
1 
 

Title 

Stroma-derived Insulin-like growth factors enhance chemoresistance in pancreatic cancer. 

Running title 

Stroma-derived IGFs enhance chemoresistance in PDA 

Key words 

Macrophages, myofibroblasts, Insulin-like growth factors, chemoresistance, pancreatic 

cancer. 

Authors 

Lucy Ireland 1# , Almudena Santos 1#, Muhammad S. Ahmed 1, Carolyn Rainer 1, Sebastian 

R. Nielsen 1 , Valeria Quaranta 1, Ulrike Weyer-Czernilofsky 2, Danielle D. Engle 3,4  , Pedro 

Perez-Mancera 1,  Sarah E. Coupland 1, Azzam Taktak 5, Thomas Bogenrieder 6,7 , David A. 

Tuveson 3,4.8 , Fiona Campbell 1 , Michael C. Schmid 1  & Ainhoa Mielgo 1 * 

#  These authors contributed equally to this work.  

Affiliations 

1 Department of Molecular and Clinical Cancer Medicine. University of Liverpool. Liverpool 

L69 3GE, UK. 

2 Boehringer Ingelheim RCV GmbH & Co KG 

  Pharmacology and Translational Research, Vienna A-1121, Austria. 

3 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. 

4 Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA. 

5 Department of Medical Physics and Clinical Engineering  

Royal Liverpool University Hospital, Liverpool L7 8XP, UK. 

6 Boehringer Ingelheim RCV GmbH & Co KG Medicine and Translational Research, Vienna, 

Austria. 



2 
 

7 Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, 

Marchioninistrasse 15, 81377 Munich, Germany 

8 Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer 

Center, New York, NY 10065, USA. 

Correspondence 

* author to whom correspondence should be addressed: 

Dr Ainhoa Mielgo 

Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine  

First Floor Sherrington Building, Ashton street, Liverpool L69 3GE 

Phone: +44 (0) 151 794 9555 

e-mail: amielgo@liverpool.ac.uk  

Disclosures 

The authors disclose no potential conflicts of interest. 

Abstract 

Pancreatic ductal adenocarcinoma (PDA) is one of the deadliest cancers and more effective 

therapies are urgently needed. Resistance to therapy is one of the biggest challenges in 

cancer treatment, including PDA. One dominant player in drug resistance is the presence of 

a rich pro-tumoral microenvironment. Tumor associated macrophages (TAMs) and 

myofibroblasts are key drivers of this pro-tumoral microenvironment, and have been 

associated with drug resistance in many cancers. However, our understanding of the 

molecular mechanisms by which TAMs and fibroblasts contribute to chemoresistance is still 

emerging.  In these studies, we found that TAMs and myofibroblasts directly support 

chemoresistance of pancreatic cancer cells by secreting Insulin-like growth factors 1 and 2 

(IGFs), which activate Insulin/IGF receptors on pancreatic cancer cells. 

Immunohistochemical analysis of biopsies from pancreatic cancer patients revealed that 
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72% of the patients express activated Insulin/IGF receptors on the tumor cells, and this 

positively correlates with increased CD163+ TAMs infiltration. Importantly, in vivo, we found 

that TAMs and myofibroblasts are the main sources of IGF production, and pharmacological 

blockade of IGFs sensitized pancreatic tumors to gemcitabine. These findings suggest that 

inhibition of IGFs in combination with chemotherapy could benefit pancreatic cancer 

patients, and that Insulin/IGF1R activation may be used to identify pancreatic cancer 

patients who could benefit from a combination of chemotherapy with anti-IGF signaling 

inhibitors.  

Introduction  

Drug resistance is one of the biggest challenges in cancer therapeutics and the cause of 

relapse in the majority of cancer patients [1, 2]. Therefore, understanding the molecular 

mechanisms by which cancer cells become resistant to therapies is critical to the 

development of durable treatment strategies. Mechanisms of resistance to therapies can be 

tumor cell intrinsic or mediated by the tumor microenvironment [3]. We previously described 

intrinsic mechanisms of cancer cells resistance to targeted therapy and radiotherapy [4-6]. 

However, multiple factors can contribute to resistance to therapy and tumor progression, and 

one dominant player in solid cancers, and specifically in pancreatic cancer, is the presence 

of a rich pro-tumoral microenvironment [7-10]. In the pancreatic tumor microenvironment, 

macrophages and fibroblasts are the most abundant stromal cells, and engage in 

bidirectional interactions with cancer cells. Although tumor associated macrophages (TAMs) 

have the potential to kill cancer cells, we and others have shown that TAMs can promote 

tumor initiation, progression, metastasis, and also protect tumors from cytotoxic agents [11-

23]. Indeed, TAMs can be polarized into M1-like inflammatory macrophages that will activate 

an immune response against the tumor, or into M2-like immunosuppressive macrophages 

that promote tumor immunity and tumor progression [7, 24-26]. Thus, therapeutics that can 

reprogram TAMs into M1-like macrophages or that specifically inhibit the pro-tumoral 
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functions of M2-like macrophages, rather than macrophage ablation therapies, may be more 

effective in the goal of restraining cancer progression [27, 28]. However, the understanding 

of the precise molecular mechanisms by which TAMs and CAFs support tumor progression, 

and the use of combination therapies simultaneously targeting both pro-tumoral stromal cells 

and cancer cells is only beginning to emerge. 

Pancreatic ductal adenocarcinoma (PDA) is a devastating disease, with one of the worst 

survival rates, and current standard therapies are unfortunately not very effective [29, 30]. A 

characteristic feature of PDA is an excessive tumor microenvironment with infiltrated 

immune cells that include macrophages (TAMs), and high numbers of activated fibroblasts, 

also known as myofibroblasts [31-33]. In these studies, we sought to gain a better 

understanding of the mechanism(s) by which TAMs and myofibroblasts support resistance of 

pancreatic cancer cells to chemotherapy with the aim to find innovative treatment 

combinations using conventional cytotoxic agents with therapies targeting the pro-

tumorigenic functions of stromal cells.  

Materials and Methods  

Generation of primary KPC-derived pancreatic cancer cells 

The murine pancreatic cancer cells KPC FC1242 were generated in the Tuveson lab (Cold 

Spring Harbor Laboratory, New York, USA) isolated from PDA tumor tissues obtained from 

LSL-KrasG12D; LSL-Trp53R172H; Pdx1-Cre mice of a pure C57BL/6 background as described 

previously with minor modifications [34]. KPC cells were isolated in our laboratory from PDA 

tumor tissues obtained from LSL-KrasG12D; LSL-Trp53R172H; Pdx1-Cre mice in the mixed 

129/SvJae/C57Bl/6 background as described previously [35] (for more details, see 

Supplementary Data).  

Cell lines 
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SUIT-2 and MIA-PaCa-2 human pancreatic cancer cell lines were cultured in DMEM 

supplemented with 10% FBS, 1% penicillin/streptomycin, at 37°C, 5% CO2 incubator. SUIT-2 

cells were obtained in 2012 and MIA-PaCa-2 cells in 2010, and both were last authenticated 

by Eurofins in June 2016, and periodically tested and resulted negative for mycoplasma 

contamination. 

Generation of primary macrophages, primary pancreatic myofibroblasts, macrophage 

(MCM) and myofibroblasts (MyoCM) conditioned media 

Primary murine macrophages were generated by flushing the bone marrow from the femur 

and tibia of C57BL/6 or mixed 129/SvJae/C57Bl/6 (PC) mice followed by incubation for 5 

days in DMEM containing 10% FBS and 10 ng/mL murine M-CSF (Peprotech). Primary 

human macrophages were generated by purifying CD14+ monocytes from blood samples 

obtained from healthy subjects using magnetic bead affinity chromatography according to 

manufacturer’s directions (Miltenyi Biotec) followed by incubation for 5 days in DMEM 

containing 10% FBS and 50 ng/mL recombinant human M-CSF (Peprotech). Primary 

pancreatic stellate cells were isolated from C57BL/6 mice pancreas by density gradient 

centrifugation, and were activated into myofibroblasts by culturing them on uncoated plastic 

dishes in IMDM with 10% FBS. 

To generate macrophage and myofibroblasts conditioned media, cells were cultured in 

serum free media for 24-36 h, supernatant was harvested, filtered with 0.45m filter, 

concentrated using StrataClean Resin (Agilent Technologies) and immunoblotted for IGF1 

and IGF2 (Abcam), or stored at -20°C.  

 

Treatment with chemotherapy, macrophage conditioned media, blocking antibodies 

and recombinant IGF 
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SUIT-2, MIA-PaCa-2 and KPC-derived cells were cultured in DMEM with 2% FBS for 24 

hours, pretreated for 3 hours with MCM, or MyoCM, recombinant IGF (Peprotech 100-11) at 

100ng/ml, or IGF blocking antibody (abcam 9572) at 10 g/ml followed by Gemcitabine 

(Sigma G2463) at 200nM, nab-paclitaxel 10, 100 or 1000nM, paclitaxel (Sigma T7402) at 

200nM or 5-FU (Sigma F6627) at 100M. Cells were harvested after 24 to 36 hours and 

analyzed for Annexin-V/PI staining by flow cytometry.  

RTK arrays & immunoblotting 

Cells were serum starved or treated with macrophage conditioned media for 30 min or 3h, 

harvested and lysed in RIPA buffer (150 mM NaCl, 10 mM Tris-HCl pH 7.2, 0.1% SDS, 1% 

Triton X-100, 5 mM EDTA) supplemented with a complete protease inhibitor mixture 

(SIGMA), a phosphatase inhibitor cocktail (Invitrogen), 1 mM PMSF and 0.2 mM Na3VO4. 

Cell lysates were analyzed with the Phospho-RTK Array Kit (R&D Systems). Immunoblotting 

analyses were performed using antibodies listed in Supplementary Data.  

 Syngeneic Orthotopic pancreatic cancer models 

Two orthotopic syngeneic pancreatic cancer models and two IGF blocking antibodies were 

used in these studies. In one model, 1 X 106 primary KPCluc/zsGreen (zsGreen) cells 

(FC1242luc/zsGreen) isolated from a pure C57Bl/6 background were implanted into the 

pancreas of immune-competent syngeneic C57Bl/6 six- to eight-week-old female mice, and 

tumors were established for one week before beginning treatment . Mice were administered 

i.p with Gemcitabine (100 mg/kg), IGF blocking antibody BI 836845 (100 mg/Kg) [36] kindly 

provided by Boehringer Ingelheim, or IgG isotype control antibody, every 2 -3 days for 10-15 

days before harvest. The second model is described in Supplementary Data. 

Gene expression 

Total RNA was isolated from purified cells as described for Qiagen Rneasy protocol.  Total 

RNA from entire pancreatic tumor tissues was extracted using a high salt lysis buffer 
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(Guadidine thiocynate 5 M, sodium citrate 2.5 uM, lauryl sarcosine 0.5% in H2O) to improve 

RNA quality followed by purification using Qiagen Rneasy protocol. cDNA was prepared 

from 1μg RNA/sample, and qPCR was performed using gene specific QuantiTect Primer 

Assay primers from Qiagen. Relative expression levels were normalized to gapdh 

expression according to the formula <2^− (Ct gene of interest – Ct gapdh) [37].  

Analysis and quantification of immune cells in pancreatic tumors by flow cytometry 

Single cell suspensions from murine pancreatic tumors were prepared by mechanical and 

enzymatic disruption in Hanks Balanced Salt Solution (HBSS) with 1 mg/mL Collagenase P 

(Roche) (for more details, see Supplementary Data).  

Immunohistochemical analysis 

Deparaffinization and antigen retrieval was performed using an automated DAKO PT-link. 

Paraffin-embedded human and mouse PDA tumors were immunostained using the DAKO 

envision+ system-HRP. Tissue sections were incubated for 1 hour at room temperature with 

primary antibodies described in Supplementary Data.  

Immunofluorescence 

Human and mouse PDA frozen tissue sections were fixed with cold acetone, permeabilized 

in 0.1% Triton, blocked in 8% goat serum and incubated overnight at 4°C with anti-phospho 

Insulin/IGFR (R&D), CD68 (DAKO, clone KP1), CK19 (abcam), CK11 (Cell signaling), SMA 

(abcam) and EpCAM (BD Pharmingen).  

Results 

Macrophage derived IGFs activate Insulin and IGF1 receptors signaling in pancreatic 

cancer cells and induce chemoresistance  

We and others have previously shown that inhibition of myeloid cell infiltration into tumors 

restrains cancer progression and increases response to chemotherapy [12, 14, 15, 18-22]. 
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To gain a better understanding of the molecular mechanisms by which macrophages 

modulate pancreatic cancer cells’ response to chemotherapy, we cultured human and 

mouse pancreatic cancer cells with macrophage conditioned media (MCM) from primary 

human and mouse macrophages in the presence or absence of the standard 

chemotherapeutic agent gemcitabine. Primary human and mouse macrophages were 

generated using macrophage colony stimulating factor 1 (M-CSF1), which favors an M2-like 

phenotype [38], which was further confirmed by high expression of CD206 (M2 macrophage 

marker) and lack of IL-12 (M1 macrophage marker) (Fig. S1A, B). We found, that MCM can 

directly induce chemoresistance of human and mouse pancreatic cancer cells to 

gemcitabine (Fig. 1A). Mechanistically, a phospho-receptor tyrosine kinase array of 

pancreatic cancer cells cultured in the presence or absence of MCM revealed that MCM 

induces the phosphorylation and activation of three receptor tyrosine kinases (RTKs), Insulin 

receptor (number 1), AXL receptor (number 2) and Ephrin receptor (number 3) (Fig. 1B). 

Insulin/ IGF1 receptor signaling is known to be involved in drug resistance in various cancers 

[39]. However, a direct role for macrophages in chemoresistance of pancreatic cancer via 

macrophage-dependent activation of the Insulin and IGF1 receptors has so far never been 

described. Thus, in this report, we furthered focused on investigating the role of Insulin/IGF1 

receptor activation by macrophages in pancreatic cancer chemoresistance. Activation of 

Insulin and IGF1 receptors by macrophages was further confirmed by immunoblotting 

analysis (Fig. 1C) and by detection of tyrosine phosphorylation on Insulin and IGF1 

receptors immunoprecipitated from SUIT-2 human pancreatic cancer cells cultured in the 

presence or absence of MCM (Fig. 1D). Insulin and IGF1 receptors can bind three ligands: 

Insulin, IGF-1 and IGF-2 [40]. We found that primary human and mouse macrophages 

express mRNA levels of Igf-1 and Igf-2 but not Insulin (Fig. 1E, F and Fig. S1C, D).  We also 

found IGF1 and IGF2 proteins in primary human and mouse MCM and macrophage lysates 

(Fig.1G). However, we could hardly detect any expression of IGFs nor Insulin in pancreatic 

cancer cells (Fig. S1E). Thus, these findings suggest that activation of Insulin and IGF1 

receptors on pancreatic cancer cells is triggered through paracrine macrophage-derived 
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IGF1/IGF2 signaling. Interestingly, alternatively (IL-4) activated M2 macrophages expressed 

higher levels of IGFs compared to classically (IFN/LPS) activated M1 macrophages (Fig. 

S1C, D). Immunoblotting analysis of SUIT-2 human pancreatic cancer cells and KPC-

derived murine pancreatic cancer cells stimulated with MCM revealed that MCM activates 

Insulin/IGF1R signaling to a similar degree as recombinant IGF (Fig. 1H). Importantly, 

blockade of IGF ligands with an IGF neutralizing antibody was able to prevent macrophage-

dependent activation of Insulin/IGF1 receptors and the downstream effectors IRS1, IRS2 

and AKT (Fig. 2A), and to inhibit macrophage-induced chemoresistance of human and 

mouse pancreatic cancer cells to gemcitabine (Fig. 2B, C, D). In addition, recombinant IGF 

was sufficient to mediate resistance of pancreatic cancer cells to chemotherapy, in a similar 

way to MCM (Fig. 2C, D, E, F). In the absence of chemotherapy, treatment of tumor cells 

with MCM, IGF blocking antibody or recombinant IGF alone did not alter the survival or 

proliferation of cancer cells (Fig. S2A and B). In vitro exposure of pancreatic cancer cells to 

MCM was also able to enhance resistance of cancer cells to paclitaxel and 5-Fluorouracil (5-

FU) (Fig. S3A, B and C).  These findings suggest an important role for macrophage-derived 

IGFs in activating the insulin/IGF1 receptor survival signaling pathway in pancreatic cancer 

cells, and in enhancing resistance to chemotherapy. 

Insulin and IGF receptors are activated on tumor cells in biopsies from pancreatic 

cancer patients, and this positively correlates with increased TAMs 

We next evaluated whether the Insulin/IGF1 receptor signaling is activated in biopsies from 

pancreatic cancer patients, and whether this correlates with increased macrophage 

infiltration. Immunofluorescent and immunohistochemical staining of phospho-Insulin and 

phospho- IGF1 receptors in biopsies from PDA patients revealed that Insulin/IGF1R 

signaling is activated in pancreatic cancer cells in 38 out of 53 (~72%) consented patients 

(Fig. 3A, B, C, Fig. S4A, B, Tables S1 and S2). Similarly, immunofluorescent and 

immunohistochemical staining of CD68 (pan myeloid/macrophage marker) and CD163 

(macrophage marker, commonly used to identify M2-like macrophages in human tissues), in 
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the same frozen and paraffin embedded human PDA samples, showed that pancreatic 

tumors are infiltrated by CD68+ and CD163+ macrophages which surround the phospho-

Insulin/IGF1R + ductal epithelial pancreatic cancer cells (Fig. 3D and Fig. S4C, D). Since we 

observed that M2-like macrophages express IGF ligands (Fig. 1E, F, G and Fig. S1C, D), we 

subsequently analyzed, by immunohistochemistry, serial sections from PDA patients for the 

co-presence of CD163 + (M2-like) macrophages and phospho-Insulin/IGF1R+ tumor cells. 

Importantly, we found that activation of Insulin/IGF1 receptors positively correlates with 

increased infiltration of CD163+ (M2-like) macrophages (Fig. 3E, F, and Tables S1 and S2). 

Immunofluorescent co-staining of TAMs and IGFs confirmed that, in PDA patient samples, 

TAMs express both IGF1 and IGF2 (Fig. 3G). 

TAMs and myofibroblasts are the main sources of IGFs in the pancreatic tumor 

microenvironment. 

To determine whether TAMs are the main source of IGFs within the pancreatic tumor 

microenvironment, we orthotopically implanted murine primary pancreatic cancer cells 

derived from the genetically engineered mouse model of pancreatic cancer (LSL-KrasG12D; 

LSL-Trp53R172H; Pdx1-Cre mice; KPC) into syngeneic immune-competent recipient mice. 

H&E, immunohistochemical, and immunofluorescent stainings with CD68, CD206 and 

SMA, and flow cytometry analysis of these tumors, showed that these mice developed 

PDA, and that similar to human PDA, these tumors are infiltrated by immune cells, including 

macrophages (Fig. 4A, B and Fig S5A), and are rich in SMA+ myofibroblasts (Fig. S5A and 

B) [32, 41-43]. Importantly, murine PDA orthotopic tumors also showed phosphorylation of 

Insulin/IGF1R on tumor cells (Fig. 4A). In addition, similar to the orthotopically implanted 

PDA tumors, spontaneous PDA tumors derived from the genetically engineered KPC model 

also showed activation of Insulin/IGF1R on tumor cells surrounded by CD206+ TAMs and 

SMA positive myofibroblasts (Fig. S6). 
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To determine whether in vivo, pancreatic TAMs are the main source of IGFs, we isolated 

TAMs (F4/80+ cells) from established orthotopic PDA tumors and assessed the expression 

levels of Igf-1 and Igf-2. In agreement with our previous  findings (Fig. 1E, F, F and Fig. 3G), 

we found that intra-tumoral macrophages isolated from murine pancreatic tumors express 

higher levels of Igf-1 and Igf-2 compared to F4/80- cells (Fig. 4C). 

To further investigate this, we used a second KPC-derived cell line (FC1242) stably labelled 

with zsGreen reporter gene. As previously described, KPC-derived zsGreen cells were 

orthotopically implanted into the pancreas of syngeneic recipient mice (Fig. 4D). Tumors 

were harvested at day 23, and tumor cells (CD45-/zsGreen+), non-immune stromal cells 

(CD45-/zsGreen-), M1-like macrophages (CD45+/F4/80+/CD206-) and M2-like 

macrophages (CD45+/F4/80+/CD206+) were sorted by flow cytometry (Fig. S7A) and 

analyzed for the expression of Igf-1 and Igf-2. This model further confirmed that orthotopic 

pancreatic tumors are infiltrated by both CD206+ (M2-like) and CD206- (M1-like) TAMs (Fig. 

4E) and revealed that both CD206+ (M2-like macrophages) and SMA+ stromal cells, also 

known as myofibroblasts, are the main sources of IGFs in pancreatic tumors (Fig. 4F, Fig. 

S7B). The ability of pancreatic myofibroblasts to produce IGFs was further assessed ex-vivo 

in myofibroblasts and myofibroblasts conditioned media (MyoCM) (Fig. S8A, B, C), as well 

as their capacity to enhance resistance of tumor cells to chemotherapy (Fig. S8D). Similarly, 

Tape et al., recently found, using a proteomic approach, that in vitro, fibroblasts exposed to 

KPC-derived cells produce IGF, which promotes proliferation and survival of pancreatic 

cancer cells [44]. In agreement with these findings, we also found high levels of IGF1 and 

IGF2 proteins in areas that are rich in macrophages and myofibroblasts in biopsied from 

PDA patients (Fig. S9).   

Blockade of IGFs improves response to gemcitabine in a pre-clinical tumor model of 

pancreatic cancer 
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Macrophages and myofibroblasts are the most abundant non-malignant stromal cells within 

the tumor microenvironment in PDA [33]. Since we found that TAMs and myofibroblasts 

express IGFs in the pancreatic tumor microenvironment and stromal-derived IGFs enhances 

resistance of pancreatic cancer cells to chemotherapy in vitro, we hypothesize that inhibition 

of IGFs could increase pancreatic cancer response to chemotherapy in vivo. 

To test this hypothesis, we treated mice bearing established orthotopic pancreatic tumors 

with control IgG antibody, gemcitabine alone, IGF blocking antibody (BI 836845) alone or 

gemcitabine combined with BI 836845 (Fig. 5A). As previously shown [22, 32, 41, 43], and 

similar to what is observed in PDA patients, gemcitabine alone had little or no effect on 

tumor growth in this model (Fig. 5B). Treatment with BI 836845 IGF blocking antibody alone, 

only showed a modest effect on tumor growth. In contrast, combination of gemcitabine with 

BI 836845 significantly reduced tumor growth (Fig. 5B). Analysis of immune cell populations 

within the different treatment groups showed an increase in F4/80+ macrophages in 

gemcitabine and gemcitabine + BI 836845 treated tumors (Fig. 5C and Fig. S10), however 

the ratio of CD206- (M1-like) and CD206+ (M2-like) macrophages within tumors remained 

the same in all treatment groups (Fig. 5D). In addition, the percentage of inflammatory 

monocytes (Ly6C+Ly6G-CD11b+F4/80-), Neutrophils/Myeloid derived suppressor cells (Gr1+ 

CD11b+F4/80-) and cytotoxic CD8+ T lymphocytes (CD3+CD8+; CTL) remained similar in all 

treatment groups (Fig. 5C). Immunohistochemical analysis of tumors, showed that 

phosphorylation of Insulin and IGF1 receptors was decreased in tumors treated with BI 

836845 IGF blocking antibody (Fig. 5E and Fig. S11). Importantly, immunohistochemical 

staining of cleaved caspase-3 revealed significantly higher levels of cell death in tumors 

treated with the combination of gemcitabine and BI 836845, compared to control, 

gemcitabine alone or BI 836845 alone groups (Fig. 5E, F).  

To confirm these results, we repeated a similar experiment using a second KPC-derived cell 

line, and a commercially available IGF blocking antibody from abcam (ab9572). This second 

in vivo experiment yielded very similar results, and showed a significant decrease in tumor 
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growth in mice treated with the combination of gemcitabine/ IGF blocking antibody (Fig. 6A, 

B), a decrease in Insulin and IGF1 receptors phosphorylation (Fig. 6C and Fig. S11), and a 

strong increase in cleaved caspase 3 levels in tumors co-treated with gemcitabine and IGF 

blocking antibody (Fig. 6C). Combination of 5-FU or paclitaxel with BI 836845 only produced 

a slight decrease in tumor growth in this model (Fig. S12A, B), despite an increase in tumor 

cell death (Fig. S12C, D). 

Taken together, these findings indicate that functional blockade of IGFs significantly 

increases the response of pancreatic tumors to gemcitabine in vivo. 

 

Discussion 

The data presented herein describe that stromal-derived IGFs are a critical inducer of 

chemoresistance in pancreatic cancer, and provide pre-clinical data that support the 

rationale for using IGF blocking antibodies in combination with gemcitabine for the treatment 

of pancreatic cancer (Fig. 6D). In these studies, we report a direct role for TAMs and 

myofibroblasts in chemoresistance of pancreatic cancer cells, and a paracrine signaling loop 

in which stromal-derived IGFs activate the Insulin/IGF1R survival signaling pathway and 

blunt response of pancreatic cancer cells to chemotherapy. A recent study describes how 

fibroblasts exposed to pancreatic cancer cells secrete IGF, and this leads to pancreatic 

cancer cell survival and proliferation in vitro [44]. In agreement with these findings, in this 

study, we further confirm that production of IGF by stromal cells occurs in pancreatic tumors 

in vivo and that both macrophages and myofibroblasts, are the two major sources of IGFs 

within the pancreatic tumor microenvironment. In addition, we found that in humans, the 

Insulin/IGF1R signaling pathway is activated in 38/53 (~72%) of PDA patient samples, and 

this strongly positively correlates with an increase in CD163+ (M2-like) TAMs. 
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Based on these findings, we explored the therapeutic opportunities of combining 

gemcitabine with IGF inhibition in pre-clinical models of pancreatic cancer, and found that 

indeed, inhibition of IGFs signaling increases response of pancreatic tumors to gemcitabine. 

While IGF receptor inhibitors failed in the clinics [41, 45-47], two IGF blocking antibodies, 

MEDI-573 and BI 836845, are being evaluated in phase 2 clinical trials for metastatic breast 

cancer (MEDI-573), and metastatic breast cancer and castration-resistant prostate cancer 

(BI 836845) (Clinical trials.gov Identifiers: NCT02204072, NCT01446159, NCT02123823). In 

contrast to IGF1 receptor inhibitors, which only inhibit signaling through IGF1 receptor, IGF 

ligands blocking antibodies inhibit proliferative (but not metabolic) signaling through both 

IGF1 and Insulin receptors. The studies described here provide the proof-of-principle for 

further evaluation of IGF-blocking antibodies in combination with gemcitabine for the 

treatment of pancreatic cancer patients.  

Despite extensive efforts invested in the clinical development of therapies against PDA, 

current standard treatments only exert a modest effect, and targeting only the tumor cells 

has not resulted in a significant improvement in patient outcome [30, 31]. The rich stromal 

compartment present in PDA is not inert, and instead provides a variety of non-malignant 

stromal cells and extracellular matrix proteins, which support tumor initiation, progression 

and drug resistance [11, 20, 22, 23, 32, 35, 41, 42]. Thus, therapies that target both the 

neoplastic cells and the pro-tumorigenic functions of the stromal compartment will likely 

achieve a better therapeutic response.  

TAMs can enhance or limit the efficacy of chemotherapy depending on the tumor model, the 

tumor stage and/or the chemotherapeutic agent used. For example, chemoresistance is 

increased when cytotoxic agents increase M2-like macrophage infiltration via CCL2 [48] or 

CSF1 [21].  Macrophages can also impair host responses to chemotherapy by expressing 

cathepsins that activate chemoprotective T cells [18, 19] or by inducing the upregulation of 

cytidine deaminase, an enzyme that metabolizes nucleoside analogs [20]. TAMs 
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demonstrate a high degree of plasticity, and can be polarized into M1-like anti-tumorigenic 

and M2-like pro-tumorigenic macrophages [49]. Previous studies targeting signaling 

pathways necessary for the recruitment of macrophages or specific chemotactic factors 

(CCL2/PI3K/CSF1) have provided proof of concept that macrophages represent an 

attractive target to reduce tumor progression [13, 14, 21, 22, 41, 50]. However, dependent 

on the microenvironmental cytokine milieu, macrophages are not only promoting tumor 

growth, but they can also critically orchestrate an anti-tumor immune response [9]. Thus, 

therapies that aim to specifically inhibit the pro-tumorigenic functions of macrophages, while 

sparing their tumoricidal activity, could act as an alternative, and perhaps, more efficient 

approach than therapies that completely block macrophage recruitment to the tumor [27, 28]. 

In this regard, our studies indicate that IGF blockade increases pancreatic tumors’ response 

to gemcitabine without affecting immune cell infiltration, including macrophage infiltration, or 

without affecting macrophage polarization. Interestingly, a recent elegant study, also 

describes macrophage derived IGF as a key driver of resistance to CSF-1R inhibition in 

glioblastoma [51]. 

In conclusion, our studies suggest that in PDA, stroma-derived IGFs can blunt the response 

to chemotherapy via an IGF-Insulin/IGF1R paracrine signaling axis, and provide the 

rationale for further evaluating the combination of gemcitabine with IGF signaling blockade in 

pancreatic cancer treatment.  
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Figure legends 

Fig. 1. Macrophage secreted factors directly induce chemoresistance and 

activate Insulin/ IGF1 receptors in pancreatic cancer cells 

(A) Left: Human pancreatic SUIT-2 cancer cells were cultured in the presence or absence of 

macrophage conditioned media (MCM) from human primary macrophages, and treated with 

200 nM gemcitabine for 24 hours or left untreated. Percentage of cell death was quantified 

by flow cytometry. Error bars represent s.d. (n=4); two tailed unpaired t-test; *** p ≤ 0.005. 

Right: Mouse primary KPC-derived pancreatic cancer cells were cultured in the presence or 

absence of MCM from mouse primary macrophages, and treated with 200 nM gemcitabine 

for 24 hours or left untreated. Percentage of cell death was quantified by flow cytometry. 

Error bars represent s.d. (n=3); two tailed unpaired t-test; * p ≤ 0.05.  (B) Human pancreatic 

cancer SUIT-2 cells were serum starved for 24 hours and exposed for 2 hours to human 

MCM, or left unexposed, and protein lysates were subjected to a phospho-receptor tyrosine 

kinase array. Number 1, shows phospho-Insulin receptor, number 2, phospho-AXL receptor 

and number 3, phospho- Ephrin receptor. (C) Immunoblotting analysis of phospho-

Insulin/IGF1 receptors, Insulin receptor, IGF1 receptor and tubulin in SUIT-2 cells serum 

starved or exposed to MCM for 30 minutes or 3 hours. (D) Immunoblotting analysis of pan-

phospho tyrosine, Insulin receptor and IGFR1 in Insulin and IGFR1 immunoprecipitates of 

SUIT-2 cells treated with human MCM for 3 hours or left untreated. (E)  Quantification of Igf-

1, Igf-2 and Insulin mRNA expression levels in human primary macrophages (n=3). (F) 

Quantification of Igf-1, Igf-2 and Insulin mRNA expression levels in mouse primary 
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macrophages (n=3). (G) Immunoblotting analysis of IGF1 and IGF2 ligands in human and 

mouse MCM and macrophage lysates. (H) Immunoblotting analysis of phospho-Insulin/IGF1 

receptor, Insulin receptor, IGFR1 and tubulin, in human pancreatic cancer SUIT-2 cells and 

murine primary KPC- derived pancreatic cancer cells serum starved, exposed to MCM or 

exposed to recombinant IGF for 3 hours.  

Fig. 2. Blockade of IGF impairs macrophage-mediated chemoresistance of 

pancreatic cancer cells  

(A) Immunoblotting analysis of SUIT-2 cells untreated or treated with MCM or MCM+IGF 

blocking antibody for 3 hours. (B) Quantification of cell death in SUIT-2 cells treated with 

gemcitabine, MCM and IGF blocking antibody for 24 hours. Error bars represent s.d. (n=3); 

** p ≤ 0.01 and * p ≤ 0.05 using one-way ANOVA and Tukey’s post hoc test. (C) 

Quantification of cells death in primary mouse KPC-derived pancreatic cancer cells 

untreated or treated with gemcitabine, MCM, IGF blocking antibody or recombinant IGF for 

24 hours. Error bars represent s.d. (n=3); *** p ≤ 0.005 using one-way ANOVA and Tukey’s 

post hoc test. (D) Representative flow cytometry dot blots of KPC-derived cells exposed to 

gemcitabine, MCM, IGF blocking antibody and recombinant IGF. (E) Immunoblotting 

analysis of PARP and tubulin in human SUIT-2 pancreatic cancer cells and cleaved 

caspase-3 and tubulin in KPC-derived mouse pancreatic cancer cells untreated, treated with 

gemcitabine, MCM + gemcitabine or recombinant IGF + gemcitabine for 24 hours. (F) 

Quantification of cell death in KPC-derived cells cultured in the presence or absence of MCM 

or recombinant IGF and treated with 10, 100 or 1000 nM nab-paclitaxel for 36 hours. Error 

bars represent s.d. (n=3); *** p  ≤ 0.005, ** p  ≤ 0.01  using one-way ANOVA and Tukey’s 

post hoc test. 

Fig. 3. Insulin and IGF1 receptors are activated on cancer cells in biopsies 

from PDA patients, and this correlates with increased numbers of TAMs 
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 (A) Left:  Confocal microscopy images of frozen human PDA tissues immunofluorescently 

co-stained for the tumor epithelial marker CK11 (in green), phospho-Insulin/IGF1 receptors 

(in red), and nuclei (in blue). Scale bar, 100 m. Right: Immunohistochemical staining of 

phospho-Insulin/IGF1 receptors in normal human pancreas and biopsies from PDA patients. 

Scale bars, 100 m and 50 m. (B) Images of normal and malignant human pancreatic 

ducts immunohistochemically stained for phospho-Insulin/IGF1 receptors. Scale bar, 50 m.  

(C) Pie diagram representing the percentage of phospho-Insulin/IGF1 receptor positive (red) 

and negative (green) tumors assessed in tissue microarrays (TMA) containing biopsies from 

53 consented PDA patients. (D) Left:  Confocal microscopy images of frozen human PDA 

tissues immunofluorescently co-stained for CD68 (green), CK19 (red) and nuclei (blue). 

Scale bar, 100 m. Right: Immunohistochemical staining of CD163 in normal human 

pancreas and biopsies from PDA patients. Scale bars, 100 m and 50 m. (E) Serial 

sections of biopsies from human PDA samples immunohistochemically stained for phospho-

Insulin/IGF1 receptors and CD163. Scale bar, 50 m. (F) Contingency table and results from 

statistical analysis showing a strong evidence of positive correlation between phospho-

Insulin/IGF1R expression in tumors and increased CD163+ macrophage infiltration. Relative 

risk = 4.92 (95% CI- [1.82 – 13.34]), p = 0.001 using Fisher exact test. (G) 

Immunofluorescent images of human PDA tissues stained for CD68 (in green), IGF-1 or 

IGF-2 (in red) and nuclei (in blue). White stars indicate CD68+ macrophages that express 

IGF-1 or IGF-2. Scale bar, 50 m. 

Fig.4. TAMs and myofibroblasts are major sources of IGF-1 and IGF-2 in 

pancreatic tumors 

(A) KPC-derived tumor cells were orthotopically implanted into the pancreas of syngeneic 

recipient mice. Images show hematoxylin and Eosin (H&E), CD206 and phospho-

Insulin/IGF1 receptors staining of naïve mouse pancreas and murine PDA tissue samples 

harvested 29 days after tumor implantation. (B) Normal pancreas from naïve mice and 
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pancreatic tumors were harvested and digested on day 29 after implantation. Percentage of 

intra-tumoral F4/80+ macrophages, Gr1+/CD11b+ neutrophils and myeloid derived 

suppressor cells (MDSCs), CD4+ and CD8+ T cells, among CD45+ immune cells, were 

quantified by flow cytometry (n= 2 normal pancreas; n= 4 pancreatic carcinomas). (C) 

Quantification of Igf-1 and Igf-2 mRNA expression levels in F4/80+ and F4/80- cells isolated 

from pancreatic tumors. Error bars represent s.d. (n=3). (D) KPCluc/zsGreen (zsGreen) -derived 

tumor cells (FC1242luc/zsGreen) were orthotopically implanted into the pancreas of syngeneic 

recipient (C57/BL6) mice. Tumors were harvested and digested at day 23 after implantation 

and tumor cells, non-immune stromal cells, M1-like and M2-like macrophages were sorted 

by flow cytometry. (E) Dot-blot showing F4/80+/CD206+ and F4/80+/CD206- intra-tumoral 

macrophages (left) and the percentage of F4/80+/CD206- M1-like macrophages and 

F4/80+/CD206+ M2-like macrophages in pancreatic tumors (right). (F) Quantification of Igf-1 

(Left) and Igf-2 (right) mRNA expression levels in CD45+/F4/80+/CD206- M1-like 

macrophages, CD45+/F4/80+/CD206+ M2-like macrophages, CD45-/zsGreen- non-immune 

stromal cells and CD45-/zsGreen+ tumor cells isolated from murine pancreatic tumors. Error 

bars represent s.d. (n=3).  

Fig. 5. Combination of gemcitabine with IGF blocking antibody BI 836845 

inhibits tumor growth in a syngeneic orthotopic pancreatic cancer model. 

(A) KPCluc/zsGreen (zsGreen) -derived pancreatic tumor cells (FC1242luc/zsGreen) were 

orthotopically implanted into the pancreas of syngeneic C57BL/6 recipient mice, and mice 

were treated, starting at day 7 after tumor implantation, twice a week i.p., with either control 

IgG antibody, gemcitabine (100 mg/Kg), IGF blocking antibody BI 836845 (100 mg/Kg) or a 

combination of gemcitabine with BI 836845. (B) Representative images of tumors and tumor 

weights are shown (n= 6 mice per group); * p ≤ 0.05 using one-way ANOVA and Tukey’s 

post-hoc test. (C) Pancreatic tumors were digested and percentage of intra-tumoral F4/80+ 

macrophages, Ly6C+/Ly6G- inflammatory monoctyes, Gr1+/CD11b+ neutrophils and 

myeloid derived suppressor cells (MDSCs), and CD8+ cytotoxic T cells (CTLs), among 
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CD45+ immune cells, were quantified by flow cytometry. (D) Percentage of intra-tumoral 

CD206- M1-like macrophages and CD206+ M2-like macrophages, among F4/80+ 

macrophages, were quantified by flow cytometry.  (E) Immunohistochemical staining of 

phospho-Insulin/IGF1R and cleaved caspase-3 in pancreatic tumors treated with IgG 

(control), gemcitabine, IGF blocking antibody BI 836845 or gemcitabine + BI 836845. (F) 

Quantification of cleaved caspase-3 positive dead cells in tumors treated with IgG (control), 

gemcitabine, IGF blocking antibody BI 836845 or gemcitabine + BI 836845 (8-11 fields 

counted/ mouse tumor),  *** p ≤ 0.005 compared to other treatment groups, using one-way 

ANOVA and Tukey’s post-hoc test.  

Fig.6. Combination of gemcitabine with IGF blocking antibody ab9572 

decreases tumor growth in a syngeneic orthotopic pancreatic cancer model. 

(A) Primary mouse KPC-derived pancreatic cancer cells were implanted orthotopically in the 

pancreas of syngeneic recipient mice. Mice were administered i.p., twice a week with IgG 

antibody, gemcitabine alone or gemcitabine with an IGF blocking antibody from abcam 

(ab9572). Tumors were harvested at day 30 and representative images are shown. (B) 

Tumor weights are shown (n=9-12 mice per group).  ** p ≤ 0.01, * p ≤ 0.05 using one-way 

ANOVA and Tukey’s post-hoc test. (C) Left, Immunohistochemical staining of phospho-

Insulin/IGF1R, and cleaved caspase-3 in pancreatic tumors treated with IgG, gemcitabine or 

gemcitabine+ IGF blocking antibody ab9572. Right, Quantification of cleaved caspase-3 

positive dead cells in pancreatic tumors from mice treated with IgG control antibody, 

gemcitabine or gemcitabine+ ab9572 IGF blocking antibody (6-8 fields counted/mouse  

tumor),  ** p ≤ 0.01 using one-way ANOVA and Tukey’s post-hoc test. (D) Schematics 

depicting the role of stroma-derived IGF in activation of the Insulin/IGF1R signaling survival 

pathway, and in mediating chemoresistance of pancreatic cancer cells.  
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Supplementary Data 

Supplementary  Figure legends 

Fig. S1. Primary M2-like macrophages express IGF-1 and IGF-2 

(A) CD206 and IL-12 mRNA expression levels were quantified in primary human 

macrophages that were generated using macrophage colony-stimulating factor 1 (M-CSF1) 

and polarized into M1 macrophages (IFN + LPS) or M2 macrophages (IL-4) (n=3). (B) 

CD206 and IL-12 mRNA expression levels were quantified in primary murine macrophages 

that were generated using macrophage colony-stimulating factor 1 (M-CSF1) and polarized 

into M1 macrophages (IFN + LPS) or M2 macrophages (IL-4) (n=3). (C) Quantification of 

Igf-1 and Igf-2 mRNA expression levels in primary human macrophages polarized in to M1 

macrophages or M2 macrophages (n=3). (D) Quantification of Igf-1 and Igf-2 mRNA 

expression levels in primary murine macrophages polarized into M1 macrophages or M2 

macrophages (n=3). (E) Quantification of Igf-1, Igf-2 and Insulin mRNA expression levels in 

mouse primary macrophages and KPC-derived tumor cells (n=3). 

Fig. S2. In the absence of chemotherapy, addition of MCM, IGF blockade or 

recombinant IGF does not affect proliferation or survival of pancreatic cancer 

cells. 

(A) Quantification of cell death in SUIT-2 cells treated with gemcitabine, MCM and IGF 

blocking antibody for 24 hours. Error bars represent s.d. (n=3); * p ≤ 0.05, two tailed 

unpaired t-test.  (B) Cell cycle analysis of primary mouse KPC derived pancreatic cancer 

cells exposed to MCM, IGF blocking antibody (10 g/ml) or recombinant IGF (100 ng/ml).  

Fig.S3. MCM enhances resistance of pancreatic cancer cells to gemcitabine, 5-

FU and paclitaxel in an IGF-dependent manner. 
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(A) Quantification of cell death in human SUIT-2, MIA-PaCa-2 and murine KPC-derived 

pancreatic cancer cells treated with gemcitabine, MCM and IGF blocking antibody for 24 

hours. (B) Quantification of cell death in SUIT-2, MIA-PaCa-2 and KPC-derived pancreatic 

cancer cells treated with paclitaxel, MCM and IGF blocking antibody for 24 hours. (C) 

Quantification of cell death in SUIT-2, MIA-PaCa-2 and KPC-derived pancreatic cancer cells 

treated with 5-FU, MCM and IGF blocking antibody for 24 hours. Error bars represent s.e 

(n=3),  *** p ≤ 0.005, ** p ≤ 0.01, * p ≤ 0.05 compared to control using one-way ANOVA and 

Tukey’s post-hoc test. 

Fig. S4. Biopsies from pancreatic cancer patients express activated Insulin 

and IGF1 receptors and are infiltrated by macrophages. 

(A) Confocal microscopy images of frozen human PDA biopsies immunofluorescently co-

stained for CK11 (green), phospho-Insulin/IGF1 receptor (red) and nuclei (blue). Scale bar, 

50 m. (B) Immunohistochemical staining of phospho-Insulin receptor (left) and phospho-

IGF1 receptor (right) in serial sections of biopsies from PDA patients. Scale bar, 50 m. (C) 

Immunohistochemical staining of phospho-Insulin/IGF1 receptor, CD163 and CD68 in 

human normal pancreas and serial sections of biopsies from PDA patients. (D) 

Quantification of CD68+ and CD163+ macrophages in human normal pancreas and PDA 

samples (n= 6 fields). Error bars represent s.d. (n=6); two tailed unpaired t-test, ***p ≤ 0.005. 

Fig. S5. Mouse orthotopic pancreatic tumors are rich in macrophages and 

myofibroblasts. 

(A) Immunohistochemical staining of SMA and CD68 in paraffin embedded tissues from 

naïve mouse pancreas and mouse pancreatic tumors. Scale bar, 50 m. (B) 

Immunofluorescent staining of EpCAM (green), SMA (red) and nuclei (blue) in frozen 

tissues from naïve mouse pancreas and mouse pancreatic tumors. Scale bar, 100 m. 
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Fig. S6. Tumors from KPC mouse model express activated Insulin/IGF1 

receptors. 

Immunohistochemical staining of phospho-Insulin/IGF1 receptors, CD206 and SMA in 

serial sections of PDA tissues from the genetically engineered KPC mouse model, and in 

adjacent normal pancreas. Scale bar, 50 m. 

Fig. S7. Gating strategy used to FACS-sort tumor cells, immune cells and 

stromal cells. 

(A) Gating strategy used to sort CD45-/zsGreen+ KPC-derived tumor cells, CD45-/zsGreen- 

non immune stromal cells, CD45+F4/80+/CD206- macrophages and CD45+/F4/80+/CD206+ 

macrophages from mouse pancreatic tumors. (B) Quantification of SMA mRNA expression 

levels in the CD45-/zsGreen- non immune stromal cell population isolated from pancreatic 

tumors using flow cytometry (n=3).  

Fig. S8. Primary pancreatic myofibroblasts secrete IGF-1 and IGF-2. 

(A) Light microscopy image and Immunoblotting analysis of SMA and GAPDH in mouse 

primary pancreatic myofibroblasts. (B) Quantification of Igf-1 and Igf-2 mRNA expression 

levels in pancreatic myofibroblasts exposed or unexposed to KPC-derived tumor conditioned 

media (TCM). (C) Immunoblotting analysis of IGF1 and IGF2 ligands in pancreatic 

myofibroblast conditioned media (MyoCM) and myofibroblast lysates. (D) Quantification of 

cell death in KPC-derived pancreatic cancer cells treated with gemcitabine, paclitaxel or 5-

FU, myofibroblast conditioned media (MyoCM) and IGF blocking antibody for 24 hours. Error 

bars represent s.e (n=3), ),  *** p ≤ 0.005, ** p ≤ 0.01, * p ≤ 0.05 compared to control using 

one-way ANOVA abd Tukey’s post-hoc test. 

Fig. S9. IGF-1 and IGF-2 are expressed in the tumor microenvironment of PDA 

patients. 
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Immunohistochemical staining of IGF-1, IGF-2, CD163 and SMA in serial sections of a 

biopsy from PDA patient. Scale bars, 50 m and 100 m. 

Fig. S10. Gating strategies used to analyse tumor infiltrated immune cell 

populations. 

Gating strategies used to analyze CD45+/F4/80+/CD206- macrophages and, 

CD45+/F4/80+/CD206+ macrophages, CD45+/CD11b+/Ly6C+/Ly6G- inflammatory 

monocytes, CD45+/CD11b+/Gr1+ neutrophils and MDSCs, and CD45+/CD4+ and 

CD45+/CD8+ T cells from mouse pancreatic tumors by flow cytometry. 

Fig. S11. IGF blockade decreases activation of Insulin and IGF1 receptors in 

pancreatic tumors. 

Immunohistochemical staining of phospho-Insulin receptor (top) and phospho-IGF1 receptor 

(bottom) in control (IgG) treated mouse pancreatic tumors, and tumors treated with IGF 

blocking antibodies BI 836845 and ab 9572. Scale bar, 50 m. 

Fig. S12. Combination of 5-FU and paclitaxel with BI 836845 in a syngeneic 

orthotopic pancreatic cancer model. 

(A) KPCluc/zsGreen –derived pancreatic tumor cells were orthotopically implanted into the 

pancreas of syngeneic C57BL/6 recipient mice, and mice were treated, starting at day 6 after 

tumor implantation, twice a week i.p., with either control IgG antibody, 5-FU (50 mg/Kg), 

paclitaxel (10 mg/Kg), a combination of 5-FU with BI 836845 (100 mg/Kg) or a combination 

of paclitaxel with BI 836845. (B) Tumor weights (n=6 mice per group); p values obtained 

using unpaired two tailed T-test. (C) Immunohistochemical staining of phospho-

Insulin/IGF1R and cleaved caspase-3 in pancreatic tumors treated with IgG (control), 5-FU, 

5-FU + BI 836845, paclitaxel, and paclitaxel + BI 836845. Scale bar, 50 m. (D) 

Quantification of cleaved caspase-3 positive dead cells in tumors treated with IgG (control), 

5-FU, 5-FU + BI 836845, paclitaxel, and paclitaxel + BI 836845 (3-5 fields counted/ tumor 

tissues from 5-6 mice per treatment group), * p ≤ 0.05 using unpaired two tailed T-test. 
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Supplementary Tables 

PDA patient samples from U.S. Biomax (Pa483c) 
position sex age organ                          pathology grade stage tnm 

A1 F 77 Pancreas Duct adenocarcinoma 1 IB T2N0M0 
A2 F 47 Pancreas Duct adenocarcinoma (ductal ectasia) - IIA T3N0M0 
A3 F 64 Pancreas Duct adenocarcinoma (fibrofatty tissue) - I T2N0M0 
A4 M 77 Pancreas Duct adenocarcinoma 1 IB T2N0M0 
A5 F 67 Pancreas Duct adenocarcinoma 1 IIB T3N1BM0 
A6 M 34 Pancreas Duct adenocarcinoma 1 II T3N0M0 
A7 F 56 Pancreas Duct adenocarcinoma 1 IB T2N0M0 
A8 M 74 Pancreas Duct adenocarcinoma 1 IIA T3N0M0 
B1 F 72 Pancreas Duct adenocarcinoma 2 IIA T3N0M0 
B2 M 49 Pancreas Duct adenocarcinoma 1 IIB T3N1M0 
B3 M 39 Pancreas Duct adenocarcinoma 2 IIA T3N0M0 
B4 F 54 Pancreas Duct adenocarcinoma 1 IB T2N0M0 
B5 F 48 Pancreas Duct adenocarcinoma 1 IIA T3N0M0 
B6 F 76 Pancreas Duct adenocarcinoma 2 IIA T3N0M0 
B7 M 57 Pancreas Duct adenocarcinoma 2 IIA T3N0M0 
B8 M 42 Pancreas Duct adenocarcinoma (fibrous tissue) - IIA T3N0M0 
C1 M 47 Pancreas Duct adenocarcinoma 2 IIA T3N0M0 
C2 M 31 Pancreas Duct adenocarcinoma 2 IIA T3N0M0 
C3 M 64 Pancreas Duct adenocarcinoma 3 IIA T3N0M0 
C4 M 44 Pancreas Duct adenocarcinoma 2 II T3N0M0 
C5 M 57 Pancreas Duct adenocarcinoma 2 IIA T3N0M0 
C6 M 61 Pancreas Duct adenocarcinoma 2 IB T2N0M0 
C7 M 65 Pancreas Duct adenocarcinoma 2 IIA T3N0M0 
C8 M 52 Pancreas Duct adenocarcinoma (sparse) 2 IA T1N0M0 
D1 M 49 Pancreas Duct adenocarcinoma 2 IIA T3N0M0 
D2 F 47 Pancreas Duct adenocarcinoma 3 IIB T3N1M0 
D3 M 45 Pancreas Duct adenocarcinoma 2 IIA T3N0M0 
D4 M 60 Pancreas Duct adenocarcinoma 2 II T3N0M0 
D5 M 52 Pancreas Adenocarcinoma 3 IB T2N0M0 
D6 F 62 Pancreas Adenocarcinoma 3 II T3N0M0 
D7 F 51 Pancreas Adenocarcinoma 3 IIA T3N0M0 
D8 F 48 Pancreas Adenocarcinoma 3 IIA T3N0M0 
E1 M 61 Pancreas Adenocarcinoma 3 IV T3N0M1 
E2 M 78 Pancreas Adenocarcinoma 3 IIA T3N0M0 
E3 M 52 Pancreas Duct adenocarcinoma 2 IA T2N0M0 
E4 M 56 Pancreas Adenocarcinoma 3 IA T2N0M0 
E5 F 51 Pancreas Adenocarcinoma 3 IIA T3N0M0 
E6 F 56 Pancreas Adenocarcinoma 3 IIA T3N0M0 
E7 F 66 Pancreas Acinic cell carcinoma - IB T2N0M0 
E8 M 62 Pancreas Squamous cell carcinoma 2 IIA T3N0M0 

 
 

Table S1. Clinical information from 40 consented PDA patient samples. 

Clinical information from 40 consented PDA patient samples from U.S. Biomax, analyzed for 

phospho-Insulin/IGF1R expression on cancer cells and CD163+ macrophages. 
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PDA patient samples from Liverpool tissue bank 
Number Diagnosis T stage N stage M stage Gender Age at surgery 

1 PDA 2 1 x Male 63 
2 PDA unrecorded unrecorded unrecorded Female 54 
3 PDA 3 1 x Female 80 
4 PDA Unrecorded Unrecorded Unrecorded Male 70 
5 PDA 3 1 x Male 68 
6 PDA 1 0 x Male 65 
7 PDA 3 1 x Female 52 
8 PDA 3 0 x Female 64 
9 PDA 3 1 X Male 58 

10 PDA 3 1 x Male 70 
11 PDA 3 1 x Female 57 
12 PDA Unrecorded Unrecorded Unrecorded Female 69 
13 PDA 3 1 x Male 60 
14 PDA 3 1 x Male 55 
15 PDA 3 1 x Male 52 
16 PDA 3 1 x Male 71 

 

 

 

Table S2. Clinical information from 16 consented PDA patient samples. 

Clinical information from 16 consented PDA patient samples from the Liverpool tissue bank, 

analyzed for phospho-Insulin/IGFR expression on cancer cells and CD163+ macrophages. 
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Supplementary Materials & Methods 

Generation of primary KPC-derived pancreatic cancer cells and cell culture conditions 

The murine pancreatic cancer cells KPC FC1242 were generated in the Tuveson lab (Cold 

Spring Harbor Laboratory, New York, USA) isolated from PDA tumor tissues obtained from 

LSL-KrasG12D; LSL-Trp53R172H; Pdx1-Cre mice of a pure C57BL/6 background. Briefly, a 

format of 3mm3 fragment of PDA was excised, washed in 10 ml PBS, and then finely diced 

with sterile razors. Cells were incubated in 10 ml collagenase type V solution (2 mg/ml in 

DMEM) at 37°C for 45 minutes with mixing. Cells were centrifuged (300 x g) and 

resuspended in DMEM + 10% FBS + Penicillin/Streptomycin and plated in tissue culture 

treated plates. Cells were initially split at high dilutions (1:20 to 1:100) to dilute out our 

stromal cell contamination, which do not tolerate aggressive splitting, whereas the cancer 

cells formed ductal-like colonies. 

KPC cells were isolated in our laboratory from PDA tumor tissues obtained from LSL-

KrasG12D; LSL-Trp53R172H; Pdx1-Cre mice in the mixed 129/SvJae/C57Bl/6 background as 

described previously [35]. Briefly, a 3mm3 fragment of PDA was excised, washed in 10 ml 

PBS, and then finely diced with sterile razors. Cells were incubated in 10 ml collagenase 

type V solution (1mg/ml in DMEM/F12) at 37°C for 30-45 minutes with mixing. Cells were 

centrifuged (300 x g) and resuspended in 0.05% Trypsin/EDTA for 5 min at 37C. Digest was 

quenched by adding DMEM+ 10% fetal bovine serum and 96 uM CaCl2. Cells were washed 

3 times with DMEM/F12 medium and plated in Biocoat dishes (Collagen I). Cells were 

maintained on collagen coated plates at a minimal passage number (< p8) to allow initial 

expansion prior to use for in vitro and in vivo experiments. 

Macrophage polarization 

Polarization to M1 macrophages was performed using 20 or 50 ng/ml INFPeprotech) and 

100 or 10 ng/ml LPS (Sigma Aldrich) for murine or human macrophages respectively. 
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Polarization to M2 was performed using 20 or 40 ng/ml IL-4 ng/ml for murine or human 

macrophages respectively.  

Cell cycle analysis 

KPC derived pancreatic cancer cells were treated with isogenic mouse MCM, IGF blocking 

antibody (abcam 9572) at 10 g/ml or recombinant IGF (Peprotech 100-11)  at 100ng/ml. 

Cells were harvested, fixed with methanol, treated for 45 min with 10 μg/ml of RNase, 

resuspended in PBS containing 10 μg/ml of propidium iodide and subjected to flow 

cytometry. 

Immunohistochemical analysis 

Deparaffinization and antigen retrieval was performed using an automated DAKO PT-link. 

Paraffin-embedded human and mouse PDA tumors were immunostained using the DAKO 

envision+ system-HRP. Tissue sections were incubated for 1 hour at room temperature with 

primary antibodies against phospho-Insulin/IGF1 receptors (R&D, AF2507, used 1:50 after 

high pH antigen retrieval), phospho Insulin receptor (LS Bio, LS-C177981, used 1:100 after 

low pH antigen retrieval), phospho-IGF1 receptor (Biorbyt, orb97626, used 1:100 after high 

pH antigen retrieval), CD68 (DAKO, clone KP1, M081401-2 used 1:2000 after high pH 

antigen retrieval), CD163 (abcam, ab74604 pre-diluted after low pH antigen retrieval), SMA 

(abcam, Ab 5694 used 1:100 after low pH antigen retrieval), CD206 (abcam, ab8919 used 

1:50 after low pH antigen retrieval), IGFs (abcam, ab9572 and ab9574 used at 1: 200 after   

high and low pH antigen retrieval respectively), cleaved caspase-3 (cell signaling #9661 

used at 1:300 after high pH antigen retrieval) followed by secondary-HRP conjugated 

antibody (from DAKO envision kit) for 30 minutes at room temperature. All antibodies were 

prepared in antibody diluent from Dako envision kit. Staining was developed using diamino-

benzidine and counterstained with hematoxylin. 

Analysis and scoring of tissues were performed by a pathologist, and statistical significance 

was independently determined by a biostatistician. Both experts worked in a blinded fashion.  
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Immunofluorescence 

Human and mouse PDA frozen tissue sections were fixed with cold acetone, permeabilized 

in 0.1% Triton, blocked in 8% goat serum and incubated overnight at 4°C with anti-phospho 

Insulin/IGF1R (R&D) (1:200), CD68 (DAKO, clone KP1) (1:200), CK19 (abcam) (1:200), 

CK11 (Cell signaling) (1:200), IGFs (abcam) (1:200), SMA (abcam) (1:100), EpCAM (BD 

Pharmingen) (1:100).  

Immunoprecipitation and Immunoblotting 

Immunoprecipitation was performed using anti-Insulin (abcam, 137747) and anti-IGFR1 

(R&D, AF305-NA) overnight at 4°C. 

Immunoblotting analysis were performed using the following primary antibodies overnight at 

4°C: anti-phospho Insulin/pIGFR1 (R&D AF2507, 1:400 in 5% Milk-TBST), anti-tubulin 

(Sigma T6199, 1:5000 in 2.5% BSA-TBST), anti-Insulin (abcam 137747, 1:1000 in 2.5% 

BSA-TBST), anti-IGF1R (R&D AF305-NA, 1:1000 in 2.5% BSA-TBST), anti-pan phospho 

tyrosine (Merck Millipore 05-321X, 1:1000 in 2.5% BSA-TBST), anti-IGFs (abcam 9572, 1: 

500   in 2.5% BSA-TBST and abcam 9574, 1:1000 in 5% Milk-TBST), GAPDH (Sigma, 

G9545, 1:10,000 in 2.5% BSA-TBST), anti-cleaved caspase 3 (Cell signalling 9661, 1:1000 

in 5% Milk-TBST), anti-PARP (BD 556494, 1:1000 in 2.5% BSA-TBST), anti-phospho-IRS1 

(Millipore 09-432, 1:1000 in 2.5% BSA-TBST), anti-IRS1 (Cell Signaling 2382S, 1:1000 in 

5% BSA-TBST), anti-phospho-IRS2 (Biorbyt orb34833, 1:500 in 2.5% BSA-TBST) anti-IRS2 

(Cell Signaling 4502s, 1:1000 in 5% BSA-TBST), anti-phospho-AKT (Cell Signaling 4060, 

1:1000 in 2.5% BSA-TBST), anti-AKT (Cell Signaling 9272, 1:1000 in 2.5% BSA-TBST), 

anti-phospho-MEK (Cell Signaling 2338s, 1:1000 in 5% BSA-TBST), anti-MEK (Cell 

Signaling 9126s, 1:1000 in 5% BSA-TBST). 

Syngeneic Orthotopic pancreatic cancer models 
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All animal experiments were performed in accordance with current UK legislation under an 

approved project licence (reference number: 403725). Mice were housed under specific 

pathogen-free conditions at the Biomedical Science Unit at the University of Liverpool. In the 

second model, orthotopic pancreatic tumors were initiated by implanting 1 X 106 primary 

KPC-derived cells into the pancreas of immune-competent syngeneic mice on a mixed 

background 129/SvJae/C57Bl/6. Since in this model tumors grow slower, tumors were 

established for three weeks before beginning treatment (Fig. 6). Syngeneic recipient mice 

were six- to eight-week-old female mice descended from mice used to generate the KPC-

derived cells but lacked oncogenic KrasG12D expression (PC mice). Mice were administered 

i.p with Gemcitabine (100 mg/kg), IGF blocking antibody commercially available from abcam 

(25 g/mouse) (abcam 9572) or IgG isotype control antibody, every 2 -3 days for 10-15 days 

before harvest. At endpoint, tumors were harvested, weighed, cryopreserved fixed in 

formalin, solubilized for RNA purification, or collagenase-digested for flow cytometry analysis 

and sorting of immune cell populations, tumor cells, and non-immune stromal cells. Only 

animals in which no tumors grew were removed from the study.   

Tumor tissues were analyzed by immunohistochemistry for phospho-Insulin/IGFR 

expression, EpCAM expression, macrophage infiltration, fibroblast activation and apoptosis 

using the following antibodies: phospho-insulin/IGF receptor antibody (R&D), EpCAM (BD 

Pharmingen), CD68 antibody (DAKO), CD206 (abcam), SMA (abcam) and cleaved 

caspase 3 (Cell signaling). Expression of Igf-1 and Igf-2 in TAMs, tumor cells and non-

immune stromal cells were determined by qPCR. In vivo experiments were performed with 

n= 6 mice (Fig. 5) and n=9-12 mice (Fig. 6). 

Analysis and quantification of immune cells in pancreatic tumors by flow cytometry 

Single cell suspensions from murine pancreatic tumors were prepared by mechanical and 

enzymatic disruption in Hanks Balanced Salt Solution (HBSS) with 1 mg/mL Collagenase P 

(Roche). Cells suspension were centrifuged for 5 min at 1500 rpm, resuspended in HBSS 

and filtered through a 500 m polypropylene mesh (Spectrum Laboratories). Cells were 
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resuspended in 1 mL 0.05%Trypsin and incubated at 37C for 5 minutes. Cells were filtered 

through a 70 m cell strainer and resuspended in PBS + 1% BSA. Cells were blocked for 10 

minutes on ice with FC Block (BD Pharmingen, Clone 2.4G2) and then stained with Sytox® 

blue viability marker (Life Technologies) and conjugated antibodies against anti-CD45-

PE/Cy7 (Biolegend, clone 30-F11), anti-F4/80-APC (Biolegend, clone BM8), anti-CD206 

PerCP/Cy5.5 (Biolegend, clone C068C2), Ly6C-PE (Biolegend, clone HK1.4), CD11b-APC 

(Biolegend, clone M1/70), Ly6G-PerCP/Cy5.5 (Biolegend, clone 1A8), CD8a-PerCP/Cy5.5 

(Biolegend, clone 53-6.7), CD4-PE (Biolegend, clone GK1.5), anti-TCRγ/δ-APC (Biolegend, 

clone GL3), anti-Ly-6G/Ly-6C (Gr-1)-PerCP/Cy5.5 (Biolegend, clone RB6-8C5). Flow 

cytometry was performed on a FACSCanto II (BD Biosciences). 

Statistical Methods 

Statistical significance for in vitro assays and animal studies was assessed using unpaired 

two-tailed Student t test or one-way ANOVA coupled with Tukey’s post hoc tests, and the 

GraphPad Prism 5 program.  Human samples were analyzed using Fisher’s exact test and 

the Matlab version 2006b program.  

Institutional approvals 

All studies involving human tissues were approved by the University of Liverpool and were 

considered exempt according to national guidelines. Human pancreas carcinoma samples 

were obtained from the Liverpool Tissue Bank and patients consented to use the surplus 

material for research purposes or purchased from US Biomax. All animal experiments were 

performed in accordance with current UK legislation under an approved project licence 

(reference number: 403725). Mice were housed under specific pathogen-free conditions at 

the Biomedical Science Unit at the University of Liverpool. 

All studies involving blood collection were approved by the National Research Ethics 

(Research Integrity and Governance Ethics committee- Reference: RETH000807). All 

individuals provided informed consent for blood donation on approved institutional protocols. 
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