristic absorption bands
corresponding to bending modes of many biologically relevant molecules. Key biological
bands are labelled with the principle biomarker and chemical bond responsible.

use of a minimalistic model, based on the identi�cation of simple absorbance bands that

are assigned to a small number of classes of biologically important chemical species, or

biomarkers [57]. The principal bands in the �ngerprint region are given in table 2.1, identi�ed

using references [55, 58, 59] . The exact peak location depends on the chemical environment

of the relevant bonds, and varies slightly in di�erent types of tissue [58], thus the wavelength

or wavenumber of the absorption band di�ers slightly between di�erent reference sources.

The wavelengths and wavenumbers given in the table are for the Barrett's oesophagus tissue,

and are given a corresponding biomarker tissue component that is the principal source of

the absorption band.
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Wavenumber
(cm−1)

Wavelength
(µm)

Vibrational Mode Assigned Biomarker

1051 9.51 COO−C Stretch DNA
1081 9.25 P−−O �

2
Stretch Glycoprotein / DNA

1164 8.60 C−C Stretch Glycoprotein
1237 8.08 P−−O �

2
Stretch DNA

1455 6.87 C−H
2
Bend Protein / Lipid

1545 6.47 C−N Stretch / N−H Bend Protein (Amide II)
1650 6.06 C−−O Stretch Protein (Amide I)
2924 3.42 C−H

2
Stretch Lipids

2955 3.38 C−H
2
Stretch Lipids

3285 3.04 N−H Stretch Protein (Amide A)

Table 2.1: The main biological vibrational bands present in the IR spectrum of tissue.
Each wavenumber and wavelength have the main vibrational mode associated with the
peak and the corresponding biological molecule that can be assigned to them. It is
important to note that the assigned biomarkers are not the only source of these bands,
simply the strongest.

22



CHAPTER 3

NUMERICAL METHODS
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This chapter describes the numerical methods used during this work, including data

preprocessing and techniques used for data analysis.

The data analysed during the course of this work vary signi�cantly in structure, size

and type, such that several di�erent preprocessing and analysis techniques were employed.

The following section details the mathematical techniques and software that were used to

perform the various analyses in this work.

3.1 Software

The software used to process the data collected during this work was MATLAB, an

interactive programming environment that can be used for numerical analysis and data
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visualisation and processing [60]. This work made use of many of MATLAB's useful built-

in functions, as well as a large amount of self-built functions and graphical user interfaces

to process the various data as required. Further details of each of some of the MATLAB

functions used for this work are given in appendix C.

3.2 FTIR Preprocessing

The FTIR images obtained during this work were in the form of three dimensional cubes

of data, with the �rst two dimensions representing the values of a 128 × 128 pixel array,

and the third dimension giving values at 1479 wavenumbers, giving a spectrum at each

pixel location. The images were subjected to three stages of preprocessing: (i) a numerical

correction for the e�ect of Mie scattering in the sample [61], (ii) normalisation of each

spectrum by its total integral absorbance, and (iii) dimensionality reduction using principal

component analysis.

3.2.1 Mie Scattering Correction

Mie scattering is the name given to the solution to Maxwell's equations that governs the

interaction of light with homogeneous spherical scatterers. The solution of these equations

can be greatly simpli�ed using approximations in the cases where the wavelength λ 6∼ a

where a is the diameter of the scattering spheres, in particular Rayleigh scattering for λ >> a

describes how light interacting with the Earth's atmosphere gives a scattered intensity I ∝ a6

λ4

and so blue light is scattered much more strongly than red, leading to a blue day-time sky and

a red sunset. For IR spectroscopy of tissue, the typical length scales are around 5−20 µm, so

the Mie Scattering solution does not have a simple approximation, and a more direct accurate

approach is required. So-called resonant Mie scattering (RMieS) results in a suppression of

the higher wavenumber side of absorption band peaks in the spectrum and thus a shift in

the observed position of the peaks towards lower wavenumbers [62]. In this work, the FTIR

spectra were all corrected for the e�ects of RMieS using an algorithm developed by Bassan

et al. described in [61, 63] as an extension of the extended multiplicative signal correction

(EMSC) described in [64, 65]. The parameters used for the algorithm are given in appendix

C. The corrected spectra have a slightly reduced range, giving 1453 spectral values each.

The results of applying the correction to an example spectrum are shown in �gure 3.1a-b
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below.

3.2.2 Integral Normalisation

The samples were dewaxed prior to imaging, removing the spectral and physical in�uence

of the wax, but leading to variable sample thickness, particularly at the edges of the tissue

and within the areas of stroma, �brous areas of connective tissue. To compensate for the

variable thickness, which leads to variable absorbance, the integral intensity recorded at each

pixel, representing the total absorbance over the spectral range of the image, was normalised:

αnorm(x, y, k) =
α(x, y, k)∫

range α(x, y, k) dk
(3.1)

Although this compensates for the sample thickness, any particularly transparent sections

of tissue, or especially thin areas, will have enhanced spectral features as a result of the

normalisation. To compensate for this, an additional quality control was placed on each

spectrum: if the total absorbance of a pixel fell outside of the range 80 − 520 (arb. units)

the pixel was discarded. In such a manner, any pixels corresponding to gaps in the tissue or

particularly highly scattering or absorbing debris were removed from the data.

3.2.3 Principal Component Analysis

In the analysis of large data sets there is often a need for data compression, usually in the

interests of processing and analysis time. The spectra produced by the FTIR spectrometer

comprise 1453 points (after the Mie scattering correction) and therefore the 128×128 hyper-

spectral cube contains a large quantity of data. As each peak has an associated width that

spans several wavenumbers of the spectrum, adjacent points are likely to behave similarly,

leading to a linearly dependent set of spectral points. The result of such linear dependence

is that some parts of the spectral information are redundant, and the dimensionality of the

data can be reduced without losing a signi�cant amount of the information they contain.

Principal component analysis (PCA) can be used to reduce the dimensionality of the data

while preserving the principal variations between them, as well as identifying key patterns

within the data set [66]. The original 1453 spectral points can be taken to represent a

1453-dimensional space in which each pixel is located according to the absorbance at each

wavenumber of its spectrum. PCA creates a new, linearly independent set of orthogonal axes
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for the data, called principal components (PC). These axes are ordered such that the �rst PC

is aligned along the direction with the strongest variance in the original data set, essentially

plotting a line of best �t through the data. The second PC is then de�ned orthogonal to

the �rst in the direction with the next highest variance. This process is repeated until the

total dimensionality is reproduced. Because the new dimensions are ordered in terms of

variance in the data set, if there is a strong linear dependence a signi�cant number of the

later dimensions will provide very little variation across the data set, and so can be discarded,

reducing the total size of the sample data, but retaining the information contained within

it. The details of the usage of PCA in this work are given in appendix C.

Figure 3.1: The spectrum of a pixel taken from one of the FTIR images. (a) the original
spectrum prior to processing; (b) the same spectrum after correcting for Mie scattering;
(c) the spectrum in terms of the 20 calculated PC of the whole combined data set; (d)
the same processed spectrum projected back onto the original set of wavenumbers. The
Mie scattering correction gives a big improvement to the spectrum. The PCA does
not remove any visible structures from the spectrum when projected back, and most
of the structure of the spectra after PCA are given by the �rst PC.

The information contained within the FTIR data set was found to be very well preserved
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by retaining even only the �rst 20 PC. Figure 3.1 shows a pixel before and after a PCA to

only 20 components. These PCs describe 99.83% of the variance of two combined images,

and as such was taken to be a good approximation to the original image, while reducing

the number of data values needed to describe each pixel by a factor of approximately 73.

The �rst 10 PCs still described 99.6% of the image variance, but the di�erence in processing

time for the most part between 10 and 20 components was considered minimal. To highlight

the redundancy of the majority of the spectral data when considering inter-pixel variation,

the �rst principle component accounts for 91.7% of the total variation in the two images,

which implies that to describe the data using simply a modulation in amplitude of an average

spectrum would retain 91.7% of the information contained within the images. It is important

to note that PCA was not used for the SNOM image data as the dimensionality was much

lower.

3.3 Cluster Analyses

Cluster analysis is a technique for algorithmically assigning data to groups, or clusters,

according to some relational parameter between them [67]. The parameter used in this

work was the Euclidean distance between the data in the n-dimensional space in which it

is described. For the FTIR data this space is given by the �rst 20 PC, so the Euclidean

distance is given by:

δij =

√√√√ 20∑
p=1

(αi(p)− αj(p))2 (3.2)

where δij is the distance between the ith and jth points and αi(p) is the PCA resultant

�absorbance� of the ith point at PC number p. The cluster position within the 20-dimensional

space is given by the Centroid, calculated by taking the average position of the cluster's data,

calculated using the same distance measure.

The power of cluster analysis is that it is able to group data according to their relative

similarity or di�erence without needing any user input. It is therefore an entirely unguided,

automated technique which is able to distinguish patterns in data which would be impossible

to perceive by the human eye. The only e�ect the user has on the outcome of the analysis is

in deciding how many clusters to create, although it can be possible to procedurally decide

this parameter [68]. There are two types of clustering algorithm considered here: hierarchical
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cluster analysis (HCA) and k-means cluster analysis (KCA).

3.3.1 Hierarchical Cluster Analysis

HCA, as the name suggests, creates a hierarchy of clusters, each time the cluster number

increases, one of the clusters is split into two, while the others remain unchanged. The

method for determining the hierarchy begins by assigning a cluster to each observation in

the data set. The two clusters that are closest, as measured by the chosen distance measure,

are combined to form one larger cluster, a process that is repeated until the data is all in

one cluster, recording the cluster contents and distances at each stage. It is easy to see that

for larger data sets this task becomes increasingly demanding in terms of both processing

power and memory load.

HCA is performed via a chain of processes to produce the hierarchical tree, or dengro-

gram, that displays how the clusters join: which clusters are joined (represented by the

numbered 'leaves' of the diagram), in what order and at what distance (represented by the

position and length of each branch on the x-axis). In a dendrogram the links and distances

between each of the joined clusters are shown as a series of brackets, the position of which

give the distances between the centroids of each of the clusters being agglomerated. The

dendrogram is a very useful tool in visualising how the data is arranged and what sort of

clustering the data displays. It also allows the most appropriate number of clusters to be

determined, either visually or numerically.

The most appropriate number of clusters can be loosely de�ned as the number at which

the distances between the closest two of the remaining clusters is inconsistent with the dis-

tances between the clusters joined in the previous iterations. Clearly if the clusters are at

a dramatically larger distance than their components were from each other, then the link

is joining two distinct groups of data together, rather than joining similarly spaced, neigh-

bouring data. This can be seen visually in the dendrogram by simply looking for unusually

long brackets, or numerically during the clustering process by specifying an inconsistency

coe�cient cut-o� value. The FTIR data set, even after dimensionality reduction with PCA,

is a large enough data set that running the MATLAB functions takes a signi�cant amount

of time. The number of clusters that is most appropriate can be determined by examining

the dendrogram of the cluster distances.
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3.3.2 k-Means Cluster Analysis

In contrast to HCA where the number of clusters is determined after the majority of

the data processing, KCA requires the number of clusters to be speci�ed at the beginning.

The speci�ed number of clusters is created randomly at �rst by distributing the centroids at

random locations within the data. The data points closest to each centroid, as determined

by the chosen distance measure, are assigned to its cluster, and new centroids are determined

from the average positions of each cluster's contents. The process is repeated - reassigning

clusters based upon the new centroid locations and recalculating new centroids - until the

cluster assignments converge on a solution. Depending on the initial placement of the cen-

troids, there may be several stable solutions and so the clustering process can be repeated

and the optimal solution identi�ed. The optimal solution is that which minimises the total

distance of every point to its centroid.

This method of clustering is simpler to visualise and easier to use than HCA; it is,

however, limited by requiring the number of clusters as a user input. While HCA is able to

determine the most appropriate number of clusters based upon the link distances compared

to the links below it in the tree, for KCA the only way to determine the appropriate number

of clusters is to try repeated clusterings with varying number of clusters and select the one

which seems to �t the data better. These two di�erent methods of clustering are considered

due to the di�erences in how they dissect the data: they approach the task of assigning

clusters from dramatically di�erent directions, and so they may reveal di�erent aspects of

the data structure.

3.4 SNOM Preprocessing

Data acquired by SNOM primarily takes the form of individual images at a �xed wave-

length. By maintaining a scan area over several images at di�erent wavelengths, a compara-

ble structure to the FTIR-HSI data can be obtained, but must be checked for pixel registry.

The resulting data cube is much smaller than the FTIR-HSI data in the spectral dimension,

typically comprising only 3-5 images. In addition to the SNOM signal images that were

measured, the simultaneously acquired topographic measurement also provides an image,

along with the various additional channels that were added during the development of the

SNOM instrument (see chapter 5).
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The images produced by the SNOM generally possess a much lower signal to noise level

than FTIR images, chie�y arising from the very low levels of light that were collected. As

detailed in chapter 5 much e�ort is taken to minimise the noise contribution of both the

FEL and the electronic equipment, but the images can be improved further through a small

amount of preprocessing, similar to the steps taken for the FTIR images detailed above. The

SNOM signal images are �rst corrected by reference to a simultaneously acquired background

signal image to account for slow variation in the FEL intensity line-by-line. Following this

`normalisation' a correction for the non-linearity of the piezo x − y stage is applied to aid

comparisons between forwards- and backwards-directed images as well as optical microscope

images for analysis. Sequential images in a series at di�erent wavelengths are then aligned for

pixel registry and cropped to their common area, accounting for any drift in the position of

the scan over time. The �nal stage in the preprocessing is then a minimal Fourier transform

�ltering of the images to remove `streaky' vertical noise due to FEL intensity variation over

a single line. These stages are summarised in �gure 3.2.

Figure 3.2: The stages of preprocessing applied to the raw SNOM data. The individual
processes are described in detail below.

30



3.4. SNOM PREPROCESSING

3.4.1 FEL Intensity Correction

Normalisation of an IR spectrum with respect to a reference signal or background is

standard procedure [69]. With the SNOM images, however, doing this is not strictly appro-

priate. The SNOM aperture collects only a very small part of the total illuminating IR beam

or spot, even approaching the ideal beam focus dictated by the di�raction limit, a SNOM

is designed to collect signi�cantly less than the entirety of the total spot size simply by its

operating parameters. Thus any spatial structure within the beam, or indeed positional

jitter or drift, will lead to a variation in the SNOM signal, without necessarily showing a

correlated variation in a reference signal collecting the whole beam. It might be possible

to use a second SNOM to measure a more comparable reference, but it would be next to

impossible to ensure that the two are sampling the same part of the beam. Despite this,

referencing the SNOM signal to a background variation by dividing corresponding pixels in

each image can remove the e�ect of gross variation in the FEL intensity and did sometimes

improve signal to noise. This process can just as easily introduce more noise into the image

if there is a lack of good correlation between the SNOM signal and the total beam intensity.

Nevertheless, some form of correction must be applied as the FEL output is variable over

the time scale of a few seconds. Due to acquiring bi-directional scans, where the SNOM

scans were collected in both the forward and backward direction of tip scanning, with the

backwards-direction line acquired after the corresponding forwards-direction line, each line

in the image is acquired independently from the previous one and can therefore be subject

to variations and drifts in the average light observed across the line. An e�ective solution

for this variation was to correct for long time scale variations in FEL intensity without

attempting to compensate pixel-by-pixel: each line of the SNOM image was divided by the

median value of the corresponding reference image line. The reference line median was used

as it is less sensitive to the occasional dips in the FEL output that occur, and so will produce

a more appropriate average value for the line.

3.4.2 Piezo Correction

The x−y piezo translation stage employed in the inverted microscope SNOM (see section

5.5) was found to have an inherent non-linearity across the scan area and asymmetry in

the forward- and backward-directed scans. This is most noticeable in topographic images

acquired on a calibration sample consisting of islands of gold deposited on a silicon substrate,
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Figure 3.3: (a) A visible light optical microscope image of the calibration Au/Si sample
showing the islands of gold deposited on a silicon substrate. (b) a simpli�ed schematic
of this sample showing the true sizes of its features. (c, d) Forward- and backward-
directed topographic images acquired using the SNOM with a sharp cut metal wire
tip in place of the usual optical �bre, showing the non-linearity and o�set between the
two images.

denoted Au/Si hereafter. The true dimensions of this sample were obtained from a calibrated

optical microscope. The microscope image, along with a simpli�ed schematic are shown

in �gure 3.3a,b. Shown in �gure 3.3c,d are the true forward and backward scans over a

nominally 500 µm square area acquired using a cut wire tip. The observed images are

signi�cantly di�erent from expectation.

The �rst distortion to note is that there is a marked stretch produced over one side of

each image. The stretch is approximately reversed for the backward-directed image com-

pared to that seen for the forward-directed image acquired in the same SNOM scan. The

forward image pixels are acquired left to right over the course of the scan line, while the

backward image pixels are acquired right to left after the piezo has reversed direction. Given

this directionality it is the case that both directions begin stepping over the corresponding

stretched region of travel in that direction and approach a linear step size toward the end of

each line. This observed hysteresis is a common problem with piezoelectric drives [70].

The second distortion is the slight o�set between the forward and backward images; this
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is in part due to built-in software compensation for non-linearities in the piezo. A further

observation from these images is the rectangular, rather than square, nature of the scan area.

Using the known sizes of the islands on the calibration sample, the y-range is approximately

516 µm while the x-range is only 482 µm. In general none of these distortions present

a serious problem, but to aid analysis and comparison with optical microscope images of

the samples it is necessary to correct the SNOM images for the observed non-linearity and

asymmetry. This would also potentially allow forward and backward images to be averaged

and therefore improve the signal to noise ratio (SNR) for each image.

In order to correct for these e�ects, the apparent relative location of each boundary on

the calibration sample within the 500 µm image was plotted against the true relative position

on the sample. By taking a third order polynomial �t to the curve the relationship between

the true and apparent pixel location as a function of piezo position within the 500× 500 µm

scan range of the stage can be determined and the curve produced used to correct the images.

This approach should compensate for any process that a�ects the pixel size or aspect ratio

in both x and y. The curves produced from the forward and backward images are shown in

�gure 3.4c

The curves can be used to interpolate a true pixel (xtrue, ytrue) based on the observed

values in the (xobs, yobs)-plane, returning an image with the pixel size given by the estimated

pixel size of the original image (1.6̇ µm for an image over nominally 500 µm in 150 pixels).

Figure 3.4d shows the e�ect of correcting such a 500 µm forward-directed image taken on the

Au/Si calibration sample: the resultant image is more rectangular as the x-axis is contracted

to match the expected sizes, and shows a much more uniform size of feature across the image

compared to the original version shown in �gure 3.4a.

A comparison of the processed forward- and backward-directed images is necessary to

determine if the �nal curves are suitable for use as a standard calibration procedure. If

the curves compensate for the non-linearity seen in the piezo drives then the two directions

should become essentially identical, with the exception of any artefacts originating from the

direction of motion of the tip. Figure 3.5 gives the image di�erence of the two corrected

images using the �nal curves. The only features that stand out are imaging artefacts from

the direction of motion. Based on these results the SNOM images can be corrected for the

non-linearity to produce images that should be closer to the optical microscope images. As

the topography, SNOM signal and reference images are acquired simultaneously, the same
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Figure 3.4: (a) a 500× 500 µm, 150× 150 pixel forward-directed topographic image of
the Au/Si calibration sample acquired using a cut tantalum wire tip and the x, y piezo
stage. (b) the apparent pixel location plotted against the true spacing of step features
along a single line in the horizontal (x) dimension (blue circles) and the third order
polynomial �tted to this line (red line), with the same data in the backward direction
(green circles and magenta line) showing the hysteresis in the scanning of the piezos.
(c) The corrected image given by the red correction curve in (b) which closely resembles
the expected dimensions seen in �gure 3.3. The discrepancies between the optical and
topographic images can be attributed to a topographic tip artefact resulting from the
�nite size and non-ideal shape of the tip. The resultant image is 151× 142 pixels and
thus 503× 473 µm in size.

correction can be applied to all three, though because the reference image contains no spatial

information it is not necessarily appropriate to use this image after the correction has been

applied. Thus this stage in the image preprocessing had to be performed after the FEL

intensity correction above was applied.

The same non-linearity curves should be reproduced by each 500 × 500 µm image but

when considering smaller scan areas within the 500 µm travel of the piezo drives it became

apparent that while the full-size images are approximately the same size in each direction,

for smaller images this isn't necessarily the case. This is demonstrated by the 250× 250 µm

topographic images in �gure 3.6, where the origin is still (−250,−250) µm but the images

are nominally 250 × 250 µm. Although the apparent range of the x-piezo is the same in

both the forward- and backward-directed images the true size of each is slightly di�erent. In

the forward direction the area lies in the most non-linear range of the corresponding curve

giving an image that is stretched, while the backward direction is in the linear part of the

piezo curve and the image appears as such. Some method of correcting smaller images must

be devised in order to accurately process the smaller scan sizes, and in general one might
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Figure 3.5: The di�erence between the forward- and backward-directed topographic
images of the Au/Si calibration sample after correcting for the piezo non-linearity. The
only features that stand out are the topographic artefacts at edges of the islands where
the sample steps down along the direction of motion, and thus on opposite edges in
each image.

Figure 3.6: The forward- and backward-directed scans for a smaller 250×250 µm image
of 150× 150 pixels with the same origin of (−250,−250) µm. The smaller scan range
results in slightly di�erent real sizes for the two directions as each is over a di�erent
part of the curves seen in �gure 3.4b

hope that for a section of the 500 µm area, the corresponding section of the correction curves

should apply.

Assuming that the smaller areas are indeed represented by sections of the full-range

curves and correcting the forward and backward topographic images from two 250×250 µm

areas, one with an origin of (−250,−250) µm the other with an origin of (0, 0) µm as

estimated by the SNOM software, gives images that are di�erent in size, as expected, and

are closer to the optical microscope, but which do not show enough similarity to allow the

images to be averaged together. Some remaining element of their non-linearity is preserved,

suggesting that for smaller scan ranges the curves representing the necessary correction are

slightly di�erent to the relevant section of the 500 µm curve. After applying the correction,
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however, the images are much more similar to each other and to the true sample topography,

meaning that the approximation can be used as a partial correction. As a general protocol

the SNOM image series were corrected using this approximation, but if a more accurate

representation of the sample was required, or to allow image averaging, it was possible

to use the bidirectional topographic images to adjust the curves to provide the optimum

similarity between the two images. This latter method is, however, time consuming and

only allows the x-direction to be properly corrected.

3.4.3 Alignment

The 75 minute approximate time scale required to acquire a 150×150 pixel SNOM image

means that there was a potential for physical drifts in the sample, thermal or otherwise, to

a�ect the sampled area in sequential images. While it was impossible to completely eliminate

the sample drift, the typical distance that a sample drifted over several hours was not more

than 5−10 µm, and often much less than the pixel resolution of the images. To compensate

for any o�set between images across a set of wavelengths, the set of images was aligned to the

�rst image in that set. The alignment was performed using the topographic images for each

wavelength The ideal registry of each image to the �rst image in the series was determined

using their two dimensional cross-correlation:

XC(p, q) =

ny1−1∑
y=0

nx1−1∑
x=0

I1(x, y)I2(x− p, y − q),
− (nx2 − 1) ≤ p ≤ (nx1 − 1)

− (ny2 − 1) ≤ q ≤ (ny1 − 1)

(3.3)

which measures the total product of the two images at di�erent shifts (pq) from each other,

recording the value in XC(p, q). When the two images are optimally aligned the correspond-

ing pixel of XC is a maximum, thus the required shift of the image can be determined by

the location of this maximum. This is the only stage of the preprocessing that was per-

formed using the topography images, as the details seen in the light image are variable with

wavelength, whereas the topographies should be essentially identical. Having performed the

alignment by shifting each image by the required amount, the image set was cropped to its

common area.
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Figure 3.7: (a) A 150 × 150 pixel (250× 250 µm) SNOM image at a wavelength of
6.50 µm after applying a median correction. The correction has levelled the image
successfully but there is still a signi�cant vertical line-to-line noise contribution. (b) The
resulting image after the standard FT �ltering, showing a much reduced impact from
the `streakiness' but little loss of other information. (c) The two dimensional FT of (a)
with the fx, fy = 0 pixel at the centre. The image signal is present over the whole FT
range, but the brighter vertical stripe up the centre of the FT is due to the `streakiness'
seen in the image. (d) The mask applied to the FT. Pixels corresponding to black in
the mask are set to zero in the FT and the result is then transformed back to produce
(b).

3.4.4 Image Filtering

To further minimise line-to-line noise each SNOM light image was �ltered by taking the

two-dimensional discrete FT, which transforms the spatial signal I(x, y) of an (nx × ny)

image into spatial frequencies Î(fx, fy) using the discrete analogue of the continuous FT

given in equation 2.7 in section 2.3.2:

Î(fx, fy) =

ny−1∑
y=0

e
− 2πiyfy

ny

(
nx−1∑
x=0

e−
2πixfx
nx I(x, y)

)
(3.4)
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with the spatial frequencies fx and fy in each dimension given by 0, 1n ,
2
n , ...,

n−2
n , n−1n and

the inverse function de�ned as:

I(x, y) =

ny−1∑
fy=0

e
2πiyfy
ny

nx−1∑
fx=0

e
2πixfx
nx Î(fx, fy)

 (3.5)

By taking the FT of an image it is possible to remove particular frequency contributions that

are adding noise to the image by removing the corresponding frequency components from

the FT image and transforming back to the image. Particularly for the SNOM light images

the variation in FEL intensity from line-to-line can be mostly compensated for by dividing

by the median of the reference signal line as detailed above, but any slow variation across a

single line leads to a horizontal `streakiness' when considering vertically adjacent lines. This

vertical noise in the image can be signi�cant and was easily removed using a mask applied

to the image FT then applying the inverse transform. An example image, its FT and the

mask used on all the images, as well as the resultant �ltered image is shown in �gure 3.7.

The mask was chosen to remove the strong vertical bar of noise in the FT without removing

too much of the desired signal, although this technique removed some detail, the e�ect of

the �ltering was deemed to be a net gain in the quality of the image.
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In this chapter IR absorption experiments on human oesophageal tissue of both benign

and malignant nature are presented. A detailed assessment of the di�erent analysis tech-

niques is presented and the results of several di�erent methods of spectrum discrimination

are shown to have varying degrees of success at producing a map of the tissue types present

in the image areas.
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4.1 Introduction

The standard method of histological examination uses chemical stains to highlight par-

ticular chemical components within a sample which can then be viewed under a microscope

to be graded according to the structure and presentation of the tissues that comprise it.

The subjective and inaccurate nature of this grading presents a signi�cant problem for the

patient as well as the histologist(s) performing the procedure. By using IR spectroscopy, the

chemical information within the sample can be extracted without the need for histological

stains, and in a much more quantitative manner, opening the way for robust numerical and

computer-driven grading of tissues.

The chief aim of this work is to develop a more reliable method of investigating and

diagnosing the state of oesophageal tissue using spectral information, and as FTIR hyper-

spectral imaging provides a large amount of spectral information very quickly it presents

an ideal candidate for automated tissue labelling analyses where the spectra are grouped

by some method into categories, revealing the structure of the tissues without the need for

external input. There are many ways to allocate data into groups, and three are explored

here: HCA, KCA and MA. The aim of the work presented in this chapter was to assess and

develop an analysis procedure that could be used as a more quantitative and reliable method

of histological assessment, using a detailed analysis of two specimens, denoted A and B. The

details of the analysis methods used here are given in chapter 3.

4.2 FTIR-HSI Experimental Details

The FTIR spectrometer used for this work was a Varian 670-FTIR spectrometer in

conjunction with a Varian 620-FTIR imaging microscope produced by Varian (now Agilent

Technologies, Santa Clara CA, USA) with a 128 × 128 pixel mercury cadmium telluride

(MCT) FPA. Images were acquired with a spectral range from 950 to 3800 cm−1 with a

resolution of 4 cm−1, co-adding 256 scans. This instrument belongs to Professor Peter

Gardner's group at the Manchester Institute of Biotechnology and access to this instrument

was part of the collaborative Spectrochemical Analysis of Cancer (SCAnCan) grant. A

description of the preprocessing and analyses used for the FTIR-HSI data is given in section

3 above.
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Figure 4.1: Total absorbance maps of the raw image data and matched optical micro-
scope images. (a) − (d) the pilot group - two serial sections from two biopsy samples
dewaxed at di�erent times: (a) and (b) are freshly dewaxed samples of Barrett's oe-
sophagus (A1) and OAC (B1) respectively, while (c) and (d) are serial sections of the
same samples dewaxed approximately 6 months prior to imaging (A2 and B2). (e)−(h)
are the corresponding optical microscope images of the four image areas.

4.3 Image Data

The unprocessed images and corresponding optical microscope images are shown in �g-

ure 4.1. To assess the chemical stability of the samples with time, the pilot group consisted

of two serial sections from each of two biopsy samples. One was benign Barrett's oesophagus

and the other OAC. The �rst section of each sample was freshly dewaxed within two hours of

imaging, while the other had been dewaxed approximately six months earlier. The purpose

of these secondary sections was to assess the e�ect of age on the samples after dewaxing,

which is largely unknown. The raw image data is calculated from the data by summing each

pixel along the spectral dimension to produce a map of total absorbance over the range of

the spectrum:

αtotal (x, y) =

1453∑
n=1

αn (x, y) (4.1)

4.3.1 Sample Labelling

The sample areas A1 and B1 shown in �gure 4.1a,c were labelled, pixel by pixel, with the

aid of a experienced pathologist 1 to give maps of the tissue type at each tissue. These maps

are shown in �gure 4.2. The �rst pair of images, (a), is a detailed labelling of the speci�c

1Dr Olivier Giger, Institute of Translational Medicine, University of Liverpool
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tissue classi�cations, while the second pair of images, (b), describes a simpli�ed model,

with classi�cation into four tissue types: Barrett's epithelium, benign stroma, cancerous

epithelium, and cancerous stroma. In the second pair of images, the pixels corresponding

to tissues that do not fall into these loose classi�cations - nerve cell, debris, smooth muscle,

collagen �bres and gaps in the sample - were removed from the model.

Figure 4.2: Tissue maps corresponding to the sample areas in �gure 4.1a,b: samples
A1 and B1. These labelled maps can be used to compare the results of pixel labelling
to the underlying tissue architecture of these sample areas. The �rst pair of images
(a) represent a detailed characterisation of ten di�erent tissue types, with unknown
debris and gaps in the samples coloured black. The second pair of images (b) gives
a simpli�ed labelling of the four main tissue classi�cations, a more basic model that
facilitates easier comparisons to labellings produced through cluster analyses.

These labelled images allow a direct comparison between the clusters produced by the

cluster analyses below and the true tissue classi�cations within the two freshly dewaxed

sample image areas A1 and B1. Comparisons were drawn between the groupings given by

each of the analyses considered in this chapter using the well known statistical quantities of

sensitivity, speci�city, positive predictive value (PPV) and negative predictive value (NPV).

These terms are used here in the context of labelling success, rather than in the outcome

of a clinical trial: sensitivity is de�ned as the percentage of the relevant tissue class that is

identi�ed as such by the grouping method (equation 4.2), and speci�city is the percentage of

the other tissue classes that are not identi�ed incorrectly by the grouping method (equation

4.3). In essence they quantify the ability of a classi�cation method to correctly identify the
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right pixels and to correctly exclude the wrong pixels from each grouping. PPV and NPV are

de�ned as the number of pixels correctly included and excluded from the cluster respectively

as a proportion of the total number included/excluded (equations 4.4 and 4.5). A perfect

labelling method would include all pixels of the correct class and exclude all the pixels of

any other class, thereby giving a sensitivity and speci�city of 100%, Also identifying only,

and all of, the correct pixels giving a PPV and NPV of 100%.

Sensitivity =
Number of Correct Positives

Number of Real Positives
(4.2)

Specificity =
Number of Correct Negatives

Number of Real Negatives
(4.3)

PPV =
Number of Correct Positives

Total Positives
(4.4)

NPV =
Number of Correct Negatives

Total Negatives
(4.5)

In all of these quantities the `real' and `correct' assignments are determined relative to

the labelled images given in �gure 4.2b. For example, if a pixel labelled as cancerous ep-

ithelium in �gure 4.2 is grouped with the other cancerous epithelium pixels, it is deemed a

correct positive for the cancerous epithelium group and also a correct negative for the other

three groups; conversely if the cancerous epithelium pixel is grouped with the cancerous

stroma pixels then it is a false negative for cancerous epithelium, a false positive for can-

cerous stroma, but still a correct negative for Barrett's epithelium and benign stroma. The

di�erence between the measures of sensitivity/speci�city and PPV/NPV is that the former

two are judging the success of the grouping with respect to the `correct' tissue classi�ca-

tions, while the latter are with respect to the pixels included or excluded from the grouping

of pixels itself.

4.4 Hierarchical Cluster Analysis

The four FTIR images shown in 4.1 were subjected to a combined agglomerative HCA

which not only groups the data, but can suggest the most appropriate number of clusters to
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represent the sample structure based upon the inconsistency measure, as detailed in section

3.3.1. HCA aims to group data based on iteratively grouping the closest pair of clusters

within the data cloud. Every pixel is initially in an individual cluster on its own, and the

algorithm is applied successively until only one cluster remains. The distance between each

pair of clusters as they are joined is recorded in a dendrogram, with longer links representing

larger distances between the centers of the two clusters.

Figure 4.3: Initial HCA results. (a) The dendrogram produced by the original pre-
processed data, plotted to 15 clusters with unique colours for branches whose next
links give an inconsistency value I ≥ 0.7; (b) the cluster identi�cations with the data
clustered by the dendrogram cut to the recommended number of clusters given by the
inconsistency value.

The dendrogram produced from the data is shown in �gure 4.3a plotted to 15 clusters.

The branches are coloured with unique colours below links in the dendrogram showing in-

consistency values of 0.7 or higher, essentially determining those links that do not represent

a consistent grouping. This measure of inconsistency gives the optimum number of clusters

to be six. Figure 4.3b displays the cluster identi�cations when cut to the recommended

level of six clusters, but clearly this clustering does not represent the tissue structure of the

samples seen in �gure 4.2.

Exploring higher numbers of clusters shows that thirteen of the top �fteen clusters contain
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very few pixels. Figure 4.4 has plotted the same HCA to �fteen clusters, with the majority

(99.7%) of the pixels in the four image areas being assigned to only two of the resulting

clusters. Thirteen of the top �fteen clusters represent pixels that lie signi�cantly outside of

the normal scatter of the data, possibly pixels that have been adversely a�ected by the image

processing stages (particularly normalisation) and so represent outliers from the group. HCA

is particularly sensitive to such outliers as the clusters are formed by joining the two closest

clusters together: any point or group of points that is signi�cantly distant from the majority

of the data will be distinct until the �nal few clusters, while the remaining data is clustered

together.

The two substantial clusters in �gure 4.4, those that are not merely isolated pixels, seem

to represent a splitting of the epithelium tissue in samples A1 and A2 from the other tissue

classes, the �rst true di�erentiation in tissue class in the dendrogram. This suggests that

this epithelial tissue is most distinct from the others, and that the adenocarcinoma tissue

is closer to the presentation of the two stroma tissues. Unfortunately the di�erentiation of

further classes is hidden by the anomalous pixels.

The dendrogram branch below the two signi�cantly populated clusters was isolated to

further investigate its structure in an e�ort to identify whether further sample regions could

be identi�ed using HCA. The resulting dendrogram is shown in �gure 4.5. This dendrogram

now shows no inconsistent clusters, even with a reduced inconsistency value of 0.6 and further

reductions of the inconsistency cut-o� produces either no inconsistent links or hundreds

of them. The HCA is simply unable to determine the true groupings of tissue clusters,

either due to problems resulting from the preprocessing or by being too susceptible to the

natural variation in chemistry present in tissue samples. Thus automatically determining

the appropriate number of clusters becomes impossible and the only course of action is to

Figure 4.4: The cluster identi�cations given by cutting the dendrogram in �gure 4.3
to 15 clusters. at this point 13 of the clusters are still made up of only a few pixels,
but there are now two principle clusters representing true areas of tissue.
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Tissue Class Cluster Sensitivity Speci�city PPV NPV
(%) (%) (%) (%)

Barrett's epithelium 1 79.0 95.7 85.3 93.5
Benign stroma 2 90.8 43.5 20.0 96.8

Cancerous epithelium 2 96.6 51.1 40.6 97.8
Cancerous stroma 2 92.4 43.6 20.1 97.4

Table 4.1: Cluster-Tissue assignments for two cluster HCA shown in �gure 4.5, assign-
ing the tissue classi�cations to the cluster with the maximum sensitivity to it. These
statistics are derived only from the �rst two images, A1 and B1, of the image set.

manually investigate the cluster splitting to determine subjectively where best to cut the

dendrogram. Cutting the new dendrogram at two clusters reproduces the splitting of the

data seen in Clusters 1 and 2 in �gure 4.3, an expected result as the data has not been

modi�ed.

The tissue classi�cation of each pixel, as determined by �gure 4.2 was compared directly

with the clusters produced by the HCA for samples A1 and B1. The sensitivity, speci�city,

PPV and NPV values, as de�ned in section 4.3.1, for the grouping of the four general tissue

classi�cations were calculated. The values of these statistics for the two clusters are shown

Figure 4.5: The structure and clustering of the two signi�cant clusters produced by the
HCA. (a) The dendrogram produced by only the two signi�cantly populated clusters,
plotted to �fteen branches with unique colours for branches whose next links give an
inconsistency value I ≥ 0.6, showing no inconsistent links; (b) the cluster identi�cations
for this dendrogram plotted at two clusters, producing the same labelling as given by
the �rst two clusters in �gure 4.3b without the thirteen potentially anomalous clusters
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in table 4.1 with the four tissue types from the simpli�ed labelling each assigned to a cluster

according to which has the highest sensitivity to it. As observed in �gure 4.4, the values

in the table show that the Barrett's epithelium was clustered separately from the rest of

the tissues, with a fairly high sensitivity and speci�city. The sensitivity values given by the

grouping of the other three tissues are all very high, but because they are grouped together

the corresponding speci�cities are low: the number of correct negatives is relatively low

as there are many of the pixels that should be labelled as di�erent tissues included in the

cluster. This behaviour is even more evident in the PPV values for the cancerous epithelium,

cancerous stroma and Barrett's epithelium tissues, as the number of correct positives in low

compared to the total positives due to the combination with the other two tissues. The

NPV values are very high for each tissue type, as the clustering di�erentiates between the

Barrett's epithelium and other tissues reliably, giving a high proportion of correct negatives

or, inversely, a low number of false negatives.

Figure 4.6: The image data displayed with twelve hierarchical clusters formed from the
two signi�cantly populated clusters isolated in �gure 4.5b. There are three main clus-
ters containing the majority of the pixels in the image, with 9 small clusters around the
edges of these main clusters. Focussing on the signi�cant three clusters, the Barrett's
epithelium cluster (Cluster 1 in �gure 4.5) has split to form two separate clusters with
di�erent regions of the epithelium in each.

Cutting the dendrogram at a higher number of clusters gives further problems arising

from small groups of outlying pixels: three and four clusters splits Cluster 2 by separating

o� clusters of 19 pixels and then a further 4 pixels respectively. It is not until plotting twelve

clusters that a signi�cant division occurs. The previous nine clusters that are produced are

located around the edges of the regions de�ned by the �rst two clusters, these are again

regions of outlying data possibly resulting from thinner areas of tissue, or perhaps pixels

that contain elements of multiple tissue classes. The cluster identi�cation image for twelve

clusters in �gure 4.6 shows that the signi�cant change in the labelling of the sample (aside,

that is, from the small boundary clusters) is that the Barrett's epithelium cluster has now

split to form two distinct regions.
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4.4.1 Discussion of HCA

The sensitivity of the clustering produced by HCA to any outlying or anomalous pixels

signi�cantly diminishes the suitability of applying this analysis technique with respect to

this FTIR-HSI tissue data. There are several e�ects that may lead to individual pixel

values lying outside the normal scatter that arises from purely chemical variations within

the tissue. Any regions of tissue that have minimal absorbance, through either thickness

or natural transparency, which are not eliminated by the quality testing that is performed

in the preprocessing, could be arti�cially enhanced by the integral normalisation. As these

pixels have the lowest signal to noise, the enhancement to the noise inherent to the data is

a much more signi�cant e�ect than for pixels with stronger absorbance, and could lead to

spurious spectral values.

The inverse situation, where a pixel has an unusually high absorbance, could also lead

to an outlying point. This could occur due to a piece of debris on the sample surface, or

from damage to the sample itself, and will lead to an essentially opposite e�ect to the low

absorbance anomaly with the integral normalisation arti�cially reducing the values in the

spectrum intensity due to an isolated extreme absorption feature. Although the preprocess-

ing does attempt to eliminate the majority of the pixels that have either extreme of total

absorbance, it is also important to retain as much of the useful data from the images, result-

ing in a compromise between eliminating as many outliers as possible and keeping the useful

data. The imperfect nature of the resulting spectra means that HCA will usually identify

anomalous pixels before truly separate clusters.

Despite the di�culty in discerning the true clusters in the data from the outlier scatter,

HCA was able to establish a consistent di�erence between the pixels consisting of Barrett's

epithelium and those representing other tissues in �gure 4.5, meaning that while HCA cannot

give enough reliability, there are consistent di�erences that can be found between the tissue

classi�cations. Considering a di�erent clustering method, KCA, which is much less sensitive

to the outliers present in the data than HCA could, by essentially ignoring outlying data in

favour of general structures, give access to the structure of the data to a greater degree and

allow more di�erences to be examined.
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4.5 k-Means Cluster Analysis

In the same manner as for HCA the four FTIR images in �gure 4.1 were subjected to

KCA. KCA provides a grouping of data, similar to HCA, by collecting together pixels of

the data into clusters, but instead of iteratively building the clusters, a pre-de�ned number

are randomly assigned and an iterative process adjusts them to give an optimum grouping,

as detailed in section 3.3.2. To ensure the reliability of the clusterings produced, the KCA

was repeated 5 times (replicates) and the solution with the lowest total sum distance from

each cluster centroid to the pixels in that cluster, that is the most tightly clustered solution,

was taken as the �nal clustering. In the same way as for HCA the groupings produced at

each cluster number were compared to the labelled images in �gure 4.2 to give an idea of

how well the clustering represents the tissue structure and which number of clusters is most

appropriate. The only way to determine what number of clusters is appropriate is to specify

each value individually and investigate the structures grouped in each case. Furthermore,

while the HCA method simply splits one of the higher clusters each time the cluster number

is increased, the KCA method creates an entirely new clustering. This di�erence means that

changing the cluster number in KCA can have a dramatic e�ect on the regions picked out

by the analysis: each clustering is essentially independent.

4.5.1 2 Cluster KCA

Figure 4.7: The clustering results for KCA with two clusters. The identi�cation map
produced is very similar to that seen for the �rst splitting of clusters using HCA above
(�gure 4.5b), producing a cluster, predominantly consisting of Barrett's epithelium tis-
sue, separated from the other tissue classi�cations. This is very similar to the clustering
given by the HCA in �gure 4.5.

Specifying a grouping into two clusters gives the image shown in �gure 4.7, this image is

very similar to the �rst signi�cant cluster splitting seen in the HCA above, speci�cally in �g-

ure 4.5b. The KCA performed here has retained the majority of the image data in a primary

cluster, whilst separating the regions of Barrett's epithelium tissue into another. There are
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a few small areas of mislabelling of this Barrett's epithelium cluster in the B samples which

are approximately co-located in the serial sections, implying that the mislabelling is due to

a true similarity between the spectra in the Barrett's epithelium tissue and this region of

tissue.

Tissue Class Cluster Sensitivity Speci�city PPV NPV
(%) (%) (%) (%)

Barrett's epithelium 1 72.2 97.8 91.1 50.7
Benign stroma 2 93.8 39.9 19.6 97.6

Cancerous epithelium 2 98.4 47.0 39.1 98.8
Cancerous stroma 2 93.6 39.8 19.3 97.6

Table 4.2: Cluster-Tissue assignments for two cluster KCA, assigning the tissue clas-
si�cations to the cluster with the maximum sensitivity to it. As with the HCA above,
the statistic values are calculated only using the images for samples A1 and B1

The sensitivity, speci�city, PPV and NPV values were again calculated for the images of

A1 and B1 in table 4.2 and show very similar quantities to the values given by the HCA in

table 4.1. The clustering of Barrett's epithelium is less sensitive in this KCA, resulting in a

much lower NPV as well, but the speci�city is higher.

4.5.2 3 Cluster KCA

Figure 4.8: The clustering results for KCA with three clusters. This has clustered the
stroma tissues from the samples together, grouping the two di�erent types of epithelium
into clusters of their own.

The cluster map given by the three cluster KCA for the combined image data is shown in

�gure 4.8. The use of three clusters, as with two, distinguishes Barrett's epithelium tissue as a

cluster separate from other areas of tissue. In addition to this, another cluster contains pixels

mostly corresponding to cancerous epithelium, with both stroma types combined together

into the remaining cluster. It can be seen that the areas of the OAC samples that were

mislabelled at 2 clusters are also mislabelled as Barrett's epithelium when three clusters are

used, and a few regions of the Barrett's oesophagus samples have been mislabelled as the

cancerous epithelium cluster.
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Tissue Class Cluster Sensitivity Speci�city PPV NPV
(%) (%) (%) (%)

Barrett's epithelium 1 69.2 98.1 92.2 90.9
Benign stroma 3 89.0 71.2 32.5 97.7

Cancerous epithelium 2 79.8 89.0 71.4 92.7
Cancerous stroma 3 54.6 65.8 19.7 90.4

Table 4.3: Cluster-Tissue assignments for three cluster KCA, assigning the tissue clas-
si�cations to the cluster with the maximum sensitivity to it.

Tissue Class Cluster Sensitivity Speci�city PPV NPV
(%) (%) (%) (%)

Barrett's epithelium 1/3 46.0/42.3 89.3/99.7 57.8/97.7 83.9/84.5
Benign stroma 4 71.4 81.0 36.9 94.8

Cancerous epithelium 2 77.9 89.3 71.5 92.1
Cancerous stroma 4/2 41.6/40.9 76.3/74.0 21.2/19.4 89.5/89.1

Table 4.4: Cluster-Tissue assignments for four cluster KCA, assigning the tissue clas-
si�cations to the cluster with the maximum sensitivity to it.

4.5.3 4 and 5 Cluster KCA

Increasing the clusters from two to three allowed two of the four general tissue groups

(Barrett's epithelium, benign stroma, cancerous epithelium, cancerous stroma) in �gure 4.2

to be clustered independently. From this it might be hoped that at four clusters, each of

the four types are separately identi�ed. The clustering produced with four clusters in �gure

4.9 shows that this is not the case: instead of �nding two stroma clusters, one for each

classi�cation, the Barrett's epithelium tissue is now divided between two clusters, generally

able to be described as the optically more and less dark components of the tissue.

Figure 4.9: The clustering results for KCA with four clusters. The addition of another
cluster has still maintained the cancerous epithelium cluster

At �ve clusters the Barrett's epithelium and cancerous epithelium tissues are still mostly

clustered separately, but rather than each of the two stroma being clustered independently,

the two clusters are split almost evenly between both samples. This division here suggests

that the model for the stroma is too general. It is known to be a complex tissue compris-

ing several types of cell with variable density and composition, especially in this sample
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sections. The variability can be seen in the optical images in �gure 4.1e-f as a variation

in the optical density of the sample,but the chemical variations resulting from this could

potentially be much more signi�cant. As shown in �gure 4.10 at �ve clusters there is a

blurring of the clusters, that is the clusters are less sensitive to any one class, and three of

the four classes (Barrett's epithelium, benign stroma, cancerous epithelium and cancerous

stroma) are grouped across several clusters to a greater degree, creating clusters with a mix

of classi�cations.

Figure 4.10: The clustering results for KCA with �ve clusters. While there are now
two clusters containing predominately stroma pixels, they are not speci�c for either
type of sample. The de�nition between the clusters is also decreased when compared
to the results for fewer clusters.

4.5.4 6, 7 and 8 Cluster KCA

Extending the number of clusters further further decreases the level of success in dif-

ferentiating between the tissues, as shown in �gure 4.11. The degradation is somewhat to

be expected from the fact that there are four groups of tissues that are being compared to

clustering of 6 or more groups of spectra. If the data is naturally grouped into 4 or 5 clus-

ters, adding further clusters into the analysis will obscure this structure by adding clusters

in between the true clusters, bringing spectra from each group together and `blurring' the

di�erentiation. If considering the full 13 classi�cations of tissue, it is important to note that

the grouped classi�cations were made by combining similar tissue classes together, thus the

lack of di�erentiation will persist into the sub-classes that make up each group.

From the cluster images in �gure 4.11 it can be seen that, while the Barrett's epithelium

cluster splits further into several sub clusters, the cancerous epithelium tissue class is consis-

tently assignable to a single majority cluster, and until eight clusters there is no signi�cant

secondary cluster of cancerous epithelium tissue.
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Figure 4.11: The clustering results for KCA with six (a), seven (b) and eight (c)
clusters. The di�erentiation between tissue classi�cations further degrades with in-
creasing cluster number. The cancerous epithelium tissue retains a single majority
cluster throughout which only starts to degrade at eight clusters.

4.5.5 Discussion of KCA

Comparison with HCA

The cluster images produced by KCA are a signi�cant improvement upon those from

the HCA. KCA is much less sensitive to outlying data points and so is able to look more

precisely at the structure of the data. The agreement for two clusters between HCA and

KCA is a strong indicator that the structure observed is not through chance, but rather is a

feature of the data. The ability of the three cluster KCA to essentially cluster together the

stroma, the Barrett's epithelium and the cancerous epithelium separately shows that while

the stroma tissues are too similar to distinguish at this level, the epithelial tissues in the

Barrett's oesophagus and adenocarcinoma are signi�cantly di�erent both from each other

and from the stroma tissue.

The similarity between the cancerous and benign stroma tissues is demonstrated fur-

ther by the lack of individuality within the clusters, even up to eight: in each analysis the

cluster(s) that correspond to the areas of stroma tissue are always a mixture of both can-

cerous and benign. While one may possess a majority of Barrett's epithelium or cancerous
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epithelium, neither is speci�c enough to truly label one tissue classi�cation.

Ability to Identify Cancerous Tissue

Figure 4.12: The four statistics for the classi�cation of the cancerous epithelium tissue
plotted for varying number of clusters. Also plotted is the mean value of the four
quantities. This is maximised at the optimum number of clusters, in this case 5 clusters,
with three clusters giving a slightly lower value.

The aim of these analyses was to determine the ability of HCA and KCA to identify the

presence of di�erent tissues within a sample imaged using FTIR-HSI. In terms of this aim the

results of KCA were a success in that even up to 7 clusters this approach is able to maintain a

single `Cancer' cluster corresponding to the cancerous epithelium tissue regions. This cluster

gives access to a quantitative measure of how successful each clustering is with respect

to identifying cancerous epithelium: the sensitivity, speci�city, PPV and NPV calculated

Cluster Sensitivity Speci�city PPV NPV
(%) (%) (%) (%)

2 98.4 47.0 39.1 98.8
3 79.8 89.0 71.4 92.7
4 77.9 89.3 71.5 92.1
5 72.6 95.5 77.1 90.7
6 63.9 95.9 84.2 88.5
7 64.2 95.8 84.0 88.5
8 56.7 93.7 85.7 86.6

Table 4.5: The statistic values for samples A1 and B1 di�erentiating the cancerous
epithelium tissue class for varying cluster number. In each case the identi�ed cluster
is the one with the highest sensitivity to cancerous epithelium.
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at each cluster number for the cluster representing the cancerous epithelium tissue. The

clustering that maximises all four of these for the cancerous epithelium cluster should be the

optimum number to use to identify this tissue classi�cation. Table 4.5 shows the trends in

these four quantities with varying cluster number. The sensitivity and NPV both decrease

for higher numbers of clusters, with the decrease in sensitivity far outstripping the decrease

in NPV, while the speci�city and PPV both increase markedly with increasing number of

clusters. These trends, along with the mean of the four values at each cluster number, are

plotted in �gure 4.12. The average value shows a surprisingly �at trend after the initial

jump from two to three clusters, and has a maximum value at 5 clusters, with three clusters

a close second.

Finding the optimum value to be �ve clusters suggests that this is the best representa-

tion of the tissue structure. At �ve clusters the areas identi�ed roughly correspond to the

optically lighter and darker Barrett's epithelium areas, two stroma clusters shared between

the two types of sample, and a single cancerous epithelium cluster. As stated above the two

stroma components are likely to correspond to di�erent densities of stroma tissue, which is

�brous and contains many gaps and thinner sections after dewaxing. Thus this �ve-cluster

representation is an appropriate way of grouping the tissues.

The maximum sensitivity of 72.61% is far from ideal: the cluster analysis only identi�es

72.61% of the cancerous pixels. However, the speci�city is good, showing that the cancerous

epithelium cluster is 95.52% accurate in excluding the other tissue types. The PPV and

NPV give similar statistics, but with respect to the contents of the cluster: for �ve clusters

the cancerous epithelium cluster is 77% cancerous epithelium tissue (a PPV of 77.05%) and

only 9.3% of the other tissue types were included (a NPV of 90.7%).

Discussion on Sample Morphology

The results of the KCA highlight some details of the tissue morphology that are a product

of the type of samples being imaged. At four and �ve clusters the Barrett's epithelium and

stroma respectively are successively separated into two clusters. In the case of the Barrett's

epithelium clusters the two clusters label the optically darker and lighter regions of the

Barrett's epithelium tissue. The former correspond to areas with a high density of nucleii

while the latter are regions of particularly low nuclear density. These di�erent areas are

produced by the relative orientation of the columnar epithelial cells and the cut across the
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Figure 4.13: An illustration of how di�erent cuts through the three-dimensional crypt
shape in a sample of Barrett's oesophagus tissue can lead to very di�erent two-
dimensional cross-sections.

sample to produce the section. The epithelial cells in Barrett's oesophagus are columnar,

and as such have a major axis that points towards the lumen (inside) of the crypt it is part

of. The nucleii of these cells are typically located at the base, away from the lumen. If the

epithelial cells are orientated with their major axis parallel to the direction of the section

cut, the cross-section of the cells will have two regions: the bases of the cells forming a dark

layer of nucleii and the upper portion of the cells forming a layer comprising of mainly cell

walls and cytoplasm. Alternatively if instead the cut is perpendicular to the cell major axis

entire regions of the cut tissue can be only nucleii or only cytoplasm, leading to much larger

`patches' of a single component of the epithelial tissue. By varying the cut angle, or more

appropriately, as the orientation of the cells varies across the image area, di�erent pro�les

of cells are created, leading to a complex picture of the tissue. Some simple examples of

this variability are shown in �gure 4.13, though the true samples are more complicated than

this, the general principle that di�erent cuts through the sample give dramatically di�erent

shapes of tissue is demonstrated.

These di�erent presentations of the same tissue have all been grouped together for the

generalised tissue classi�cations, but when subjected to KCA the clusters pick out the dif-

ferences. Furthermore, depending on the depth of a cell in a crypt, its presentation and

composition can also vary [3]. The full thirteen classi�cation image attempts to capture

some of this complication by labelling each di�erent type of region but, as stated above,
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when clustering to higher cluster numbers the KCA does not pick up on the subtler di�er-

ences.

E�ect of Age

A secondary aim of this investigation was to assess the e�ect that the time elapsed

between the removal of the wax and imaging of the samples had on the quality of the spectral

information obtained. This is important to characterise, as the SNOM imaging of the same

type of samples took a considerably longer time than the FTIR-HSI, with a dewaxed sample

being imaged over several days. To that end, the second pair of FTIR-HSI images, A2 and

B2, were acquired in approximately the same area of serial sections of the same samples

but dewaxed approximately six months before imaging. Despite this di�erence in age, the

samples show little variation in terms of the way that areas are labelled (other than those

expected from the variation between serial sections) after the preprocessing stages detailed

in section 3.2.

Since the secondary samples were not labelled as the primary samples were in �gure

4.2, chie�y because of the time taken to perform this step, the accurate labelling statistics

are unknown, but it can be seen from a comparison with the optical images of the scan

areas in �gure 4.1g,h that the clustering is selecting the same types of areas in both primary

and secondary samples. Furthermore, if a signi�cant di�erence between the fresh and older

samples was present, they would be likely to cluster independently. This result implies that

the FTIR-HSI data of older samples is still comparable to that of new samples, something

that was previously unknown.

The general medical practice with �xed and wax-embedded biopsy samples is to use

dewaxed specimens as soon as possible after removing the para�n wax due to worries that

the sample will degrade. It is important to note that the samples used in this work were not

stored in any particularly preservative manner, simply being stored at room temperature in

a closed, but not airtight, petri dish. Knowing that the samples are at least qualitatively

the same after six months implies that after two or three days there should be no discernible

degradation of the chemical signals in the samples. It is important to note that this does

not rule out other types of degradation that the FTIR-HSI is not sensitive to.
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Applicability to a Generalised Case

Any analysis aimed at determining if an oesophageal tissue sample is benign or cancerous

needs to be applicable to any appropriate sample image data. Cluster analysis is a good

initial approach as it requires very few user inputs: it is an essentially unguided analysis

technique. This type of analysis also has its downsides. While it is able to identify these

tissue types in one pair of samples, it does not follow that it will produce the same results on

another pair of samples. For example, simply setting the KCA algorithm to �nd 5 clusters

in a single image corresponds to over-clustering like that seen for the higher cluster numbers

in �gure 4.11, an individual sample could contain up to 4 of the �ve types of cluster seen

here, but should not contain more according to the simpli�ed model in �gure 4.2b. Plotting

�ve clusters would obscure the tissue structure in the same way as plotting six or seven

clusters does in the above analysis. Most important of all is that in both HCA and KCA

what is returned is simply a map of clusters, with no knowledge of what they correspond

to. It is only by comparing the maps produced with a previously determined map that the

knowledge of which cluster corresponds to which tissue classi�cations becomes evident.

The above reservations do not obviate the value of KCA as an investigative tool. The

results obtained demonstrate that it is possible to distinguish between the di�erent tissue

types based on their spectra and that the di�erences are consistent enough to group the

majority of each tissue type. In addition to this it can also be seen that the loose classi�-

cations of the four tissue types: Barrett's epithelium, benign stroma, cancerous epithelium

and cancerous stroma are successful but are also, as mentioned above, a simpli�cation of

the actual tissue structure, giving two clusters for both the Barrett's epithelium and stroma

classi�cations.

The KCA was especially good at reliably identifying the cancerous epithelial tissue from

the other tissues. This could be used as a diagnostic if the analysis used on the data is aimed

toward speci�cally selecting this tissue. To identify the wavenumbers best at di�erentiating

between the cancerous epithelium and other tissues, the result of clustering to 5 clusters were

taken as the optimal clustering. The average spectra of the cancerous epithelium cluster and

the combination of the other clusters were compared by taking the square of the di�erence

between them, shown in �gure 4.14, given by:

αdiff = (α4 mean − α1,2,3,5 mean)2 (4.6)
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Figure 4.14: The spectral square di�erence between the average spectrum of the can-
cerous epithelium cluster and the other four clusters combined, calculated for 5 clusters.
There are four principal peaks that give a di�erence between the averages: 1071, 1462,
1628 and 1692 cm−1

The four largest peaks are found at 1071, 1462, 1628 and 1692 cm−1 (9.31, 6.84, 6.14

and 5.91 µm respectively). There is no guarantee that the di�erences between the average

spectra are consistent over the whole of the sample, but it provides a start point to progress

analysis further.

While KCA can identify di�erences in the data, those di�erences are not necessarily

due only to the chemical variations in the sample and the approach could �nd entirely

independent types of clustering for di�erent sample data. In order to provide a method

of di�erentiating between spectral data that is not dependent only on any self-consistent

variation within the set being tested, a more guided or directed approach must be used, to

label these spectra in a manner that can be relied upon across multiple sets of independently

acquired data. With this aim, a method of analysis that learns the signature of several

classi�cations from a training set and applies that knowledge to label another, unknown set

of data was developed.

4.6 Metric Analysis

The use of di�erent techniques to label IR spectra from biological samples is a large

area of active research. There are many examples of the use of both HCA and KCA as well

as other types of unsupervised clustering techniques (for example [67][71][72]) applied to

classi�cation of cancerous cells and tissues. The application of unsupervised techniques like
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these remains a popular and intuitive method for accessing complex information patterns

within a spectroscopic data set.

With the advance in recent decades of increasingly powerful computers the development

of machine learning techniques has been possible. Machine learning aims to use an a priori

knowledge of the classi�cations or behaviour of a small set of data to teach an algorithm

to be able to statistically predict the classi�cations of another, larger set of data, such

as FTIR spectra acquired over a candidate biopsy sample, in order to label the di�erent

regions of the sample. Many variants of machine learning exist, all of which tend to provide

a probabilistic measure of the classi�cation of each tested spectrum. discriminant function

analysis (DFA) [54] and linear discriminant analysis (LDA) [73] aim to de�ne functions of the

sample spectra that discriminate between them. arti�cial neural networking (ANN) models

the learning algorithm in a similar structure as a brain [74].

These approaches to automated labelling of sample spectra according to common be-

haviours is similar in nature to the cluster analyses considered above, but by sacri�cing

the unsupervised analysis in order to gain the ability to direct the analysis towards desired

di�erentiations.

While machine learning algorithms are well established in analysing FTIR spectroscopic

data from tissue for cancer diagnosis, the application of such techniques to SNOM images

requires an approach that is as �exible and accessible as possible. For this reason, a variant

of the above machine learning techniques was developed speci�cally for this work.

The principle applied in this MA is that of a basic machine learning algorithm: a small

set of known data is used as a training set to quantify the response of the di�erent tissue

classi�cations to a given quantitative measure, or metric. Once the outcome of the met-

ric has been calculated for each classi�cation, it can then be used to label unknown data

based upon its response to the same metric. This method represents a signi�cant advantage

over cluster analysis by identifying data in a directed way, classifying pixels according to

the behaviour expected by each tissue class, rather than simply classifying groups by the

strongest di�erences between them. In addition this approach is very �exible, as any test

to the candidate data that produces a quantitative outcome can potentially be used as a

metric. The disadvantage of MA lies in the requirement of an adequate training set. The

classi�cation can only be as accurate as the training set given to the MA, and the same data

may be slightly di�erently labelled with a di�erent training set. Therefore an e�ective MA
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requires not only a suitable metric - or set of metrics - to be de�ned, but also a high quality

training set of su�cient size to ensure that the labelling is robust and reliable.

4.6.1 Labelling Method

The following section provides the procedural details and mathematics used in the MA.

The general principle can be broken into two stages: training the algorithm and applying

the learned discriminator metrics to the unlabelled data.

Training the Analysis

The MA is trained with a set of j groups of data with known classi�cation, (ζ1, ζ2, ζ3, ..., ζj),

with each group of data containing n spectra corresponding to a speci�c classi�cation:

ζi = [α1, α2, α3, ..., αn] (4.7)

There is no requirement that all classi�cation groups be the same size, but a larger number

of spectra in the training set group will lead to a more accurate analysis. For this FTIR-HSI

data the training set consisted of 200 randomly selected spectra of each of the four simpli�ed

tissue classi�cations shown in �gure 4.2. This number was chosen to represent su�cient data

to reliably model the characteristics of the tissue classes without relying on too much of the

original data set: the 200 pixels correspond to less than 5% of each class. Potentially any

quantitative measure produced from these spectra can be used as a metric, providing that

it has di�erent values for each tissue classi�cation.

Having de�ned a metric f(α), it is evaluated for each of the training set classes producing

a vector of n values for each classi�cation

[x1, x2, ... , xn] = [f(α1), f(α2), ... , f(αn)] (4.8)

where n is the number of spectra in the relevant class of the training set. Realistically any

given metric will produce a distribution of values for each tissue class, which needs to be

su�ciently distinct from those produced by the other classes to produce a reliable labelling

method. The metric values are used to form a histogram, with 50 bins over their range,

which is then �tted with an appropriate function to model their distribution, Mi(x). Each

classi�cation produces a distribution for a given metric, which is then compiled with the
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distributions produced by the other classes in order to be used in the labelling stage.

In this work the distributions of metric values were often very close to a Gaussian dis-

tribution:

Mi(x) = Ae−
(x−µ)2

2σ2 (4.9)

where A is the amplitude of the Gaussian curve, µ is the mean of the classi�cation's metric

values and σ is their standard deviation from the mean. MATLAB was used to �t the

distributions with Gaussian functions over an initial range of µ± 2σ de�ned by the average

and stdev functions for the whole data set. As these functions are sensitive to outlying data,

the �t produced over that range was used to generate new values for the mean and standard

deviations as de�ned by the functional form and these were compared to the original values

from the full data set. If the standard deviation of the �t was less than half that of the

original data then the �tting procedure was repeated over the new µ± 4σ range de�ned by

the �rst �t result. This is e�ective at removing any outlying data that might otherwise skew

the �t produced by MATLAB and ensures that the modelled distribution is as accurate as

possible.

Figure 4.15: A histogram produced by the labelled cancerous epithelium tissue spectra
at the Amide I peak at 1650 cm−1 and the �tted Gaussian distribution. It can be seen
that the histogram is very Gaussian in nature, making this approximation a good one,
but does have an element of positive skew.

Fitting a Gaussian curve to the histograms produced by a metric is clearly not always

appropriate. With this work it was used as an approximation to simplify the analysis,

and was found to be a relatively good approximation for simple metrics. An example of a
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histogram produced from the FTIR data and the corresponding �t to it is shown in �gure

4.15. The metric values used to produce the histogram are simply the values of absorbance

from a single tissue type, cancerous epithelium, at a single wavelength, 1650 cm−1. The

�tted histogram closely resembles a Gaussian pro�le, but does have a slight positive skew.

Despite this, the approximation was deemed to be appropriate for the majority of metrics.

To increase the reliability and accuracy of the analysis, multiple metrics may be em-

ployed. While a single metric could allow each classi�cation to be successfully labelled if the

distributions are well separated from each other, the reality of the data being analysed here

is that the di�erences between the tissues are small. From any given metric it is unlikely that

the FTIR-HSI data will give narrow, well-separated distributions for each classi�cation and

thus it is necessary to use several di�erent metrics to distinguish between even two tissue

classi�cations.

If the metrics and training set are unchanged, the training stage of the MA needs be

done only once, and can be applied to multiple labelling stages, giving a much faster labelling

method than HCA and a comparable speed to KCA.

Applying the Labelling

Having identi�ed the distributions Mi(x) that describes the behaviour of each class with

respect to a given metric from a training set of known data, the MA applies this knowledge

to a set of unknown data, in this case the FTIR-HSI data cube. As in the two cluster

analyses above, each spectrum is considered independently from its spatial location, and the

classi�cation label is tracked back to the spatial location after it has been labelled.

An initial check on each spectrum is performed to eliminate those spectra that correspond

to areas of low absorbance, essentially removing the spectra of gaps in the samples, similar

to the check performed in the original preprocessing stages for the FTIR-HSI data. Any

spectrum with an integral intensity less than 12% of the maximum integral intensity observed

for the data being labelled are excluded from the labelling process.

Each test spectrum αtest(k) gives an associated metric value

xtest = f(αtest) (4.10)

that needs to be compared to the distributions given by the training set. The metric dis-
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tributions from the di�erent classes can potentially be dramatically di�erent in width and

height and so the method for comparing the value of a metric to the distributions must

compensate for this. The Gaussian distributions M(x) are area-normalised such that they

have an integral over all x of 1:

∫
Mi,norm(x)dx = 1; Mi,norm(x) =

Mi(x)∫
Mi(x)dx

(4.11)

This produces a probability density function for the classi�cation as a function of metric

value, but to obtain a true probability from this distribution requires an area of the curve:

a range of x to integrate over. It is not clear what this range would represent for complex

metric forms, but in general the uncertainty in the value of the metric, ∆x gives a quantity

that not only provides the suitable range x ±∆x but also provides a way of compensating

for the variable distribution width. For a metric value that lies within an overlapping region

of a narrow and a broad curve the area found for the narrow distribution, and therefore

the corresponding probability, will appropriately be much higher than for the broad curve,

representing the speci�c nature of a narrow distribution of metric values and therefore its

increased ability to identify that classi�cation. The probability that a given spectrum belongs

to the class ζi is evaluated by the con�dence coe�cient ci given by:

ci =

∫ xtest+δx

xtest−δx
Mi,norm(xtest)dx (4.12)

If multiple metrics xtest,j = fj(αtest) are used, the con�dence coe�cients in equation 4.12

are generalised to

ci,j =

∫ xtest,j+δx

xtest,j−δx
Mi,j,norm(xtest,j)dx (4.13)

calculated for each metric j and for each classi�cation i, and the combined con�dence coef-

�cients for each classi�cation are found by summing the individual values for each metric:

ci =
∑
j

ci,j (4.14)

The total con�dence values, χi, for each spectrum across each possible classi�cation are

sum-normalised:

χi =
ci∑
i
ci

(4.15)
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to meet the requirement that the sum of probability over the classes is 1. After testing each

metric against each class the spectrum is assigned to the class for which it has the highest

con�dence.

The MA produces an image of classi�cation identi�cations in the same way as the cluster

analyses do, with unique colours representing each tissue classi�cation. In addition to the

colour, the pixels are also varied in intensity according to the con�dence in the assigned

class: brighter pixels are more con�dent.

4.6.2 KCA-Inspired Absorbance Metrics

Figure 4.16: The distributions produced by the four distinguishing wavenumbers that
were identi�ed by the �ve cluster KCA results evaluated over the four training sets for
the MA. Each training set was formed from 200 random spectra of one of the simpli�ed
classi�cations. Although these wavenumbers were identi�ed to classify the cancerous
epithelium tissue the distributions for Barrett's epithelium are by far the most distinct.

One of the most basic forms of metric that could be applied to the FTIR-HSI data is the

values of absorbance at speci�c wavenumbers. Those wavenumbers identi�ed in �gure 4.14

(1071, 1462, 1628 and 1692 cm−1) were taken as four metrics to label the sample, as these

should be able to provide a good separation of the cancerous epithelium data, thus giving a

diagnostic for that tissue. In order to provide a training set, 200 spectra from each of the

four simpli�ed classi�cations given in �gure 4.2 were selected at random to give the most

unbiased training set. These spectra were taken only from the �rst two images, but were

used to label all four images.

The metric distributions produced for the four tissue types are displayed in �gure 4.16.

The distributions are far from an ideal situation of a minimal overlapping area between,
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but even with a large overlap, it should be possible to produce a map of the sample tissues.

The wavenumbers were chosen to distinguish the cancerous epithelium tissue, but instead of

�nding clearly separated distributions for the cancerous epithelium tissue by which it could

be easily labelled, it is the the Barrett's epithelium tissue distributions that are all by far the

most distinct, with peaks at comparatively much higher metric values than the other three

types. Interestingly the cancerous epithelium and stroma sets give very similar distributions,

while the benign stroma set is more distinct from the cancerous stroma, in contrast to

the combined cancerous/benign stroma clusters and distinct cancerous stroma/epithelium

clustering seen in most of the KCA clusterings shown above.

Figure 4.17: The map of labeling produced by the MA using the absorbance values
at four wavenumbers as the metrics used to distinguish between the tissue types. In
the same way as for the cluster analyses above the tissue classi�cations are given
by colours, with the added intensity scale to represent the con�cence value for each
pixel: brightly coloured pixels are high con�dence, darkly coloured pixels are low
con�dence. The Barrett's epithelium tissue has been con�dently labelled, while the
cancerous epithelium and stroma are mainly grouped together under the cancerous
epithelium label and the Barrett's epithelium tissue is not con�dently labelled, though
it does mainly exist in the Barrett's-containing sample areas it is also labelled in the
cancerous tissues signi�cantly as well, along with the Barrett's epithelium tissue.

Applying the labelling to the whole set of image data produces the mapping in �gure 4.17.

Rather than mapping the cancerous epithelium tissue con�dently, the Barrett's epithelium

tissue is the most con�dently and accurately labelled. The cancerous epithelium and stroma

tissues have been mainly grouped together under the cancerous epithelium label, and the

benign stroma tissue is also signi�cantly included in that label. A large portion of both

cancerous samples have also been labelled using the two Barrett's labels. In the same way

as for the cluster analyses above the sensitivity, speci�city, PPV and NPV were calculated

for this mapping and shown in table 4.6.

The cancerous epithelium and Barrett's epithelium labels give relatively high sensitivities,

though the sensitivity for Barrett's epithelium is much higher. The general ability of the

Barrett's epithelium label is similar to, and slightly better than, the labelling achieved by

the three cluster KCA above, but the cancerous epithelium label does not reach the level of
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Tissue Label Sensitivity Speci�city PPV NPV Number
(%) (%) (%) (%) Labelled

Barrett's epithelium 81.61 90.94 74.09 93.97 8696
Benign stroma 17.71 93.02 28.36 87.88 2761

Cancerous epithelium 86.65 69.76 49.79 93.79 14661
Cancerous stroma 0.37 99.49 9.88 86.67 162

Table 4.6: Tissue assignments for the labels given by the �rst MA, using the �rst two
images A1 and B1 only and comparing to the labelled images above as before. The
two epithelial clusters are labelled with relatively high sensitivities, and the Barrett's
epithelium tissue label is also very speci�c. The other two classi�cations, having been
grouped together, show very low sensitivity. The cancerous stroma tissue in particular
has a sensitivity of only 0.37% simply because most of the corresponding spectra have
been labelled as cancerous epithelium while only 162 spectra were labelled as cancerous
stroma.

success achieved by the KCA. The Barrett's epithelium tissue label is also very speci�c. The

other two classi�cations, having been grouped together, show very low sensitivity, and poor

PPV. The cancerous stroma tissue in particular has a sensitivity of only 0.4% simply because

most of the corresponding spectra (only 162 spectra were labelled as cancerous stroma) have

been labelled as cancerous epithelium.

The mapping obtained by the procedure described above is in line with the behaviour

of the distributions given by the metrics in �gure 4.14: the Barrett's epithelium mapping is

more reliable as it is removed from the other three distributions in all �ve metrics, while there

is a large overlap between the other three classes such that they are not easily di�erentiated.

The cancerous epithelium distribution is slightly narrower than the other two distributions

with which it has a signi�cant overlap, therefore having a higher distribution value and

thus will give larger areas, and correspondingly larger con�dence values, for the cancerous

epithelium, cancerous stroma and benign stroma spectra over a relatively large range of each

metric.

This labelling displays some merits but it is not as successful as the KCA method de-

scribed earlier at recognising which tissue samples are benign or cancerous as all four image

areas here have signi�cant amounts of each of the tissue labels present within them. The

low success of this labelling stems from three sources. The �rst shortfall is the number of

metrics used. Increasing the number of metrics should give increased information about

each spectrum that is tested, and the labelling should be better able to distinguish each

classi�cation. The second potential issue is that the labelling produced by MA will only

ever be as good as the training set used. Selection bias is minimised by randomly selecting
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a training set from the labelled data, though this bias is still present to some degree in

the accuracy of the original labelling itself. The quality of the randomly selected spectra

may also be lower than could be necessary to produce a good labelling of the test data. A

third e�ect that could be a cause of di�culty in labelling the spectra is seen in the metric

distributions in �gure 4.14 where the general trend of the four tissues is similar across all

four metrics. The peaks are all in the same order: cancerous stroma, cancerous epithelium,

benign stroma, Barrett's epithelium with similar relative widths. This correlated behaviour

across the �ngerprint region could be due to the intrinsic behaviour of the tissue, but could

also be due to di�erent components of the tissue having consistently variable thickness.

While the tissue samples were cut to a uniform thickness before dewaxing, after the

para�n wax was removed the samples will have relaxed to account for the volume removed

by this process. The di�erent tissue components will relax to di�ering degrees due to the

amounts of their structural components that are una�ected by dewaxing. The thicker areas

of tissue will give increased absorbance across the spectrum and so will lead to higher values

for each metric used here, as observed for the Barrett's epithelium tissue. The Barrett's

epithelium tissue is also non-uniform, as discussed in the KCA discussion above in section

4.5.5, which will lead to a larger variation in absorbance over the tissue, which is seen in the

corresponding distributions of metric values above.

To mitigate these e�ects, more and better metrics had to be found, which took into ac-

count the variable thickness and other spatial e�ects that could interfere with the application

of the MA. One such metric is the ratio of the absorbances at two di�erent wavenumbers.

This is only a slightly more complicated metric than taking the absorbance at a single

wavenumber, but by taking the ratio any multiplicative factors a�ecting the spectrum as a

whole will cancel from the �nal metric values. To increase the number of metrics, it becomes

necessary, especially with a more complex metric form, to �nd a method of identifying the

metrics that will produce the most reliable labelling method.

4.6.3 Automated Metric Optimisation

To develop the MA further, a self-optimisation metric-�nding routine was implemented

to identify and use the optimum metrics for discriminating between speci�c pairs of classi�-

cations in the training set. The following is a description of the implementation and outcome

when applied to the FTIR-HSI above.
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Optimisation Method

The training set for the MA essentially already contains information on how to distinguish

its component classi�cations. By providing separate groups of spectra that are already

labelled as distinct, it simply becomes a task of identifying consistent di�erences between

the two groups. By choosing a general metric form based upon combinations of spectral

values and evaluating a range of speci�c metrics based on permutations of the general form,

the optimum combination can be identi�ed for a given comparison.

In this work the general form of metric used was a ratio of one absorbance value against

another at a di�erent wavenumber:

f (αtest (k)) =
αtest(k1)

αtest(k2)
(4.16)

which provides several advantages over more complex discriminants. Firstly it is simple to

understand in terms of the spectrum; it gives the absorbance at a particular wavenumber, as

in section 4.6.2 with raw wavenumber values, but references them against another value in

the spectrum to give a comparison between the two. Secondly it allows several potentially

confounding e�ects to be removed, or at least reduced, from the �nal value produced. The

main e�ect that is eliminated is the variable thickness of the sample leading to a variation

in total absorbance from pixel to pixel, essentially changing the amplitude of the spectrum.

By taking the ratio of two values, this amplitude cancels. A side e�ect of this cancellation is

that it removes the need to normalise the spectra in the preprocessing stages, and the use of

wavenumbers directly means that it is also unnecessary to perform the PCA to the data. It

is also the case that the MA should be able to directly identify the gaps in the sample, and

so the integral limit exclusion imposed on the data is also unnecessary. As a result, the only

preprocessing stage that needs to be applied to the data is the Mie scattering correction,

which is now especially important as any discrepancies in peak locations will have large

e�ects on the outcome of ratios based on those peaks.

Rather than evaluating a metric for every classi�cation in the training set and using

those distributions to distinguish between all classi�cations, an optimised set of four metrics

is found for each potential comparison pair of classi�cations. For example if a training set

of three classi�cations, A, B and C, is used, then the comparison pairs A-B, A-C and B-C

will each have four speci�c metrics found to be the best at discriminating between the two
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classi�cations involved, without using those metrics to compare either of the classes in each

pair with the one not in the pair. This produces a set of metrics:

fA−B;j(α) (4.17)

fA−C;j(α) (4.18)

fB−C;j(α) (4.19)

j = 1...5 (4.20)

which give each classi�cation eight con�dence coe�cients. These are processed in the same

way as above to give the con�dence values for each classi�cation.

In order to identify the optimum metrics for each discrimination, the general metric must

be calculated for every wavenumber combination k1, k2, for each individual spectrum within

both classi�cations in the comparison pair. This is a signi�cant computation, increasing

with the squares of both the number of spectral points and the number of classi�cations and

linearly with the number of spectra in each classi�cation in the training set. The output of

this calculation is a set of pairs of distributions, in this case Gaussian functions characterised

by equation 4.9, �tted using the histograms of the values of each permutation of the general

metric for both classi�cations:

MA,A−B(xk1,k2) and MB,A−B(xk1,k2) (4.21)

Continuing the simpli�ed example with three classi�cations, A,B and C, if each classi�ca-

tion contains 10 spectra where each has 10 spectral values, the computation above produces

270 pairs of Gaussian distributions based on 10 metric values. For a general number of

classi�cations nζ and number of spectral points nk there are:

Npairs =
1

2
nζ (nζ − 1)nk (nk − 1) (4.22)

pairs of distributions to be evaluated for success in distinguishing the relevant classi�cations.

For the FTIR-HSI data using the four simpli�ed classi�cations and one for the gaps in the

sample, and using each of the 1453 spectral values, Npairs = 21.1 × 106. Reducing

the number of spectral points used in the comparisons will have the biggest e�ect on the

number of calculations required. As shown by the PCA performed in the preprocessing (see
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Figure 4.18: Examples of distributions produced by metrics that are either good or bad
discriminators for the two classes ζ1, ζ2. The overlap regions have been shaded. The
good discriminator curves only overlap by 1.7% while the poor discriminator curves
have a 77% overlap.

section 3.2) there is a large amount of redundancy in the spectral information. This is to

be expected, as most of the tissue contains very similar chemical components. By using

every �fth spectral value, rather than every one, the number of distribution pairs drops to

8.4 × 105 without signi�cantly impacting the generalisation of the metrics. An additional

reduction can be obtained by removing the gaps between tissues as a class. It is very unlikely

that the low absorbance values produced by these pixels will produce similar values for the

metrics for other tissues, and so will generally be labelled as random classes with very low

con�dence values, and appear black in the labelled images. This gives a total number of

comparisons of 5.0 × 105.

It is impossible to compare each of these pairs of distributions by hand to see which ones

show the best distinction from each other, so a computer-guided method must be used. A

particular metric is judged to be a good discriminator for a pair of classes if the distributions

for the metric evaluated for the two classes have only a small overlapping area. Examples of a

good and a bad discriminator are shown in �gure 4.18, where the good discriminator produces

distributions that are well separated and narrow with respect to the gap between them, while

the poor discriminator has a substantial overlapping region of the two distributions and is

much less able to de�ne the two classes distinctly. Based on this, each metric distribution

pair is evaluated based upon the overlapping area between the two curves, giving a measure

of how well it discriminates the two classes. For this area to make a useful quantity, both

curves need to be area normalised (see equation 4.11) before computing the overlap. The four

metrics that produce the best (smallest) overlap are recorded as the optimum metrics for the

pair of classes they have been calculated for, and are then used to label the unknown data in
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the same way as above. The ability of the general metric to discriminate between di�erent

classes as a function of the spectral values used can be plotted in a butter�y diagram with the

two axes plotting k1 and k2 and the colour scale giving 1−A(k1, k2), where A(k1/k2) is the

area of overlap of the two metric distributions in that pair at the corresponding wavenumber

ratio, making good pairs a brighter colour. These diagrams can aid di�erent analyses, and

were used to guide imaging wavelengths for the SNOM (see section 5.5.1)

4.6.4 Optimised Absorbance Ratio MA

Using the same randomly sampled training set as used for the KCA inspired absorbance

value metrics in section 4.6.2, an optimised set of absorbance ratio metrics was found. As

discussed above, by using absorbance ratios the need for most of the preprocessing that

was performed on the data before applying KCA was removed and only the Mie Scattering

Correction needed to be applied. The best �ve absorbance ratio metrics that distinguished

between each pair of tissue classi�cations were found and used to label the four images as

before. The wavenumbers used for each metric were found using the method given above,

sampling every 10 cm−1 over the range 1010 − 1700 cm−1. This range covers the reliable

portion of the �ngerprint region of the IR spectrum, and was chosen as this region contains

many di�erent vibrational signatures which represent a large amount of information about

the sample. The �ngerprint region also spans the operation range of the ALICE-FEL/SNOM,

meaning that the results of the optimisation and labelling can also be applied to the SNOM

data.

In order to obtain a general understanding of the ability of these four tissue classi�cations

to be distinguished by the ratio values the butter�y diagrams for each comparison pair of

classi�cations are shown in �gure 4.19. While some show similar patterns, each butter�y

diagram is di�erent, meaning that di�erent pairs of wavenumbers will give better results for

each pair of tissue classi�cations. The colourbars on the right of each diagram shows that for

Barrett's epithelium in particular there seems to be a larger maximum value, giving metrics

with less overlap and thus better discrimination.

The results of the labelling are shown in �gure 4.20. The map produced by the MA is

again very di�erent from those obtained previously. A complete reversal from the previous

success in labelling Barrett's epithelium tissue using the `raw' absorbance values found from

the KCA is observed. Here the Barrett's epithelium tissue is very poorly labelled, while the
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Figure 4.19: Butter�y diagrams for each comparison pair of tissue classi�cations, using
the same randomly sampled training set as used for the KCA inspired MA. The plots
show the ability of each wavelength pair (k1, k2) to distinguish that particular tissue
pair by giving a value equal to 1 − A where A is the area of overlap between the two
corresponding metric distributions M(k1

k2
). All six images are scaled to a common

colourmap to demonstrate the di�ering ability for each pair of classi�cations to be
distinguished between.

Figure 4.20: The labelling produced by the optimised absorbance ratio metrics, using
the same training set as the KCA-inspired MA above.
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Tissue Label Sensitivity Speci�city PPV NPV Number
(%) (%) (%) (%) Labelled

Barrett's epithelium 4.32 99.83 88.80 76.67 384
Benign stroma 70.09 80.37 35.76 94.52 8663

Cancerous epithelium 70.69 83.10 59.15 89.12 10070
Cancerous stroma 36.32 80.36 22.11 89.15 7163

Table 4.7: Statistics for the MA labelling using the 5 best optimised ratio metrics for
each classi�cation comparison pair. Again, these values were calculated using only
samples zA1 and B1.

cancerous epithelium tissue is much more reliably identi�ed.

The statistics for the labelling are given in table 4.7. The failure to label the Barrett's

epithelium tissue is shown by the 4% sensitivity, but by labelling so few spectra the sensi-

tivity, PPV and NPV are all relatively reasonable values for the Barrett's epithelium label.

Generally these statistical quantities are not as high as seen for the KCA above, and for

the most important label in terms of a diagnostic - the cancerous epithelium label - the

sensitivity is dramatically lower than observed even for the KCA-inspired MA (see table

4.6).

From the classi�cation image produced it can be seen that the Barrett's epithelium

tissue has been labelled as benign stroma in some regions and as a combination of cancerous

epithelium and cancerous stroma in others. As seen in all of the labelling and clustering

above, the two stroma labels are somewhat mixed between the two types of sample, though

clearly here the cancerous stroma label is more con�ned to the cancerous samples and the

benign stroma to the Barrett's samples. The cancerous epithelium label is applied fairly well

to the areas of cancerous epithelium tissue identi�ed in the images in �gure 4.2, with a clear

di�erence again arising between these two pairs of samples.

In order to provide a useful tool the labelling must be as reliable as possible. The

MA labelling will only be successful if the training set used to de�ne the behaviour of each

classi�cation is representative and consistent. While it could be the case that the training set

used here is somehow unrepresentative of the tissues this is unlikely as the set was randomly

generated from the whole image. It is the case here that the training set size is more likely

to be an important factor in the consistency and reliability of the modelled behaviour. An

optimum situation can therefore be attained by using the whole image area as the training

set.

The MA was repeated with the training set expanded to include every pixel possible but
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Figure 4.21: The labelling produced by the optimised absorbance ratio metrics, using a
training set comprising the whole of the labelled images to give as reliable a labelling as
possible based on training set consistency and representation of the tissues' behaviour

Tissue Label Sensitivity Speci�city PPV NPV Number
(%) (%) (%) (%) Labelled

Barrett's epithelium 23.98 ↑ 99.40 ↓ 92.70 ↑ 80.47 ↑ 2042 ↑
Benign stroma 75.54 ↑ 79.05 ↑ 35.99 ↑ 95.40 ↑ 9278 ↑

Cancerous epithelium 89.80 ↑ 71.75 ↓ 52.39 ↑ 95.31 ↑ 14442 ↑
Cancerous stroma 4.13 ↓ 98.81 ↑ 35.75 ↑ 87.04 ↓ 518 ↓

Table 4.8: Statistics for the MA labelling using the 5 best optimised ratio metrics for
each classi�cation comparison pair calculated for samples mathrmA1 and B1, based
on using the whole labelled image as a training set and comparing. Arrows are added
to indicate the change from the previous labelling using 200 randomly selected spectra
from each tissue classi�cation.

with the other parameters unchanged. The classi�cation image produced, shown in �gure

4.21 with statistics in table 4.8, does improve with respect to the labelling of the cancerous

epithelium and Barrett's epithelium tissues, but the cancerous stroma tissue labelling de-

teriorates signi�cantly such that only 518 pixels are labelled as cancerous stroma, giving a

sensitivity of 4%. Arrows have been added to the table to show the change from the smaller

training set to the larger. The principal e�ect of increasing the number of spectra used in

training the MA is an increase in the statistics of the labelling produced. However, this is

not universal. Because of the di�culty in labelling the cancerous stroma tissue, the corre-

sponding sensitivity and NPV are dramatically reduced, and the speci�city of the cancerous

epithelium label also decreases as it includes most of the cancerous stroma tissue.

The amount of Barrett's epithelium tissue that is labelled by the new training set is

greatly increased, increasing the sensitivity of the labelling to 23%, but following the same

pattern as seen in the previous MA there are regions of Barrett's epithelium that are incor-

rectly labelled as cancerous epithelium. The pattern of regions successfully identi�ed, and

those mislabelled as other tissues, is echoed in the second pair of images, suggesting that the

di�culty in distinguishing between the cancerous epithelium and Barrett's epithelium tis-

sues is a result of the metrics used and the characteristics of the tissue, rather than another
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indirect e�ect. In general the extension of the training set does increase the accuracy of the

MA in these four images, but the outcome is still not as de�nitive as the KCA results.

4.6.5 Discussion of MA results

In all three cases above, the results of the MA show the ability to identify the di�erent

tissue classi�cations based upon a limited amount of information from the tissue spectra,

some with better success than others. Taking optimised absorbance ratios, rather than using

individual values, gave a more accurate tissue map, but saw a move from easily distinguishing

the Barrett's epithelium tissue to struggling to identify it, contrary to the observation of more

distinguishable metric distributions from the butter�y diagrams. The reason for this could

lie in the fact that the Barrett's epithelium tissue in the simpli�ed mapping in �gure 4.2

comprises several di�erent classi�cations of tissue, displaying slightly di�erent characteristics,

and therefore expressing more variability. Figure 4.14 shows that for the Barrett's epithelium

class the distributions are consistently broader than those for the other classes and that the

ease of labelling it came from the fact that the Barrett's epithelium distributions all lie at

higher absorbance values and thus are separated well from the others. When moving to

ratios of absorbance values this `amplitude o�set' is cancelled out, but the variation within

the class will remain.

By extending the training set to the entire labelled image an additional increase in

accuracy was achieved for the Barrett's epithelium and cancerous epithelium classes, but at

the expense of the labelling of the stroma classes. In order to elucidate the e�cacy of the

labelling, the four-dimensional `distance' can be calculated for each mapping from the ideal

situation of sensitivity, speci�city, PPV and NPV all giving 100%:

d4 =

√
(100%− Sens.)2 + (100%− Spec.)2 + (100%− PPV )2 + (100%−NPV )2

2
(4.23)

for which values have been given in table 4.9 columns 1 and 2. The division by two compen-

sates for the length of the diagonal from (0,0,0,0) to (1,1,1,1). It is clear from these values

that the 5 cluster KCA gave the best representation of the tissues in the image area, but of

the three directed labellings using MA the full image training set gave an increased ability

to label the cancerous epithelium tissue, while the Barrett's epithelium tissue was not as

accurately labelled, though better labelled than using only a small, partial training set.
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Analysis Cancerous Barrett's Cancerous Barrett's
Type epithelium epithelium epithelium epithelium

d4 (%) d4 (%) d2 (%) d2 (%)

5 Cluster KCA 18.60 17.63 19.63 18.01
KCA-Inspired MA 30.22 16.79 23.38 14.50

Absorbance Ratio MA 27.07 49.56 23.92 67.66
Full Image Ratio MA 28.24 39.41 21.24 53.76

Table 4.9: Measures of success for the di�erent labelling methods used for the FTIR-
HSI data. The �rst two columns give the four-dimensional euclidean distance of the
labelling from the ideal outcome of 100% for all four measures calculated, the second
two give a more appropriate measure using only the Sensitivity and Speci�city values,
in two dimensions.

Using the four values together is perhaps not the best measure of labelling success, as

they are interrelated, so instead considering only the sensitivity and speci�city gives a two-

dimensional distance:

d2 =

√
(100%− Sens.)2 + (100%− Spec.)2

2
(4.24)

The general trend seen in this second measure is similar to the four-dimensional distance, but

the shorter distances for the cancerous epithelium labelling have shortened further, while the

longer distances for the Barrett's epithelium have increased. This measure is more sensitive

to the low sensitivity values of the Barrett's epithelium labelling in the ratio MA.

The KCA does give a better mapping of the sample tissue structure. This is likely

to be a result of using the entire spectrum of the data being labelled, after PCA, to �nd

di�erences between them. The amount of information available to determine the clustering is

signi�cantly larger than the limited information given to the MA, meaning that the labelling

given by the MA could be expected to be less accurate. Unlike the KCA, however, for the

MA this information is processed in a controlled and directed way, meaning that speci�c

di�erences are used, rather than some other e�ect that may or may not represent the tissue

structure. While the KCA labelled this image area more accurately there is no reason that

it would label another area in the same way. Even re-clustering this same area would give

di�erent cluster numbers to the same groups of pixels. The MA will assign the same label,

with the given tissue association, to pixels in the same or another image area consistently,

giving it a much better ability to convey information about the sample.

The MA training sets used here are all from simpli�ed tissue classi�cations. By using a

less complicated model of the sample the ability of the MA can be tested and evaluated, but

77



4.7. CONCLUSIONS

in order to develop the analysis further requires a more appropriate model of the sample, like

that seen in the �rst pair of images in �gure 4.2. As discussed above increasing the number of

classi�cations increases the computation time of both the training and the labelling processes

as the square of this number, but a further restriction comes from the diminutive sample

sizes that some of these tissues have represented in these two fully labelled images. In order

to get a more generalised and reliable training set and to further develop the MA algorithm

additional FTIR-HSI need to be taken of di�erent samples showing di�erent types of tissue

and presentations of disease, with a training set taken from many di�erent patients and

sample areas. Other types of metrics could also be explored, given that the strength of

MA is the �exibility in terms of what measures of pixel behaviour can be used. The ratio

values used here, and particularly the optimisation method, could also be improved with

further checks on the goodness of �t, perhaps taking di�erent forms of �t to provide a more

accurate representation of the probability distribution of each classi�cation. Nevertheless

the MA applied here shows great potential as a complimentary tool to histological review

of biopsy samples. As a technique to be applied to SNOM imaging results, the MA shows

promise. By optimising the choice of wavelengths ratioed in the MA, the hope is that the

best possible results from the SNOM data can be achieved.

4.7 Conclusions

FTIR-HSI is a technique that provides a large amount of spectral information over a

relatively large image area. As such it can lead to the ability to group pixels in the image

according to similar behaviour or characteristics. This analysis shows the success in repro-

ducing the labelling of two areas imaged on one benign and one cancerous sample using

several techniques, each one also producing the same sort of labelling in serial sections of

both biopsy samples.

The initial agglomerative HCA tested on the data showed that the tendency to have

outliers in the spectral data, due to small scatterers or imperfections in optics or detection,

rendered the analysis impossible to apply routinely. Instead, a round of outlier removal and

a second round of analysis was required, which was still a�ected by small clusters of spurious

pixels. The KCA results showed that this analysis was much better suited to clustering the

data, and the cluster maps reproduced very accurately the structure of the simpli�ed model
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of the tissues in each sample. By using the sensitivity, speci�city, PPV and NPV of each

clustering the results for 5 clusters was determined to give the most accurate map of the

tissues.

Despite the accuracy of KCA, the analysis was not directed enough to be used as a tool for

histological labelling, giving no indication as to the reason for clustering each group together,

and having no control over the di�erences found. To remedy this the MA was developed

to use a much more directed approach, training the algorithm with a subset of the data of

known classi�cation and using the knowledge gained of the behaviours to label the whole of

the image areas. The initial use of absorbance values as the metrics gave promising results in

terms of labelling the Barrett's epithelium and cancerous epithelium tissues, but with some

signi�cant overlap between the two images and little success in labelling the stroma tissues.

By using absorbance ratios the e�ect of variable total absorbance in di�erent tissues and at

di�erent locations was mitigated.

The results produced by the MA, while not as accurate as the KCA are much more useful

in terms of determining the tissues present within each sample, rather than simply �nding

the corresponding structures with no knowledge of the tissue components producing them.

With the data available the MA can give a labelling of the tissues with a sensitivity and

speci�city for cancerous epithelium of 89.9% and 71.8% respectively.

An important conclusion to be drawn from each of these analyses is that the data from

the samples that had been dewaxed many months before imaging were, qualitatively at least,

comparable to the data from the freshly dewaxed samples. The lengthy time scale of SNOM

imaging requires that the samples be stable for several days. The results in this chapter

show that, chemically, the samples are stable for several months, meaning that a few days

will not pose a risk of degradation to the samples.

The establishment of the MA machine learning technique described in this chapter led

to an analysis with the potential to be applied to SNOM imaging results. In order to make

use of MA, SNOM images need to be acquired that will give a reliable training set. The

development of the SNOM instrument and direction of experimental technique, described in

chapter 5 was directed to make the results more reliable and able to be analysed using this

technique.
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ALICE-SNOM INSTRUMENT DEVELOPMENT
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This chapter describes the details of the characterisation, developments and improve-

ments made to the SNOM instrument and ALICE accelerator performed as a signi�cant

part of this work. The instrument, layout, electronics and approach to imaging were all

adapted substantially over the course of this work and merit discussion on the reasoning
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behind the adaptations and of the outcomes of each phase of experimentation with respect

to both the imaging results and understanding obtained of the instrument and source. The

initial two sections describe the standard instrumentation common throughout the devel-

opment of the instrument, as well as the signi�cant technological and experimental hurdles

encountered. The later sections describe the development over time, split into �ve phases.

These sections display simpli�ed layout and electronic schematics which represent the gen-

eralised approaches used in each phase of SNOM imaging experimental time, but do not

necessarily include all of the Au plane mirrors used to steer the IR-FEL beam between the

other components. The chronology of the SNOM development is outlined in the introduction

in �gure 1.1.

5.1 Instrumentation

5.1.1 The ALICE Accelerator

The ALICE accelerator (Accelerators and Lasers In Combined Experiments) is a fourth

generation light source based at Science and Technology Facilities Council (STFC) Daresbury

Laboratory in the North West of England. It is an energy recovery linear accelerator with

several sources, of particular interest here is the IR-FEL light source. A schematic diagram

of ALICE is shown in �gure 5.1.

ALICE accelerates short intense bunches of electrons to 35 MeV using two supercon-

ducting linac modules. The electron bunches are temporally compressed in a chicane before

entering an undulator, where alternating dipole magnets cause the beam to undulate. The

undulation of the electrons causes the release of synchrotron radiation, and by placing the

undulator between two cavity mirrors, the radiation from one pulse to the next is synchro-

nised, causing the radiation to be emitted coherently and ampli�cation occurs. Because the

lasing medium is bunches of electrons in free space, this source is called a free electron laser.

The wavelength of the FEL is tuned using the gap between the magnets in the undulator,

but was also dependent on many other parameters of the accelerator. As such, it was found

part way through the SNOM experimental development that the calibration of the wave-

length that was produced for a given gap was not consistent, and so continuous monitoring of

the output wavelength was implemented. The average calibration curve for the wavelength

produced for di�erent gaps, with the variability observed over the many measurements of
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Figure 5.1: A schematic diagram of the ALICE accelerator [75]. The electron bunch
energies are written in blue at each point of acceleration, and the green indicated area
shows the FEL cavity containing the undulator.

the calibration during the work presented here displayed as error bars on the curve, is shown

in �gure 5.2.

The IR-FEL produces short, intense pulses of IR light, with a wavelength continuously

tunable over a range from 5.5 to 9 µm. The bandwidth of the emission from the FEL was

typically 0.1 µm FWHM. The pulse structure consists of a ∼ 75 µs macropulse at a 10 Hz

repetition frequency, each of which consist of 1 ps micropulses at a frequency of 16.25 MHz.

The typical power measured at the FEL output was ∼ 15 mW, but given the very small

duty cycle of the FEL (∼ 0.000012%) the peak power was very high, making the ALICE

IR-FEL ideal for SNOM.

5.1.2 SNOM Instrumentation

The optical and technological components used throughout the development of the

SNOM instrumentation, and the rationale for using them, are detailed below.

Optical Components

The optical components used in this work for the transport of ALICE IR-FEL beam

from the FEL itself to the sample were chosen to have good optical properties over the range
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Figure 5.2: The average calibration curve for the wavelength produced at di�erent
undulator gaps. The error bars were determined from the range of the variation at
each point on the curve and are almost one full width at half maximum FWHM large
in places.

of output wavelengths the FEL could produce. The mirrors used were either Au, Al or Ag

metal mirrors protected by an overcoat of SiO
2
, all of which posses a high re�ectance over

the FEL tunable range. The addition of a dielectric coating protects the mirrors from both

damage, especially the soft Au, and corrosion for the Ag and Al. At the typical angle of

incidence of 45◦ the Au mirrors used at the SNOM end station have a re�ectance of over

94% for λ = 1 − 10 µm, the Al mirrors have re�ectance > 90% and Ag mirrors have a

re�ectance of > 93.5% over the same range [76]. Of these, the Au mirrors give the �attest

optical response with variable wavelength and so were the ones used for most applications,

but are the most susceptible to damage and are more expensive so for the larger mirrors Ag

and Al were used.

The IR-transparent components - beam pipe windows, beam splitters and lenses - were

made from a variety of di�erent materials. CaF
2
and BaF

2
are excellent transmitters of the

IR wavelengths used for this work, and also posses high visible transparency and so make

very good components where this visible transparency is useful, such as beam pipe windows.

CaF
2
was used here in preference to BaF

2
as it is less fragile than BaF

2
and signi�cantly less

expensive. CaF
2
was used here for the beam pipe exit windows and for short focal length

lenses to focus the beam onto the single element reference detector, but the lenses used for

the SNOM light paths were ZnSe which had longer focal lengths.
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Piezo Drivers

The development of piezoelectric drivers by Binnig et al. [23] revolutionised microscopy

by allowing an entirely new branch of SPM imaging techniques. These drivers use materials

exhibiting the piezoelectric e�ect, where a mechanical deformation of the crystal structure

generates a voltage across it in a similar way as the pyroelectric e�ect produces a voltage from

the thermal stress on the sample. In order to produce a motor-like e�ect piezo stages take

advantage of the inverse piezoelectric e�ect also expressed by these materials: by applying

a high voltage across a piezoelectric material a small physical deformation is induced. This

deformation can be used to precisely control the position of a sample or the height of a tip in

SPM techniques, giving very precise motors on a nanometric scale. The piezo stage used for

the SNOM after phase I was a Piezosystem Jena PXY 500 AP dual axis translation stage,

chosen for its large scan range of 500× 500µm2 and the 100× 100mm2 central aperture.

SNOM Feedback

The SNOM feedback was controlled using a bimorph, a device with two piezoelectric

materials joined together with a passive layer between. Lateral oscillations can be created

by applying opposite alternating voltages to each side of the bimorph, causing one to expand

and the other to contract, demonstrated in �gure 5.3. By varying the frequency of the

voltages, the bimorph can be made to resonate at its natural frequency. This device can

be used to maintain the tip-sample separation by monitoring the amplitude of the resulting

oscillation using a second bimorph layer on the back of the �rst. The oscillation of the �rst

bimorph pair �exes the second pair and a response voltage is produced, with an amplitude

proportional to the amplitude of the oscillation of the bimorph.

If a �bre is glued to the �rst bimorph layer and brought close enough to a sample to

interact via Van der Waals forces the resulting drag on the tip dampens the oscillation and

the amplitude decreases, giving a reduced voltage amplitude from the second bimorph layer.

To maintain a constant distance from a sample, a feedback loop is used that maintains the

measured amplitude at a certain set point that is less than the response away from the

sample, ensuring that the tip is engaged with the sample and well controlled.

The resonant frequency and amplitude of bimorph oscillation were both parameters that

needed to be set for the SNOM instrument used in this work. Depending on how much

glue was used, the tension on the �bre and how far the �bre protruded from the end of the

84



5.1. INSTRUMENTATION

Figure 5.3: The principle of operation of a bimorph device. Two joined piezoelectric
strips are given opposite alternating voltages, causing them to oppositely expand and
contract. This expansion and contraction causes the bimorph to alternately �ex to
either side (exaggerated in the above diagram) and therefore oscillate at the frequency
of the alternating voltage. If the voltage frequency is equal to the natural frequency of
the bimorph, resonance occurs, leading to a greatly increased amplitude of oscillation.

bimorph, the resonant frequency and resulting amplitude for a given driving voltage would

vary. Typically the resonant frequency was between 3.5 and 3.8 kHz and the driving voltage

amplitude was varied to give a resulting voltage amplitude measured by the second bimorph

of between 15 and 20 mV. The set point for the feedback loop was then set to approximately

5− 10% lower than the resultant voltage to give a reliable distance without approaching too

close to the sample.

IR Fibres

Optical �bres utilise the property of total internal re�ection to guide rays of light down

the �bre with minimal loss of intensity, allowing a curved path to detectors or from sources

to samples. A core of refractive index ncore is surrounded by a cladding material of refractive

index ncladding < ncore. The di�erence in refractive index means that rays of light in the

core that are incident on the boundary between the core and cladding at an angle to the

normal greater than the critical angle for that interface are re�ected back into the core. The

critical angle, θc, is the one that gives an angle of refraction of 90◦:

sin(θc) =
ncladding
ncore

(5.1)
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If the core and cladding have very similar refractive indices the critical angle becomes larger

and the �bre is more selective in terms of the maximum angle from the axis of the �bre that

transmits light, the angle of acceptance.

Fibres with large core diameters with respect to the wavelength of light used, so called

multimode �bres, are subject to multimode dispersion where the di�erent possible optical

paths at greater than the critical angle have signi�cantly di�erent path length and so the

collected light is temporally distorted by the �bre. Singlemode �bres, those with core diam-

eters similar to the wavelength of light used, are not a�ected by this process as the angle of

acceptance is very small.

The �bres used in this work were singlemode �bres with a core size of 6 µm, with the

exception of one 100 µm �bre used during the investigation of the spectral behaviour of the

�bres described in section 5.2.3. This avoided spreading out the weak signal from the SNOM

both temporally and spatially. Using cleaved �bres required that the core size be as small

as possible in order to achieve a small resolvable length scale.

The material used for the core and cladding of these �bres was As
2
Se

3
, a material with

excellent mid-IR transmitting properties but that is, as mentioned previously, very fragile.

The core was 6 µm in diameter, with a total core and cladding diameter of 170 µm. To protect

the fragile core and cladding, the �bres are coated with an acrylate protective coating. In

the later phases of SNOM imaging (see section 5.5) the distance from the sample to the

detector had to be signi�cantly increased to accommodate the inverted microscope, and so

longer �bres were used from CorActive [77] which had an additional protective jacket and

sleeve around the �bre.

There were two di�erent types of �bre aperture used during this work: (i) cleaved �bres

and (ii) etched and gold-coated tips. The preliminary work performed in phase I was done

using etched tips in order to achieve a high spatial resolution over a small scan area. The

implementation of a larger piezo stage translation range and the desire to image more rep-

resentative areas of the tissue samples necessitated that cleaved �bres be used, improving

reliability and strength when performing larger step sizes and taking many images. The

ongoing phase of imaging, phase V (section 6.4), is using etched and gold coated tips once

again to give the higher spatial resolution that SNOM is able to achieve.

The cleaving process was very simple, the �bre end was simply cleaved using a sharp

blade perpendicular to the �bre axis. The fragility of the chalcogenide core and cladding
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material meant that a clean cleave could be achieved, sometimes requiring repeated cleaves

until this was the case. The etching process was much more time consuming, requiring that

the outer layers of the �bre be removed and the �bre etched in a concentrated solution of

hydrogen peroxide and sulphuric acid, known as �piranha� solution, which etched the �bre

into a tip using convection currents to shape the tip pro�le [42]. Etched tips then needed

to be coated with a thin layer of gold in an evaporation chamber at an angle to the �bre

axis. The etching and gold coating procedures are described in appendix B.2. This process

made the sides of the tip opaque to IR light while leaving an aperture clear at the point.

A similar process was described in reference [42]. For both tip types the true aperture size

obtained was, within the scope of work described here, impossible to obtain prior to imaging,

where the aperture could be inferred from the resolution obtained. In order to have a prior

knowledge of the aperture size, a SEM could be used to image the end of the �bre.

Detectors, Electronics and Signal Processing

Figure 5.4: The output voltage curves of the two detectors used for the SNOM in-
strument. The MCT detector responds very quickly to the FEL radiation, but the
pyroelectric detector has a much slower response and takes much more time to return
to zero. The ALICE trigger pulse produced by the accelerator was used to synchronise
the electronics.

There were two types of IR detector used in this work, for two levels of sensitivity. The

very low level of light collected by the SNOM necessitates the use of a highly sensitive

detector. The material HgCdTe (MCT) can be used to create detectors with very high

sensitivity to IR light because it has a tunable bandgap in the IR range. The detector

operates by measuring the excitation of a valence band electron to the conduction band upon
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absorption of an IR photon. A small bias current applied to the detector allows the electrons

to be detected. Because IR photons have energies on the order of thermal excitations at

room temperature, the detector must be cooled using liquid N
2
and suspended in a vacuum.

MCT detectors have a high sensitivity which allows the low signal levels for the SNOM to

be measured and subsequently ampli�ed for data collection. The response of MCT detectors

is very fast, as shown in �gure 5.4, so they can be used to measure much shorter pulses than

the 75 µs, 10 Hz FEL macropulses, but are not fast enough to measure the 1 ps micropulses

within each macropulse.

For direct measurements of the FEL beam, pyroelectric detectors were used as their lower

sensitivity (their voltage output per Watt of incident power) was appropriate for the power

typically delivered by the portion of the FEL beam re�ected by the CaF
2
beam splitters,

giving a large but not saturated response. The pyroelectric detectors were also su�ciently

fast in recovering from each FEL pulse. The general principle of operation of pyroelectric

detectors is that they sense the temperature change in a detection element resulting from

absorption of IR radiation. These detectors consist of one or more elements of a crystal with

pyroelectric properties, that is that their polarisation changes with changes in temperature,

which give a voltage output proportional to that change. Crystals with this property are non-

centrosymmetric, possessing a net dipole within the unit cell such that when the temperature

of the crystal is changed the distortion in the lattice structure changes the net polarisation

of the crystal and thus a measurable voltage across it. The resultant output voltage gives

the smooth curve shown in �gure 5.4 which peaks quickly and then slowly decays back to

zero in a time scale of tenths of a ms.

The electronic control and data collection was performed by a central SNOM control

module based on the system described in reference [78]. This module, linked to a desktop

PC which used customised software, controlled the position of the three piezo axes and the

feedback on the z-axis, as well as collection of the various data channels and synchronisation

to the ALICE accelerator. The data values were sequentially read into analogue to digital

converter (ADC) cards and passed on to the software to be processed and recorded. The

ALICE accelerator ran at a macropulse repetition rate of 10 Hz, which corresponds to a

period of 100 ms. A synchronisation signal given to the SNOM controller linked the timing

of the FEL pulses to the measurement of the ADC channels, a graph of the typical timing

is shown in �gure 5.5.
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Figure 5.5: A representation of the timing of SNOM data collection channels relative to
the ALICE IR-FEL pulses. Each ADC was read sequentially over the 100 ms period,
averaging over the timing window, and allowing 10 ms for the SNOM to move the
sample and settle at the new location after the values were recorded. With a variable
number of ADC channels being read in each of the phases below, the time over which
the values were read was varied to maintain this overall behaviour.

Figure 5.6: (a) The boxcar integrator can be thought of as a switched low-pass �lter,
while the signal window is on the boxcar integrator integrates the signal Vin by charging
a capacitor, giving Vout. A second circuit was used to measure a background value in
the same way which was subtracted from the value of Vout. (b) The voltage curves for
the ALICE trigger pulse, MCT output and reference pyroelectric detector output. By
using a trigger pulse from the ALICE accelerator the boxcar integrator and SNOM
electronics were synchronised to the FEL pulses. The signal windows for the boxcar
integrators were set to include the peak of the two di�erent detector curves.

The two types of detectors used in these experiments are described in section 5.1.2

and produce very di�erent output voltage pro�les. Consequently these curves needed to

be processed in a manner that would give comparable measures of the IR light intensity

or power measured by each detector. As the IR-FEL output has such a low duty cycle

averaging the detector over time will not give an accurate measurement of intensity, and

include a much higher proportion of noise than signal. Thus the voltage pulses from each
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detector needed to be averaged in some way over only the length of the pulse. To this end

the two signals were processed using a boxcar integrator to give stability, noise reduction and

ampli�cation. A boxcar integrator is essentially a switched low-pass �lter, where the switch

is controlled by an adjustable boxcar function as shown in �gure 5.6. The input signal

is electronically integrated over the signal window, which was set such that it contained

the peak of the detector response. A second window was set to integrate, over the same

length of time, a background value containing no signal, which was then subtracted from

the signal window integral and the �nal value converted into an analogue voltage output

which was proportional to the area of the detector signal. By carefully positioning the

signal and background windows the e�ect of noise in the system can be greatly reduced.

Boxcar integrators also give the possibility of averaging over several pulses, though this was

undesired for the slow repetition rate of the ALICE IR-FEL.

The Boxcar integrators used in this work were Delta Developments Boxcar Integrators

and the earlier model called chopped signal integrators. As the MCT detector had a fast

response time, the output signal shape was able to be entirely captured in the signal window

with the background window just afterwards, but the slow response of the pyroelectric

detector used for the reference signal had too large a temporal extent to measure fully,

instead the window was placed over the peak of the curve and the background window was

placed before the response rather than afterwards due to the long tail on the curve. The

gains on the boxcar integrators (×1, ×10, ×100) were adjusted for each image to give a

voltage in the region of 0.2− 1.5 V.

5.2 Characterisation and Principal Developmental Hurdles

5.2.1 ALICE Beam Imaging

When the SNOM was adapted to be mounted on an inverted microscope in phase III (see

section 5.5), the z-piezo control was placed on the SNOM head itself. As such the aperture

of the SNOM was no longer �xed throughout the scan at a constant position within the

beam focus. If the topography of the sample surface increased in height, the tip would move

up to accommodate it, translating vertically in the beam and therefore being susceptible to

variations in the local intensity. The total range of the z-piezo on the tip was 20 µm which

is roughly 10% of the achieved focal size for the FEL. If the focussed beam was completely
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uniform this would not represent a problem. However, from a report on the ALICE IR-FEL

beamline [79] there was expected to be signi�cant di�raction-based structure in the beam

arising from a sub-optimal sized outcoupling hole for the FEL cavity and a subsequently over-

�lled toroidal mirror in the beamline. Due to the motion of the aperture in the beam focus,

the potential impact of structure in the beam needed to be ascertained, where previously it

was deemed to be of little impact.

The 1.5 mm outcoupling hole of the FEL was smaller than optimal for beam transport,

resulting in a small but measurable di�raction from the hole, which was approximately 15 m

from the SNOM end station, leading to a spreading of the beam and a slight di�raction

pattern propagating down the beam pipe. This structure on its own would not have caused

issues with the light collected by the SNOM as the variation in observed intensity over

this range of translation in the focus would have been negligible if the tip was positioned

at the maximum intensity. The main e�ect was expected to come from a 17.5◦ grazing

incidence toroidal mirror with a diameter of 75 mm that was used to steer the IR-FEL

beam through the radiation shielding labyrinth. The mirror was being over�lled by this

di�racted beam by almost 60% horizontally by a beam of 50 mm meeting a mirror aperture

of 22 mm, which would have resulted in a large di�ractive e�ect from the aperture of the

mirror and lead to sharp fringes across the beam in one direction. To assess the structure

in the beam at the SNOM, and what e�ect it might have on the SNOM measurements,

the beam was imaged using a PyroCamIII two-dimensional pyroelectric array detector [80]

with a 12.8 mm, 160 × 160 pixel array (80 µm pixel size) at di�erent gaps/wavelengths,

both at the focus and with a partially defocussed beam. A secondary investigation was also

carried out by maintaining the wavelength and imaging the partially defocussed beam at the

limits of the variable parameters of the accelerator that would still give an IR-FEL output.

This was performed in order to determine what e�ect, if any, the parameters other than the

undulator gap would have on the beam structure.

The detector was placed in the SNOM beampath with a path length in air of approx-

imately 750 mm. A 300 mm focal length ZnSe lens was used to focus the IR-FEL beam

onto the detector array and could be translated in order to defocus the beam. The inten-

sity of the IR-FEL was modulated by using a single KRS5 holographic wire grid polariser,

as the detector was saturated by the full intensity of the focussed beam. For the focussed

beam images the detector was placed such that the angle of incidence of the beam from the
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horizontal was ∼ 15◦ to emulate the intensity distribution over the tissue samples and to

spread the vertical axis of the beam out to highlight the relevant structure. This gave an

anisotropy to the focus, with two principle axes: the longer axis orientated essentially along

the x-direction of the SNOM scans, vertical in the beam cross-section, and the shorter axis

along the y-direction, horizontal in the cross-section. For the defocussed beam, the intensity

was much lower, so the polariser was removed to give a stronger image, and the detector

was orientated to give normal incidence.

Beam Structure and Variation

The images taken at the focal length of the lens, f = 300 mm are shown in �gure 5.7.

The line pro�les across the center of the focus are included, and display the di�erent shapes

in the two orthogonal directions. The y-axis is elongated by positioning the detector so that

the beam is incident on the detector array at the same 15◦ grazing angle used for SNOM

imaging.

Figure 5.7: Images of the FEL beam focus elongated in the y-axis by setting the
PyroCamIII detector at an angle to the beam to reproduce the intensity pro�le at the
SNOM aperture. The images were taken at four di�erent undulator gaps, 12, 14, 16
and 18 mm, covering the main FEL operating range. The approximate wavelengths
for the gaps are given for each one. The structures in the focus at each of these gaps
are similar to those at the others, but with subtle variation in the y-axis.
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Given the expected di�raction structure in the beam, the comb-like peaks measured

along the y-axis of these images is not surprising. There seems to be only a small variation

in the focus with gap/wavelength, though the Full Width at Half Maximum (FWHM) of the

focus in both directions increases slightly with increasing gap (decreasing wavelength) and

the shape and position of the peaks along the y-axis do change slightly. The x-axis pro�les

all show a small shoulder on the right of the beam, visible in the images as a smudging to

the right. The origin of this shoulder is unknown.

The average size of the focus in these images is 260±30 µm × 1750±80 µm. Correcting for

the vertical elongation gives a perpendicular cross-section size of 260±30 µm × 450±20 µm,

showing that the beam is not of a uniform size, but rather has spread much more in the

vertical direction than in the horizontal direction.

Having measured the variation of the focus structure with the undulator gap, a con-

stant undulator gap of 14 mm (λ ∼ 7.3 µm) was selected and the many other accelerator

parameters used to adjust the lasing condition of the ALICE IR-FEL were varied to their

upper and lower limits which were still able to produce a measurable FEL beam. It was not

possible to acquire images at two extreme values for every parameter if the optimal value

was already at one of the extremes. Images were taken of the defocussed beam at the initial

optimised state, and successively at each extreme with each parameter being re-optimised

before changing the next, and a further image was taken of the �nal re-optimised beam.

The set of parameters that were investigated represented any and all adjustments that were

routinely varied during the normal operation of ALICE to maximise the power and stability

of the IR-FEL beam, and are listed in �gure 5.8 along with the corresponding pair of beam

images.

The variation of the structure in the beam over the course of the changes seems negligible,

certainly the most signi�cant e�ect that is seen is the �uctuations in the total intensity

arising from di�erent lasing conditions within the FEL cavity. In order to accurately assess

the di�erences between the beam cross-sections over the experiment, two approaches were

used. Firstly PCA was used to see the principal variations within the structure, picking out

the largest e�ects across the data. The �rst four PC images are shown in �gure 5.9 with the

corresponding variances, ∆, of each PC given as a percentage of the total variance of the

images. Secondly the images were sorted by their intensity at the central peak (row 62) and

the central vertical line pro�les were extracted (column 59) These line pro�les can be used
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Figure 5.8: Images taken at approximately f/2 of the partially defocussed FEL beam at
the �xed gap of 14 mm. There is a large amount of visible structure. The gap was kept
constant and di�erent parameters that are routinely adjusted as part of the normal
accelerator tuning were changed to maximum and minimum values that would still
provide a measurable FEL beam. The images taken at each extreme are shown, with
the corresponding parameter that was varied. All images were plotted with the same
colourmap to show the variation in intensity. There is little visible variation between
the images in terms of structure within the beam, simply an intensity modulation
depending upon the lasing conditions of the FEL. The FEL was re-optimised at the
end, giving a �nal image that di�ers from the initial optimised state by < 2.8% on a
pixel-by-pixel basis.
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to visualise the structural changes using the waterfall plots in �gure 5.10.

Figure 5.9: The �rst four PC images given by applying PCA to the images taken of
the defocussed ALICE beam under varying accelerator parameters, with the variances,
∆, of each PC given as percentages of the total variance. These four PCs account
for > 99% of the total variance. PC1 shows that the majority (∆ > 96%) of the
total variance is change in the intensity of a general beam pro�le. The next three
PCs account for variations within that general beam shape: PC2 gives a modulation
between the upper and lower parts of the beam, PC3 gives a central modulation and
PC4 gives a left-right modulation. All three of these are over signi�cantly larger length
scales than the structure in the general pro�le, and represent much lower variations in
intensity

The �rst four PCs given by the PCA account for over 99% of the total variance. The

�rst PC con�rms that the majority of the variance of the images is accounted for by a

simple intensity variation. PC1 is the average beam pro�le that is varying in amplitude over

the course of the accelerator changes, accounting for over 96% of the total variance. The

three other PCs give modulations within the beam pro�le in three di�erent ways: relative

modulations between the top and bottom, middle and outer, and left and right parts of the

beam pro�le in that order. These modulations provide a relatively good basis set to give

beam pro�les for which any region can be made to be more intense. Over the images taken

the second, third and fourth PCs only correspond to a total of ∼ 3% of the total variance,
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Figure 5.10: A waterfall plot of the central beam pro�le of the images at varying
accelerator parameters, sorted by the central peak intensity. The line pro�les are
mainly uniform, but with small relative variations that can be seen as inconsistencies
in the visible o�set between the lines.

meaning that the beam shape and structure was very stable. Furthermore the length scales

of these modulations are much greater than the signi�cant structure in the general pro�le

shown in PC1 so should give a very insigni�cant contribution to any variation in the signal

recorded by the SNOM.

Another interesting feature of these PC images is that the lower PCs highlight the many

di�raction patterns present in the beam, especially PC2. At least 4 di�erent sets of di�raction

rings are visible in the PC2 image, probably resulting from slightly misaligned optics in the

beam path. This shows that although there is a signi�cant and preventable contribution

from the over�lled toroidal mirror, care needed to be taken to align the optical components

to the beam as accurately as possible and to reduce the number of under-sized apertures

that the beam passed through. The general form of PC2 is also very similar to the di�erence

between the initial and �nal optimised states of the FEL beam in �gure 5.8 suggesting that

this variation is most likely to be a time-based drift in the general shape of the beam.

The small variations demonstrated by the PCA are con�rmed by the waterfall plot show-

ing small peak-to-peak variations down the central line pro�le. To an approximation this is

the translation direction of the SNOM aperture, so variation along this axis could potentially
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lead to further variation of the signal measured by the SNOM that does not correlate with

the total FEL intensity. The variations between these images due to changes in the inten-

sity distribution, rather than the total intensity, are signi�cantly smaller than the spatial

variations peak-to-peak along the line, which therefore poses a greater problem.

Outcome of Initial Beam Imaging

The two cross-sectional axes of the FEL beam show very di�erent pro�les: the horizontal

axis is a relatively smooth, broad single peak with a slight shoulder, but the vertical axis is

split into multiple peaks, which vary in number, position and shape with gap/wavelength.

This is in close agreement with the expected structure given in [79] with deviations that can

be attributed to the additional optical components in the remainder of the beam path and

their limited apertures.

Since the SNOM aperture was moving along one axis of this anisotropic beam pro�le,

there were two possible scenarios: the aperture could either be moving in the smoothly

varying axis, or the one with the multiple peaks. From the orientation of the detector and

the images obtained, it was seen that the motion of the tip in the beam due to the z-piezo

positioning at the SNOM head was along the vertical y-axis. Thus the SNOM aperture

was moving through the multiple-peak di�raction pattern seen in the beam images, giving

a potentially large variation in intensity with sample topography, independent of the FEL

intensity.

It was reasoned that by rotating the beam by 90◦ the aperture could be made to move

along the more smoothly varying axis and thus give a much lessened e�ect from the topogra-

phy. This principle is demonstrated in �gure 5.11, where the two situations are demonstrated

pictorially. For comparison the range of motion (∼ 80 µm) of the aperture within the scaled

focus is also shown. The perpendicular focal size is not uniform; by rotating the beam, the

elongation that results from the grazing incidence at the sample produces a much rounder

focus than seen in the images above, though the area is the same and so the overall average

intensity is maintained.

As described above, the structure in the beam is further complicated by small varia-

tions in the distribution of intensity with varying accelerator parameters. These �uctuations

were small compared to the general beam structure however, and represented the maximum

possible range of the possible changes, thus over the course of a SNOM image the varia-
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Figure 5.11: A diagrammatic representation of the motion of the SNOM aperture
through the beam structure resulting from the vertical translation with varying topog-
raphy. By rotating the beam by 90◦ the motion becomes aligned with the structure
and will therefore produce a much smaller e�ect. The 80 µm travel of the aperture
is calculated from the 20 µm z-piezo range elongated by the grazing incidence of 15◦

from horizontal.

tions should remain roughly constant and only change with retuning of the accelerator for

subsequent images.

Figure 5.12: To rotate the FEL beam by 90◦ three mirrors were arranged to give three
di�erent orthogonal re�ections to map the axes (x, y) → (−y, x). This total rotation
was achieved through three re�ections: (x, y)→ (x,−z)→ (−y,−z)→ (−y, x).

The e�ect of varying the accelerator parameters was therefore judged to be insigni�cant

compared to the inherent structure of the beam. As a short term solution, a three-mirror

beam rotator demonstrated in �gure 5.12 was added to the beam path, with a long-term

goal of replacing the over�lled toroidal mirror with a larger one to reduce the di�raction

e�ects.
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When the mirror was replaced between phases III and IV the beam was imaged again

to ascertain the changes that had resulted from the beamline upgrades. The imaging was

done using the same PyroCamIII detector as was used in the �rst set of beam imaging and

approximately the same set-up, and though the path length and detector placement were

not necessarily the same as for the earlier results the two sets of data can still be compared

in a qualitative manner.

Impact of Beamline Improvements on Beam Structure

As before images were taken of the beam at the focus, though here the detector was not

placed at an angle to the beam to emulate the re�ection mode geometry, but perpendicular

to it as in the transmission imaging mode. With the addition of the wavelength measurement

performed using the multi-element pyroelectric detector array, the images could be taken at

the wavelengths used for imaging: 6.50, 7.30 and 8.05 µm which are shown in �gure 5.13.

To avoid saturating the detector with the increased intensity of the FEL the electron bunch

train length in the accelerator had to be reduced to 50µs, half its usual value, which had the

e�ect of halving the intensity.

The focus achieved for these images was noticeably better than previously measured,

with a FWHM that was at least as small as, and mostly smaller than, the previous results,

with an average FWHM of 270 ± 20 µm × 350 ± 60 µm. The focus shape is also better,

showing a much �atter peak and smoother variation than before the mirror upgrade. The

Figure 5.13: Images of the focussed FEL beam after upgrades to the ALICE IR-FEL
beamline with vertical (y) and horizontal (x) line pro�les over the center of the foci.
These images were taken at the imaging wavelengths of 6.5, 7.3 and 8.05 µm with
the PyroCamIII detector perpendicular to the FEL beam. The cross-section pro�les
show a high level of similarity to each other, and are similar in shape and size in the x
direction to the pro�les seen in �gure 5.7. The y direction pro�les show a much better
shape than the previous images, due in part to the normal incidence at the detector,
but are smaller than the extrapolated size that could be achieved previously, with no
visible sub-structure.
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beam cross-section is still far from uniform, but given the large number of optical components

and large distance from source, the resultant shape is not surprising.

Figure 5.14: Images of the defocussed (∼ 0.75 f) beam taken with the PyroCamIII
detector. The beam appears much more uniform, with less obvious structure, but
plotting vertical and horizontal pro�les through the center of the image shows clear
structure of two principal types: coarse vertical di�raction peaks from the beamline
with a spatial period of ∼ 80 µm when extrapolated to the focus size, and smaller di-
agonal di�raction patterns. The coarser pattern is consistent with a reduced over�lling
of the toroidal mirror, while the �ner patterns could be the result of further optics in
the beamline. Both features are a much lessened e�ect than those seen in the previous
beam imaging.

The detector was then moved closer to the lens to approximately 0.75f and the recording

of the images repeated, this time with the full 100 µs train length to give clear images. The

defocussed images, showing the remaining structure of the beam cross-section are shown

in �gure 5.14. The di�erence from the previously observed structure (in �gure 5.8) is re-

markable, although the structure is not completely removed, it is signi�cantly reduced. The

mirror is still comparable in size to the beam incident upon it, and as such will still impart

di�raction e�ects to the re�ected beam, but by reducing the over�lling the mirror the di�rac-

tion e�ects are lessened. Rather than many slightly curved and separated local maxima in

the y-direction, there is now a generally cohesive beam shape, though with a disordered

maximum and still several fringes of higher intensity. The size of these fringes is much larger

than the previous ones: extrapolating to the size of the focus gives these sub-peaks a period

of approximately 80 µm, compared to the previous sub-peak period of roughly 55 µm.

There is a clear improvement between the beams for phase III and phase IV but some

structure is still seen in the defocussed beam on length scales similar to the motion of the

aperture in the beam. One reassurance that the e�ect on the SNOM signal was minimised

by the improvements was that the focus size of the FEL beam was decreased, and showed

no sub-structure on the PyroCamIII detector. A secondary observation can be made from

the defocussed images: high spatial frequency diagonal striping can be seen in most of the
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images, similar to the di�raction patterns seen in PC2 in �gure 5.9. The striping can be

ascribed to further optics in the beam path being over�lled or slightly mis-aligned with

respect to the beam. In the x-direction line pro�les this pattern seems to be a contributor

to a small amount of structure.

5.2.2 FEL Second Order Light

During the course of phase III (see section 5.5) it was also discovered, by accident, that

the SNOM was detecting a surprisingly unexpectedly high signal resulting from second order

emission from the FEL. The discovery was made when a signal was still observed from the

MCT detector while a silica glass (SiO
2
) shutter was closed in the FEL beamline. This

shutter has a transmittance T < 3% above 4.4 µm which increases sharply for wavelengths

between 2.8 < λ < 4.2 µm [81] which is almost exactly the range of second harmonic light

that the ALICE IR-FEL could produce:

5.70 µm

2
= 2.85 µm (5.2)

8.60 µm

2
= 4.30 µm (5.3)

The FEL light should have only contained a very small fraction of the second order wave-

length (λ/2) yet it was contributing up to 50% of the observed SNOM signal. The disparity

between expectations and measurements made of the quantity detected by the SNOM could

be explained by two contributing factors. Firstly the 6 µm core of the �bres will have had

a much greater transport e�ciency for shorter wavelengths of light, so while the �rst order

wavelengths are very close to the cut-o� for transmission down the �bres, the second order

wavelengths are not, giving an increased relative intensity. Secondly the di�raction of the

second order light at the outcoupling hole of the FEL and the subsequent di�raction from

the over�lled mirror was expected to be signi�cantly less than that for the �rst order wave-

lengths, giving a much smaller and more ideal cross-sectional pro�le which should have been

concentrated at the center of the main beam. If the location of the SNOM aperture was

placed at the point of maximum intensity in the focussed beam, then it would measure a

greater proportion of the second order beam, as it was focussed much more tightly. These

two e�ects together could explain the large proportion of second order light.

For the upper half of the second order range there are no strong features in the IR
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spectrum of the tissue, thus the second order light will not have contributed to the contrast

seen in the SNOM images at the higher wavelengths, but below 3.75 µm there are strong

peaks associated with C−H stretches which will lead to additional, undesired contrast. A

short-term solution was employed to eliminate as much of the second order light as possible,

without impacting on limited experimental time by inserting a partial beam-block at the

center of the beam. Because the second order light was expected to be concentrated into a

smaller cross-section at the center of the main FEL beam, this beam block simply removed

the second order light, with the downside that it also blocked the most intense region of the

�rst order light.

As a more robust method of removing the second order light from the FEL, a high-pass

�lter > 4.5 µm was placed just after the beam pipe exit window for phase IV of imaging,

described in section 5.6. The beamline upgrades resulted in a much larger FEL intensity

at the SNOM resulting from a decrease in the loss at the mirror that was replaced. The

increase in intensity resulting from these modi�cations gave much more reliable imaging

conditions, indeed the operators controlling the accelerator noted a correlation between

the increased intensity of the FEL and the increased stability of the output. The focus

was, however, intense enough to both saturate the MCT detector and also damage the

samples. Consequently crossed polarisers were also employed to modulate the intensity in a

controllable and predictable way.

5.2.3 Undulator Gap Scans and the Spectral Properties of the Fibres

One of the advantages of using the ALICE IR-FEL as a source was the continuous

tunability of the FEL output wavelength through varying the undulator gap size. With the

addition of real-time wavelength monitoring in phase III using the multi-element pyroelectric

detector array, spectra could be measured using the SNOM by sweeping the gap size over

a range, leading to a varying wavelength over a corresponding range, and measuring the

SNOM signal on a sample. This gave the opportunity to essentially perform local, near-

�eld spectroscopic measurements at a point on a sample using the SNOM. In order to

utilise this approach, however, the transmission properties of the SNOM �bre needed to be

characterised.

The data measured during such an undulator gap scan (UGS) had several channels

recorded in parallel, with the outputs giving spectra of the FEL intensity from the spec-
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trometer given by the integral of the �tted curve from the multi-element array detector, the

FEL intensity on the SNOM table from the reference detector and the intensity measured by

the SNOM aperture via the MCT detector, each taken with respect to both the undulator

gap and the �tted wavelength of the FEL. To reduce the impact of noise �ve measurements

were recorded at each value of the undulator gap and the signals from the other channels

(wavelength, FEL intensity, reference signal and SNOM signal) were averaged. Because the

�tting of the FEL wavelength required a su�cient FEL intensity to give a reliable �t, any

transitory dips in the output could lead to a spurious �t and an anomalous wavelength. Such

wavelength readings were removed during the averaging process. A further noise reduction

was performed using a three point moving local regression smoothing, ignoring outliers at

deviations of > 6σ. While this has the potential to hide important data, the spacing of the

wavelengths was much less than the bandwidth of the FEL output and so adjacent points

were expected to be largely similar. The uncertainty on each averaged measurement was

calculated using the error on the mean ∆x̄ = σN−1/
√
N , though the uncertainty on the �nal

values was generally very small.

Figure 5.15: Averaged UGS curves of the two measurements of FEL output plotted
against the determination of the FEL wavelength by �tting the output of the multi-
element detector array in the spectrometer. The FEL intensity measurement was
derived from the area of the curve �tted to the multi-element pyroelectric detector
array in the spectrometer used to monitor the FEL wavelength. The reference signal
that was measured to give a method of normalising the SNOM images was also recorded
in the UGS and was much more successful at compensating for the variations in FEL
output.

Typical examples of the two measurements of FEL intensity - the �tted area measured

at the spectrometer and the reference detector boxcar output - produced by this UGS are

displayed in �gure 5.15, showing similar but distinct behaviour. The area of the curve

�tted to the multi-element detector array output was uncalibrated with respect to true FEL
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intensity, giving a rough approximation to the variation in intensity more than the actual

value. Due to the way in which the �t area was calculated, when the FEL intensity was lower

at either end of the range of the undulator gap, the area given by the �t was less reliable

than the value found by the reference detector. This is shown by the much more prominent

low values at the extremes of the reference signal curve rather than the FEL intensity curve

which suppresses the e�ect of the lower intensities. The longer PLIA in the spectrometer can

also be seen by the enhanced dip at ∼ 6.5 µm due to water absorption along the light path;

the dip is also seen in the reference signal but is not as pronounced. The reference signal, as

when used with the SNOM imaging, gave a much better normalisation for the variation in

the FEL intensity than the spectrometer-derived value, and so was used to compensate for

this variation when possible.

UGS of Calibration Samples

Figure 5.16: The results of an UGS taken on a Au mirror surface using a 6 µm core
diameter �bre. The averaged SNOM signal was divided by the averaged reference signal
to give the normalised red curve underneath. This normalisation was very successful
at removing the majority of the noise from the spectrum. The resulting curve is not
the �at response that could have been expected from a Au mirror, instead a number
of prominent peaks are seen.
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In order to characterise the signal recorded by the SNOM many UGS were taken on a

Au mirror surface which, as detailed in section 5.1.2, has a very �at optical response over

the wavelength range of the ALICE IR-FEL. The reason for this was to limit the variation

in response of the sample with wavelength and measure only the wavelength variation of the

optical set-up itself. These UGS were performed as a signi�cant part of phase III of SNOM

imaging. The SNOM signal measured using a 6 µm core diameter CorActive �bre on the

Au mirror is shown in �gure 5.16, along with the normalised SNOM signal found by simply

dividing the SNOM signal by the reference signal. The uncertainty in the �nal value, plotted

as a grey area around the line is very small and can only be seen clearly in a few places.

Normalisation to the reference signal was very successful at removing the majority of the

noise in the spectrum.

The normalised curve that was produced by the UGS is not the �at response of a Au

mirror: �ve prominent peaks can be seen. Given that the sample was clean and relatively

spectrally uniform, and that these peaks are not seen in the FEL intensity variations, the

spectral features must be originating either in the tip-sample interaction, the �bre itself, or

at the MCT detector.

Figure 5.17: The results of an UGS taken on the Au/Si calibration sample. Similar
peak positions to those seen on the Au mirror in �gure 5.16 are visible, but saturation
of the detector during the Au UGS means that it was not possible to normalise and
peak locations and intensity for all but the central peak are not accurate.

Further evidence of the origin of these peaks being associated with the �bre or aperture

is given by �gure 5.17. These two UGS were measured over two di�erent points on the

Au/Si calibration sample, one on an area of Si and the other on one of the Au islands. The

same line shape is seen in these two spectra, though the relative intensities of the peaks
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have dramatically changed. Partly this was due to saturation of the detector during the Au

UGS resulting from the signi�cantly higher re�ectance of Au compared to Si, but while the

two peaks at longer wavelengths saturated the detector, the peak at approximately 6.8 µm,

which was a larger peak in �gure 5.16, does not saturate. From this it can be demonstrated

that the relative intensity of each of the peaks was variable across di�erent UGS but, as seen

in �gure 5.17 taking two UGS scans in di�erent places gave peaks in approximately the same

locations. This �nding suggests that the �bre is giving the structure seen in �gures 5.17 and

5.16 as it is less likely that the tip-sample interaction was the same on both regions of the

sample.

Understanding the Spectrum

To give a quantitative comparison of the two spectra obtained on the Au/Si sample, the

reliable peak at approximately 6.75 µm in the two UGS spectra in �gure 5.17 were �tted

with Gaussian curves. From these �ts it was possible to measure the location and size of

each and compare between the two spectra to check for consistency and assess if these peaks

were variable with the tip location. The calculated peak locations were 6.74± 0.01 µm and

6.76 ± 0.01 µm for the Si and Au peaks respectively, with the uncertainties given by 95%

con�dence bounds of the �t parameters. These two peaks are consistent with each other

within these bounds, giving no evidence of variation in the peak location either over time or

with the location of the tip.

To characterise the entire spectrum, more accurate �ts of all of the peaks in the Si spec-

trum in �gure 5.17 were calculated, �rst with individual peak �ttings to provide approximate

locations and the appropriate number of peaks and then with a combination of eight Gaus-

sians simultaneously, determined to be an adequate number to accurately reproduce the

shape observed in the UGS spectra. The peak locations, 95% con�dence bounds, and the

general assignment of each of these eight peaks are given in table 5.1 and the corresponding

�t produced is shown in �gure 5.18.

The �tted curve in �gure 5.18 was compared to the Au mirror spectrum in �gure 5.16,

showing a very similar line shape with peak locations within the 95% con�dence bounds

determined for the �t. The relative peak heights are slightly di�erent between the �t and

Au mirror spectrum, but are much closer than the variation seen on the Au spectrum from

�gure 5.17. With the spectra being so similar while being acquired on di�erent days, with
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Figure 5.18: (a) The �tted curve plotted with the points of the Si spectrum from �gure
5.17. The eight peaks used to �t the curve give a good �t. (b) This �t is compared
with the spectrum measured over the Au mirror, showing a very similar shape, and
consistent peak positions with relatively similar peak heights.

di�erent �bres and on di�erent types of sample, the most likely origin of the structure is the

transmission properties of �bre itself.

Fibre Spectrum

To understand the origin of the spectral features resulting from the transmission through

the IR �bre, an UGS was taken where, instead of measuring the SNOM signal in re�ection, a

100 µm core diameter �bre, also from CorActive and with the same composition, was placed

at the focus of a 50 mm focal length CaF
2
lens and the ALICE IR-FEL beam directly

coupled into the �bre. The measured spectrum is given in �gure 5.19 with the same �tted

curve produced using the Si spectrum produced above. Due to the much larger signal level

that could be transmitted down the larger core, the MCT detector saturated too easily and

the pyroelectric reference detector had to be used instead. This set-up has the advantage of
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Peak Description Center (µm) 95% Con�dence Bounds (µm)

Peak 1 6.06 6.05 - 6.07
Peak 2 6.37 6.36 - 6.38

Peak 2 Shoulder 6.41 6.35 - 6.46
Peak 3 6.75 6.73 - 6.77
Peak 4 7.03 6.83 - 7.23

Peak 4 Shoulder 7.17 6.91 - 7.43
Peak 5 7.38 7.31 - 7.45

Peak 5 Shoulder 7.64 7.47 - 7.81

Table 5.1: Peak descriptions and locations for the �t given in �gure 5.18. The smaller
peaks show a correspondingly greater uncertainty in location, but these peaks give a
very good �t to the measured spectrum.

removing the e�ects of the MCT detector and tip-sample interaction from the measurement

and only contains the signatures of the lens, �bre and reference detector. The lens and

reference detector signals were both included in the reference signal measurements (see �gure

5.15) which did not show the peaks seen previously in �gures 5.16 and 5.17, and are also

present in this measurement in �gure 5.19.

Figure 5.19: The spectrum measured by an UGS with the FEL beam directly coupled
into a 100 µm core diameter �bre. Also plotted is the same curve �tted to the Si
spectrum in �gure 5.18. The 100 µm �bre spectrum is noisier than previous spectra
because it could not be normalised, as the reference detector was used to measure the
signal transmitted through the �bre. The shape of the spectrum is vey similar to the
shape of the �tted curve from previous UGS but the variation is on a large pedestal
value of ∼ 0.66 V rather than 0 V.

The disadvantage of using the reference detector is that there was no usable reference

signal for normalisation, and so the spectrum produced was noisy. The shape produced by

this UGS, however, very closely resembles the shape produced in the previous UGS taken

with the 6 µm core diameter �bres, but with a large pedestal value of 0.66 V, giving a
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5% peak-to-peak variation over the spectrum. Comparing this variation to the 50 − 100%

peak-to-peak variation for the 6 µm core diameter �bre shows that the size of the core plays

an important role in the modulation of the spectrum - further evidence that the �bre itself

is the source of the structure seen in these UGS.

A �nal piece of information comes from the transmission spectrum of the �bre, given in

the datasheet from CorActive for these �bres [77]. The spectrum, shown inset in �gure 5.20,

shows the relatively �at transmission properties of the As
2
Se

3
over the FEL tunable range,

but the small �uctuations in the spectrum do correspond closely to the features seen in the

UGS spectra, with the comparison shown in the main graph in �gure 5.20.

Figure 5.20: The spectrum of the �bres from the datasheet provided by CorActive [77]
compared with the shape of the spectra from the UGS above. Inset is the full spectrum
with the indicated region enlarged for the main graph. The shape of the UGS spectra
closely resembles the peaks and troughs of this �bre spectrum, suggesting that the
structures seen are resulting from absorption within the �bre.

The peaks and troughs of the �bre spectrum match very closely the shape of the UGS

curve and suggests that absorption within the �bre material is causing the UGS pro�le shape.

There remain two additional e�ects, however, that require consideration. The �rst is the

size of the features seen in the spectrum. The variation in the �bre transmission spectrum

provided by CorActive is only ∼ 0.5% peak-to-peak on a value of 95%. For the 100 µm

core diameter �bre, however, the modulation was roughly 5% of the signal strength, while

for 6 µm core diameter �bres the modulation was up to 95%. The absorption by the �bre
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must be enhanced beyond that predicted for the material by the manufacturer. The 6 µm

core diameter size �bre will act as a single mode �bre, with the transmitted mode extending

signi�cantly into the cladding material [82]. The cladding material, therefore, will also be

contributing to absorption, and no spectrum is known for this material, although it is still

As
2
Se

3
and so should have similar spectral features at roughly the same wavelengths. The

larger core size �bre will be multimode and so represents an intermediate situation that is

much closer to the ideal case given in the �bre datasheet.

The second e�ect needing to be understood is the variable relative peak intensity, even

post-normalisation. It could be the case that the FEL intensity variations did not normalise

well, though the curve produced in �gure 5.16 shows a much cleaner spectrum than pre-

normalisation. Another possible source of this variation in intensity at di�erent wavelengths

is the structure known to have existed in the beam at the time that these UGS were taken.

Any change in the aperture position in the beam could have led to a slightly di�erent part

of the wavelength-dependent beam structure being sampled by the SNOM aperture and so

a di�erent signal strength at the same wavelength.

UGS Conclusions

The spectra produced by these UGS show a signi�cant amount of structure originating

from absorption in the �bre itself. The spectral features of the �bre are also compounded

with the FEL intensity variations and di�erent detector response curves, which make normal-

isation more di�cult, though some success was had. The beam structure and this normali-

sation di�culty together contributed to peak height and position variations between UGS,

that could not be compensated for, on a scale at least as large as the expected variations

that a biological sample would give at di�erent sampling points. Because of these di�culties

UGS were not performed during phase IV and stricter monitoring of scan wavelength was

implemented for phase IV to avoid the �bre spectrum a�ecting the �xed-wavelength SNOM

images.

5.2.4 Resolution: Optical and Topographic

The SNOM technique obtains images in the near-�eld of a sample to circumvent the

di�raction limit on the resolution placed upon conventional far-�eld microscopy. The spatial

resolution obtained by SNOM imaging is one of its main advantages over other techniques.
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There have been many di�erent reported �ndings for resolutions obtained in other work and

any resolution below λ can be considered to be below the di�raction limit. In the experiments

conducted during this work the principal focus was the development of understanding with

regards to both the SNOM equipment and oesophageal cancer, rather than in obtaining high

resolution images. This was the main driving force behind the choice to use cleaved �bres

rather than etched �bres, since although the resolution becomes limited by the size of the

�bre core, the cleaved �bre is much more stable, does not require such careful handling and

can image larger areas with more extreme topographic variation.

Figure 5.21: The e�ect of varying the pixel size with di�erent true resolutions for an
image area of 280×280 µm. (a) An image of a stained tissue section showing clear, crisp
detail in the sample, with a pixel size of 0.5 µm and a matched resolution of 0.5 µm.
(b) An under-sampled version of the same image area at 0.5 µm true resolution but
with a pixel size of 10 µm, essentially taking every 20th pixel; the image is much less
recognisable in terms of the structures seen. (c) An appropriately sampled image, with
a resolution and pixel size of 10 µm; although the number of pixels is the same as
in (b) the image appears much clearer and the structures are recognisable. (d) An
over-sampled image where the resolution is still 10 µm but the pixel size is 0.5 µm; the
image shows more detail than is seen in (c) despite having the same true resolution of
10 µm but has 400 times as many pixels so would take 400 times as long to acquire
with the SNOM. A compromise should be used between (c) and (d) that maximises
detail while minimising the acquisition time.

It is important to know the spatial resolution that each `tip' is capable of achieving in

order to vary the pixel size so as to avoid excessive under- or over-sampling of the image,

as demonstrated in �gure 5.21. Under-sampling, that is collecting pixels at a spacing larger

than the resolution of the �bre, leads to loss of information [8] and a resulting image that

is hard to interpret, and while over-sampling, collecting pixels at a spacing less then the

resolution of the �bre, gives a higher level of detail in the image, it takes longer to acquire

the image. By over-sampling the image only slightly, a good level of quality can be achieved

without dramatically increasing the time taken. However, in order to determine the optimum

pixel size a knowledge of the typical resolution obtained by the SNOM is required. The

cleaved �bres used in this work had a core size of 6 µm which should give a maximum
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resolution on the order of 6− 10 µm in the transmission imaging mode, but can give smaller

resolutions in re�ection due to the geometry of the tip and sample, where the SNOM aperture

e�ectively includes the gap between the tissue and sample, which is nominally on the order

of ∼ 50− 100 nm.

To test the resolution of the �bres a calibration sample consisting of Au islands deposited

onto a Si substrate, the same sample used to calibrate the piezo hysteresis in section 3.4.2.

SNOM images were taken over the edge of one of the islands at two di�erent sizes, shown

in �gure 5.22. The topography and SNOM signal images show a well de�ned edge where

the sample steps up to a Au island and the re�ectivity of the surface changes. Although

the SNOM image is noisy the di�erence is clear between the two regions. Examining the

response of both the topographic and optical signals to the sharp edge on the sample provides

a measure of the resolution for each.

The ER of both the topography and SNOM signal over the sharp step edge of one of the

Figure 5.22: Extracted line pro�les from two pairs of images taken on a calibration
sample with a sharp step edge were used to estimate the resolution of the SNOM
measurements. One pair of images (topography and SNOM signal) were taken over
a 40 µm square scan area with 150 pixels in each dimension and the other pair were
at the same number of pixels but only scanning half the size (20 µm) and so at half
the pixel size. Each line pro�le was essentially di�erentiated, by taking the di�erence
between adjacent points, and �tted with a Gaussian curve. The �tted LSF was Fourier
transformed to give the MTF and an estimate for the resolution of each of the images
at the 10% threshold level of the MTF.
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Au islands was used to calculate the MTF as detailed in section 2.4.1. Figure 5.22 shows

the ER pro�les extracted from the indicated lines in each of the four images along the scan

direction of the SNOM. The �rst di�erence of each of these pro�les was taken to give the

LSF which was �tted with a Gaussian to reduce the impact of the noise present in the signal.

The FT of these �tted LSF were plotted and the 10% level determined for each one. The

resolution of each image was determined by taking the reciprocal of the spatial frequency to

give topographic spatial resolutions of 1.81 µm and 1.73 µm for the 40 and 20 µm images

respectively and corresponding optical spatial resolutions of 2.30 µm and 2.83 µm.

The two images give very similar results, leading to an average optical spatial resolution

of 2.57 µm which, for an imaging wavelength of λ = 6.75 µm, gives a resolution in terms of

the wavelength of almost λ/3, demonstrating that the optical resolution of the SNOM was

indeed below the di�raction limit.

The spatial resolutions of the topography images were signi�cantly smaller than those

found for the optical images. This can be understood by the di�erent nature by which the

topography is measured compared to the SNOM signal. The resolution of the topography

will be determined by the shape and size of the lowest point on the �bre. Not only is

this potentially independent of the SNOM aperture when using cleaved �bres, but it is also

subject to change if the �bre either sustains damage or picks up some sort of debris, without

necessarily impacting the optical resolution in the same way. The e�ective SNOM aperture

is also likely to vary to some extent depending on the tip-sample interaction and geometry

of the �bre tip, so the results obtained here can only give an approximate value resolution

that was obtained on tissue samples

Based upon these resolution measurements, the SNOM images taken with cleaved �bres

were acquired with a pixel size smaller than 2.6 µm in order to obtain an appropriate match

to the typical resolution expected.

5.2.5 Imaging and Analysis Considerations

When analysing images, it is important to be aware of the di�erent types of information

they contain, and to interpret them appropriately. For SNOM, there are many variables

that can a�ect the signal measured at a given pixel that can be both desired or undesired

depending on the type of imaging being performed. In any analysis of images where noise

can be a problem, SNR is often used to give a measure of the impact of the noise relative
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to the signal level. As the signal levels measured by the SNOM are typically very small, the

impact from di�erent sources of noise can be great. Generally image analysis of this data

would therefore seek to distinguish signal from noise, but which e�ects classify as `noise'

depends on how the images are taken and what e�ects are of interest. A simple de�nition

of `noise' is used here: any sort of undesired contrast mechanism within the SNOM images.

Further to this, the noise in the data acquired by the SNOM can be of two main forms:

pixel-to-pixel variations and image-to-image variations.

In microscopy there are many di�erent e�ects that contribute to the observed contrast

in a given pixel, the principal and most desirable is absorption or re�ection by the sample.

Additional information can come from added chemical stains [83] or �uorophores [84], as with

H&E stain used to label DNA and protein in tissue samples. The extension to SNOM adds

a number of further contrast mechanisms associated with the near-�eld. Any changes in the

refractive index at or near the sample surface, either from a chemical or structural change,

will produce variations in the signal propagated down the SNOM �bre [85]. Although this

makes SNOM a powerful tool for imaging in many di�erent ways it also means that it is

sensitive to additional undesirable e�ects. The evanescent �eld at the sample surface decays

exponentially with distance, so any variation in tip-sample distance will exponentially a�ect

the SNOM signal measured. Vibrational noise is therefore a potentially signi�cant problem,

as is any perturbation to, or breakdown of, the feedback used to maintain the tip-sample

separation.

Other undesired pixel-to-pixel contrast mechanisms can arise from variations in the ra-

diation incident upon the sample, such as �uctuations in the source intensity or wavelength

or, as discussed above, relative motion of the beam and aperture. Image-to-image contrast

changes could also arise from these variations in wavelength, intensity or beam position,

albeit on a longer time scale, making the separation of these e�ects very di�cult. An addi-

tional source of variation of apparent source intensity is absorption of the radiation in the

ambient atmosphere. For IR wavelengths the main contributor to absorption in air is the

presence of H
2
O. The amount of absorption in the air is very sensitive to wavelength, and

also may vary with time as the ambient humidity varies.

A further e�ect on any SPM technique is the shape and geometry of the tip and sample

[86]. Again both of these can change image-to-image, but can also be strongly dependent on

position within a scan area.
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In order to be able to minimise the impact of these di�erent types of contrast mechanisms

and to recognise or mitigate them, those sources that are undesired need to be identi�ed and

characterised. The development of the SNOM instrument detailed above contained many

occasions where the improvements made to the equipment and set-up were driven by a desire

to mitigate these e�ects.

Informative Contrast Mechanisms

For SNOM, there are many di�erent potential sources of desired contrast, depending

on the approach taken to imaging, the mode of operation and the type and wavelength

of illumination. E�ects that, in the far-�eld, are easy to understand such as absorption

and re�ection, become more complicated in the near-�eld [85]. As with far-�eld imaging,

however, the signal contained within the evanescent waves at the surface of a sample are

related to variations in the complex refractive index at the surface, giving analogous types

of e�ect, but with potentially less intuitive responses at di�erent wavelengths. This contrast

was the desired contrast mechanism investigated in this work, relating the SNOM signal

measured to the sample chemistry. By measuring in re�ection imaging mode, the resolution

was better than in transmission with the cleaved �bres used, but the SNOM signal was much

more surface sensitive. The re�ection images therefore do not give information for the whole

thickness of the samples, further complicating the interpretation of the contrast seen: the

comparison between the SNOM images and visible light-based information could only be

performed with stained and unstained images of the whole sample thickness, with no way of

isolating only the chemistry of the surface.

Another source of contrast that can be informative, and is often used in conventional

far-�eld microscopy, is the polarisation of the illuminating source and how it interacts with

the sample geometry [25]. The polarisation of the ALICE IR-FEL was �xed by the plane

of the undulator, giving a strong polarisation to the FEL beam. Using a single polariser

to modulate the beam intensity delivered to the SNOM would have changed the plane of

polarisation incident on the sample, but using crossed polarisers with the second polariser's

plane of polarisation �xed with respect to the sample removed this problem, and the e�ect

of polarisation was not investigated in this work.
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Air Absorption

The PLIA was varied signi�cantly during the development of the ALICE-SNOM instru-

ment. The e�ect this had on the impact of absorption by water vapour and CO
2
along

this path was modelled using data from the high-resolution transmission molecular absorp-

tion (HITRAN) database and the National Institute of Standards and Technology (NIST)

[87, 88] modelling a path length of 1 m, the maximum used in this work, at an ambient

temperature of 295 K and relative humidity of 80%. The resulting transmittance spectrum

is shown in �gure 5.23a, along with the convolution of this spectrum with the spectral shape

and bandwidth of the FEL beam to model the typical transmittance of the FEL beam along

a PLIA of 1 m. A rough approximation to the corresponding FEL intensity that could be

measured is shown in �gure 5.23b, found by approximating the output curve of the FEL with

Figure 5.23: A model of the absorption due to the absorption by H
2
O and CO

2
along a

1 m PLIA. (a) The transmittance of the PLIA derived using data acquired from NIST
and HITRAN [87, 88]. (b) An approximate model of the FEL output intensity with
wavelength based on observations of peak wavelengths and the FEL range, using this
the approximate resultant FEL intensity pro�le can be obtained. This is consistent
with the pro�le recorded during undulator gap scans.
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wavelength and multiplying this by the transmittance of the PLIA. This curve shape is very

similar to the reference signal and FEL Intensity measured when scanning the wavelength

during UGS, as detailed in section 5.2.3.

The variation of transmittance with wavelength for this PLIA shows the very sharp

and intense absorption bands of H
2
O. The absorption due to CO

2
gives only a very small

e�ect. By considering that the ALICE IR-FEL is not truly monochromatic, but instead has a

bandwidth with a FWHM of ∼ 0.1 µm, the transmittance experienced at a particular central

wavelength can be derived by the convolution by a Gaussian with a FWHM of 0.1 µm. The

transmittance resulting from this gives a much smoother pro�le. While this should give the

intensity measured by the SNOM, the particular wavelengths corresponding to the absorption

by water vapour will still be removed from the FEL beam. The absorption features are so

sharp, though, that it should still be possible to access the biomarker vibrational bands.

Increasing the PLIA further gives an exponential increase to the absorption along the length

and will begin to have more detrimental e�ects to the intensity that is measured at the

SNOM.

Source-Related E�ects

The most intuitive and understandable type of the undesired sources of contrast in SNOM

arise from e�ects linked to the light source. Here the ALICE accelerator IR-FEL gives the

high peak power and relatively low average power that was required in order to successfully

image these samples without damaging them. Using a FEL as the source does, however, come

with several potential issues that had to be understood and mitigated. As detailed above

the FEL beam had signi�cant structure over its cross-section, leading to potential issues

when the tip was translated vertically in the beam for the inverted microscope SNOM. By

replacing the over-�lled mirror that was known to produce much of this structure, its impact

was reduced to a manageable level.

An additional e�ect that was also compounded by the beam structure is the spatial mo-

tion of the beam. The FEL was tens of metres away from the SNOM along an evacuated

beam pipe. Any small vibrational motion at the FEL would have been essentially ampli�ed

by this long distance. To avoid this e�ect the FEL was vibrationally isolated and the beam

observed to ensure that no problem arose. This vibrational motion could have resulted

in pixel-to-pixel noise in the SNOM images, but slower motions, such as thermal expan-
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sion/contraction of components over the course of hours will also a�ect the image-to-image

values, by varying the portion of the beam focus being sampled by the SNOM aperture.

Beam motion of both types is hard to compensate for, as any change in focal point a�ects

the pedestal value that the image variation sits upon, but attempting to re-maximise the

SNOM signal for each new SNOM image will change this value anyway.

Perhaps the most expected source of noise present in the FEL intensity was the variation

in intensity over time. This e�ect manifested in several di�erent ways, a�ecting both pixel-

to-pixel and image-to-image values. The shot-to-shot noise on the FEL, simply the variation

in intensity or wavelength from one macropulse to the next, was able to be maintained at

a reasonably low level. The peak to peak noise level of the intensity variation was used

to adjust the accelerator parameters to give a value of < 5% over 1 minute. Additional

instabilities in the accelerator could also lead to momentary drops in lasing, giving a few

pixels with no FEL beam in the SNOM images, as well as occasional `wobbles' in intensity,

often linked to the cryogenics in the superconducting linear accelerator modules. These

e�ects, other than drop-outs, should have been able to be normalised using the reference

signal but, as discussed above, this was not always successful. Further thermal e�ects in

the accelerator hall could also lead to much slower e�ects, such as a slow variation in the

cavity length of the FEL, leading to a shift in wavelength and intensity that could not be

compensated for, and instead had to be monitored over the course of the imaging, facilitated

by the addition of real-time wavelength monitoring during scanning in phase III.

Tip-Related E�ects

SNOM is a technique that relies upon having an aperture close to a sample surface. If

some external in�uence a�ects the manner in which the tip engages with the sample then not

only is the topographic image adversely a�ected, but the SNOM signal can also deteriorate.

One of the most commonly seen e�ects on the topographic images during this work was

the production of artefacts from large or misshapen tips. The topographic image measured

during a SNOM scan is, as with other SPM techniques [86], a convolution of the sample

surface topography and the tip shape. If the end of the SNOM �bre has a large area, then

only the highest point of topography under that area is sensed by the feedback mechanism,

leading to repeated `stamps' of the tip shape over the image, obscuring the �ne detail.

In some cases this `tip artefact' made accurate matching of the image to corresponding
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microscope images impossible.

The samples that were under investigation in this work were complicated tissue sections

with many small pieces and debris. This gave the possibility of in�uencing the topographic

feedback mechanism by colliding with some piece of detritus on the sample surface or lifting

the sample edge during scanning. In doing so the feedback mechanism would retract the

tip suddenly while scanning and then re-approach the sample, leading to a high streak in

the topographic image. In the most extreme cases the �bre was damaged leading to a very

di�erent topographic response, with a higher chance of tip artefacts.

In all of the cases above the topographic measurement of the sample, used to maintain

the distance between the sample and SNOM aperture, is disrupted or unreliable. This does

a�ect the topographic image in undesirable ways, but perhaps more signi�cantly the optical

measurement is also a�ected by the variation in the height of the aperture in the evanescent

�eld at the sample surface. Images with signi�cant topographic e�ects, therefore, were

considered much less reliable than those without and, in the case of an isolated topographic

e�ect, that region was cropped from the image.

By using cleaved �bres for phases II - IV the possibility of damaging the tip was greatly

reduced, leading to the ability to perform larger, faster faster scans. The likelihood of

colliding with the sample or debris and the chance of tip artefacts were increased, however,

due to a larger area moving near to the sample surface. Etched �bres, conversely, have a

much weaker interaction with the sample and so are less likely to pick up debris and will have

much smaller tip sizes, reducing the chance of problematic tip artefacts, but are much more

fragile. An unforseen problem that also arose with cleaved �bres was a signi�cant spatial

o�set between the SNOM aperture and the lowest point on the tip, where the topography

was sensed. The aperture, in this case, was therefore at a much less controlled distance from

the sample surface, essentially randomly varied over the course of the image independent of

the actual area that was optically sampled. Again, using etched �bres would minimise this

problem.

Sample-Related E�ects

The third source of additional, potentially undesired contrast is the sample itself. This

may seem counter-intuitive, as the contrast arising from the sample is desired and allows an

understanding of the sample chemistry to be obtained. Any changes to the sample during
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the acquisition of a set of SNOM images, or damage after a tip collision, will change the

contrast seen in the later images. The images each took typically 1-1.5 hours to acquire, so

care had to be taken to ensure that the sample was undamaged and undisturbed between or

during scans.

The potential impact for an extra, undesired chemical species to be present on the sample

should also be considered, as these will clearly a�ect the IR signal observed. The most likely

contaminants to a biopsy sample such as the ones imaged in this work is residual wax

remaining after the dewaxing process. Every e�ort was taken to ensure that the dewaxing

process was successful in removing the wax, with several stages of increasing cleanliness of

Xylene and rinsing in isopropyl alcohol. Additional e�ects may also come from the aging of

the samples, especially the potential for microbial contaminants growing on the specimens

after they have been dewaxed. To avoid this the samples were typically only imaged for

approximately a week after removing the wax, and the evidence given by the FTIR labelling

in chapter 4 that even after a period of months there was no signi�cant change observed

implies that this was not a serious issue with these samples.

Additionally the geometry of the sample relative to the plane of polarisation is known

to have an e�ect on the signal measured [25]. Other structural e�ects, such as shadowing

of lower-lying areas of sample by raised portions, will also have an e�ect. Separating these

sources of contrast from the information that is of interest is very di�cult, polarisation e�ects

could be observed by measuring with several di�erent planes of polarisation and observing

the di�erence but time constraints and potential damage to the sample made this infeasible.

Instead of compensating for these e�ects, an appreciation that these could impact the images

should allow analyses to be applied and conclusions drawn.

Image Ratios

Many of the above e�ects are spatially dependent within a given scan area, but should

stay relatively constant over the course of several scans. By taking ratios of images, many

of these e�ects should cancel or be reduced. The pixel-to-pixel noise that is not spatially

determined but rather is temporal in nature, such as the FEL intensity variations, will not

cancel, but by developing a more appropriate reference signal the work above moved towards

being able to eliminate much of this noise. The noise that is varying image-to-image will

also not cancel by taking ratios, but should give more of a constant o�set in image value,
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rather than in�uencing individual pixels.

5.3 Phase I SNOM: Preliminary Investigation

An early pilot study using the SNOM on the ALICE IR-FEL facility [33] used a pilot

group of two samples of oesophageal tissue, one adenocarcinoma and one benign Barrett's

oesophagus, to measure high resolution images using a simple set-up as a proof of concept

and starting point for this project. The diagnosis of each sample was unknown at the time

of imaging and analysis, to avoid bias.

The images obtained were very small, 40× 40 µm with a pixel size of 0.2× 0.2 µm, and

unguided in location: the tip was simply positioned over an area of the tissue. These small

areas are therefore not necessarily representative of the samples they were taken from, which

limits the conclusions that can be drawn from qualitative arguments, but the published

analysis of the imaging results shows that there is a clear discrimination between the two

images based upon di�erences in the distributions of the 8.05 µm phosphate stretch signal

associated with DNA. One sample was measured to have regions of DNA extended over

≈ 20 µm2 while the other had much smaller areas of < 10 µm2. This was in-line with the

�ndings in previous work [58, 89] that the amount of DNA is vastly larger in cancerous tissue

than in benign tissue, leading to an identi�cation of the �rst sample as cancerous and the

second as benign.

5.3.1 Phase I Set-up

The set-up for acquiring these �rst images is shown in �gure 5.24. The ALICE IR-FEL

beam exited the CaF
2
window at the end of the beam pipe and was focussed onto the sample

using a ZnSe lens of focal length f = 300 mm. By placing the lens just after the beam pipe

exit window, the path length in air (PLIA) was just over 300 mm giving minimal absorption

by water vapour and CO
2
in the air. A purged container could not be used as the air

disturbance caused by the �ow of gas could have interfered with the topographic feedback of

the SNOM. For a discussion of the e�ect of the PLIA see section 5.2.5. A camera was used

to monitor the approach of the �bre to the surface, but was not used to guide the sample

area beyond placing it on the piece of tissue on the disk. The �bres used to take these

preliminary images were etched and gold coated As
2
Se

3
�bres, which have been described
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Figure 5.24: Simpli�ed schematic for the �rst phase of SNOM imaging. The IR-FEL
beam was delivered to the end-station of the beamline in an evacuated beam pipe with
a CaF

2
exit window. Immediately after this window, a 300 mm focal length Zn

2
Se

3

lens was used to focus the FEL beam onto the tissue sample. The sample was mounted
on a three axis piezo stage to control the scanning plane (x, y) and to maintain the
tip sample height (z). A single electronics module was used to control the piezos and
collect the two data channels, the topography and the integrated SNOM signal from
the boxcar.

in section 5.1.2.

The choice of initial wavelengths with which to image the samples was based on the

spectra in the second �gure in reference [58] where absorption peaks are shown for the

di�erent biological components. The wavelengths chosen had to lie within the range of the

ALICE IR-FEL and give peaks that were su�ciently distinct from others for identi�cation

of that particular biomarker: 7.00 µm was chosen as a general `blank' background, with

no strong spectral features, 7.30 µm was assigned to protein/glycoprotein corresponding

to the CH
3
bend around 1360 − 1390 cm−1 and 8.05 µm was assigned to DNA giving

the PO �

2
stretch between 1200 cm−1 and 1250 cm−1. The intention behind this choice of

imaging wavelengths was to produce a chemical map of these di�erent biological components

of the tissue, each of which are expected to di�er in cancerous tissue from their physical

arrangements or concentrations in benign Barrett's oesophagus or healthy tissue [90].

5.3.2 Phase I Development

This phase of SNOM imaging was designed to allow a small data set to be collected to

form a pilot study. Due to restrictions in imaging time and available resources the set-up

was deliberately made simple and basic, but to give enough information about the samples

and areas imaged to prove the concept of using IR-SNOM to investigate oesophageal tissue.

There were two data channels recorded simultaneously for these images: the light intensity

measured by the MCT detector, ampli�ed and then converted to an analogue voltage by
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a boxcar integrator, hereafter referred to as the SNOM signal, ISNOM , and the z-piezo

position giving the topography of the sample surface. An example set of images acquired

during phase I shown in �gure 5.25.

Figure 5.25: Sample images acquired during phase 1. The images are 40× 40 µm with
a pixel size of 0.2 × 0.2 µm, and the SNOM signal image (b) has been �ltered using
a FT �lter as described in section 3.4.4, but without some sort of reference value for
the variable IR-FEL intensity the images cannot be cleaned up further. Features on
the order of ∼ 1 µm can be seen in the SNOM Signal image in (b), setting this as an
upper limit on the resolution obtained in these images. This image, along with the
other two wavelengths, allowed cluster analysis to demonstrate the larger area of DNA
signal observed in this specimen, leading to the conclusion that it was cancerous.

Figure 5.25 shows the forward-directed images, where the image is constructed sequen-

tially pixel-by-pixel left to right along a given line and then scanning bottom to top from

line to line. The image set shown in �gure 5.25 was taken at 8.05 µm to represent a map

of DNA in the sample, based upon the associated phosphate stretch in DNA at that energy.

From this SNOM image and the image on the other sample at the same wavelength, cluster

analysis and contour plotting showed that the areas of high DNA signal were signi�cantly

larger in this sample, suggesting a diagnosis of cancer.

The SNOM signal itself was su�cient to determine which of the two samples was cancer-

ous, but for a more detailed investigation the relative intensity of the light source was needed

in order to quantify the corresponding variation in the signal and possibly to normalise the

image. In addition, an increased number of sample areas needed to be imaged to give a better

understanding of both inter- and intra-patient variability/consistency and the repeatability

of the results. Because tissue varies on a scale of tens of microns, the exact placement of a

single 40 µm area within a large (several mm) biopsy sample can have a strong e�ect on the

information captured in each image. It was therefore clear that an important consideration

should be the location of the image within the tissue sample, speci�cally with regards to
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its composition, so that a more representative and applicable area could be studied, and to

facilitate matching to microscope images the areas should contain identi�able topographic

markers.

5.4 Phase II SNOM: FEL Reference

The second phase of experiments expanded the number of channels recorded by the

SNOM software to three, with the addition of a relative background intensity channel, the

reference signal I0. This channel read an analogue voltage from a second boxcar integrator in

the same way as the ISNOM data, but the voltage was generated from the output of a single-

element pyroelectric detector which was receiving a small portion of the FEL light re�ected

by a CaF
2
beam splitter. This channel recorded the variation in the FEL power over time,

with no spatial information, but was still recorded in image format, analogous to the ISNOM

images. The aim of measuring the reference signal was to facilitate normalisation of the

SNOM signal with respect to the source variation over time in order to produce an image

that was independent of the FEL intensity, a step that is standard practice in spectroscopic

measurements.

An e�ort was also made to image in locations of interest. Not every biopsy piece on a

sample was of the same type or presentation of the tissue, having been taken from several

locations around a suspicious lesion and embedded in the same block of para�n wax. For

this reason it was important to choose a biopsy region that would give results consistent

with the experimental aims, speci�cally regions containing the epithelium and stroma of

the tissue, and not regions containing large quantities of debris or other tissues. The goal

was to guide area placement by using stained serial sections of the same sample, giving an

indication of the expected sample morphology. Both phase I and phase II were limited in

how accurately the image areas could be de�ned and located by the quality and geometry

of the approach camera images. The sample piezo stages for both phases were three-axis

stages, with x, y, and z control. As such it was impossible to obtain images from a camera

perpendicular to the sample as it would have been blocked from above by the SNOM head

assembly and from below by the sample stage. The approach camera for phases I and II

provided an image at approximately 30◦ from the surface normal and so gave a limited �eld

of view that was in focus, and the true scan location was blocked by the �bre itself. This
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geometry of image was able to ensure that the approximate location of the �bre was within

an area of interest, but a precise location was impossible.

5.4.1 Phase II Set-up

Figure 5.26: Simpli�ed Schematic for phase II of the SNOM imaging. A CaF
2
beam

splitter was added to the beam path, which re�ected ∼ 5% of the IR-FEL beam to a
pyroelectric detector to measure the relative intensity variations of the beam power.
The FEL beam was focussed onto the detector element using a 50 mm focal length
CaF

2
lens, thus the detector measured the relative intensity of the whole FEL beam.

The signal from this detector was processed using another boxcar integrator to give
values comparable to the SNOM signal.

A schematic diagram of the phase II set-up is shown in �gure 5.26. The addition of

a CaF
2
beam splitter to the optical path of the FEL beam after it exited the beam pipe

allowed a small portion (∼ 5%) of the beam to be measured by a single element pyroelectric

detector, having been focussed onto the element using a 50 mm focal length CaF
2
lens. The

voltage signal from this detector was then processed using the same type of boxcar integrator

as was used for the SNOM signal, to give an analogue voltage signal. The analogue voltage

was then recorded as an additional data channel.

The choice of imaging wavelengths for phase II experiments was again based upon the

FTIR data of biological components given in [58, 89], and expanded to �ve wavelengths:

• 6.00 µm was assigned to protein (amide I C−−O stretch at around 1670 cm−1)

• 6.50 µm was assigned to protein (amide II N−H bend / C−−−N stretch at around

1540 cm−1)

• 7.30 µm was assigned to protein/glycoprotein (CH
3
bend around 1360− 1390 cm−1)

• 8.05 µm was assigned to DNA (PO �

2
stretch between 1200 cm−1 and 1250 cm−1)

• 8.60 µm was assigned to glycogen (CO−O−C asymmetric stretch at around 1160 cm−1
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5.4.2 Phase II Development

This phase of SNOM imaging had several advantages over the initial experimental set-

up, the main one of which was the recorded variation in the output power of the FEL. The

increased knowledge of scan location based upon the camera images was another signi�cant

improvement that led to much more successful image collection through choosing areas

that were of interest and could be matched up to visible light microscope images after

imaging with the SNOM. The size of the image areas was increased to an approximate size

of 250× 250 µm giving a further increase to the chance of obtaining pertinent images. The

exact location of the image, as discussed above, was impossible to predict due to the location

and geometry of the camera used to approach the tip and look at the sample. Despite much

e�ort to ensure that the appropriate areas of tissue were investigated, the success rate at

selecting a scan area that was over the intended target was low. The larger scan areas did,

however, allow the SNOM topographic scans to be matched up to standard visible light

microscope images (as in �gure 5.27d) to aid analysis and to quality test the areas imaged.

Fibres

A further change to the set-up from phase I was the move from etched and gold-coated

�bres to cleaved �bres. This was in part necessitated by the larger image area size, but

also gave several advantages over the use of etched �bres. The larger scan size required a

larger step size on the piezo scan in order to maintain a reasonable time for each scan to

be completed (≈ 1 hour), and the etched �bres are extremely fragile. The variations in

topography that are measured on tissue samples could easily damage the tip if the piezo is

scanned too fast for the feedback to react to a rising edge, damaging not only the tip but

also the sample itself. Cleaved �bres are much more robust to crashing, and also give a much

more reliable feedback response as the damping force between the tip and sample is much

higher as the end of the �bre is larger. The cleaved �bres therefore give more robust and

less variable imaging conditions for larger scan sizes.

A further advantage of using cleaved �bres is that the time taken to etch the �bres and

coat the tips with gold is signi�cant, whereas the time taken to cleave the �bres can be

essentially insigni�cant compared to the time required to acquire even one SNOM image.

The corresponding reduction in lost time between scans where the �bre had to be replaced

was a large bonus to the limited time available for experiments. The principal downside to
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using cleaved �bres instead of etched tips is the decreased optical resolution that results from

having a larger aperture on the �bre. The aperture on etched As
2
Se �bres can be as small

as 0.1 µm [91] while the aperture on the cleaved �bre is at least as large as the core of the

�bre, in this case 6 µm. The true sizes of aperture achieved during SNOM imaging varied

signi�cantly, and could only be determined after imaging with the individual �bres and the

above �gures are only an indicator of typical sizes. The larger aperture will have given an

increased resolution size and so allow larger images to be taken. A further advantage of

using cleaved �bres was the increase in the quantity of light collected by the cleaved SNOM

�bre over the etched tips, improving the signal quality.

Imaging

Figure 5.27: An example set of simultaneously acquired images from the second phase
of SNOM imaging. Three data channels (a− c) were measured, the �rst two being the
same topographic and SNOM signal channels measured in phase I. The third channel
was the reference signal given by the pyroelectric detector. (d) The corresponding
image area captured using a traditional visible light microscope. These images are
340 × 340 µm with a pixel size of 2 µm. Although the topographic image shows a
clear resemblance of the image area, there is little in the SNOM image that correlates
with any feature seen in the microscope images, and the smallest features visible in the
image that could correspond to real structures within the sample are no smaller than
10 µm.

The topographic images for phase II were generally of good quality, and were mostly

able to be matched up to optical microscope images after acquisition. There was little,

however, in the optical images that could be correllated with any visible features of samples,

and the resolution of the images were typically very poor compared to expectations. This is

demonstrated in the image series shown in �gure 5.27, the topography (a) and corresponding

optical microscope image (d) show a very good agreement, but the SNOM signal image (b)

has no features that matches with anything in the image area. The SNOM signal should not

necessarily correlate with the topography, in fact this could be a sign of imaging problems (see

section 5.2.5), but there should be some spatial variations that are linked to the transition
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from sample to slide and so be spatially located at such locations. It is not clear why the

details seen in the images, such as those here, seem to be impossible to reconcile with the

sample area. Further to this di�culty the optical resolution of the image seems to be no

better than 10 µm in the images above, certainly due in part to using cleaved �bres with

larger apertures, but possibly a result of relatively large variations in FEL intensity that

were di�cult to normalise reliably.

Normalisation

E�orts at using the reference signal images to correct the SNOM signal images met with

mixed success. Often large qualitative correlations were seen between the two images but

when attempting a numerical normalisation:

Inormalised =
ISNOM
I0

(5.4)

it was found that the variations within the two images were not necessarily proportional to

each other and the resulting normalised images were sometimes worse than the un-normalised

images. An example of an image set that does not normalise using this method is shown in

�gure 5.28, the reference signal (b) seems to contain similar stripes of variable FEL power

that the SNOM signal (a) is a�ected by, but applying the pixel-by pixel normalisation (c)

does not compensate for them. Even simply normalising by the line-by-line median reference

signal value (d) according to

Inormalised(x, y) =
ISNOM (x, y)

median(I0(x1, y)...I0(xn, y))
(5.5)

does not improve the image signi�cantly beyond the pixel-based normalisation. By dividing

each line of the SNOM signal image by its mean value, `line-levelling' it, the detail in the

image is made much clearer (e), but the variation in FEL intensity along the lines themselves

is still a major factor in the contrast seen.

The large amount of noise, compared to the small variations in signal arising from the

sample chemistry, was highlighted by the addition of the reference signal image. While

gross variation across the image area is seen, smaller details are not visible, and little can

be correlated with the sample area given by the topography. It was impossible to obtain

a reliable or usable signal that could be used to investigate the tissues themselves without
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Figure 5.28: An example SNOM signal (a) and reference signal (b) pair of images
showing a large amount of noise associated with a long time scale variation of FEL
intensity between two di�erent lasing states. Neither point-to-point (c) nor line-median
based normalisations (d) signi�cantly improve the image. Only by dividing each line
of the SNOM signal image by its median value (e) can the stripes be removed, though
this does not account for FEL intensity variations along each line.
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reducing the general noise level in the images. Possibly the largest source of noise within

most of the images obtained in phase II was the variation in the ouput of the IR-FEL over

time. With the complication of unreliable normalisation with respect to the reference signal,

the images were mostly found to be too noisy to allow reliable conclusions to be drawn from

them.

A potential secondary e�ect that could contribute to the normalisation di�culties was

the variable wavelength output of the FEL. Over the course of the long SNOM scans the

FEL cavity length can vary due to shifts in beam energy and cavity length, both of which

a�ect the energy taken from the beam in the FEL undulator and thus the wavelength of

radiation produced. The variation in wavelength during each SNOM scan was not known

during phase II, only the starting wavelength, so the SNOM signal data could not be relied

upon. Because of this unreliability, measures had to be put in place to monitor and record

the spectrum of the FEL over time. This problem was compounded by the di�culty in

locating a suitable image area and identifying the location of the scan within the sample

tissue afterwards. The outcome of the phase II experiments was therefore the necessity for

further development of both the accelerator as a source and the SNOM set-up in order to

minimise these e�ects.

5.5 Phase III SNOM: Inverted Microscope

Phase III of the SNOM work represented a signi�cant change in the general set-up as

well as a shift in the approach taken towards SNOM imaging. The SNOM was adapted to

be mounted on an inverted optical microscope to facilitate accurate placement of scan areas

and understanding of imaging conditions. An inverted microscope illuminates a sample from

above and places the focussing optics underneath the specimen, which allows the SNOM head

to be mounted in a headstock above the sample whilst maintaining the ability to observe

the sample itself from underneath. Given that the small thickness and semi-transparency of

the samples mean that the top surface is visible from the underside, this approach enabled

the scan areas to be positioned and imaged to a much more accurate degree than achieved

previously and the �bre and sample could also be monitored for any damage.

The addition of the microscope optics underneath the sample necessitated the use of a

piezo stage with a clear optical path to the underside of the sample. A Piezosystem Jena
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PXY AP 500 µm two-axis x,y piezoelectric actuator was used for this reason, and the z-

piezo had to be moved to the headstock, where the head of the SNOM was now moved in

z (height) and the sample scanned in the x, y plane. The new x,y stage allowed for much

larger image sizes to be taken if required, as well as more �exibility in positioning the SNOM

scan origin. Longer �bres from CorActive with full protective jackets described in section

5.1.2 were used in phase III due to the increased distance from the SNOM head to the MCT

detector.

The FEL beamline included a beam splitter, earlier in the line than the SNOM itself,

which diverted another ∼ 5% of the FEL beam to a spectrometer for diagnostic purposes.

The spectrometer used a di�raction grating and single element pyroelectric detector to as-

certain the peak wavelength of the FEL output. The di�raction grating produces an angular

separation as as function of wavelength, θ (λ) according to:

θ (λ) = sin−1
(
λ

d

)
(5.6)

where d is the grid separation of the grating. Rather than moving the detector relative to the

grating, the grating was rotated to vary the wavelength incident on the detector. With the

addition of a multi-element pyroelectric array the spectral distribution could be measured

instead, essentially converting θ (λ) into x (λ) using the known distance to the detector array,

and the spectrum of the IR-FEL was monitored over time. This gave a large advantage over

the previous phase of experiments where the lack of knowledge of the wavelength during

the scan meant that little could be made of the data from longer time scale images, and

the SNOM scanning could be paused and the accelerator parameters adjusted if su�cient

deviation was measured. The spectrum was also integrated to give another measure of

the FEL power, but had the same limitations of the reference signal in that it was not

representative of the signal collected by the �bre, with the addition of the fact that the

detector was not accurately calibrated and signi�cantly removed spatially, and in terms of

optical components, from the beam at the SNOM.

5.5.1 Phase III Set-up

As a result of the studies of the beam images reported above, the apparatus was modi�ed

during phase III. The schematic diagram shown in �gure 5.29 for phase III, after the beam
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Figure 5.29: Schematic for phase III of the SNOM experiments. Signi�cant changes
were implemented between phases II and III, the biggest of which was the change to an
inverted microscope with a rearrangement of the piezoelectric drives to allow a clear
optical path through the sample for the microscope objective. To mitigate the e�ect of
the structure in the beam measured in section 5.2.1 the beam was rotated using a three
mirror rotator, and a beam block had to be installed in the center of the beam after
the lens to remove the second order FEL light that was more concentrated there. Data
was acquired on a multi-element pyroelectric detector in the spectrometer to monitor
the wavelength during the SNOM images, with another CaF

2
beam splitter was used

in the evacuated section of the FEL beamline to separate a small portion of the FEL
beam to the spectrometer. To modulate the observed intensity of the FEL beam under
the SNOM aperture, an iris was used that allowed the SNOM signal value to be set to
approximate standardised values.

imaging results led to the introduction of a three mirror beam rotator, is very similar to that

seen for phase II with the addition of the rotator and the spectrometer beam splitter. The

beam splitter for the spectrometer was within the evacuated FEL beamline, and steered 5%

of the FEL beam to the spectrometer through a separate CaF
2
window (not included in the

schematic) to provide a record of the FEL wavelength and a secondary, more approximate)

measure of the intensity both in total and at the desired wavelength, as well as providing

continuous information on the FEL wavelength during each SNOM scan.

To rotate the ALICE IR-FEL beam, three Au mirrors were arranged to re�ect in three

orthogonal directions, which produces the end e�ect of rotating the beam by 90◦ clockwise

as demonstrated in �gure 5.12. This rotation is achieved by mapping the axes (x, y, z) →

(−y, x, z) through the three re�ections: (x, y, z) → (x,−z, y) → (−y,−z,−x) → (−y, x, z).

The assembly of these mirrors was included in the beam path for the SNOM, which meant

that the PLIA had to be increased to 850 mm to accommodate it, and thus the level of

absorption due to water vapour along this path was increased.

To provide an element of standardisation for the SNOM signal values an iris was used

to modulate the amount of FEL light reaching the SNOM aperture. While this will have

contributed a small di�ractive e�ect to the beam it was sometimes necessary to prevent the

detectors from saturating.
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Given the successes of applying the MA developed in section 4.6, the experiments in

phase III aimed to extend its application to the SNOM. As in FTIR-HSI, many variables

that are spatially dependent in SNOM images should cancel or reduce when taking ratios

of images acquired in the same scan area. The type of metrics, as for the HSI data, was

therefore taken to be ratios of the pixel intensity recorded by the SNOM at two di�erent

wavelengths.

The Butter�y Diagram (see section 4.6.3) for the FEL tunable range was calculated

for the comparisons between the four basic tissue classi�cations from the FTIR-HSI data,

and a set of wavelengths chosen to give a useful number of su�ciently reliable metrics,

with the assumption that these would continue to be good metrics for the di�erent imaging

conditions of SNOM. Additional selection criteria were placed upon the wavelengths: they

needed to be more separated in wavelength than the FEL bandwidth of ∼ 0.1 µm; if possible

they had to coincide with accepted biomarker signatures; the wavelengths also had to lie

within the passband of the new �bres, which had a sharp cut-o� at 8.5 µm but were able to

transmit much shorter wavelengths than the FEL could produce. These criteria resulted in

the previous wavelengths of 6.00, 6.50, 7.30 and 8.05 µm being retained and 8.60 µm being

excluded, while 6.25 µm was added to provide a number of ratios with other wavelengths.

Using the whole of the labelled FTIR-HSI images in �gure 4.2 to produce a set of six

butter�y diagrams allowed �gure 5.30 to be generated by taking the maximum value for

each wavelength pair across the six butter�y diagrams, to show the general ability of each

wavelength pair to discriminate between the tissues. In this �gure, the brightness of the pixel

(k1, k2) represents the success of the ratio k1/k2 to distinguish between the four di�erent

tissues in the simpli�ed model employed here. The wavelengths selected based upon the

criteria above are shown on the axes. While a better set of wavelengths could be chosen, the

set that was used still provides a su�cient number of good comparisons while also giving

individual images that can be related to the biological components as before.

5.5.2 Phase III Development

With the insertion of the beam rotation assembly the problem presented by the structure

seen in the beam was circumvented to some extent, but still required a more robust solution.

Adding an extra three mirrors into the beam path not only increased the PLIA, lowering the

achievable signal and increasing spectral artefacts from water absorption, but also increased
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Figure 5.30: The map of tissue di�erentiation ability for wavelength pairs within the
spectral window given by the FEL and the CorActive �bres. Using the labelled FTIR-
HSI data in �gure 4.2 the set of 6 butter�y diagrams were calculated using the whole of
the data as a training set, to give the most reliable set of data possible. This map was
produced by taking the maximum value for each wavelength pair across the six images.
A central band of comparisons were excluded by being too similar to distinguish easily
using the FEL due to its bandwidth of ∼ 0.1 µm. The set of wavelengths that were
adapted from the previous phases are labelled on the axes, showing many possible
comparisons. Better comparison pairs exist, but would not be as usable as individual
images.

the di�culty in aligning the SNOM aperture and the sample to the FEL beam. Concerns

over the observed beam structure and that the potential motion of the beam could still have

led to topography-based intensity variations necessitated a return to the phase II set-up for

the majority of the available experimental time. This kept the aperture at a �xed position

in the beam, and so would pose less of a potential problem.

Wavelength Monitoring

The spectroscopic data recorded using the multi-element pyroelectric detector monitoring

the wavelength proved di�cult to use. The SNOM does not necessarily measure every FEL

10 Hz macropulse, whereas the data measured by the spectrometer records continuously.

The two sources of data were acquired independently, so with little ability to reconcile them

the best that could be made of the spectrometer data was in ensuring that the wavelength
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was approximately constant during each scan.

The FEL beam, as mentioned in section 5.1.1 is not strictly monochromatic, with a

Gaussian distribution with FWHM dependent on many factors, including wavelength, but

∆λ 6 0.1 µm was routinely attained. The wavelength of the FEL was identi�ed as the mean

wavelength of a Gaussian �t to the data measured by the spectrometer, and the maximum

permissible deviation from the target wavelength was half of the �tted FWHM.

Area Identi�cation

The aim at the onset of phase III was to have a more guided approach to the location

of scan areas. The inverted microscope was a more appropriate tool with which to do this

compared to the low magni�cation approach camera used for phases I and II. By developing

a standard approach to identifying and positioning an area of interest on the samples the

di�culties associated with the �rst two imaging phases were minimised and some success

was had in placing the scan area in its intended location. The areas of interest were identi�ed

initially by examining the samples prior to the removal of the wax from the sample using

another inverted microscope. This task was easily done in parallel with the SNOM imaging

of a di�erent sample, optimising the use of the available accelerator beam time. The same

areas of the samples were also examined after removing the wax, as much more detail could

be seen with the wax removed, whilst the sample was air-drying. Having identi�ed the areas

of interest, the �rst SNOM scans on the samples were performed without collecting the FEL

light, and so could be done without synchronising to the 10 Hz repetition rate of ALICE

and instead scan at a much faster rate and acquire large topographic images which were

matched up to the microscope images of the samples acquired earlier. Areas were selected

that possessed easily recognised topographic features, such as holes or islands that have an

easily recognised shape and are of an appropriate size to be seen easily in the topographic

images. This strategy allowed the interesting and appropriate areas of tissue to be found

with the SNOM at a much higher success rate than previously, but at the expense of the

lost experimental time while positioning the topographic images.

Signal Strength

The e�ect of both long and short time scale variations in the FEL power was still a

signi�cant issue with the images obtained during phase III. The di�erences between the
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mean FTIR-derived absorbance values of the tissue components at 8.05 µm (1245 cm−1)

are on the order of 40− 50% of the average absorbance at that wavelength. Assuming that

the SNOM signal contrast variations were on the same order of magnitude, which is not

necessarily the case but gives a usable approximation, then it is required that the noise level

from other sources be below this level to get a signal to noise ratio of more than 1. The

typical noise level arising from variations in the FEL intensity that was regularly achieved

during this phase was 5% using the root mean square variation of the FEL power measured

at the outcoupling hole of the FEL cavity. This value was dependent on many accelerator

properties such as the undulator gap and cavity length and also with the time of day at

which the images were taken, seemingly from variations in ambient temperature. Using this

as a baseline, the contrast seen in the SNOM images should be easily distinguished from the

noise associated with the FEL intensity, but within a single tissue type the expected typical

signal variation at a �xed wavelength, based upon the FTIR-HSI spectra, is between 20 and

30%, while the shot-to-shot noise of the FEL was typically much larger than the 5% RMS

noise level measured. Therefore the need for a reliable way of removing the FEL noise was

evident. However, normalisation of pixel-to-pixel variation using the reference signal was

unsuccessful in removing the majority of the noise in the image, though it did lessen it to a

small extent.

Filtering the images using a FT based �lter (see section 3.4.4) gave a much better noise

reduction for the `streakiness' seen in the images, represented as a broadband, mainly high

spatial frequency, vertical band in the FT images. The danger of doing so was that informa-

tion was lost from the image. To minimise the relevant information that was lost, the �lter

was limited to the minimal standard �lter shown in section 3.4.4.

Phase III Example Images

A set of images acquired by the SNOM during phase III on a sample of OAC tissue at

a wavelength of 8.05 µm is shown in �gure 5.31. The scan area measured 140 × 140 µm

with 1× 1 µm pixel size. To give context to the information seen in the SNOM images, the

optical microscope image of the corresponding scan area is included. The matching process

for this was entirely manual, with only an approximate area known from images taken while

approaching the tip to the sample. As discussed above the inverted microscope was only

partially used due to concerns about the beam orientation and structure, thus these images
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Figure 5.31: (a-c) An example set of images acquired by the SNOM in phase III.
These images were taken on a cancerous sample using a cleaved �bre and measure
140 × 140 µm with 1 × 1 µm pixel size. The optical microscope image (d) is of the
corresponding scan area, and (e) is the processed SNOM signal image that has been
subjected to a line-by-line median normalisation and FFT �ltering to remove as much
of the noise from the image as possible. The clear feature in the top right of the
topography (a) and SNOM signal (b) images is likely to be an artefact of the imaging
conditions. In the top right of the optical microscope image (d) there is a small hole
in the sample with large �aps of the tissue attached loosely to the edges. This will
have resulted in a strong topographic response and a corresponding optical variation
that is independent of the tissue under the aperture. More relevant and reliable detail
can be seen away from this feature, with a stripe of rougher-looking stroma tissue in
the optical image giving a corresponding band of contrast up the center of the SNOM
signal image.

were acquired using the phase II instrument on the phase III beamline.

The reference signal image shows that the FEL beam reaching the SNOM end station

was a�ected by a periodic modulation in intensity, evidenced by the obvious vertical stripes

in the image. It is unclear, therefore, why this periodic variation is not seen in the SNOM

signal. Attempting a point-by-point normalisation of the SNOM signal by the reference

signal simply introduces this oscillation as additional noise without reducing the impact of

slower variations in FEL power, so to process the image the processed SNOM signal image

was subjected to a line-by-line median normalisation and subsequent FFT �ltering to remove

as much of the noise from the image as possible.

The SNOM signal image is dominated by a clear feature in its top right which is likely to

be a topographic artefact. In the top right of the optical microscope image a small hole in

the sample can be seen which has large �aps of the tissue attached loosely to the edges. This
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will have resulted in a strong topographic response and a corresponding optical variation

that is independent of the tissue at the aperture. Away from this feature there is a good

level of reliable contrast which can be associated with di�erent regions of tissue in the optical

image. A stripe of rougher-looking stroma tissue in the optical image corresponds to a band

of detailed contrast up the center of the SNOM signal image, which can be associated with

the cancerous stroma regions showing much more variability in their composition compared

with the regions of cancerous stroma.

Despite obtaining some useful images, it became clear during phase III that the best way

to further improve the imaging results from the SNOM on ALICE required an upgrade to

the ALICE IR-FEL beamline to reduce the impact of the structure in the beam and increase

the intensity that was transported to the SNOM end station, thereby reducing the impact

of noise. The crucial factor that was limiting the beam transport was the over�lled toroidal

mirror. By replacing this mirror with a larger one, increasing its aperture and so reducing

the over�lling of the mirror, there would be a corresponding reduction in the beam structure

and also an increase in the amount of the beam transported on down the beamline.

5.6 Phase IV SNOM: Accelerator Development and Transmis-

sion Path

Following the beam imaging results in section 5.2.1, the ALICE IR-FEL beamline was

upgraded to replace the over�lled mirror that was identi�ed as the principal source of the

structure [79] with a larger one. The SNOM end station was also modi�ed to allow the

imaging mode to be changed easily between transmission and re�ection using a translatable

mirror. The new optical path was also arranged to incorporate the three mirror beam rotator

that was added in phase III into the main beam delivery mirror geometry, thus minimising

the PLIA. To establish the improvement to the quality of the FEL beam in terms of structure,

the beam was imaged again using the PyroCamIII as before. The focussed and defocussed

beam was investigated as before and the change in structure assessed, discussed in section

5.2.1 above.

Despite the structure in the beam not being eliminated entirely, it was reduced by the

beamline upgrades, and by incorporating the three-mirror rotation geometry into the stan-

dard beam delivery pathway at the SNOM end station the variation of the SNOM signal due
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to motion in the beam focus was reduced to a minimum. To eliminate the variation entirely

would require a di�erent piezoelectric driver con�guration, returning to the previously used

x, y, z stage at the sample but with the clear vertical pathway. This was outside of the

possibilities achievable during this work.

In order to improve the �exibility of the SNOM experiments a path for transmission

SNOM, as shown in �gure 5.32, was added. In this orientation the vertical movement of

the SNOM aperture in the beam was eliminated as a signi�cant source of contrast since any

z-motion would then be aligned with the propagation vector of the FEL beam. While there

is variation along this direction in the focussed beam, if a long focal length lens (600 mm

here) is used then the variation in sample topography by < 10 µm is negligible, and thus

should not have a noticeable e�ect on the local intensity at the SNOM.

The focus of the beam in the transmission mode of operation was no longer spread out

over a large area by a large angle of incidence, instead the minimal focus size achieved was

approximately 270× 350 µm. This reduction in focal size gives a corresponding increase in

the intensity under the SNOM aperture, which in turn gives a signi�cant improvement to

the quality of the images obtained in this mode by reducing the e�ect of the various sources

of noise in the system. The increase in intensity at the sample meant that crossed polarisers

had to be used to reduce the amount of IR light reaching the surface, setting a standard

MCT voltage value and ensuring that the sample did not get damaged.

5.6.1 Phase IV Set-Up

The SNOM set-up was dramatically changed for phase IV with the addition of a trans-

mission pathway and a translatable mirror to select between the two imaging modes, shown

in �gure 5.32, as well as incorporating the three mirror rotator into the beampath. The exit

window of the FEL beamline was moved to a position at the back and above the SNOM

table, and one of the three mirrors was inside the evacuated beamline to steer the beam

downward, with the other two used to bring the beam forward and to the right to place it

back into the same position and direction as in the previous phases. These three re�ections

provide the 90◦ rotation of the beam as in �gure 5.12 with the �rst re�ection reversed. The

PLIA for the re�ection imaging mode was comparable to phase III, but for the transmission

mode had to be much longer, at almost 1 m, to steer the beam to the underside of the

sample. The electronics used for this phase were the same as those used previously, with one
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Figure 5.32: Schematic for phase IV of SNOM experiments. The set-up was expanded
further to include a second mode of imaging, with the sample illuminated perpendic-
ularly from below and the transmitted light collected by the SNOM, with a second,
longer focal length lens. To set the intensity at the SNOM to a safe level, to avoid not
only saturating the detectors but also to prevent the samples being damaged, crossed
polarisers were used. A high pass �lter with a cut-o� at 4.5 µm removed the higher
order FEL light much more e�ectively than the beam block that was utilised in phase
III.

addition: a spectrometer synchronisation signal was also recorded by the SNOM controller

electronics.

The reason for incorporating another ADC channel to the SNOM data collection was

to reconcile the diferent measures of FEL intensity from the reference detector and the

spectrometer. The data measured by the multi-element detector array on the spectrometer in

phase III proved di�cult to reconcile with the SNOM images, the data collection was entirely

independent of the SNOM measurement and it was found that the SNOM occasionally

skipped the measurement of a FEL pulse and instead waited for the next one to measure

before moving to a new point. Although each FEL pulse was measured by the spectrometer,

there was no mechanism by which to match the ones recorded by the SNOM to the correct

FEL pulses at the spectrometer. In order to synchronise the two data sources, a National

Instruments MyDAQ [92] was used to produce a DC voltage that incremented by a small

amount with every FEL pulse and reset after 120 increments. The synchronisation voltage

was recorded in both the spectroscopic data, by the spectrometer, and in a fourth data

channel of the SNOM imaging software. This allowed the wavelength distribution of the

FEL to be matched to each pixel in the SNOM images, and also provided a further means

of normalisation for the SNOM signal.

By adding a second imaging mode, an assessment of the optimal number of wavelengths
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and the amount of time available to collect the, determined that the number of imaging

wavelengths had to be reduced to three, 6.50, 7.30 and 8.05 µm, to acquire su�cient data

and still retain the ability to use the MA on the SNOM data.

5.6.2 Discussion of Phase IV

Over the course of the four phases discussed here many of the problems identi�ed in

the initial set-up were remedied or mitigated. Many of these were unknown during initial

investigations which is often the case when a new methodology is introduced. The parallel

development of the ALICE accelerator and SNOM instrument allowed the operating proce-

dures of each to bene�t from the development of the other. The beamline mirror upgrade

gave a much greater intensity at the SNOM and so improved the image quality dramatically,

while also minimising the beam structure. The SNOM electronics was expanded to four

collection channels, two of which were collecting reference data to aid in normalisation and

understand the accelerator output. Furthermore the inverted microscope allowed the image

area to be much more easily identi�ed, though some di�culties were still found due to the

use of cleaved �bres.

The reliability of the optical contrast obtained in images during phase IV highlighted

other potential problems that needed to be overcome. These issues arose mainly from the

samples and �bres used, rather than the ALICE IR-FEL source or optical path, and were

therefore di�cult or impossible to circumvent, requiring instead that the conditions of the

SNOM imaging be considered much more closely and images analysed in a way that the de-

sired information was accessed, while compensating for any undesired e�ects where possible.

Although the number of imaging wavelengths was reduced for phase IV, the total number

of images collected for each scan area was increased from �ve to six. The ease of adapting

between the transmission and re�ection imaging modes enabled both to be used successively

at each wavelength, doubling the output from each chosen image area. The results obtained

from this phase of imaging gave the �rst truly usable spectral data, allowing not only an

investigation of the tissues, but a comparison between the information given by the re�ection

and transmission images and possible joint analyses. These are discussed in detail in chapter

6.
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IR-SNOM IMAGING OF OESOPHAGEAL TISSUE

Contents

6.1 Phases II and III: Sets A and B . . . . . . . . . . . . . . . . . . . 143

6.1.1 Image Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.1.2 Qualitative Description of Set A and B . . . . . . . . . . . . . . . 146

6.2 Phase IV: Sets C and D . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.1 Image Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2.2 Tissue labelling of SNOM Image Sets . . . . . . . . . . . . . . . . 156

6.2.3 Other Approaches to Analysis . . . . . . . . . . . . . . . . . . . . . 163

6.3 Conclusions to Phases I-IV . . . . . . . . . . . . . . . . . . . . . . 165

6.4 Phase V: Further SNOM Development . . . . . . . . . . . . . . . 166

6.4.1 Phase V Image Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

This chapter presents the results of SNOM imaging with the IR-FEL on the ALICE ac-

celerator. As with the FTIR-HSI imaging analysis, the focus of this work is in the evaluation

of the quality of the results obtained and in the analysis techniques applied.

Some of the best sets of images were selected to be analysed, with their quality being

judged by the presence of recognisable contrast and higher SNR. Using the information

known from the approach cameras and microscope camera, as well as the topographic and

SNOM signal images, each set was matched with a corresponding area of a visible light

microscope image taken on the same sample after SNOM imaging. This allows the structures

seen in the images to be related to the sample morphology and tissue architecture of the

scan area to aid analysis and understanding.
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6.1 Phases II and III: Sets A and B

As discussed in chapter 5 during phases II and III of SNOM Imaging several obstacles

and potential issues with the SNOM experimental setup were discovered and remedied. The

images acquired during these phases of imaging are therefore less reliable, in particular with

respect to wavelength stability and accuracy. As such, two image sets that showed good

optical contrast were selected but only qualitative investigations could be relied upon.

6.1.1 Image Sets

Set A

SNOM set A is a set of images acquired during phase II of SNOM imaging, giving �ve

imaging wavelengths at 6.50, 7.00, 7.30, 8.05 and 8.60 µm on an oesophageal tissue sample

with a diagnosis of OAC. The images were taken over a nominal 340 × 340 µm scan area with

2 × 2 µm pixels. Figure 6.1 shows the images that make up set A. The topography image

was the image acquired with the 6.50 µm SNOM signal image, and very little variation was

observed between this and the other topographies over the course of these scans. The lower

half of the �gure displays the �ve SNOM signal images, with the corresponding wavelength

of FEL light. The SNOM signal preprocessing was initially limited in these images to a line

Figure 6.1: SNOM images set A, taken on a cancerous oesophageal tissue sample. The
�ve SNOM signal images acquired of the area shown in the microscope images and
topography. These images are 307 × 275 µm, (167 × 151 pixels) after alignment and
cropping to a common area.
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median normalisation to the reference signal, and for the 6.50 and 7.3 µm images a further

line-levelling of the SNOM signal, again by the line median, to remove intensity variations

that could not be normalised out. The images were then aligned with each other and cropped

to give their common area. Using some of the clear features in the SNOM images it was clear

that there was a slight misalignment of the SNOM signal relative to the topography images

by an o�set of ( xy ) =
(−2
+8

)
, and after this correction the �nal image set was 167×150 pixels.

Using the known calibration of the visible light microscope the �nal area of the combined

scans was found to be 307 × 275 µm.

Figure 6.1 also shows three microscope images taken with a visible light microscope. The

�rst microscope image is the area after SNOM imaging, showing a large amount of damage

due to a tip crash that occurred after these SNOM images were acquired. A low-quality

image was acquired of the same sample after dewaxing and before imaging with the SNOM

that shows the same image area without the damage. This image allows the scan area to be

properly characterised in terms of its tissue structure, especially when used in conjunction

with the third microscope image, the same area of a serial section that was stained with

H&E stain.

In these microscope images there is a clear demarcation between two di�erent types

of tissue within the main area. The pre-scan image shows these as light and dark areas,

while the stained image allows a more direct assignment of epithelium and stroma tissues

respectively. This assignment comes from the presentation of cancerous epithelium tissue

with H&E stain: a large quantity of DNA with poorly de�ned nuclei and a corresponding

relatively uniform dark purple colour, while the cancerous stroma tissue is much paler and

has more isolated nuclei in dark purple. There is also a signi�cant amount of debris in the

top third of the images, which is of unknown origin.

Set B

SNOM set B was acquired during phase III of SNOM imaging, though, as detailed in

section 5.5.2, the inverted microscope SNOM was not used due to concerns over the in�uence

of the structure in the FEL beam pro�le, meaning that the images in set B are comparable

to set A in terms of how they were taken. This image set was processed in the same manner

as set A, with line median normalisation relative to the reference signal images applied to

each image. No line-levelling of SNOM images was required, as the ALICE IR-FEL stability
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was improved for phase III relative to phase II.

After aligning and cropping the images the area could be matched to microscope images

and it then became clear that the strong topographic feature in the upper right quadrant

of the images was associated with a damaged area of the sample, possibly caused when

approaching the �bre to the sample surface prior to imaging. The extreme topography

resulted in a prominent topographic artefact in the SNOM signal images which was removed

by masking the corner of each image, as shown in �gure 6.2, which clari�ed the contrast seen

in the images and removed the suspect data.

Figure 6.2: The images obtained at λ = 7.30 µm as part of set B. The sample topog-
raphy shows a strong feature in the upper right quadrant of the image which led to
a prominent topographic artefact in the images, appearing at 7.30 µm as dark bands
surrounding normal intensity regions. To remove this artefact a mask was applied to
the images after alignment that removed the feature while retaining as much of the
reliable image as possible.

The sample that was imaged for set B was a serial section of the same cancerous sample

that was imaged in set A, but the scan area was located in a di�erent biopsy specimen within

the sample. The images were taken at four IR wavelengths: 6.25, 6.50, 7.30 and 8.05 µm,

shown in �gure 6.3. The corresponding area of the sample was again imaged post-scan by

a visible light microscope but no corresponding area of the stained section for this sample

could be identi�ed, as the tissue structure variation with depth was too great and the stained

section was somewhat removed from the one imaged with the SNOM. Instead of an exact

match, a representative area of the stained section is shown in �gure 6.3 with similar tissue

structure. Using these images in the same way as for set A the true scan size of 145×128 µm

with 137× 121 pixels was determined.

The sample area shown by the microscope images for set B is much more disordered and

less segregated into separate tissue regions than seen for set A. Nevertheless there are some

visibly di�erent patches of tissue: smoother regions where there is cancerous epithelial tissue
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Figure 6.3: SNOM image set B, taken on a cancerous oesophageal tissue sample. The
four SNOM signal images acquired of the area shown in the microscope images and
topography. These images are 146 × 128 µm (137 × 121 pixels) after alignment and
cropping to a common area. Additionally, a mask was applied to the image area to
remove a topographic artefact resulting from the extreme topography observed in the
top right of the image area. This can be linked to damage that occurred to this area of
the sample when approaching the SNOM �bre. The stained serial section microscope
image is not an exact match to the area, which was not possible to obtain, but instead
is representative of the tissue structures in the true image area.

and striated, less uniform regions of cancerous stroma tissue, though the boundaries between

them are not clear. The damage to the area that resulted in the topographic artefact in the

SNOM signal images can be seen in the upper right area of the post-scan microscope image

in �gure 6.3. The stained tissue section for this biopsy sample was signi�cantly di�erent

from the section imaged by the SNOM, and as such a directly corresponding area could not

be identi�ed. Instead a representative area of this region of the sample is shown, displaying

a similar structure to that seen in the unstained image.

6.1.2 Qualitative Description of Set A and B

The analysis of sets A and B was limited to a qualitative investigation of what consis-

tencies and inconsistencies could be found, and how the response of the SNOM related to

the areas of tissue imaged. The principal reason for this restriction was the variable nature

of the wavelength of each image, meaning that the data is not as reliable as would ideally be

the case for more numerical analysis. In addition to this, it was important to move towards
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understanding the signal given by the SNOM in order to determine what e�ects may need

to be remedied or mitigated in later phases, and in future experiments.

Topographic Images

The topographic images for these two sets di�er greatly, not only in the type of area

imaged, but also in terms of the quality of the image. The topography for set A shows a

large amount of detail, and the area was easily matched to a microscope image, despite the

damage to the area. Conversely the topography shown for set B su�ers from a fairly strong

tip artefact and no real detail can be seen in the sample area. The tip artefact results in a

long, thin, diagonal shape reproduced across much of the detail in the topography, obscuring

any features smaller than the tip. Because of this the scan area could only be identi�ed using

the contrast seen in the SNOM images.

The topography image for set A also allows a certain amount of tissue di�erentiation

to be performed, as the areas of cancerous epithelium tissue that can be recognised from

the stained microscope images show as much smoother regions of topography, while the

cancerous stroma patches give a much rougher and slightly raised topography. Using this as

a de�nitive measure of tissue type is not particularly reliable, but it does aid in recognising

sources of contrast within the SNOM signal images.

Slide-Tissue Contrast

The image area for set A contains a large area of slide with a small amount of debris

scattered across it. The only SNOM signal image that clearly shows a di�erence in signal

level between the tissue and the slide, other than isolated features in other images, is the

image at 8.60 µm. Despite this, in all �ve SNOM signal images in set A the gap in the

sample in the lower left quadrant of the image area is consistently dark. There are no large

gaps in set B to compare the observable contrast from set A with.

Another structural source of contrast that is also of note is the bright signal associated

with the edges and boundaries between tissue regions. This is particularly clear in the 7.00

and 8.60 µm images in set A, and the 6.25 µm image in set B. The contrast could be a

result of the discontinuity in the tissue resulting in increased scattering at the surface, but

is clearly wavelength-dependent and sensitive to the particular structure of the tissue.
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E�ect of Di�erent Wavelengths

A comparison of the images obtained at di�erent wavelengths shows a degree of correla-

tion between the signals, where some features of tissue lead to similar features in many of

the images. For example the bright stripe in the set A images seen in the lower left corner

corresponds to a rough area of tissue in the topography that seems to be a region of muscle

tissue based upon the stained image. Importantly, however, the uncorrelated contrast given

by varying the wavelength is signi�cant.

The e�ect of increasing wavelength on the apparent optical resolution in these images is

somewhat contrary to expectations. While the di�raction limit on resolution is proportional

to wavelength, giving worsening resolution with increasing wavelength, in these images the

reverse seems to be the case, with the detail seen in the images taken at longer wavelengths

seemingly sharper and on smaller length scales. This is consistent with the expectation that

near-�eld images are not di�raction-limited

General Structures

A few general structures with similar behaviour at certain wavelengths can be noted for

each set. The regions of cancerous stroma in set A are brighter than the regions of cancerous

epithelium, at wavelengths of 7.00, 7.30 and 8.05 µm in particular. These three wavelengths

should provide images related to the distribution of protein and glycoprotein in the case of

7.30 µm and DNA for 8.05 µm while 7.00 µm was chosen as a `blank' wavelength. The

epithelial tissue should contain more nuclear matter than the stroma tissue, as evidenced

by the large amount of dark purple seen in the stained section image, which should give

stronger signal at 8.05 µm. A certain element of anti-correlation is expected between the

DNA and protein, though the higher density of cellular matter in epithelial tissue in general

could explain the lower signal seen from the 7.30 µm image. Certainly it is the case that the

contrast seen across these images is not simply given by the arrangement of the chemical

biomarkers within the sample tissues.

For set B the `stringy' band of cancerous stroma running diagonally up through the

center of the image area from the bottom edge can be distinguished in the four images from

the cancerous epithelium regions around it, partially from the bright bands given by the

boundary of the tissue as discussed above, but also from the corresponding disordered stripe

of contrast in the 7.30 and 8.05 µm images. There is less di�erentiation between the areas
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of stroma and the areas of epithelium in set B. The 6.25 and 6.50 µm images do not contain

much contrast, while in the 7.30 and 8.05 µm images the contrast appears very detailed.

However, despite being able to identify the band of cancerous stroma tissue in the center

of the image there is little else that can be de�nitively identi�ed in the rest of the image

in relation to the scan area identi�ed in the microscope image. There are several reasons

why this could be the case. Firstly the scan area was very di�cult to accurately match

to a microscope image due to the tip artefact in the topographic images discussed above

and the topographic artefact in the SNOM signal images that had to be masked out of the

SNOM images. It is therefore possible that the area is not matched correctly to the optical

microscope images. Secondly the area of the tissue that was imaged, as demonstrated by the

stained microscope image in �gure 6.3, was highly disordered and more di�cult to divide

into tissue classi�cations by eye. Thirdly the artefacts in the image add an additional and

unwanted source of contrast to the image, as discussed in section 5.2.5, which could obfuscate

the desirable contrast in the images.

Image Ratios for Set A

For phase II of SNOM imaging the 7.00 µm images were taken as a supposed `blank'

image that contained no strong biological sources of contrast but would be a�ected by the

other unwanted contrast mechanisms and so could potentially be used to correct for these

mechanisms in the other images. The 7.00 µm image in set A does indeed show some detailed

contrast, unlike much of the other contrast seen in the images obtained at the other four

wavelengths, but shares some similarities with the other images, especially in the e�ects of

the edges and boundaries in the image area.

A rudimentary attempt to remove these e�ects is shown in �gure 6.4 where the intensities

of the pixels in each of the images is ratioed against the 7.00 µm image. Taking this approach

does not, however, increase the details seen in the images. Dividing by the 7.00 µm image

removes most of the contrast that was seen in the original images, and the FEL instability

noise from both images in the ratio is carried forward to the resulting image, obscuring the

contrast further. Particularly interesting here is that the 8.05 µm image, when divided by

the 7.00 µm image, loses almost all of the recognisable information in the image. Due to

the lack of success of this cancellation, the 7.00 µm imaging wavelength was dropped from

future experiments.
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Figure 6.4: Image Ratios from set A against the 7.00 µm image. Taking the ratio of
the images does not remove unwanted topographic sources of contrast and highlight
the chemical contrast in the images. Instead the noise from both images compounds
and obscures nearly all of the visible contrast from each image.

Conclusions from Sets A and B

These image sets highlight several potential issues and e�ects governing the contrast and

information present in the images. Perhaps the strongest �nding is the impact that the

topographic information can have on the SNOM signal images. The topographic artefact

in set B gave a large region of the image area where the contrast was dominated by the

variation in tip height, and contained no information about the tissue under the tip. This

is an extreme case, but the bright regions seen in set A at edges and boundaries between

tissues is possibly an intermediate case of the same e�ect, where changes to the topography

that are independent of the true sample height under the SNOM aperture will have a poten-

tially strong e�ect on the SNOM signal measured. SNOM's sensitivity to the exponentially

decaying evanescent �eld at the sample surface means that this e�ect cannot be avoided

other than by ensuring that the topography is either very �at and smooth, or is being sensed

at the SNOM aperture such that the aperture-sample distance is maintained truly constant.

A further topographic e�ect lies in the tip artefact also seen in set B, with little clear
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topographic features due to a large and elongated tip shape (see section 5.2.5). This meant

that, compared with set A, the scan area was very di�cult to match with the area of the

sample in the microscope images obtained post-scan. The di�culty was partly reduced by

transitioning onto the inverted microscope SNOM for phase IV but an accurate topography

image allows much more accurate registry to be obtained than would otherwise be possible,

and aids in interpreting the images.

The imaging wavelengths that gave the best images in these sets were the longer wave-

lengths. The FEL power and stability falls dramatically for wavelength above 8.00 µm so

the 8.60 µm imaging wavelength was dropped from future experiments. The wavelengths

for set B, taken during phase III were identi�ed from the Metric Analysis of FTIR-HSI data

to give potential ratios that could be used as metrics in a numerical analysis. Across both

sets, the clearest contrast was seen at 7.30 and 8.05 µm so these wavelengths were retained

for phase IV. Although the 6.50 µm images are less clear, the correspondence to the Amide

II band and therefore its potential use for protein labelling, was deemed important so it too

was retained.

In terms of understanding the signal that each tissue component produces at these wave-

lengths, image sets A and B do not provide much information. In set A the areas of cancerous

epithelium do seem to give a lower SNOM signal than the cancerous stroma, but this could

also be due to the smoother topography at those locations, while in set B the contrast is

di�cult to link to the tissue structure due to the di�culty in matching the area up and the

disordered nature of the sample area in terms of tissue distinction.

From these conclusions it was clear that further imaging needed to be performed to gain

insight into the best way to image these samples with SNOM as well as characterise the

behaviour of the sample.

6.2 Phase IV: Sets C and D

Phase IV of SNOM imaging added a second imaging mode to the SNOM instrumental

set-up that enabled transmission images to be obtained as well as re�ection. Each sample

area was imaged at three wavelengths in both re�ection and transmission modes, giving six

images per set. The combination of forward- and backward-directed imaging gave two such

sets per sample area that, despite correcting for the piezo-drive asymmetry, could not be
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combined due to di�erences in pixel spacing and registry. Each of the images was subjected

to the full preprocessing described in 3.4 to produce self-consistent, aligned and noise-reduced

sets of images. The aim was to attempt to apply a MA, described in section 4.6, to each set

in order to assess its application to SNOM images and further develop the understanding of

the instrument and the samples. Two image sets are considered here, one from a cancerous

OAC sample and one from a benign Barrett's oesophagus sample.

Figure 6.5: The mask applied to the forward-directed set C images in re�ection and
transmission in order to remove the topographic artefact that was a result of the
signi�cant o�set between the SNOM signal and topography images. The green line
indicates the line above which the data was discarded. Note that the mask applied
to the re�ection and transmission images was slightly di�erent due to the drift in the
sample between the two sets of data, and that the backward-directed images also had
a slightly di�erent mask due to the spatial o�set between the two directions.
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6.2.1 Image Sets

Images forming set C were taken on a sample of OAC tissue in a nominally 250×250 µm

area. The topographic and optical signals in these images were signi�cantly o�set, an e�ect

that can arise easily when using cleaved �bres as described in section 5.2.5. The resulting

di�erence between the two areas led to a signi�cant topographic artefact, similar to that

seen in set B above, which had to be removed from the image by removing the upper left

corner of the image with a mask, shown in �gure 6.5.

The set C images, after preprocessing and matching to a microscope image area are shown

in �gure 6.6. The �nal size of the images was found to be approximately 230×210 µm based

upon the size of the matched microscope image area, giving a pixel size of 1.7 µm, though

the sizes of the images for re�ection and transmission, as well as the forward- and backward-

directed scans were all slightly di�erent from each other. As with set B the matching of this

area was di�cult as the topography could not be used due to signi�cant tip and topographic

artefacts, but the SNOM images show many details that can be used to match up the images,

though this is less accurate than using a clear topography image. In these images a band

of cancerous epithelial tissue can be seen on the right side of the area, showing as bright in

the 6.50 µm re�ection image, and dark in the 8.05 µm re�ection image. The transmission

images, as expected, do not seem to give as high a resolution, showing much more di�use

and general regions of signal, and seeming to have less contrast that can be directly related

to the sample morphology. The same trend in resolution as observed in sets A and B can

be seen in both imaging modes: the longer wavelengths generally give sharper detail in the

SNOM signal images.

Image set D was taken on a benign Barrett's oesophagus sample over a nominal 250 ×

250 µm scan area, as for set C. This image set was also found to have a large o�set between

the topography and SNOM signal image acquisition locations, though the absence of extreme

variations in topography like those seen for sets C and B meant that there was no strong

topographic artefact in the images. The backward-directed set of images of set D, was found

to be the better of the two directions, and are shown in �gure 6.7. The �nal matched sample

area size was found to be smaller than that for set C, due to a di�erent location on the

piezo-drive response curves, and was 152 × 149 µm with a pixel spacing of 1.4 µm. The

resolution of the transmission images appears to be better than seen for set C, while the

re�ection images show a much more uniform signal level over the majority of the image area.
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Figure 6.6: The forward-directed images comprising set C. These were taken in both
re�ection and transmission modes giving six images in total in each scan direction.
The �nal image size was determined to be 230 × 207 µm with a pixel spacing of
1.7 µm. The re�ection images show crisp, clear contrast much of which can be linked
to features visible in the microscope image, whereas the transmission images have
poorer resolution, as expected, and have fewer details that are directly comparable to
the microscope images. The stained serial section is a representative image of the same
rough area of tissue, but the di�erence between the section imaged and the stained
section of the same tissue biopsy sample was too great to give an area showing the
same structure.
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Figure 6.7: The backward-directed images comprising set D. As with set C six images
were acquired in each scan direction, three in re�ection and three in transmission
imaging modes. The �nal image size was determined to be 152× 149 µm with a pixel
spacing of 1.4 µm. The topographic o�set is demonstrated by the two microscope
images of the imaged sample areas corresponding to the topography and SNOM signal.
The stained serial section image is again a representative area of the stained section,
rather than an exact match. The tissue structure in this sample can be mostly deduced
from the opacity and layout seen in the microscope images, rather than using the
stained image.

Given the more di�erentiated nature of a general Barrett's oesophagus sample presentation

this is surprising. The stained section microscope image in �gure 6.7 shows a representative
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example of how the DNA in particular is structured into concentrated rings in the cross-

section of the crypts characteristic of Barrett's oesophagus, yet the 8.05 µm images do not

show such rings.

6.2.2 Tissue labelling of SNOM Image Sets

As described in section 4.6 it would be useful to relate the images obtained by the SNOM

to the considerable body of work that exists pertaining to FTIR-HSI. In order to pursue this,

the same MA that was developed using the FTIR-HSI was applied to each of these SNOM

image sets. By aligning the images in each set to a common area, giving pixel registry

between the di�erent wavelengths, a similar data structure is produced to the FTIR-HSI

data, essentially giving a three-point spectrum at each pixel. By doing this, the MA can be

applied to the SNOM image sets in exactly the same way as was previously done for the

FTIR-HSI results in section 4.6. The advantage of using MA on the SNOM images is that

it is able to determine the best way to di�erentiate between the two tissue classi�cations

based upon any sort of correlated behaviour within the training set. Following the same

procedure for the analysis of the FTIR-HSI data, a training set was selected using a small

portion of the image area of known tissue type, and the whole image was then labelled as

the two tissue classi�cations that were modelled in each case using the MA. In both sets,

only two tissue classi�cations were used, one corresponding to the epithelial tissue and one

to the stroma tissue, giving the same rudimentary description of the samples found to be

adequate in the previous MA applications.

Set C

The areas of set C used to train the MA is shown in �gure 6.8, with the red coloured

region used to train for cancerous epithelium and the yellow area for cancerous stroma.

The two areas were chosen as reliable regions of tissue based on the microscope image and

su�ciently separated from each other and gaps in the sample to be as reliable as possible. The

metrics used were ratios of the pixel values at the di�erent wavelengths, so using re�ection

or transmission images as individual sets themselves will only provide three possible metrics

(and their reciprocals): 8.05/7.30, 8.05/6.50 and 7.30/8.05. However, if both re�ection

and transmission images are considered together as a single group of data then many more

possibilities arise, with ratios taken between re�ection and transmission giving access to
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Figure 6.8: (a) An image from set C used to label the training set for set C, indicated
by the red (cancerous epithelium) and yellow (cancerous stroma) coloured regions in
the labelled image (b). Based on the microscope image (c), in which these two areas
are highlighted, these two regions are reliable and separated.

potentially useful information.

The MA was run for all three of these situations, re�ection only, transmission only, and

the full data set. Given that there are only two tissue classi�cations used in these analyses,

and the total con�dence value, χ, for each pixel is set to 1, the information for labelling the

sample is contained within the image of the con�dence value for one classi�cation. Where

this value is above 0.5 the pixel is labelled as the tissue classi�cation in question, whereas if

it is less that 0.5 then it will be labelled as the other tissue. To this end the con�dence value,

χ of each pixel in the image was used to create a grayscale con�dence image representing

the likelihood that each pixel is adenocarcinoma tissue. The con�dence images for cancerous

epithelium were used and are shown in �gure 6.9 for each of the di�erent types of MA.

Figure 6.9: Con�dence values for the cancerous epithelium tissue classi�cation found
for the three variants of the MA: re�ection images only, transmission images only,
and the full data set. The full data set gives a much more reliable labelling than
the transmission or re�ection data on their own, both of which are unable to reliably
reproduce any labelling of the sample morphology. The full data set con�dence image
for cancerous epithelium shows a bright band of epithelial tissue labelled down the
right side of the image, across the lower edge and up the left side, corresponding to
epithelium tissue in the microscope image.

The re�ection and transmission images alone do not produce a good labelling. The
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transmission data especially gave a very small range of con�dence values, ranging from

0.502 to 0.513, all of which are larger than the labelling threshold value of 0.5, meaning

that the whole image area was labelled as cancerous epithelium. For the re�ection data

the con�dence value range was larger, but still very close to 0.5, and does not seem to

follow the sample morphology shown in the matched microscope image. The full data set,

despite having similarly sized con�dence values to the re�ection MA, gives a mapping that

is much more accurate. The con�dence image for cancerous epithelium shows a bright band

of epithelial tissue labelled down the right side of the image, across the lower edge and up

the left side, corresponding to the epithelium tissue in the microscope image. The gap in

the center of the upper region of cancerous epithelium on the right, seen in the microscope

image, gives a much lower con�dence for cancerous epithelium, meaning that it is labelled as

cancerous stroma. For the SNOM images, a fully labelled image was not possible to obtain,

so sensitivity and speci�city values could not be calculated, but the labelling produced by the

full data set of 6 images gives a good representation of the locations of cancerous epithelium

tissue within the image area.

Figure 6.10: A comparison of the mappings produced by the MA of forward- and
backward-directed images in set C. Both sets of images give mappings that show the
same structures in the sample. There are slight deviations between the two images
arising from the direction of scanning, the piezo-drive curves and noise in the image,
but the two maps given by the MA are very similar.
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Performing the tissue mapping again, with the same training set, on the backward-

directed images of set C gives a very similar mapping. This mapping is shown in �gure 6.10,

with the two corresponding cancerous epithelium con�dence value images. By highlighting

the same areas of the two image sets, the MA must be sensitive to the information related

to the position of the SNOM aperture, whether that is due to sample chemical variations or

some other spatially dependent contrast mechanism.

Figure 6.11: The �ve pairs of metric distributions identi�ed as the most separated of
the �fteen possible pairs of wavelengths for distinguishing the tissue classi�cations for
set C. The curves all have a signi�cant amount of overlap, causing con�dence values
that are very close to 0.5 and giving less reliable labelling of the tissues than was
possible for FTIR-HSI data.

The metrics used for the full data set labelling show that the combination of the two

imaging modes is necessary to give this tissue di�erentiation. The �ve metrics were:

8.05 Reflection
6.50 Reflection ,

6.50 Transmission
7.30 Reflection , 6.50 Transmission

6.50 Reflection , 6.50 Transmission
8.05 Reflection , 6.50 Transmission

8.05 Transmission .

The second, third and fourth metrics are all cross-mode ratios, taking the 6.50 µm transmis-

sion image and �nding the ratios with the three re�ection images, while the �rst and �fth

are from separate imaging modes. It is also of note that the most `useful' wavelengths here
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are 8.05 and 6.50 µm which are associated with DNA and protein biomarkers.

The distributions produced by these �ve metrics for each of the two tissue classi�cations

are given in �gure 6.11. All of the pairs of distributions have a signi�cant area of overlap,

meaning that the level of distinction between the two tissue types is low. The small con�-

dence value range around 0.5 is as a direct result of the low level of separation of the metric

distributions.

Set D

Following the success of labelling set C, the same process was applied to set D with a

new training set de�ned, shown in �gure 6.12. Two tissue classi�cations were used, as before,

giving Barrett's epithelium (blue) and benign stroma (green) which were used to train the

MA. The re�ection data con�dence images and associated mapping in both the forward and

backward scan directions, given in �gure 6.13, give a clear mapping with most pixels being

one classi�cation or the other, and very few with con�dences ∼ 0.5, although the range of

con�dences is still very small. This is seen in the con�dence images where the value tends

to be either (relatively speaking) high or low but not in between.

Figure 6.12: (a) One of the images from set D used to label the training set shown in
(b) indicated by the blue (Barrett's epithelium) and green (benign stroma) coloured
regions in the labelled image. (c) The same regions have been highlighted in the
microscope image

The forward- and backward-directed labellings given by the MA for set D follow consis-

tent structures in the images, the same regions have been labelled by the same classi�cation

in both, with variations that can be accounted for by the noise in the images and the slight

non-linearity that remains from the piezo-drive after correcting as much as is possible. The
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Figure 6.13: The Barrett's epithelium con�dence images and corresponding tissue la-
belling produced by the application of MA to the re�ection data for set D. Both the
transmission data and taking the full data set give failed labellings in the same manner
as the transmission data for set C did above.

mapping of tissue classi�cations does not, however, match up well with the sample morphol-

ogy seen in the microscope image in �gure 6.7. The same behaviour was noted for set C:

three re�ection images alone cannot accurately label the tissue classi�cations modelled in

the image. Unfortunately both the transmission and full data set labelling did not produce a

useful labelling of the sample. In the same way as for the transmission data for set C above,

the con�dence for one type of tissue consistently outweighed the other tissue type and the

majority of the image area was labelled by one classi�cation.

Conclusions from SNOM-MA

The application of MA to the SNOM sets above gave mixed results, with set C giving a

good representation of the distributions of the two tissues within the image area but set D

giving problems when the analysis was applied to this data set. The labelling problems for

set D may have originated in several potential di�culties arising from applying MA to SNOM

images. The �rst di�culty is that the SNOM images have a much higher noise level compared

to the FTIR-HSI data, meaning that the metric values produced by a given classi�cation

will naturally produce broader distributions, and give �ts that are less representative of a
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consistent behavioural pattern and more likely to be a�ected by outliers, like those seen in

�gure 6.11. Furthermore, the SNOM has the potential to probe the tissue samples on a length

scale much smaller than that possible with conventional microscopy techniques. While the

four classi�cations cancerous epithelium, cancerous stroma, Barrett's epithelium and benign

stroma worked well for the FTIR-HSI images, it is likely that the same simpli�ed model of

the sample does not hold for images sampled on this scale. It is not clear at which point the

model would become invalid, nor what sort of more detailed model could be used: whether

the classi�cations are simply made more speci�c, or whether each di�erent region of the

same tissue needs its own classi�cation; the Barrett's epithelium tissue especially, as noted

in section 4.5.5, can show very di�erent presentations depending on the relative orientations

of the section cut and the tissue. In addition, the lack of a classi�cation corresponding to

gaps in the sample will lead to mis-labelling of gaps as tissue and possibly e�ect the nearby

pixels, seen in the labelling produced for set C where the gap in the sample in the center

of the cancerous epithelium region on the right caused the gap and a region of cancerous

epithelium around it to be labelled as cancerous stroma.

Another confounding factor that must be considered is the in�uence of the large o�sets

between the SNOM signal and topography. The lack of co-location between these signals

means that the SNOM aperture is not maintained at a constant height from the surface,

which can lead to topographic artefacts like the ones removed from Sets B and C, but will

also give a more subtle in�uence to the image contrast that cannot be removed or normalised.

This o�set also adds the complication of matching the SNOM signal images to a di�erent

microscope image area. This is not as reliable as matching good topographic images as the

contrast seen in the SNOM signal is much less dependent on how the sample appears under

a visible light microscope. The di�culty in matching accurately also removes the ability to

identify gaps in the image area that could have been used to train for an additional class.

Despite the problems in labelling the SNOM image areas using the MA above, the results

obtained for set C show the potential for MA to label SNOM images. The complicated

nature of the measured signal can be abstracted and circumvented by using MA and a

map of tissues within the image can be reproduced. The two imaging modes were both

required to give a good labelling of set C, but in set D the issues arising from the broad,

overlapping distributions did not allow a reliable labelling to be acquired. Development of

the MA to remedy this di�culty, using di�erent �tting methods or another way of de�ning
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the con�dence coe�cients, is necessary to provide a more reliable analysis technique for

SNOM images.

In order to provide a useful analysis of a tissue sample it is necessary to expand the

analysis beyond labelling a SNOM image using a sub-set of the pixels within it. As with

the FTIR-HSI data a training set that would work to label any SNOM image set is needed.

The problem with de�ning such a set is that the values in the SNOM images from one set

to another are su�ciently variable, in a non-controllable manner, to make a training set

de�ned from one image unlikely to successfully label another. It is only by using a training

set de�ned from within the image that the relative behaviour of the individual SNOM signal

images can be taken into account. Normalisation of the SNOM images to the FEL intensity

gives a �rst approximation to remedying the variable nature of the values in each image,

but more robust methods of standardising the values in SNOM signal images need to be

determined in order to give more generally applicable analyses.

6.2.3 Other Approaches to Analysis

In order to progress the development of the SNOM image analysis, some method must

be found of using the values in a SNOM signal image to produce another image with values

that are independent of the confounding factors that can in�uence the value of the SNOM

signal. Rather than using the values of each pixel, one possible method is looking at its

relationship to the other pixels around it, giving a `local' measure of some property that can

be linked to the signal arising from the sample chemistry.

An example of this could be a local measure of the variability of the sample. In each

of the three types of tissue, di�erent structures and ordering should give a di�erent value

for this local variation, and a variation with wavelength depending on how these structural

changes are mirrored in the biomarker distributions. Considering the DNA distributions

given by λ = 8.05 µm in each tissue should give di�erent signatures. In cancerous epithelial

tissue the cells are relatively uniform with enlarged nucleii occupying the majority of the cell,

thus a low variability should be calculated. In Barrett's epithelium tissue the cells should

have a relatively uniform presentation as well, but with two distinct regions formed by the

basally located nucleii and the lumenal cell body, giving concentric regions of low variabiity

with a band of high variability at the transition zone in-between. The cancerous stroma

and benign stroma tissues will be much less ordered and should give higher values of this
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variability measure.

Figure 6.14: Sigma Over Mean (SOM) images made using the 8.05 µm SNOM signal
images in re�ection and transmission. The left hand SOM images were based on the
SOM value for a 5 × 5 pixel area around each pixel in the original image, while the
right hand SOM images were using a 10× 10 pixel area.

To give a measure of the local variability, the standard deviation of a small area around

each pixel was calculated, divided by the area mean, and the resulting values were used to

form another image: SOM(x, y) = σlocal
µlocal

referred to as the sigma over mean (SOM) images.

By varying the size of this area, di�erent length scales could be probed and very di�erent

images were produced. The SOM images at 8.05 µm wavelength are shown in �gure 6.14.

The two length scales used, 5 × 5 and 10 × 10 pixels, give very di�erent types of images.

For the shorter length scale, much detail is given in the SOM images, but the are also much

more susceptible to the noise in the SNOM signal images. Conversely the longer length scale

is less susceptible to noise, but gives a less detailed image. The detail in the image, however

is no longer a measure that is as important as it is in the SNOM images: if the SNOM signal

was at high resolution them the SOM measure will have used this information to give the

values within the calculated images and the length scales that the SOM values vary over will

not necessarily be directly related to this resolution.

The transmission and re�ection images originally had dramatically di�erent value ranges,

but after applying the SOM calculation, the ranges are almost the same. The values are

now more dependent on the relative behaviour of each pixel to its neighbours, rather than

on its numerical value. Using the longer length scale SOM image in re�ection, it can be
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seen that the cancerous epithelium tissue seems to give a more uniform lower value than the

cancerous stroma, which gives speckled high values. It is clear that the shorter length scale

images seem to be too susceptible to the noise in the images to draw out any of the sample

behaviour. What is also clear, however, is that, while some of the behaviour described above

can be seen in the longer length scale images, the tissues do not form su�ciently separated

regions of correlated behaviour, and so a MA cannot be applied to this data.

These results do show that such a method gives a way of standardising the values within

the SNOM images. Developing more reliable methods of analysis is necessary to further

the understanding of the SNOM and the tissue imaged. In order to progress the analyses

further, however, more reliable imaging and sampling of the SNOM signal images is essential.

The development of the SNOM instrument during this work has signi�cantly improved the

quality and reliability of the images obtained, but further development and re�nement is

necessary.

6.3 Conclusions to Phases I-IV

The development of the SNOM instrument over phases I to IV dramatically improved

the quality and reliability of the images that could be acquired. While for phases II and III

these images were less reliable in terms of wavelength stability and the scan areas were less

directed, the contrast seen in the SNOM images can be linked to general tissue structures

and also helped identify potential issues with topographic changes.

The SNOM images acquired during phase IV of SNOM imaging were much more reliable

and gave encouraging results from a simple MA based on four simpli�ed tissue classi�cations

across the two sets of images. The �rst set of these images, set C, was able to produce an

approximate map of the cancerous epithelium tissue within the image area, using a small

subset of pixels of cancerous epithelium and cancerous stroma to train the MA, identi�ed

using the matched microscope image. Although the second set of phase IV images, set D, did

not produce as reliable a map, the structures identi�ed in both the forward- and backward-

directed images were consistent. The MA, therefore, was able to identify correlated behaviour

within sub-regions of the SNOM images, though in the case of set D this was not indicative

of the tissue areas in the matched microscope images. The results on set C demonstrate that

the SNOM images obtained were internally self-consistent, in that the pixel values within
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an image could be related to the tissue being imaged. There is no evidence, however that

the pixel values in one set are compatible with those in another set.

For the MA to be applied more e�ectively, as a general technique that can be applied to

any image set, a more standardised analysis must be done that is able to give images with

values independent of any pedestal o�set or scaling factor that might arise from undesired

external sources. The simpli�cation to two tissue classi�cations in each image is also not

necessarily valid on the length scales probed by SNOM, and with complex tissue samples

de�ning more appropriate and accurate classi�cations becomes almost impossible. To be

able to identify potential chemical signatures of the di�erent tissue components, the current

focus of ongoing work builds on the �ndings presented here, using cell cultures of single cell

phenotypes. These samples provide the opportunity to understand the building blocks of

the tissues and further develop the ALICE IR-SNOM instrument. This development, phase

V of SNOM imaging, is aimed towards using etched �bres instead of cleaved �bres. By

etching sharp tips onto the end of the �bre, the aperture is potentially much smaller, and

higher spatial resolution can be reached. A further, signi�cant improvement that arises from

etched �bres is that the potential topography-SNOM signal o�set is greatly reduced, ideally

to zero. Phase V and a brief outline of some preliminary results are described below.

6.4 Phase V: Further SNOM Development

Phase V of SNOM imaging builds upon the �ndings of phases I to IV and moves towards

smaller, higher spatial resolution images on single cell culture samples. These samples are

dramatically di�erent from the tissue sections imaged in previous phases, the cells are grown

onto the CaF
2
sample slide and then �xed in the same way as the tissue biopsy samples with

formalin 1. Rather than sectioning a block of tissue, the cells produce a partial monolayer

on the slide and have the tendency to spread out. Because of this the topography of these

cells is less extreme than the tissue sections and much more smoothly varying. This allows

etched �bres to be used more easily without as great a risk of breaking and therefore much

higher spatial resolutions to be obtained.

The cell cultures give samples consisting of a single cell type grown from a single donor

patient. Imaging on a sample consisting of one type of cell makes the information in an

1Cell culture growth and processing was performed by Dr J. Dinesh Kumar, Department of Cellular and

Molecular Physiology, Institute of Translational Medicine, University of Liverpool
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image set less sensitive to the image area, and more consistent over multiple image areas,

avoiding complications that arose from the spatial variation of the tissue samples. The cell

types being investigated are commercial oesophageal adenocarcinoma epithelial cell lines

(OE33 and OE19), a commercial oesophageal squamous cell carcinoma cell line (OE21, a

non-Barrett's associated non-metaplastic carcinoma), and cancer-associated myo�broblasts

(CAM), a component of the stroma tissue taken from a cancerous area and adjacent tissue

myo�broblasts (ATM), the same type of cell from an area adjacent to the cancer, both of

which were acquired by collaborators in the Institute of Translational Medicine, University

of Liverpool Further details for these samples are given in appendix A. It is hoped that

by �nding a signature of each of these tissue components, and more, the formation and

progression of oesophageal cancer can be characterised and understood.

6.4.1 Phase V Image Set

A preliminary image set acquired on a sample of OE19 oesophageal adenocarcinoma

epithelial cells over a single epithelial cell using an etched and Au-coated �bre is shown in

�gure 6.15. The procedure used for preparing the slides is given in appendix B.3. The set of

images were acquired in the transmission imaging mode, with a nominal size of 50× 50 µm

with a pixel size of 0.67 × 0.67 µm. These images have excellent signal-to-noise and very

clear optical contrast that di�ers at each wavelength. The topography image shows a single

cell measuring approximately 40 µm across surrounded by bare CaF
2
slide, with a large

nucleus characteristic of cancerous cells. The cell is larger than was typically seen in the

tissue samples, a result of growing the cells onto the slide without the in�uence and pressure

of other cells around it.

The wavelengths imaged in phase V correspond to speci�c absorption bands of biomarkers

(see table 2.1), as was the case in earlier phases, with the addition of a lipid (fatty compounds)

signal wavelength at 5.71 µm. The cell samples do not require dewaxing and so the lipid

signal, associated with the membranes of the cell particularly around the nucleus and the

cell membrane itself, is preserved and can be imaged using the SNOM. The lipid image

at 5.71 µm shows a relatively uniform signal, higher than over the slide, over the main

area of the cell, with a slight reduction, corresponding to stronger absorption, where the

nucleus is located. The images at 6.06 and 6.50 µm, corresponding to the amide I and II

bands of proteins, both give similar images, although the 6.50 µm image is noisier, with a
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Figure 6.15: Transmission SNOM signal images acquired during phase V of SNOM
imaging on a single OE19 oesophageal Epithelial cell, using an etched tip, showing
very clear optical contrast linked to the cell structure. The images are nominally
50×50 µm with 75×75 pixels. The cell nucleus can be easily seen in the images in the
center-right of the lower half of the cell. In addition to the images line pro�les have
been extracted from the SNOM signal images, plotted against distance. The pro�les
were all taken from the line indicated in the topography and inverted to give a measure
of the absorption at each position along the line. While the amide I signal shows a
smooth, broad peak in the pro�le, the DNA signal displays a trough-peak combination.
The amide I and amide II signals are well correlated, with the exception of the region
where the DNA signal changes rapidly, taken to be the edge of the nucleus. The lipid
pro�le follows the same general shape as the DNA signal, possibly a result of the lipid
bilayer around the nucleus.
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darker region in the center of the cell around the nucleus where the light is absorbed by the

contents of the cell. In contrast to the amide images, the image at 7.30 µm shows a darker

cell compared to the slide background level, and a bright center region. The absorption at

7.30 µm is less able to be assigned to a single type of biomarker, but this image should

resemble glycoprotein and protein distributions in the sample. The fact that the image at

7.30 µm image is so di�erent from the amide images is interesting, and suggests that it is not

necessarily appropriate to assign this to only these two biomarkers, and that other biological

e�ects need to be considered. The image assigned to DNA at 8.05 µm is also interesting, in

that the center of the cell is much brighter than the background signal level over the bare

slide, but adjacent to this bright region is a much more absorbing region that is much darker

than the background level.

To highlight the relationship between the signals, line pro�les have been plotted in the

graph in �gure 6.15, taken along the indicated line shown in the topography image. These

pro�les have been inverted to represent a measure of the absorption, and therefore the

concentration of the corresponding biomarker, at each point along the line and have been

normalised to the mean value of the �rst four points of the line pro�le in order to show the

change relative to the value over the CaF
2
slide. The amide I pro�le in red (6.06 µm) shows

the absorption in the center of the cell as a smooth trough over the cell, while the green

DNA pro�le (8.05 µm) has a peak/trough combination over the same range. The DNA

pro�le shows that the nucleus of the cell is located to the right of the center at the maximum

of the 8.05 µm pro�le, corresponding to the dark spot observed in the corresponding image

in �gure 6.15.

The amide II line pro�le in pink (6.50 µm) shows a similar peak over the line as seen

in the amide I pro�le, but with a small peak at the point where the DNA signal increases

dramatically, associated with the boundary of the nucleus, further suggesting a chemical

cause for the contrast seen in these images. The di�erence between the amide I and II

images can be accounted for by the di�ering sensitivities of these absorption bands to the

secondary structure of the proteins in the cell. It is well established that FTIR is capable

of distinguishing structural changes in proteins, for example Litvinov et al. [93] used FTIR

spectroscopy to investigate the α-helix to β-sheet transition in �brin, a protein crucial for

blood clotting processes. The di�erent secondary structures, α-helices and β-sheets, are

the result of di�erent hydrogen bonding arrangements between the peptide bonds of the
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proteins, resulting in di�ering chemical environments for the functional groups responsible

for the absorption of IR light. The energy levels of the vibrational modes of the C−−O

stretch and N−H bend in the proteins are a�ected by these di�erent environments and so the

apparent positions and shapes of the corresponding peaks in IR spectra can vary signi�cantly.

The correlation between the variation in the amide II signal and the apparent location of

the nucleus, compared to the smooth curve seen for the amide I signal, suggests that the

di�erent signals recorded could be a result of the presence of histone proteins, the proteins

that bind to DNA and fold and compact it to �t in the cell nucleus. These histone proteins

have a distinct chemical environment, hydrogen bonded to the DNA strands themselves,

giving a di�erent response to the signal measured by the SNOM.

The blue lipid signal pro�le (5.71 µm) shows a similar shape to the DNA pro�le, but

with a wider peak over the nucleus. This is likely to be a response to the lipid bilayers

that form the membranes. For the majority of the cell area, the transmission image should

be sensitive to two of these bilayers forming the upper and lower surfaces of the cell, while

over the nucleus an additional two bilayers surrounding the nucleus. This explains the peak

seen over the nucleus as well as the larger size of this dip in the signal than that seen for

the DNA signal. One unexplained e�ect is the decreased lipid absorption over the rest of

the cell compared to the background value, it is not clear why this is the case, and further

investigations will allow more detailed conclusions to be drawn.

The spatial resolution of the images is hard to determine accurately as there are no

sharp edges, but based on the optical response to the edges of the cell, it appears to be

approximately 1 µm. The edges of the cell show clearly as increased absorption in all �ve

wavelengths relative to the background value over the slide, but with di�ering widths, and

the measure of resolution was determined from the sharpest, found for the lipid pro�le. These

images were taken in the transmission imaging mode and as such have no enhancement of

the resolution arising from the geometry of tip and sample as the re�ection mode does. The

1 µm resolution therefore gives an approximate measure for the size of the aperture at the

tip of the �bre.

It can be seen from these images that while the SNOM signal images are very clear, the

topography is somewhat `fuzzy' as a result of a topographic artefact arising from a larger

than ideal tip. The good resolution of the SNOM signal means that the size of the tip has not

adversely a�ected the aperture size. It is also apparent that these was a small change to the
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cell shape between imaging the 7.30 µm image and the 6.50 µm image acquired sequentially

afterwards. A small piece of the cell seems to have been broken o� or removed from the top

left corner, but this does not seem to have in�uenced the tip in any way. By avoiding the

area that changed, the image set can still be used to investigate the cell.

6.5 Future Work

The image set presented here and others are the subject of current analysis and further

future experimental plans. A total of 234 SNOM image pairs (forward- and backward-

directed) at di�erent wavelengths on the �ve cell lines described above have been acquired

and are currently being analysed. The development of the ALICE IR-FEL and SNOM in-

strument during this work has allowed clear, sub-cellular resolution IR images of oesophageal

cells to be acquired. The images of cells provide many advantages over the tissue specimens

images previously. The simpler presentation both aids analysis and minimises some of the

confounding factors that in�uenced the SNOM signal on tissue, and the smaller size allows

for higher spatial resolution images to be taken, giving a better investigation of the cells

themselves. In terms of analysis, the images from cells have the potential to be standardised

much more easily. One possibility is to standardise the images to the value corresponding to

the slide with no cell on it, which was not possible with tissue, as the gaps in the tissue were

often too small or poorly resolved topographically. Removing the topography-SNOM signal

o�set using etched �bres also minimises the topographic in�uence on the SNOM signal, and

makes matching to image areas much more reliable. As seen in the images in �gure 6.15 the

optical contrast given by the cells is much easier to link directly to the features observable

in both the topography and visible light microscope images.

To develop this work further studies are in progress that includes images taken on dif-

ferent types of cells, with additional experimental time to acquire high numbers of images

on many di�erent types of cell. This will give a stronger basis from which to approach the

problem of understanding the behaviour of cancer, by allowing the characterisation of spec-

tral and spatial signatures of di�erent types and stages of the cells involved. Using SNOM

to investigate these cell cultures gives the potential to understand the building blocks of the

tissues that have been imaged previously, and to probe the sub-cellular development and

progression of cancer at a length scale unreachable by conventional IR-microscopy.
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CHAPTER 7

CONCLUSION

This thesis demonstrates for the �rst time that the combination of an IR-FEL and

�bre-based SNOM can yield images of biological materials such as cancerous cells, shown

in section 6.4, and tissue [94] with an unrivalled high spatial and spectral resolution. A

preliminary report on the application of this methodology, in collaboration with Lancaster

University and Lancashire Teaching Hospitals NHS Trust Foundation, to cervical cancer cells

[95] was recently published. In addition, more than 200 further high quality images have been

acquired on oesophageal cell cultures and are currently under analysis. The instrumentation

developed in this work has considerable potential for fundamental studies of the origin and

nature of cancer and in the development of more accurate cancer diagnosis.

The application of any new technique, in this case SNOM using an IR-FEL, to an impor-

tant problem such as the analysis of cancerous tissue can be fraught with technical di�culties

which cannot be foreseen at the outset. The optimism associated with the development of

such techniques to new �elds is an important driver of scienti�c progress. However, if such

projects are to be successful, it is essential that the technical di�culties are identi�ed and

addressed in a logical and coherent manner. This thesis gives a clear account of the technical

hurdles associated with the application of an IR-SNOM to the cancer �eld. As this work

shows these di�culties can all be overcome and the �eld is now ripe for exploitation.
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APPENDIX A

SAMPLE INFORMATION

A.1 Tissue Samples

Oesophageal biopsy samples were obtained from patients recruited from a population that

had been referred for diagnostic OGD either by their primary-care general practitioner or

by another clinical service at the same hospital (Royal Liverpool and Broadgreen University

Hospitals NHS Trust). The participants were aged 18 years and over and all gave informed

written consent. The study was approved by Royal Liverpool and Broadgreen University

Hospitals NHS Trust.

The samples were taken from patients with histories of either Barrett's oesophagus with

no histological evidence of dysplasia, or Barrett's associated oesophageal adenocarcinoma.

The samples were dewaxed in 10% formalin and embedded in para�n wax before being cut

to 5 µm thick sections using a microtome. The sections were then mounted on 2 mm thick

CaF
2
disks for imaging by �oating the wax sections on water onto the disks before gently

heating the disk to bond the section to the surface.

A.2 Cell Cultures

OE33 and OE19 human Caucasian oesophageal adenocarcinoma and OE21 human Cau-

casian oesophageal squamous cell carcinoma commercial cell lines were obtained from HPA

Culture Collections (Sigma, Dorset, UK). Human primary myo�broblasts had previously

been generated from patients undergoing surgery for eosophageal cancer. The patients, and
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A.3. CELL CULTURE GROWTH PROCEDURE

the myo�broblasts obtained from them have previously been reported. This work had been

approved by the Ethics Committee of the University of Szeged, Hungary and all patients

gave written, informed consent.

Cells were cultured at 37◦C in a 5% CO
2
atmosphere in Roswell Park Memorial Institute

(RPMI 1640) growth media (Sigma) supplemented with 2 mM glutamine (Sigma), 10% v/v

foetal bovine serum (FBS) (Invitrogen, Paisley, UK) and 1% v/v penicillin/streptomycin

(Sigma) until they reached 70-80% con�uence. The culture medium was replenished at

two-day intervals.

A.3 Cell Culture Growth Procedure

Calcium �uoride discs (20 mm diameter x 2 mm thick, Crystran Ltd, Poole, UK) were

sterilised using ethanol and rinsed with ultra-pure water and left to air-dry overnight. The

discs were irradiated with UV for 30 minutes to ensure sterility. The sterile discs were then

placed in each well of a tissue culture twelve-well plate (Corning, New York, USA). The cells

(2× 104 ml−1) were seeded on each disc and incubated in a 5% CO
2
incubator at 37◦C for

two days. After two days the media was removed and the cells were �xed with a 4% v/v

paraformaldehyde (PFA) (ThermoFisher Scienti�c, Loughborough, UK) solution and stored

in 1x phosphate bu�ered saline (PBS) solution at 4◦C until required.
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APPENDIX B

PROCEDURES

B.1 Sample Dewaxing Procedure

The tissue samples were dewaxed prior to imaging by immersing the disks with the

samples mounted on in three successive baths of Xylene (Sigma) for 15 minutes each before

rinsing in isopropyl alcohol (Sigma) and leaving to air dry for at least 2 hours. This protocol

produced wax- and contaminant-free samples very reliably.

B.2 Fibre Etching and Gold Coating Procedure

The chalcogenide (As
2
Se

3
) glass �bres are very fragile and have various layers to protect

the core. The outer layers of the �bre were removed to leave about 2 cm of the 170 µm

diameter core and cladding material. The end was then etched in a 7:3 mixture of sulphuric

acid (GPR Grade, Fisher Scienti�c, Loughborough, UK) and 30 wt% hydrogen peroxide

solution (Sigma), known as Piranha solution, covered with a 1 − 2 mm deep 2,6,10,14-

tetramethylpentadecane (TMPD or pristane) solution (Sigma). The �bre was then lowered

into the solution such that the last ∼ 4 − 5 mm of the �bre was in the piranha solution

which etched the �bre into a tip using convection currents, which are responsible for shaping

the tip pro�le [96]. Once the end of the �bre had fallen o� it was left for an additional 30 s

before removal, then rinsed with methanol and dried with argon.

The Au coating was achieved by thermal evaporation in a dedicated high vacuum cham-

ber, which incorporated a rotating �bre mounting facility in order to provide an even coated
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B.3. CELL SLIDE PREPARATION FOR IMAGING

�lm together with a �lm thickness monitor. The approximate size of the aperture was

controlled by mounting the �bre rotation mount on a linear position sensitive mounting to

adjust the position of the tip in the chamber. The etched �bres were then Au coated to a

give a thickness of ∼ 30 nm on the thickness monitor. The resulting Au coated �bre tips

were characterised using an optical microscope to check for general �lm uniformity, but could

not, within the scope of this work, be assessed further in terms of appraising the aperture

size due to constraints in budget and time.

B.3 Cell Slide Preparation for Imaging

Prior to imaging the CaF
2
slide containing the �xed cells were rinsed at least three times

with ultra-pure (18.2 MΩ/cm) water (Millipore, Watford, UK). The rinsed slide was then

removed from the well plate, the back surface wiped with water to ensure complete removal

of any phosphate residue and then left to dry in the slide holder for a minimum of 90 minutes.
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APPENDIX C

MATLAB CODE

This appendix details the use of MATLAB for the data handling and analysis during

this work. The majority of the code used to process this data was purpose-built for speci�c

applications, but much use was made of built-in MATLAB functions where possible.

C.1 RMie-EMSC

The RMie-EMSC algorithm was developed for MATLAB and so is ideal for application to

the images obtained in this work. The parameters for the algorithm allow for a high degree of

tunability for di�erent imaging circumstances, but the suggested parameters were generally

appropriate for the images obtained. The Matrigel spectrum included with the algorithm

was used to perform the correction as no other reference spectrum could be obtained within

the scope of this work. A spectral range of 1000−3800 cm−1 was used (the maximal overlap

between the supplied reference spectrum and the spectral range of the data collected) for

scatterers of diameter 2−8 µm and average refractive index 1.1−1.5 with all other parameters

using the recommended settings. The algorithm used 10 values for scattering parameters

and ran for 8 iterations.

C.2 Principle Component Analysis

In this work MATLAB's pca function was used with the singular value decomposition

algorithm, without centering the data so as to preserve the values in the spectrum. Pro-

grammatically, pca takes an input matrix of the data set to be processed, with columns

177



C.3. HIERARCHICAL CLUSTER ANALYSIS

representing the positions in the n dimensions (here the spectral values) and rows represent-

ing the observations (here the pixels of the image). The function produces several outputs:

the Loadings, a matrix with columns containing the projection of the PCs onto the original

dimensions of the data set in descending order of variance, the Scores, the input data rows

projected onto the new PCs, and the Variances, a vector of variances of each of the PCs.

C.3 Hierarchical Cluster Analysis

The MATLAB functions used for HCA form a chain of processes. The pdist function

takes an m×p matrix of m observations in p-dimensions and calculates the distance between

the observations returning a vector of length m(m−1)
2 encoding the distances between every

pair of points using the distance measure in equation 3.2. This output is then given to the

linkage function which calculates an (m− 1)×3 matrix encoding the binary tree from which

the dendrogram, and ultimately the clustering, is produced. To view the tree, the function

dendrogram is used, displaying the links and distances between each of the joined clusters

graphically. After determining the appropriate number of clusters, the matrix of cluster

identi�cations is produced by the cluster function, taking the linkage matrix produced

earlier and producing a vector of length m assigning a cluster number to each observation.

C.4 k-Means Cluster Analysis

The MATLAB function kmeans was used in this work to calculate the KCA results. This

function takes the data input in the same way as HCA, a matrix of m observations × p di-

mensions, but also requires the number of clusters to calculate, producing the vector of

cluster identi�cations in the same format as HCA.

C.5 Fourier Transform Filtering

The MATLAB fft2 and ifft2 functions were used in this work to compute the FT

using a fast Fourier transform algorithm and transform the masked FT back into an image.

The transform was then shifted using fftshift to give the fx, fy = 0 pixel as the centre of

the transform to aid visualisation and then the mask shown in �gure 3.7 was applied simply

by setting the undesired pixels to zero in the FT. The mask was de�ned in terms of the
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centre and so is insensitive to changes in image size (if those changes are less than of orders

of magnitude) which may have occurred due to the piezo non-linearity correction and series

alignment performed in earlier stages of the SNOM preprocessing.

C.6 Other Functions

The other functions, as well as the MATLAB workspaces used during this work are

available upon request from Prof. Peter Weightman, Oliver Lodge Laboratory, University

of Liverpool.
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