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Abstract

This thesis describes research work undertaken in the field of image mining (particularly

medical image mining). More specifically, the research work is directed at 3-D image

classification according to the nature of a particular Volume Of Interest (VOI) that

appears across a given image set. In this thesis the term VOI Based Image Classifica-

tion (VOIBIC) has been coined to describe this process. VOIBIC entails a number of

challenges. The first is the identification and isolation of the VOIs. Two segmentation

algorithms are thus proposed to extract a given VOI from an image set: (i) Volume

Growing and (ii) Bounding Box. The second challenge that VOIBIC poses is, once

the VOI have been identified, how best to represent the VOI so that classification can

be effectively and efficiently conducted. Three approaches are considered. The first

is founded on the idea of using statistical metrics, the Statistical Metrics based repre-

sentation. This representation offers the advantage in that it is straightforward and,

although not especially novel, provides a benchmark. The second proposed representa-

tion is founded on the concept of point series (curves) describing the perimeter of a VOI,

the Point Series representation. Two variations of this representation are considered:

(i) Spoke based and (ii) Disc based. The third proposed representation is founded on

a Frequent Subgraph Mining (FSM) technique whereby the VOI is represented using

an Oct-tree structure to which FSM can be applied. The identified frequent subtrees

can then be used to define a feature vector representation compatible with many clas-

sifier model generation methods. The thesis also considers augmenting the VOI data

with meta data, namely age and gender, and determining the effect this has on perfor-

mance. The presented evaluation used two 3-D MRI brain scan data sets: (i) Epilepsy

and (ii) Musicians. The VOI in this case were the lateral ventricles, a distinctive VOI

in such MRI brain scan data. For evaluation purposes two scenarios are considered,

distinguishing between: (i) epilepsy patients and healthy people and (ii) musicians and

non-musicians. The results indicates that the Spoke based point series representation

technique produced the best results with a recorded classification accuracy of up to

78.52% for the Epilepsy dataset and 84.91% for the Musician dataset.
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Chapter 1

Introduction

Data mining has been a popular area of study within the domain of Knowledge Dis-

covery in Data (KDD), which in turn is the non-trivial process of identifying valid,

useful and understandable information in data [14]. Data mining is an essential ele-

ment within the overall KDD process that is concerned with the actual discovery of

hidden information within data. An important activity within the remit of data min-

ing is classification, the construction of models to categorise previously unseen data.

The construction of classification models can be conducted in either a supervised or

unsupervised manner. We say that the model, called a classifier, is learnt; hence we

have supervised and un-supervised learning. The distinction is that in the case of su-

pervised learning the classifier is built using pre-labelled training data while in the case

of un-supervised learning no such training data exists. (There is also the concept of

semi-supervised learning, but this is outside of the scope of this discussion.)

Data mining can be applied in the context of different forms of data such as docu-

ment collections, graphs, videos and so on. With respect to the work presented in this

thesis, the data of interest is image data, particularly 3-D image data. Data mining

when applied to image data is commonly referred to as image mining. Image mining

involves a number of challenges of which the most significant relates to the representa-

tion of the image data [63]; the data mining techniques themselves are well understood.

The representation must be: (i) succinct (efficient), (ii) serve to capture sufficient detail

(accurate) and (iii) allow for the application of some form of data mining technique

(practical). The broad domain of image mining can be divided into whole image mining

and Region Of Interest (ROI) image mining where the distinction is that the latter is

directed at some specific sub-image that exists across an image collection; the work

presented in this thesis is directed at the latter.

More specifically the work presented in this thesis is directed at 3-D ROI image

mining, in other words, Volume Of Interest (VOI) image mining. The particular branch

of data mining of interest is supervised classification, hence VOI image classification.

To act as a focus for the research presented in this thesis the work is directed at 3-D
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Magnetic Resonance Imaging (MRI) brain scan VOI classification. As such the work

can be said to build on established work on 2-D MRI brain scan ROI classification

[40, 140, 98]. Another challenge associated with the mining of 3-D image data, when

compared to 2-D image data, is that there is a significant (exponential) increase in the

amount of data to be considered.

The broad aim of the research presented in this thesis was to investigate feature-

based representations appropriate for use with 3-D image classification systems so as

to support the concept of 3-D volumetric data mining. The philosophical underpinning

supporting the proposed work is founded on the observation that to produce an accu-

rate VOI classifier a representation that can be interpreted by human observers is not

required; what is required is a representation that results in effective classification.

In supervised image classification a collection of pre-labelled images is used as input

in order to train a classifier (model) which can then be applied to unlabelled images.

Image representation, as already noted, is a critical precursor to classifier generation

where the images of interest are required to be transformed into a format whereby

established classification techniques can be applied. In the case of supervised image

classification, when applied to VOI, it is necessary to first identify the VOI (ROI) prior

to considering any form of representation. Some form of segmentation is therefore

required. In this thesis the term VOI Based Image Classification (VOIBIC) is used to

describe the supervised learning process of building and applying classifiers for labelling

VOI within 3-D data collections.

The rest of this introductory chapter is organised as follows. The motivation for the

research is presented in Section 1.1. The research objectives, including the fundamental

research question to be addressed and the associated research issues, are given is Section

1.2. In Section 1.3 the adopted research methodology used to provide an answer to the

research question and associated research issues is presented. Next, the contributions

of the research are presented in Section 1.4. Finally, the organisation of the rest of this

thesis, and some concluding remarks concerning this chapter, are presented in Sections

1.5 and 1.6 respectively.

1.1 Motivation

From the above, the research described in this thesis is directed at 3-D supervised image

classification or VOIBIC. There are many applications where 3-D image classification

can be utilised; however, with respect to the research presented in this thesis, the

focused is on medical applications. Automated (or semi-automated) medical prediction

is a challenging real world problem [77, 10, 113]. The effective and efficient automated

prediction of medical conditions is clearly of significant benefit especially with respect to

speed of diagnosis and resource management, even if used as a “first screening”. Medical

imaging technologies, such as Magnetic Resonance Imagery (MRI), Magnetic Resonance
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Spectroscopy (MRS) or Computed Tomography (CT), have developed rapidly over the

last two decades [33]. As a consequence the quantity of 3-D medical image data that

is available for diagnosis has also grown significantly. As a result, sophisticated tools

to help and assist in the analysis of medical image data have become a requirement.

One mechanism whereby the 3-D analysis task can be supported, and that of interest

with respect to this thesis, is to use classification techniques in order to classify 3-D

medical image data, in other words VOIBIC. This is then the main motivation for the

work described in this thesis. The principle challenge of VOIBIC is the identification

of discriminative features within the 3-D data of interest.

The application focus for the work presented in this thesis is the analysis (supervised

classification) of VOIs within 3-D MRI brain scan volumes. 3-D MRI brain scan data

consists of a sequence of 2-D “slices” in three planes: Sagittal (SAG), Coronal (COR)

and Transverse (TRA). Collectively this set of slices is referred to as a volume. There

are a number of features in MRI brain scan volumes that are of interest. One example

of previous work that has been directed at 2-D ROI analysis of MRI brain scan data is

the application of classification techniques to the corpus callosum [39, 40, 37, 47, 133],

the central part of the brain that connects the two halves of the brain together. The

work presented in this thesis is directed at the lateral ventricles of the brain. This 3-D

feature was chosen because a number of studies had suggested that there are correlations

between the structure and size of the brain ventricles and some medical conditions such

as epilepsy [79, 28, 18, 69, 115].

In summary, from a technical perspective, the work described is motivated by the

need for techniques that can represent and classify 3-D medical images according to

the structure of the features of the VOIs that occur across such medical image sets.

From an application perspective the work is motivated by a desire to analyse the left

and right ventricle VOI found in 3-D MRI brain scan data because it is suggested that

the shape and size of the ventricles has an effect on medical conditions such as epilepsy.

1.2 Thesis Objectives

As a consequence of the motivation given in the previous section, this thesis is focused

on an investigation of techniques to facilitate the analysis of 3-D medical images in

terms of particular VOI that occur across an entire image collection. More specifically,

the main objective of the work described in this thesis is directed at an investigation of

automated techniques for classifying 3-D MR brain scan images (or volumes) in terms

of the left and right ventricle VOI that feature in such volumes. The research questions

to be addressed in this thesis are thus:

1. What is the most appropriate mechanism for identifying VOI, and in

particular the left and right ventricle VOI?: Clearly some form of 3-D

3



image segmentation is required, but at the outset of the research the nature of

this segmentation was unclear.

2. Assuming that we can establish a process for identifying the VOI,

how do we ascertain the quality of this VOI?: In the case of the left and

right ventricle VOI there is no “gold standard”, the mechanism whereby a VOI

segmentation can be verified remains a research challenge.

3. Once the VOI have been identified what would be the nature of the

VOI representations to be used so as to support classification?: A va-

riety of different mechanisms can be envisioned whereby the segmented VOI can

be represented. At the commencement of the research it was unclear what the

most appropriate representation might be. As already noted above, the primary

criteria for any proposed representation is classification effectiveness (accuracy),

however there is also a requirement that the representation is efficient in terms

of processing time.

4. What are the most appropriate parameter settings for the considered

representations?: Any representation generation mechanism will entail usage of

a set of parameter settings, what the most appropriate settings are was a subject

for further investigation within the context of this thesis.

5. Given a specific representation what is the most appropriate classifi-

cation model to be used with that representation?: A great number of

methods have been proposed for conducting classification with respect to a simi-

lar variety of data representations. At commencement of the research, and in the

absence of any identified representation mechanism, it was unclear as to which

classification model would be the most appropriate. This was therefore another

element of the research presented in this thesis.

6. What is the overall most appropriate VOI classification process in the

context of the ventricle application?: It can be anticipated that different

classification techniques will be best suited to different representations. How-

ever, can a “best performing” approach be identified? And if so is this “best”

performance statistically significant?

7. Given a VOI representation is there any benefit to be gained by aug-

menting the data?: With respect to many application domains it can be antici-

pated that some additional meta data will be available. In the case of the ventricle

data the age and gender of each subject was available. Whether augmenting the

VOI representations with this extra meta data would provide benefits in terms

of classification effectiveness was unclear at the start of the research presented in

this thesis.
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1.3 Research Methodology

Given the above research objectives and issues, the adopted research methodology was

to first consider how best to identify the VOI in the context of the MRI ventricle

classification application domain. The idea was to consider a number of segmentation

techniques and realise the most promising. The start point for this was a review of

current 3-D segmentation techniques. Most of these current techniques are extensions

of existing 2-D techniques where there has been much more reported research work.

It was anticipated that some form of “region growing” technique would be the most

appropriate.

A significant challenge when considering the appropriateness of 3-D segmentation

techniques is the quality of the resulting segmentation. As noted above, in the case

of the left and right ventricle application, the main application motivation for the

research presented in this thesis, there is no “ground truth” (“gold standard”). The

only way of comparing the validity of any proposed segmentation algorithm was to

compare the results with those produced using “hand-crafted segmentation”. Some

form of statistical evaluation would thus be required.

Once the VOI had been identified the next stage was to consider the representation

of the VOI. There are a variety of image representation techniques that can be adopted,

the majority proposed in the context of 2-D image data. A preliminary review of the

existing work on 2-D and 3-D image approaches suggested three broad categories of

technique: (i) Statistical Metrics, (ii) Point series and (iii) Oct-tree:

1. Statistical Metrics: This was considered to be the most straightforward mech-

anism for representing VOIs. The idea was to represent VOIs in terms of a set of

statistical metrics features such as: length, height, width, perimeter length, area,

convex area, solidity (area/convex area), eccentricity, or equivalent diameter. The

result could then be used to define a standard feature space from which feature

vectors can be extracted in the same manner as in the case of tabular data. As

a consequence, standard classification models can be applied.

2. Point series: There has been extensive work, mostly in connection with 2-D ROI,

founded on the concept of representing the outline of a ROI simply as an ordered

sequence of points referenced to a 2-D coordinate system. The idea was thus to

investigate the usage of such point series in terms of 3-D VOI. A challenge here was

how best to impose an ordering on the 3-D referenced points. A second anticipated

challenge was how to apply existing classification techniques to a 3-D point series

representation. One avenue for investigation was mechanisms for converting point

series into a vector space format compatible with many classification models.

Alternatively some form of K-Nearest Neighbour (KNN) classification [16] could
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be applied coupled with a time series similarity measures such as warping path

distance [11].

3. Oct-tree: Tree based representations have been widely used in connection with

2-D image representations. They tend to be coupled with a particular approach

to image decomposition. In the context of 2-D image data the most common

approach is to use a quad-tree representation, which in turn is directly related to

a quad-tree decomposition. The quad-tree thus seemed like a good start point

for any investigation of tree based representations of 3-D VOI, although in 3-D

an “Oct-tree” would clearly be required. A challenge would be the classification

of tree (graph) represented VOIs. Some form of graph mining suggested itself.

Alternatively some mechanism whereby the trees could be translated into a vector

space format also seemed like a fruitful avenue for research. One idea was to

use some form of Frequent Subgraph Mining (FSM) [136] in order to identify

frequently occurring subgraphs which could then be used to define a feature space.

To evaluate the effectiveness of any proposed representation, of the form identified

above, two 3-D MRI brain scan datasets were used, (i) Epilepsy and (ii) Musician.

The Epilepsy dataset consisted of 210 MRI brain scans, one half from epilepsy patients

and the other half from healthy people. The Musician dataset in turn consisted of

160 MRI brain scans of which one half was from musicians and the other half from

non-musicians. The evaluation was conducted using the standard metrics frequently

used in the context of classification. In the context of effectiveness it was decided to

adopt the following: (i) accuracy, (ii) sensitivity and (iii) specificity. With respect

to efficiency it was decided that runtime was the appropriate measure. To determine

whether the outcomes were statistically significant or not it was decided to apply the

Friedman Statistical Significance Test [45] and support this with the use of critical

difference diagrams (as suggested in [32]) so that statistically relevant distinctions (if

any) between the techniques proposed could be highlighted.

1.4 Thesis Contributions

The main contributions of the research presented in this thesis can be summarised as

follows:

1. Two segmentation algorithms, the Volume Growing and Bounding Box algo-

rithms, to extract a particular VOI across an image dataset. An image thresh-

olding technique was also applied to help partition the images according to fore-

ground and background.

2. An approach to 3-D MRI classification using a representation based on statistical

metrics describing the geometry of a detected VOI. More specifically using geo-
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metrical features such as: width, length, height, perimeter (with respect to the

three primary axes), volume and volume extent, of the VOI.

3. An approach to 3-D MRI classification based on a point series representation

coupled with Hough signature extraction. The latter used to produce signatures

from the generated point series curves, which could then be used as the input to

a classification system.

4. An approach to 3-D MRI classification based on a point series representation

coupled with the well known K-Nearest Neighbour (KNN) algorithm and Dy-

namic Time Warping (DTW) to generate a “Warping Distance” as the similarity

measure.

5. An approach to 3-D MR classification based on an Oct-tree representation of

an identified VOI. The Oct-tree hierarchical representation was coupled with a

Frequent Subgraph Mining (FSM) algorithm to identify frequently occurring sub-

trees (within the Oct-tree representation) which were then used to define a feature

space from which feature vectors could be extracted to which an “off the shelf”

classification model could be applied.

6. An effective framework for classifying the nature of the left and right ventricles

in human MRI brain scans in order to support various kinds of diagnosis and

analysis.

1.5 Thesis Organisation

The organisation of the rest of the thesis is as follows. In Chapter 2, an extensive lit-

erature review concerning medical image classification, including image segmentation,

is presented. Chapter 3 explains the nature of the MRI brain scan datasets and the

application domain used as the focus for the work described in this thesis. Chapter 4

explains the adopted image pre-processing and proposed VOI segmentation techniques,

and includes an evaluation of these techniques. In Chapters 5 to 7 the three proposed

volumetric image classification techniques are described in detail as follows: (i) Chapter

5 describes image classification using the proposed Statistical feature representation;

(ii) Chapter 6 describes the proposed Point-series image classification technique, includ-

ing usage of “Dynamic Time Warping” for similarity computation and the “Hough”

signature extraction mechanism; whilst (iii) Chapter 7 presents the Tree based image

classification technique together with the “Oct-tree” decomposition model and the fre-

quent subgraph mining technique used to define the desired feature space. Chapter 8

then presents a comprehensive evaluation of the proposed techniques including a sta-

tistical significance analysis of the results obtained. Finally, Chapter 9 concludes the

thesis with: (i) a summary of the contents, (ii) a review of the main technical and
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application based research findings in the context of the research questions listed in

Section 1.2 above and (iii) some prospective future research directions.

1.6 Conclusion

This chapter has provided the necessary context, motivation and background for the

research presented in this thesis. The research objectives, methodology and contribu-

tions have all been introduced. In the following chapter a detailed literature review

of the related background and existing previous work, with respect to this thesis, is

presented.
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Chapter 2

Background and Related Work

This chapter presents a review of the background and related work with respect to the

research described in this thesis. The related work is mainly founded on three areas

of research study as shown in Figure 2.1: (i) Magnetic Resonance Imaging (MRI),

(ii) image representation and (iii) data mining. Each of these is considered in this

chapter. The chapter commences with a review of the application domain in Section

2.1, namely: (i) the nature of MRI brain scans and (ii) the medical conditions whose

diagnosis is associated with MRI brain scans. In the context of image representation

the concepts of image segmentation and image representation, particularly in 3-D, are

reviewed in Section 2.2 and Section 2.3 respectively. Section 2.4 then considers data

mining and provides a review of the standard image classification mechanisms adopted

with respect to this thesis. This is followed in Section 2.5 with a discussion of the

literature concerning MRI brain scan classification to date. A review of the evaluation

techniques used later in this thesis is presented in Section 2.6. Finally the chapter is

concluded with a summary in Section 2.7.

Figure 2.1: The main research areas of study related to the work present in this thesis:
Magnetic Resonance Imaging (MRI), image representation and data mining
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2.1 Application Domain

As noted in the previous chapter, the focus of the work presented in this thesis is the

classification of 3-D MRI brain scans. This section reviews this application domain.

The section consists of two sub-sections: (i) Magnetic Resonance Imaging (MRI) and

(ii) medical conditions relating to MRI brain scan data.

2.1.1 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) came into prominence in the 1970s. It is a medical

imaging technique used to investigate the anatomy and physiology of the (animal and

human) body, allowing the user to “see” inside without the need for dissection [35].

MRI is similar to Computerised Topography (CT) where a scanned image is generated

from many cross-sectional images. MRI uses strong magnetic fields and radio waves to

produce high quality and detailed computerised images of the inside of some object.

MRI is based on the principle of Nuclear Magnetic Resonance (NMR), a spectroscopic

technique used by scientists to obtain microscopic chemical and physical information

about molecules. In 1977, Raymond Damadian conducted the first MRI examination

of a human subject [31]. MRI started out as a tomographic imaging technique that

produced an image of the NMR signal in a thin slice through a body. Since then, MRI

has advanced beyond a tomographic imaging technique to a 3-D imaging technique.

MRI nowadays is commonly used to examine the spine, joints, abdomen, pelvis and

brain of subjects. MRI can produce a very detailed image of the scanned object that

can be viewed as a 3-D image.

An MRI body scanner is a short cylinder that is open at both ends. The patient

lies horizontally on a motorised bed that can be moved into the scanner cylinder. It

is important that the part of the body to be scanned remains still during the scan

in order to produce a quality MR image. For the MRI brain scan, a “receiver frame

is placed over the head of the scanned person. This frame contains “receivers” that

read the magnetic resonance signals sent out by the head of the scanned person during

the scan. An example of an MRI scanner is shown in Figure 2.2 and an example of

a MRI brain scanner, with a receiver frame, is shown in Figure 2.3.1 The process

takes approximately 20 minutes. Examples of the MR brain scan images are given in

Chapters 3 and 4.

1Photos from Center for Advanced Brain Imaging, Georgia State University.
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Figure 2.2: Example of a MRI scanner

Figure 2.3: Example of a MRI brain scanner with a “receiver frame”

As noted in the previous chapter, the focus of the work described in this thesis is

the classification of 3-D MRI brain scans according to a particular feature (VOI) within

these scans, namely lateral ventricles. The nature of the MRI brain scan datasets used

for evaluation purposes later in this thesis is discussed in Chapter 3. The medical

conditions relating to MRI brain scans, epilepsy in particular, are described in the

following sub-section.
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2.1.2 Medical Conditions Relating to MRI Brain Scan

As already noted, the focus of the work described in this thesis is directed at the

classification of 3-D MRI brain scans with respect to the size and shape of the lateral

ventricles. The ventricles are fluid-filled open spaces at the centre of the brain [79];

there are in fact four ventricles in a human brain, but only the lateral ventricles were

considered with respect to this thesis. This was because the lateral ventricles can be

easily distinguished within 3-D MRI brain scan.

The size and shape of organs in human brains has been shown to be correlated

to certain medical conditions or diseases (such as epilepsy, schizophrenia and multiple

sclerosis) and various lateralised behaviour in people (such as handedness). It is also

conjectured that the size and shape of organs in the human brain reflect certain human

characteristics (such as mathematical or music ability). Within neuroimaging research

considerable effort has been directed at quantifying parameters such as length, surface

area and volume of structures in human brains, and investigating differences in these

parameters between sample groups.

Several studies indicate that the size of the ventricular system (including lateral

ventricles, third ventricle and forth ventricle) in humans is correlated to some medical

conditions. For example, in 1917, Thom was the first to note ventricular enlargement

in patients with epilepsy, a medical condition whereby nerve cell activity in the brain

is disturbed. Epilepsy causes abnormal behaviour accompanied by symptoms such as

loss of consciousness or convulsions. Thom reported lateral ventricle dilation following

postmortem examinations of patients with idiopathic epilepsy [120]. Epilepsy os sig-

nificant with respect to the work presented in this thesis because one of the evaluation

data sets used focuses on Epilepsy.

Over the decades the ventricular system has also been associated with other disor-

ders, such as multiple sclerosis, schizophrenia, Alzheimers Disease (AD) and Parkinsons

Disease (PD) [69]. Ventriculomegaly is commonly observed in most neurodegenerative

disorders and results from passive enlargement of the lateral, third and fourth ventricles

following brain parenchymal shrinkage. Significant ventricular enlargement has been

associated with AD [7]. Similarly, an explorative study of PD suggests that ventricu-

lar enlargement is associated with early cognitive impairment. Previous work has also

shown that ventricular enlargement (of the lateral and third ventricles) was associated

with neuropsychological functions in advanced non-demented PD patients [29]. Fur-

thermore, the presence of ventricular enlargement in both epilepsy and schizophrenia

has indicated a common neurodevelopmental mechanism that predisposes to epilepto-

genesis and schizophrenia [18]. In a study of severe myoclonic epilepsy in infancy, 6 out

of the 13 patients investigated exhibited moderate ventricular enlargement [115]. Age-

accelerated changes in epilepsy participants (in comparison with healthy people) have

been seen in the lateral ventricles, whereas largely comparable patterns of age-related
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changes were seen across other regions of interest in the brain [28].

Although the work described in this thesis is directed at MRI brain scan classifi-

cation focusing on the lateral ventricles, there are other parts in MRI brain scans to

which the techniques could be applied, such as the corpus callosum or hippocampus.

2.2 Review of Image Segmentation

In computer vision, image segmentation is the process of partitioning a digital image

into multiple segments (sets of pixels) in order to simplify or change the representation

of the image that is more meaningful or easier to analyse [109]. With respect to the

work presented in this thesis we are interested in particular segments. Prior to the

application of any segmentation process some form of image pre-processing, such as

image registration and noise removal, is required. Image registration is the process of

insuring that a set of images conforms to a single coordinate system. This is important

so that a collection of images can be effectively compared. Image registration can be

defined as the problem of identifying a set of geometric transformations which map the

coordinate system of an image set to that of the others. With respect to the work in

this thesis, image registration was conducted to ensure that all MRI brain scans in a

given collection conformed to the same coordinate axes before the segmentation process

is commenced. Image noise reduction is the process of removing “noise” from images;

unwanted pixels that adds spurious and extraneous information to a given image.

For 3-D image segmentation, there are many techniques that can be used in the

context of brain MRI scan segmentation such as: Thresholding, Region Growing ad

Deformable Models and Level Sets. Each is briefly discussed in the following sub-

sections.

2.2.1 Image Segmentation Using Thresholding

Thresholding is an image segmentation method based on the assumption that the fore-

ground of an image can be categorised by its brightness. Thresholding is arguably the

most widely used of all segmentation methods [132]. There are three major threshold-

ing segmentation techniques: (i) global thresholding, (ii) local thresholding and (iii)

Hysteresis thresholding, described as follows:

Global Thresholding

Global thresholding is the simplest thresholding segmentation technique. Given a func-

tion f(x) that returns the brightness level of a given image voxel x. a threshold value θ

can be defined such that minx(f(x)) ≤ θ ≤ maxx(f(x)). We can then define a second

function g(x) that returns 1 if the given voxel x is to be deemed part of the foreground,

and 0 otherwise, as follows:
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g(x) =

{
1 if f(x) ≥ θ
0 else

(2.1)

While Equation 2.1 is a complete description of a binary algorithm, it contains no

indication how to select the value of θ. The natural question is whether there exists

an optimal threshold value. There are different solutions to this threshold selection

problem, each solution is based on a different model of assumptions. However even if

θ was optimally selected using a model which is suitable for the present image data,

global thresholding can give poor results whenever the influences of noise are large

compared to the image content, or when object and background grey value intensities

are not constant throughout the volume. Some solutions for global threshold selections

are as follows:

1. Choosing thresholds using prior knowledge: In many situations an image

objected to be segmented has known physical properties. The optimal threshold

value θ can then be defined accordingly.

2. Otsu’s method: Proposed by Otsu [93], the idea is to choose a threshold value

θ by analysing the distribution of grey values of an image. Assuming that the

grey value histogram of a given image contains two separate peaks, one indicating

foreground voxels and the other background voxels, the minimum between these

two peaks can be selected as the threshold θ.

3. Isodata method: The Isodata method is described in [102], the idea is to apply

a general Isodata clustering algorithm to the grey values of an image. The Isodata

clustering algorithm is a user-defined threshold algorithm. The threshold is then

somewhere between the means of the foreground and background (as in the case

of Otsu’s method), but instead of searching for a global optimum as in Otsu, the

search is performed locally.

Local Thresholding

Local thresholding can solve some of the shortcomings associated with global thresh-

olding as described above. The intensity levels of an image can vary depending on the

location within a data volume. One common local thresholding approach is to calculate

the mean intensity values within a window around each pixel and subtract these sliding

mean values form each pixel.

g(x) =

{
1 if f(x) ≥ θ(x)

0 else
(2.2)

14



As was the case for the global thresholding approach, Equation 2.2 does not provide any

clues on how the threshold values θ(x) should be computed. Some common approaches

are as follows:

1. Niblack Thresholding: In 1995, Trier et al [121] proposed a local thresholding

technique using Niblack’s algorithm [86] to calculate local mean and standard de-

viations to obtain a threshold. The method implicitly assumes smooth foreground

and background areas, where the grey values vary about some unknown mean,

which is estimated in a window around a current coordinate point. The approach

worked well in practice when the window size can be chosen to correspond to the

size of objects that are present in a given image. The system is likely to fail, on

the other hand, in large low-contrast areas.

2. Mardia and Hainsorth Method: Mardia et al. proposed an algorithm for local

thresholding in 1988 [83]. Their idea was to obtain random variables G(x) for each

voxel location x and define these as linear combinations of the neighbouring voxels

x′. The selection of a local threshold θ(x) was then conducted using the “Mardia-

Hainsworth” algorithm described in [83]. The disadvantage of this method is that

the cost of computation is significantly high comparing to the other segmentation

methods.

3. Indicator Kriging: Thresholding by Indicator Kriging was described by Oh et

al. in 1999 [91]. Kriging is an interpolation method that is commonly used in

geostatistics. It is similar to the Mardia and Hainsorth method in that it estimates

the value at voxel x using a linear combination of its neighbours. This method is

a modification of the Mardia and Hainsorth method described above; the main

difference is that the Indicator Kriging method uses covariance estimation to

calculate the local threshold.

Hysteresis Thresholding

Another common problem in image segmentation is that the segments of interest may

be defined by their intensities, but that there also exist other structures (noise) with

high values. Global thresholding would either underestimate the size of the true seg-

ments (because θ was too high) or would include noise in the foreground (because θ was

too low). One way of dealing with such situations where the voxel value distributions

of foreground and background voxels overlap is Hysteresis thresholding, also known as

“double thresholding” proposed in [17]. Hysteresis thresholding uses two thresholds,

θ1 > θ2, and starts from voxels x with f(x) ≥ θ1. Then all voxels x′, which are neigh-

bours of an already identified foreground voxel and which fulfil the condition f(x′) ≥ θ2,
are iteratively assigned to the foreground. This procedure ensures segmentation of con-

nected regions, since a number of “certain” foreground elements are selected while its
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neighbours may have a lower value. At the same time, noisy background voxels are

suppressed by the higher threshold θ1. Note that this algorithm has some similarity to

the region growing algorithms that are introduced in the following sub-section.

2.2.2 Image Segmentation Using Region Growing

The concept of all region growing for segmentation is that voxels belonging to one

object are connected and similar. The common procedure is to compare one voxel with

its neighbours. If a similarity criterion is satisfied, a given voxel can be set to belong to

the cluster associated with one or more of its neighbours. The selection of the similarity

criterion is significant and the results are influenced by noise in all instances. Some

well-known region growing segmentation methods are listed below.

Growing by Value

Growing by Value is one of the most commonly used region growing segmentation

methods. The method is founded on the observation that an object’s grey values are

usually within some range around a mean value. Thus, while growing a region, its

current mean and standard deviation are computed and a new voxel is added to the

region if its value is within a range around the regions mean. It can produce reasonable

segmentation results where objects are connected and can be characterised by their

grey values.

Adaptive Region Growing

The Adaptive Region Growing method was proposed in [84] for segmentation of the

human cortex. Their idea was to adapt the “decision function” according to the regions

size. Initially, for a region containing very few voxels, voxels are added as long as a

homogeneity (grey value variance) threshold around the region is not exceeded. Then,

when a certain number of voxels has been added to the region, it is assumed that the

grey level statistics of this region have approached the objects true distribution.

Adams Seeded Region Growing

The Adams Seeded Region Growing method [4] takes a set of seeds (voxels) as input

along with the image. The seeds mark each of the objects to be segmented. The

regions are iteratively grown by comparison of all unallocated neighbouring pixels to

the regions. The difference between a pixel’s intensity value and the region’s mean, δ,

is used as a measure of similarity. The pixel with the smallest difference intensity is

assigned to the respective region. This process continues until all pixels are assigned

to a region. Because Seeded Region Growing requires seeds as additional input, the

segmentation results are dependent on the choice of seeds, and noise in the image can

cause the seeds to be poorly placed.
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Non-Connected Region Growing

A region growing algorithm that can segment non-connected regions was proposed by

Revol et al. [100]. The unique feature of this algorithm is that voxels may not only be

added, but also removed from a region. To achieve this, the so-called “k−contraction”

is used. k − contraction removes k voxels from a region, starting from the voxel with

the lowest grey value, in increasing order. Note that this procedure assumes that object

voxels have larger grey values than background voxels. The procedure is repeated until

a homogeneous region is produced, where a region is called homogeneous if its grey

value variance is below a predefined threshold.

Parameter-Free Region Growing

The Parameter-Free Region Growing algorithm is an extension of the Non-Connected

Region Growing described above that uses an “Assessment Function” [101] or “Un-

seeded Region Growing” [80] in order to help start region growing automatically.

2.2.3 Deformable Methods and Level Set Methods

The Deformable surfaces and Level Set Methods are model-based approaches to image

segmentation that have widely been applied in both 2-D and 3-D medical image pro-

cessing. The main methods of Deformable and Level Sets Methods are described in the

following sub-sections.

Deformable Models

Kass et al. proposed the use of deformable models for image segmentation in 1988 [74].

Deformable models are physically motivated, model-based, techniques for delineating

region boundaries by using closed parametric curves or surfaces that deform under the

influence of internal and external forces. Internal forces are computed from within the

curve or surface to keep it smooth throughout the deformation. External forces are

usually derived from the image to drive the curve or surface toward the desired feature

of interest.

Level Sets

The Level Sets Methods was proposed by Sethian [108]. The concept is to represent

the evolving contour using a signed function whose “zero” corresponds to the actual

contour. According to the motion equation of the contour, it can derive a similar flow

for the implicit surface that, when applied to the zero level, will reflect the propagation

of the contour. The level set method affords numerous advantages: it is implicit, is

parameter-free and provides a direct way of estimating the geometric properties of the
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evolving structure. It has been argued to be a very convenient framework for addressing

numerous applications of computer vision and medical image analysis.

2.2.4 Other Segmentation Methods

The segmentation methods that were described so far fell into three groups: (i) Grey

value based (Section 2.2.1), (ii) Region based (Section 2.2.2) or (iii) Model based (Sec-

tion 2.2.3). A number of other segmentation methods are considered as follows.

Image Segmentation Using Fuzzy Correctedness

The idea behind fuzzy connectedness is to represent knowledge on the connectedness

of voxels by a fuzzy relation [126]. A fuzzy relation can be interpreted as a measure

of similarity between two voxels. The use of the fuzzy connectedness method lies

in finding the connectedness of two voxels and deciding on whether these two voxels

belong to the same object or not. Algorithms for computing the fuzzy connectedness

between any two points in the image domain were proposed in [126, 90]. Within the

fuzzy connectedness framework, segmentation of an image reduces to thresholding of

the fuzzy connectedness values. Therefore, any two voxels with values that exceed this

threshold will be labeled as belonging to one image segment.

Image Segmentation Using Watershed Algorithm

The name “Watershed” is analogous to the notion of a catchment basin of a height map

[112]. The watershed algorithm uses concepts from edge detection and mathematical

morphology [51, 112] to partition images into homogeneous regions [129]. The method

can suffer from over-segmentation, which occurs when the image is segmented into

an unnecessarily large number of regions. Thus, watershed algorithms are usually

followed by a post-processing step to merge separate regions that belong to the same

structure [111]. In 1993, Vincent et al. [128] proposed morphological reconstructions

for preprocessing the set of starting points which was found to improve the performance

of the algorithm.

Image Segmentation Using Bayesian Methods

Bayesian approaches to image processing treat all involved quantities as random vari-

ables and rely on the laws of probability to derive probabilistic models for images. In

Bayesian decision theory [128], costs are assigned to either correct or wrong decision

based on the probabilities of occurring events. The decision that minimises the risk is

taken. The risk in Bayesian decision theory is the cost times the probability of a wrong

action being taken.
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2.2.5 Image Segmentation in MRI Brain Scan Data

There has been a significant amount of published work in the context of 3-D MRI brain

scan segmentation. This is because brain image segmentation is seen as an important

medical diagnostic tool. MR brain images mostly frequently include undesirable fea-

tures such as: noise and inhomogeneity (lack of homogeneity). Therefore, accurate

segmentation of brain images can be very challenging. This sub-section reviews some

of the published work on MRI brain scan segmentation.

The most will known segmentation technique used in the context of MRI brain scan

segmentation is thresholding [49]. An example where this was used can be found in

Suzuki et al. [116] where it was used to automatically extract soft-tissue from MRI

brain scan images. More specifically [116] used an iterative thresholding algorithm for

the segmentation with an optimum threshold value decided according to a “goodness”

measure. Brummer et al. [15] proposed a fully automation mechanisms for detecting

brain contours from 3-D brain MRI data using a histogram-based thresholding tech-

nique (following by a morphological procedure which refined the binary threshold mask

image and discriminated between desired and undesired brain structures). Long et al.

[82] used dynamic thresholding coupled with Modified Spectral Segmentation to seg-

ment the lateral and third ventricles from MRI brain scans. The disadvantage of the

thresholding technique, as noted in sub-section 2.2.1 above, is that it is often not self-

contained and the threshold value has to be adjusted depending on brightness variation

of images.

As a consequence of the disadvantages of thresholding Deformable and Level Set

Models have become the most widely-used techniques in medical MRI brain segmen-

tation [95]. Examples of where they have been used can be found in [75, 72, 60, 21].

Khotanlou et al. [75] proposed a method to segment brain tumors using a constrained

deformable model while Ho et al. [60] proposed a similar approach but using a Level Set

technique. Kapur et al. [72] proposed a method to segment brain tissue from 3-D MRI

scans using a deformable model coupled with binary mathematical morphology and

expectation/maximisation segmentation. Ciofolo et al. [21] presented a technique that

combined the Level Sets method with fuzzy logic to segment non-tissue brain structures.

Although the foregoing produced promising results, the limitations of the technique are

that: (i) they are time consuming and (ii) sometimes difficult to implement.

Apart from time complexity another major issue associated with 3-D MRI brain

scam segmentation is the evaluation problem [139]. It is very challenging to evaluate

the accuracy of the segmentation, in humans in particular, because it is impossible to

know the exact size or shape of brain organs without an dissection. The most practical

way to evaluate the segmented object is to compare the features of the segmented object

and those collected manually by a domain expert.

Note that with respect to the work presented in this thesis, global thresholding
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coupled with the Bounding Box algorithm was used to segment the lateral ventricles

(explained in Chapter 4). The reason for this was that the MRI brain scan images

used in the datasets have very low brightness variation (see details in Chapter 3). It

was therefore found to be beneficial to use the techniques as the they produced good

segmentation result while at the same time offering efficiency advantages efficiency

compared to the techniques reviewed above.

2.3 Review of Image Representation

Image representation is an important issue with respect to image processing. It is cur-

rently not computationally possible (even with respect to high performance computing

facilities) to present images to a classification algorithm in their entirely, especially in

the case of 3-D images [42]. Consequently it is necessary to process the images in such

a way that the classification process is tractable while at the same time minimising

information loss. Therefore, one of the fundamental challenges of image mining is to

determine how the low-level pixel representation can be translated into a form suited

to further processing (classification in our case). The problem is compounded in the

context of 3-D images where a voxel representation is used. A voxel is a smallest dis-

tinguishable volume element in a 3-D image, which is the 3-D equivalent of a pixel. In

[114]) it was noted that the representation contained in a raw image can be efficiently

and effectively processed to identify high-level spatial VOIs and their relationships. Im-

age classification techniques normally use visual content such as: colour, texture, size

and shape, to represent and classify images. Colour and texture have been explored

more thoroughly than shape. It is arguable that shape is a more useful property of

VOIs than colour or texture. There is considerable evidence that natural images are

recognised based primarily on their shape [85]. Amongst the research community inter-

est in using shape features of VOIs for image classification is increasing considerably.

However, image classification by shape is still considered to be a more challenging task

compared to image classification based on other visual features [85]. In addition, the

problem of shape-based image classification becomes more complex when the extracted

VOIs are corrupted by noise. The problem of 3-D shape analysis has been considered

by many authors, resulting in a significant number of research publications. Examples

of 3-D image representations focusing on shape-analysis are presented in the following

four sub-sections.

2.3.1 Statistical Based Image Representation

Statistical based image representation is the simplest way of representing the geometric

features of a VOI. Normally the statistical based image representation is used in 2-D

image analysis but it can equally well be applied to 3-D image analysis. There are
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two kinds of representation in statistical based representation: (i) first-order and (ii)

second-order [119]. For first-order representation, images are described using statistical

functions such as mean, variance, energy and standard deviation of the image’s intensity

values. For the second-order representations, the relationship between the intensity

value of each pixel with respect to those of its neighbours is taken into consideration

[119]. In other words, relative location information is used. An example of a second-

order representation is where the concept of a co-occurrence matrix [50, 52] is used

to enumerate the number of times two intensity values appear in an image within a

certain distance and a direction of each other. A Voxel Co-occurrence Matrix (VCM)

is used in the same manner as a pixel co-occurrence matrix but with respect to 3-D

images [50].

Examples of statistical metrics that could be used in 3-D image analysis are:

1. Width: The width of the object.

2. Length: The length of the object.

3. Depth: The depth of the object.

4. Axis width: The axis width of the object.

5. Axis length: The axis length of the object.

6. Axis depth: The axis depth of the object.

7. Volume: The volume of the object, in terms of the number of voxels of the

object.

8. Volume extent: The volume divided by the volume of the bounding cube.

9. The minimum perimeter length: The minimum length of the perimeter on

xy, xz and yz axes.

10. The maximum perimeter length: The maximum length of the perimeter on

xy, xz and yz axes.

11. Volume circularity: The volume divided by the volume of the bounding circle.

The statistical metrics above are able to reflect the shape and size of the VOIs and

can be used to generate feature vectors to which standard classifiers can be applied.

The advantages of the usage of the statistical metrics are: (i) its ease of use, (ii) ease of

implement and (iii) speed. However, the limitation is that it may not be able to reflect

some complex detail of the shape of a given VOI. Thus, some important information

concerning the VOI may be loss.
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2.3.2 Discrete Wavelet Transform (DWT) Based Image Representa-
tion

The Discrete Wavelet Transform (DWT) representation is a well known method for

extracting frequency space information from non-stationary signals [58]. It is an effec-

tive tool for feature extraction, because it allows analysis of images at various levels

of resolution. This technique requires a large amount of storage and is computation-

ally expensive [73]. In order to reduce the feature vector dimension and increase the

discriminative power, the Principal Component Analysis (PCA) [71] has been used.

2.3.3 Histogram Based Image Representation

Using histogram-based representation method, there are a number of techniques that

can be adapted. For example: (i) Simple Histograms, (ii) Histograms of Oriented Gra-

dients (HOGs), (iii) Histograms of Local Binary Patterns (LBPs) and (iv) Histograms

of Local Phase Quantisation (LPQ). Each is explained in more detail in the following

sub-sections as follows.

Simple Histograms

For simple histograms, the x-axis represents the values for some image features and the

y-axis represents a count of the number of times that each feature value occurs. The

attribute-values are often grouped into sub-ranges referred to as “bins”. The simplest

form of histogram image representation is where the x-axis represents intensity values.

The histogram thus represents the number of times each intensity value, or group

of intensity values, appears. The disadvantages of such simple histograms are: (i)

significant information is lost, such as spatial information, because only the frequency

of the intensity values are considered; and (ii) invariant problems, especially when

two images have similar content but with different resolutions (in which case different

histograms will be produced).

Histograms of Oriented Gradients (HOGs)

A more advanced histogram-based method is the use of Histograms of Oriented Gra-

dients (or HOGs) [30]. Using HOGs the changes in the intensity values of the region,

with respect to either the azimuth and/or zenith direction, are computed and referred

to as gradients. In order to compute a gradient at each location the difference between

the “left” and “right” neighbouring intensity values, in a given direction, is calculated.

After this, the angles between the image gradients are computed and stored in what

are called “orientation” bins. The gradient magnitudes in each orientation bin are ac-

cumulated. In the generated histogram, the x-axis represents directions and the y-axis

the sum of the gradient magnitudes.
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Histograms of Local Binary Patterns (LBPs)

In order to generate LBPs, each pixel/voxel is compared to its immediate neighbours.

For each comparison a ‘one’ is stored if the intensity value of the pixel/voxel is greater

than the neighbour, otherwise a ‘zero’ is stored. The generated binary number from the

sequence of neighbours then describes an integer value. In the generated histogram, the

x-axis represents the computed integer values and the y-axis represents the frequency

with which they occur. In order to generate a robust representation, it is desirable to

compute rotation invariant LBPs. With respect to 2-D images it is straightforward to

calculate rotation invariant LBPs because each location has only eight immediate neigh-

bours. With respect to 3-D images the generation of 3-D rotation invariant LBPs (26

neighbours in contrast to 8 neighbours) is computationally expensive. To address this

issue Zhao et al. [141] proposed the use of Three Orthogonal Plane LBPs (LBP-TOP).

The LBP-TOP representation considers the calculation of LBPs only with respect to

neighbouring voxels located in the XY , XZ and Y Z planes. A combination of HOG

and LBP (HOG-LBP) has also been proposed and found to be a robust representation

[131].

Histograms of Local Phase Quantisation (LPQ)

The concept of histograms of Local Phase Quantisation (LPQ) was proposed in [94].

LPQ uses low frequency local Fourier transforms whereby a histogram of the quantised

Fourier transform can be generated [92]. At each image location, a Short-Term Fourier

Transform (STFT) is applied with respect to the immediate neighbours. After that

the resulting values are quantised (a value of one is used if the value is bigger than or

equal to zero, otherwise a value of zero is used). In this manner a binary encoding is

computed for each image location which can then be interpreted as an integer value

between 0-256 (b =
∑8

i=0 qi2
i−1). where qi is the quantised value of a neighbouring

pixel/voxel). Histograms describing the number of times that each integer value occurs

are then computed, one per image.

2.3.4 Hough Transform

The Hough Transform is a widespread technique in image analysis. Its main idea is to

transform the image to a parameter space where clusters or particular configurations

identify instances of a shape under detection. Hough Transform based techniques are

used for shape detection, either parametrised or generalised. Hough Transform was first

introduced by Paul Hough in 1962 [62] with the aim of detecting alignments in television

lines. It became later the basis of a great number of image analysis applications. Hough

Transform is mainly used to detect parametric shapes in images. It was first used to

detect straight lines and later extended to other parametric models such as circles or

ellipses, being finally generalised to any parametric shape [8].
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One major advantage offered by Hough Transform is that it is highly robust against

image noise and degradation. Hough Transform is used for extracting shape signatures

which can be used as a feature vector in the classification process. Hough Transform

is suitable for this task because it maintains the spatial information associated with

an image VOI (feature). The “classic” Hough Transform performs a mapping between

the XY image space into ρ− θ space. The transformation is ρ = xcosθ+ ysinθ, where

(x, y) are the coordinates of the voxel to be transformed, and (ρ, θ) are the parameters

of a corresponding line passing through the voxel. The parameter space is suitably

quantised into bins and represented by means of an accumulator matrix initially set

to zeros. Each pixel (x, y) can be conceptualised as a parametric curve in the new

ρ − θ space, where θ varies from the minimum to the maximum values, giving the

corresponding ρ values. The corresponding parametric positions can be stored in an

accumulator matrix A, where each row corresponds to one value of ρ, and each column

to one value of θ The cells in A are then incremented by the parametric curve. The local

maxima within A then correspond to the dominant boundary lines of the VOI. Further

details about the Hough Transform applied in this thesis are presented in Chapter 6.

2.3.5 Tree Based Image Representation

A common mechanism for representation 2-D images is to use quad tree. Tree based

representations can also be used to represent 3-D image data. First of all, a basic

understanding of the concept of a graph is required. A graph, G, is a structure that

consists of a set of vertices (or nodes) V , and a set of edges E, and is usually denoted

as G = (V,E) [13]. The term “node” will be used in the rest of this thesis to represents

graph vertices because this is the terminology usually used on the context of trees (thus

we have root, body, and leaf nodes, child and sibling nodes). Some for the discussion

concerning graph terminology presented in Chapter 7.

Tree data structures have been widely applied in various domains, especially in

image classification [19, 82, 40]. One main advantage of the tree data structure is its

ability to focus on the “interesting” parts (sub-trees) of the input data, thus permitting

an efficient representation of a problem and consequently improving execution times

[107]. Tree data structures to represent images can be constructed in various ways, of

which image decomposition is one of the most popular methods. There are many types

of image decomposition, common mechanisms use data structures such as Oct-trees,

Quad-trees and Scale Space representations [26]. With respect to the work described

in this thesis, the Oct-tree representation was adopted to represent a 3-D volume. An

Oct-tree is a tree data structure which can be used to represent a 3-D area which has

been recursively subdivide into “octants” [99, 68]. Further detail is provided in Chapter

7. The following sub-section presents a review of graph mining and especially FSM.

Once a graph representation has been constructed, for use with classification model
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generations, we typically wish to convert the graph into a feature vector representation;

One way of identifying features is to apply Frequent Subgraph Mining (FSM).

2.4 Review of Selected Classification Mechanisms

This section provides a review of the selected classification mechanisms used in this

thesis: (i) Decision Tree (DT), (ii) Support Vector Machine (SVM), (iii) Bayesian

Network (BN), (iv) Artificial Neural Network (ANN) and (iii) K-Nearest Neighbour

(KNN). Each of them is described in Sub-sections 2.4.1 to 2.4.5 below.

2.4.1 Decision Tree

A Decision Tree (DT) is a decision support tool that uses a tree model of decisions and

their possible consequences. In the context of classification, DTs are a widely used clas-

sification technique due to their simplicity, ease of understanding, explanation genera-

tion capability and interpretability. A DT is a tree structure where the root and body

nodes represent alternatives while the leaf nodes represent individual classifications.

More specifically each root or body node represents an attribute and has connections

to child nodes, which contain potential individual attribute values or groups of values.

Therefore, a DT could be called “a tree based classifier”. In a binary DT there can

only be two alternatives at each root or body node; in other forms of DT there may be

many alternatives. The challenge of constructing a decision tree is the selection of the

attribute to be represented by each node in the hierarchy, and how to split the range

of potential values that an attribute might have. Once a DT is constructed it becomes

easy and straightforward to classify a new unseen data item starting from the root and

finding a route through the DT until one of the leaves (classes) is reached. Gener-

ally DT construction is conducted in a top-down manner following a “greedy” search

process, with no backtracking, based on a “divide and conquer” strategy where the

training set is partitioned recursively into subsets according to some splitting criterion.

Various splitting criteria have been proposed. Popular measures include Information

Gain, Gini Index and Gain Ratio (see [55, 34]). A variety of decision tree generation

algorithms have also been proposed [55, 34].

With respect to the work described in this thesis the C4.5 algorithm [97] was adopted

as it has been considered to be a benchmark DT classifier throughout the data mining

community. C4.5 uses Information Gain (IG) as the splitting criteria whereby the

attribute with the highest information gain is selected to be used in the current node.

IG is calculated using Equation 2.3:

IG(D,X) = S(D)− S(D,X) (2.3)
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where IG(D,X) is the information gain for dataset D with respect to attribute X.

S(D) is the Entropy for dataset D and S(D,X) is the Entropy for the dataset D with

respect to attribute X. S(D) is calculated using Equation 2.4

S(D) =

i=|c|∑
i=1

−pi log pi (2.4)

where pi is the probability of class i ∈ c. Normally, pi = |ci,D|
|D| where |ci, D| is the

number of records corresponding to class i with respect to the entire dataset D. Intu-

itively, 0 ≤ S(D) ≤ 1. Entropy is a measure of the homogeneity of a given dataset. If

S(D) = 0, then all the records belong to the same class and therefore the outcome is

certain.

IG is thus a measure of the expected change in the information entropy from a prior

state to a state that takes some information for a given attribute. In other words IG

indicates the “importance” of a given attribute with respect to the DT construction

process. In the context of Equation 2.3 the importance of an attribute is determined

by identifying the entropy value of the attribute before and after splitting. The same

calculation is made for the complete set of attributes and the attribute that maximises

information gain selected for the DT node in question.

2.4.2 Support Vector Machine

A SVM is a classification system that tries to separate data of different classes by

fitting a decision boundary (hyperplane), which maximise the “distance” between data

representing two different classes provided the data is linearly separable [55]. A new

unseen data item may then be mapped onto the same space and classified according to

which side of the hyperplane it falls.

Given a dataset, D = {(X1, C1), (X2, C2), . . . , (X|D|, C|D|)}, where Xi is a training

data item and Ci is associated class label. A linear SVM is constructed as follows [55]:

1. Find the optimal separating hyperplane: The optimal separating hyper-

plane is the Maximum Marginal Hyperplane (MMH) that maximally separates

tuples of different classes in the space. Identification of the MMH encompasses a

number of steps:

(a) Find separating hyperplane: The separating hyperplane defined as:

W ·X + b = 0 (2.5)
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where W is the weight vector and b is a scalar value known as the bias, b may

be thought of as an additional weight w0. The hyperplanes that describe

each side of the separating “gap” are defined as:

{
H1 : W1X1 +W2X2 + · · ·+W|D|X|D| + w0 ≥ 1 forCi = +1

H2 : W1X1 +W2X2 + · · ·+W|D|X|D| + w0 ≤ 1 forCi = −1,
(2.6)

where |D| is the number of tuples in the dataset D. Equation 2.6 shows that

any data item that falls on or above H1 belongs to class +1, and any tuple

that falls on or below H2 belongs to class −1. Training tuples that fall on

H1 or H2 are known as support vectors. Equation 2.6 can be rewritten as:

Ci(W1X1 +W2X2 + · · ·+W|D|X|D| + w0)− 1 ≥ 0∀i (2.7)

(b) Find MMH: To find MMH the aim is to minimise ||W ||, subject to the

constraint specified in Equation 2.6. ||W || is the Euclidean norm of W . By

minimising ||W ||, which is equivalent to minimising 1
2 ||W ||

2, the distance

between H1 and H2 will be maximised. This is achieved using an opti-

misation algorithm with Lagrangrian formulation and Karush-Kuhn-Tucker

(KKT) conditions. Once identified, the MMH can be defined as a decision

boundary:

D(Xχ) =
sv∑
i=1

CiαiXiχ+ b0 (2.8)

where sv is the total number of support vectors, Ci is the class label for a

support vector (or training tuple) Xi, χ is a test tuple, and αi and b0 are

parameters determined by the optimisation algorithm.

2. classify the test tuple: To achieve this, a test tuple, χ, is applied to Equation

2.8. If the sign of the computed results is positive, χ is classified as +1. If the

sign is negative, χ belongs to the class −1.

The above process is used to train linear SVMs, where the training data is assumed

to be linearly separable. This algorithm can be extended to learn nonlinearly separa-

ble training tuples by first transforming the nonlinear tuples into a higher dimensional

space using a nonlinear kernel function. Three common nonlinear kernel functions are:
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Polynomial: K(Xi, Xj) = (Xi ·Xj + 1)h

Radial basis function: K(Xi, Xj) = e−γ||Xi−Xj ||2

Sigmoid: K(Xi, Xj) = tanhe(kXi ·Xj − δ)

Next, the constraint in Equation 2.6 is rewritten to allow errors as follows [12]:

Ci(W1X1 +W2X2 + · · ·+W|D|X|D| + w0)− 1 + ξi ≥ 0∀i (2.9)

where ξi ≥ 0 is called the slack variable that allows margin errors (the hyperplanes do

not separate the training tuples of different classes correctly) and misclassification. To

penalise the margin error and misclassification, subject to the constraint introduced in

Equation 2.9, a “soft parameter” C > 0 is used to minimise 1
2 ||W ||

2 as follows:

min
1

2
||W ||2 + C

L∑
i=1

ξi (2.10)

where L is the number of different classes.

2.4.3 Bayesian Network

A Bayesian network is a probabilistic graphical model. It can be used to predict the

probability that a given example belongs to a particular class, in this case the network is

referred to as a Bayesian classifier. Bayesian classifiers are derived from Bayes theorem,

thus if T is a data tuple and H is a hypothesis that T belongs to class C, then:

P (H | T ) =
P (T | H)P (H)

P (T )
(2.11)

where P (H | T ) is the posterior probability of H given T (i.e. it is a measure of how

confident we can be that H is true given that we know T is true). Similarly, P (T | H)

is the posterior probability of T given H. P (H) is the prior probability of H and P (T )

is a prior probability of T . The most straight forward Bayesian classifier are founded

on the Naive Bayes assumption [53]:

1. Assume a training set with T tuples and m attributes, A1, A2, . . . , Am. Suppose

also there are n classes, C1, C2, . . . , Cn. Given a tuple, T , the classier will classify

T to class Ci if and only if:
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P (Ci | T ) > P (Cj | T ) for1 ≤ j ≤ n, j 6= i (2.12)

where P (Ci | T ) is calculated using Bayes’ theorem as defined in Equation 2.11,

P (Ci | T ) =
P (T | Ci)P (Ci)

P (T )
(2.13)

2. Based on Equation 2.13, the probabilities P (A1, A2, A3, . . . , Am | Ci) have to be

computed in order to get P (T | Ci). Using Naive Bayes it is assumed that the

attributes, A1, A2, A3, . . . , Am, are independent of one another given any class

label. Thus:

P (T | Ci) = P (A1 | Ci)× P (A2 | Ci)× . . .× P (Am | Ci)

=

m∏
s=1

P (As | Ci)
(2.14)

3. A tuple, T , belongs to class Ci if and only if:

P (T | Ci)P (Ci) > P (T | Cj)P (Cj) for1 ≤ j ≤ n, j 6= i (2.15)

P(T) as in Equation 2.13 is omitted from the calculation as it is constant for all

classes.

2.4.4 Artificial Neural Network

An Artificial Neural Network (ANN) is a mathematical model inspired by the conjec-

tured operation of the human biological neural system. ANNs have been used with

respect to a wide range of real world applications, especially in the context of environ-

ments that are continuously changing. Typically, an ANN comprises a set of layers: (i)

the input layer, (ii) the hidden layer(s) and (iii) the output layer. Each layer consists

of “neurons” nodes and their weighted links. The simplest structure (topology) is the

input-output layer where there are no hidden layers. Note that although the com-

plexity of an ANN structure increases as the number of hidden layer(s) increases, the

effectiveness also tends to increase. The idea is to use training data to train an ANN

so that the link weightings can be learnt starting with initial weights. ANNs thus fall

into the supervised learning category where weights are iteratively adjusted in order to
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minimise the error between the desired output and the predicted output through using

a sufficient number of training examples [59]. There are various algorithms that can be

used to apply the necessary weight adjustment during training. The Back-Propagation

(BP) algorithm is a widely used algorithm for learning weights, that has been exten-

sively employed with respect to many applications domains due to its simplicity. If the

accuracy of a generated ANN is not acceptable then the ANN can be trained again

using either a different structure or new initial weights [104].

Figure 2.4: Example of a typical perceptron in ANN

Figure 2.4 presents a simple example of an ANN (a perceptron). The perceptron is

an early example of an ANN [55, 104]. The n inputs are given by X = x1, x2, . . . , xn

and each xi is connected to the neuron by a weighted link wi. Typically, the neuron

consists of a summation function along with an activation function (sometimes referred

to as the “threshold function”). In a simple case, the output y will be activated (y = 1)

if and only if the summation of x0 and the weighted inputs exceed a threshold value t

as shown in Equations 2.16 and 2.17 and in Figure 2.4.

x0 +

n∑
i=1

xiwi > t (2.16)

y = f(x0 +

n∑
i=1

xiwi) (2.17)

According to Figure 2.4 x0 is an additional fixed input called the bias neuron which

can exist in more than one layers. x0 is connected to all neurons in the next layer

(but not the previous one). x0 can be set to any value in the activation function for

some specific output. The main goal of x0 is to provide more flexibility and control

for the ANN [55, 104]. Beside the simple perceptron, there are many different types of
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ANN that have been proposed. A commonly used type of ANN is the Multilayer Feed

Forward Neural Network (FNN) where the flow of information is in only one direction

(forward). FNN can be seen as an extension of the perceptron with hidden layers and

sometimes it is known as a Multi-Layer Perceptron (MLP) [105]. Despite the accurate

prediction that can be obtained using supervised ANN, the main limitation of ANN

is the large amount of training data required to effectively train them. Moreover, the

time complexity for training ANN can be significant which makes them unsuited to

mining very large data sets [27].

2.4.5 K-Nearest Neighbours

K-Nearest Neighbour (KNN) is a non-parametric classification technique. KNN was

originally proposed by Fix and Hodges in 1951 [43] and is now considered to be one of

the most powerful classification techniques available [134]. KNN operates by finding

the most similar k previously labelled records to a new record, and using the knowledge

of these pre-existing labels, to label the new record. The main challenges are: (i) the

similarity measure to be used, (ii) how to address the situation where the nearest k

records have different labels associated with them and (iii) what the “best” value for

k is. In the case of the work described in this thesis, as will become apparent later

in Chapter 6, k = 1 was used thus obviating the need to resolve challenges (ii) and

(iii). Records are usually presented using a feature vector representation, in which case

similarity between two records can be determined using a simple distance measurements

such as the standard Euclidean distance measure (Equation 2.18) or the Manhattan

Euclidean distance measure (Equation 2.19). The first is typically used where the

distribution is Gaussian, the second where it is Exponential [138].

D(x, y) =

√∑
i

= 1N (xi − yi)2 (2.18)

D(x, y) =

√∑
i

= 1N |xi − yi)| (2.19)

The above distance measures require two equal length feature vectors (so that a one

to one matching can be achieved). Thus these distance measures are not suited to all

types of data and data distributions [138, 103]. Simple distance measures are also not

suited to data representations other than feature vector representations. In the context

of the work described later in this thesis the KNN algorithm was used in combination

with Dynamic Time Warping (DTW) as this allowed for the effective measurement of

the similarity between point series [88, 20, 137]. (Note that DTW is discussed more in

Chapter 6).
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2.5 Image Classification in MRI Brain Scan

This section provides a review of some previous related work concerning 3-D MRI brain

scan classification. The related work is the work of Shattuck et al. [110], Zhang et al.

[140] and Rajini et al. [98].

In [110] a method was proposed to classify “brain tissue” from 3-D MRI brain

scans using a partial volume model. A histogram based representation was used to

measure brain tissue intensity and noise variance in the image and then classify this

into six tissue types using “a posteriori” classifier. Although the result was promising

the performance of the classification process was rather slow (2-3 minutes per volume).

Both [140] and [98] proposed similar works based on Discrete Wavelet Transform

(DWT) representations. Both proposed a classification method to classify normal and

abnormal brains (considering the whole brain) using DWT to extract features from 3-D

MR images and then Principle Component Analysis (PCA) to help reduce the number

of dimensions. Their results were excellent in terms of both effectiveness and efficiency

but it was argued that the difference between normal and abnormal brains might be

too obvious.

For work based on Tree based representations, Cocosco et al. [22, 23] proposed

an approach to classify “brain tissue” using a minimum spanning tree graph-theoretic

approach. This was evaluated using four classes: (i) elderly, (ii) young normal individual

brain, (iii) ischemia patients’ brain and (iv) Alzheimer’ brain. Some good results, in

terms of effectiveness, were reported. In [82] an approach to classifying MRI brain

scans according to different levels of education was considered. The “lateral and third

ventricles” of the brain were used and represented using an Oct-tree structure and

FSM (SUBDUE algorithm) to generate feature vectors. The classification results were

promising in terms of classification effectiveness but the disadvantage was that the run

time complexity was high.

2.6 Evaluation Criteria

The main aim of the work presented in this thesis was to identify the most appro-

priate 3-D representation and classification technique in the context of VOIBIC. To

identify this representation the proposed representations were evaluated individually

and comparatively. More specifically the conducted evaluation was as follows:

1. Individually: For each approach (discussed separately in each relevant chapter)

the classification accuracy, sensitivity and specificity were used as the effectiveness

measures.

2. Comparatively: The Friedman and Nemenyi statistical tests were used to

demonstrate whether there was a statistically significant difference among the
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operation of the proposed approaches.

This section presents an overview of the evaluation measures used with respect to the

individual evaluations (classification accuracy, sensitivity and specificity).

The most fundamental mechanism for analysing classifier performance within the

data mining community is the confusion matrix as shown in Figure 2.5. For simplicity,

the assumption is that each instance can only be assigned one of two classes: “Positive”

or “Negative”. Each instance has a known label and a predicted label. Using a confusion

matrix shown in Figure 2.5 accuracy, sensitivity and specificity can be calculated using

Equations 2.20, 2.21 and 2.22. Accuracy is thus the percentage of predictions that are

correct. Sensitivity is also referred to as “recall” or “true positive rate”. It is measure

how well a classifier can be used to classify instances as belonging to a certain class.

Sensitivity is also referred to as “recall” or “true positive rate” It is measure how well

a classifier can be used to classify instances as belonging to a certain class. Specificity

corresponds to the “true negative rate” which is similar to Sensitivity but for the

negative class label. A good classifier is one that can maximise accuracy, sensitivity

and specificity.

Figure 2.5: Example of confusion matrix

Accuracy =
TP + TN

TP + FP + FN + TN
(2.20)

Sensitivity =
TP

TP + FN
(2.21)

Specificity =
TN

FP + TN
(2.22)

For the comparatively evaluation, details concerning the adopted statistical signifi-

cance testing are presented later in Chapter 8.
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2.7 Conclusion

This chapter has presented the background and related work with respect to the work

described in this thesis. Previous work regarding image segmentation, image represen-

tation and classification have been described with the focus on challenges of MRI brain

scan classification. Before any processing can be undertaken it is first necessary to

identify the VOI. This requires recourse to image segmentation. Several image segmen-

tation techniques that may be applied to MRI brain scan were described. A review of

the (limited) literature concerned with VOIBIC was also presented. In the next chapter

the medical MRI brain scan datasets that were used for the purpose of evaluation with

respect to the work described in this thesis are described in detail.
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Chapter 3

Evaluation Datasets

As noted in the introduction to this thesis, the research presented is directed at vol-

umetric data classification. The volumes in this case are Volumes Of Interest (VOI)

contained in 3D image data. To act as a focus for the work the classification of 3-D

Magnetic Resonance Imaging (MRI) scans of the human brain was considered. The

VOI in this case were the left and right (lateral) ventricles. These are cerebrospinal

fluid filled spaces at the centre of the brain [79]. Their function is: (i) to act as shock

absorbers, (ii) to distribute nutrients to the brain and (iii) remove waste. There are

in fact four ventricles in a human brain: two lateral ventricles (referred to as the left

and right ventricles), a third smaller ventricle connected to both lateral ventricles and

a fourth small ventricle that connects the third ventricle with the spinal cord. Only the

left and right lateral ventricles were considered with respect to the focus of the research

presented in this thesis. This was because: (i) the lateral ventricles are relatively easy

to identify within 3-D MRI brain scans, so facilitating automatic extraction; and (ii)

they are much larger than the other two ventricles and consequently can be argued to

be more significant.

Two MRI brain scan datasets were used for evaluation purposes with respect to the

research presented in this thesis: (i) an Epilepsy dataset (Epilepsy brains v. Healthy

brains) and (ii) a Musician dataset (Musician brains v. Non-musician brains). For the

Epilepsy dataset, the MRI brain scan volumes were obtained by the Magnetic Reso-

nance and Image Analysis Research Centre (MRIARC), at the University of Liverpool,

between the years 1999 and 2004. For the Musician dataset, some of the MRI brain

scan volumes were obtained by MRIARC between the years 1999 and 2004, and the

remainder by the University of Heidelberg between the years 2000 and 2004. This short

chapter provides an overview of these evaluation datasets. Section 3.1 gives details con-

cerning the Epilepsy dataset while Section 3.2 provides details concerning the Musician

dataset. The chapter is concluded in Section 3.3 with a summary and a “look ahead”.
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3.1 Epilepsy Dataset

The epilepsy dataset comprised 210 MRI brain scans. Of these 105 were from healthy

people and the remaining 105 from epilepsy patients. Figure 3.1 shows the epilepsy

dataset MRI scans grouped according to gender, while Figure 3.2 shows the epilepsy

dataset scans grouped by age range. From Figure 3.1, it can be seen that the number

of female epilepsy subjects is slightly higher than the number of male subjects, while

the number of healthy females is significantly higher than the number of males. From

Figure 3.2 it can be seen that the distribution of age for epilepsy subjects is normal

although the overall range of ages is less than that for healthy subjects. The distribution

for healthy subjects is more balanced, while that for epilepsy subjects is not. The

percentages of males and females in each age group, and the percentages of Epilepsy

and non-Epilepsy subjects in each age group, is shown in Figure 3.3. An example of

an MRI brain scan from an epilepsy patient is given in Figure 3.4

Figure 3.1: Epilepsy MRI brain scan data grouped by gender
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Figure 3.2: Epilepsy MRI brain scan data grouped by age range

Figure 3.3: The percentages of male and female subjects grouped by age, and the
percentages of the Epilepsy and non-Epilepsy subjects grouped by age, for the Epilepsy
MRI brain scan data

Although the epilepsy data is not equally distributed in terms of gender and age

it was considered that this would not aversely effect the evaluation results obtained

because the evaluation was directed at the nature of the proposed algorithms and

techniques for predicting class labels to be associated with 3-D objects. The intention

was not to investigate the nature of epilepsy in the context of age and/or gender.

However, the work described in this thesis is also concerned with determining whether

data augmentation will have a beneficial effect with respect to classification accuracy

(research question 7 presented in Section 1.2 in Chapter 1). Therefore, as will become

clear later in this thesis, individual representations were evaluated with and without
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Figure 3.4: Example of MRI brain scan from an Epilepsy patient

augmentation. In each case the augmentation comprised the inclusion of age and gender

attributes.

It should also be noted here that there have been a number of previous studies where

data mining has been applied to epilepsy MRI scan data. Of note with respect to this

thesis is [40] and [37]. The significance of these two publications is that, although only

2-D representations were considered, the same epilepsy MRI brain scan data set was

used as that used in this thesis. Therefore, a comparison of the results obtained with

respect to the 3-D approaches proposed in this thesis and those obtained with respect

to the 2-D approaches presented in [40] and [37] can be made.

3.2 Musician Dataset

The musician dataset comprised a total of 160 MRI brain scans. Of these 80 were from

musicians and the remaining 80 from non-musicians. The musician brain scans were

collected from members of: (i) the Royal Liverpool Philharmonic Orchestra, (ii) the

Heidelberg Music Conservatory, (iii) the Frankfurt Am Main Orchestra and (iv) the

Berlin Philharmonic Orchestra. The MRI brain scan volumes for the Royal Liverpool

Philharmonic Orchestra were scanned at MRIARC between 1999 and 20004, and the

rest were scanned at the University of Heidelberg between 2000 and 2004. Figure

3.5 shows the Musician MRI scan data grouped according to gender, while Figure 3.6
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shows the Musician MRI brain scan data grouped according to age range. From Figure

3.5 it can be seen that the number of female musicians was significantly lower than

the number of male musicians, while in the case of female non-musicians the gender

distribution was more balanced. From Figure 3.6 it can be seen that the majority

of musicians considered were in the age ranges of ‘21-30’ and ‘31-40’. There were no

musicians older than ‘70’. On the other hand, the distribution according to age range

for non-musicians was relatively balanced. The percentages of males and females in

each age range, and the percentages of musicians and non-musicians in each age group,

is given in Figure 3.7. An example of MRI brain scan from a musician is given in Figure

3.8

Figure 3.5: Musician MRI brain scan data grouped by gender

Figure 3.6: Musician MRI brain scan data grouped by age range
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The above referenced figures indicate that, as in the case of the epilepsy data set, the

musicians dataset was also unbalanced in terms of gender and age. However, again as in

the case of the epilepsy data set, this was deemed not to be significant as the objective

of the evaluations using the musicians data was the analyse of the performance of the

proposed algorithms and techniques in terms of classification accuracy. The objective

was not to analyse the musicians data set so as to attempt to draw some conclusions

about musical ability in the context of age and/or gender. However, as in the case

of the Epilepsy data set, experiments reported on later in this thesis, were conducted

using the proposed representations augmented with age and gender information.

Figure 3.7: The percentages of male and female subjects grouped by age, and the
percentages of musicians and non-musicians grouped by age, for the Musician MRI
brain scan data

There have been a number of previous studies where data mining has been applied

to the musicians MRI scan data. Of note with respect to this thesis is again the work

of [40] and [37] (who also did work on the epilepsy data set). The significance is that

the musician MRI scan data used in [40] and [37] is again the same as that used with

respect to the research presented in this thesis. Therefore comparisons can be made

with respect to the results obtained using the approaches proposed in this thesis and

the results obtained using the approaches presented in [40] and [37] (although the latter

considered the musicians data only in terms of 2-D).

3.3 Conclusion

This short chapter has introduced the two 3-D MRI brain scan datasets used with

respect to the evaluation of the work reported later in this thesis. The datasets were

precisely balanced with respect to the class labels of interest, musician versus non-
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Figure 3.8: Example of MRI brain scan from a musician

musician and epilepsy versus non-epilepsy. The datasets were less balanced with respect

to gender and age range distribution, however, it was conjectured that this would

not adversely effect the evaluation results produced with respect to the quality of the

techniques considered (although the evaluations reported on later in this thesis include

results obtained by augmenting the proposed representations with age and gender meta

data). The next chapter considers the segmentation of the lateral ventricles from 3-

D MRI brain scan data, a necessary precursor to any consideration of representation

mechanisms to support the eventual desired classification.
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Chapter 4

Volume of Interest Identification

The broad research domain for the work presented in this thesis, as already noted, is

volumetric data classification. The Volumes Of Interest (VOI) are 3-D objects contained

in 3-D images (volumes). For the volumetric classification to operate the volumes need

to be represented in such a way that classification techniques can be applied. One

of the objectives of the research presented in this thesis was the study of different

ways to represent certain 3-D objects, in way that facilitate a subsequent classification

process. The key point of VOI representation is to exclude those elements which will

not contribute to the effectiveness of any subsequent analysis, while retaining those

that will. However, before this can be done the VOI need to be extracted from the

input volumes, a process known as segmentation.

In the context of 2-D data the identification of Regions Of Interest (ROIs) has been

well researched; it is an important step in 2-D image analysis of all kinds [16], including

2-D image classification. The reason is that the accuracy with which the nature of the

ROI is captured directly affects the effectiveness of any subsequent analysis (such as

classification or prediction). The identification of VOI has been less well studied. One

reason is that ROI identification is computationally cheaper, in terms of both storage

cost and processing time, than ROI identification, especially when the volumes under

consideration are large.

As established in previous chapters, the application focus for the research presented

in this thesis 3-D MRI scans of the human brain. The VOI in this case are the left and

right lateral ventricles that can be observed in 3-D MRI brain scans. The identification

of the left and right ventricles in MRI brain scan data is thus the start point for the

work presented in this thesis. As noted above, a VOI is simply the 3-D extension of

the more commonly found concept of ROI. Techniques used for ROI identification (see

Chapter 2) can clearly be extended to VOI identification.

An example of a 3-D MRI brain scan is given as Figure 4.1 where the “lateral

ventricles” are the dark areas at the centre of the brain. Note that 3-D MRIs comprise

a sequence of two dimensional (2-D) “slices” through the brain in each of the three

42



(a) (b) (c)

Figure 4.1: Example of a 3-D brain MRI scan: (a) Sagittal (SAG) plane, (b) Transverse
(TRA) plane and (c) Coronal (COR) plane

cardinal planes: (i) Sagittal - SAG (left to right), (ii) Coronal - COR (front to back)

and (iii) Transverse - TRA (top to bottom). Recall from the previous chapter that

the MRI brain scan volumes used to illustrate the contents of this chapter, and with

respect to the evaluation of the proposed 3-D segmentation techniques presented in this

chapter, were obtained from: (i) the Magnetic Resonance and Image Analysis Research

Centre (MRIARC) at the University of Liverpool and (ii) the University of Heidelberg;

during the years 1999-2004. Recall also that each brain scan is composed of 256 two

dimensional parallel image slices in each plane. The resolution of each image slice is

256 x 256 pixels with colour defined using an 8-bit grey scale (thus 256 colours).

The work presented in this chapter is concerned with the identification of VOI,

specifically the left and right lateral ventricles found in 3-D MRI brain scan data. As

noted in Chapter 2 there were a number of “off-the-shelf” 3-D segmentation options

that could have been adopted; however, as also noted in Section 2.2 in Chapter 2,

these were found be unsuitable with respect to the 3-D MRI brain scan data of interest

with respect to this thesis in that they did not produce a satisfactory result. Instead

two alternative bespoke algorithms for extracting the lateral ventricles (the VOIs of

interest) from MRI volumes are proposed in this chapter: (i) Volume Growing and

(ii) Bounding Box (early versions of these algorithms were published in [122]). At a

high level both algorithms work in a similar manner. In each case the input to the

process is a set of slices, in a particular dimension, for a given 3-D MRI brain scan.

Prior to the application of the algorithms the given MRI brain scan volume is first

preprocessed. The preprocessing comprises: (i) slice capture and registration and (ii)

contrast enhancement. One or other of the proposed algorithms are then applied; the

output is a set of voxels representing the VOI (the lateral ventricles). To evaluate the

effectiveness of the proposed segmentation algorithms a Bland-Altman analysis [6] was

applied.

All the procedures that were either adopted or developed are fully described in this
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chapter which is organised as follows. In Section 4.1 the required image preprocessing

is described. Next, the Volume Growing and Bounding Box algorithms are explained

in Section 4.2. The evaluation of the results obtained using the proposed algorithms is

presented and discussed in Section 4.3. Finally, the chapter is concluded in Section 4.4

with a summary of the main findings and a “look ahead”.

4.1 Image Preprocessing

As noted in Chapter 2, often pre-processing is an essential precursor to image analysis

of any kind, regardless of whether the images are 2-D or 3-D. With respect to the work

presented in this thesis, the preprocessing of the MRI brain scan volumes comprised:

(i) slice capture and registration and (ii) contrast enhancement. These are considered

in further detail in the following two subsections.

4.1.1 Slice Capture and Registration

Each MRI brain scan volume, making up the 3-D MRI datasets used with respect to

the work presented in this thesis, were in two files: (i) an image file (extension “.img”)

holding the actual data in a binary format and (ii) a header file (extension “hdr”)

which contains information about the data such as voxel size and number of voxels in

each dimension [33]. There are a number of software tools which are compatible with

the “.hdr” and “.img” file formats that can be used to view 3-D MRI volumes. For

the work described in this thesis the MRIcro [1] 3-D file viewer and analysis software

system was used to view images in the “.hdr” and “.img” file formats and transform

them into Portable Network Graphics (“.png”) image files. After capturing all image

slices, using the MRIcro software, a registration process was applied. The purpose

of the registration process was to ensure that all image slices conformed to the same

reference framework. With respect to the work presented in this thesis the alignment

(registration) of image slices was conducted semi-manually, within MRIcro, in order to

ensure that the image slices conformed to a single axes of orientation. For each 3-D

MRI brain scan, there are 768 image slices, 256 for each (SAG, COR and TRA) plane.

The image slices in each plane might not be in the same axes. Thus they needed to be

adjusted manually, once for each plane. Note that all image slices in the same plane are

already in the same alignment. Then after an image slice in a plane has been adjusted

manually, the rest of the image slices in that plane can be adjusted automatically using

the same angle of adjustment. The processing time required was approximately 1 to

2 minutes per brain scan. An example of the MRICro software interface, showing a

number of brain image slices registered in the context of the three cardinal dimensions,

is shown in Figure 4.2.
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Figure 4.2: Example of the MRICro software interface showing three different views of
a MRI brain scan image

4.1.2 Contrast Enhancement

The objective of contrast enhancement is to clarify the boundaries of the VOI (lateral

ventricles) by considering the brightness of pixels. A thresholding technique [89] was

used for this purpose. This was selected because this technique is considered to be

the most effective when an objects colours are obviously different from its background

colours [33]. Note that thresholding is also applicable where object colour and back-

ground colour are not noticeably distinguishable by humans, but can be distinguished

when a brightness range is used. Figure 4.3 shows a number of MRI brain scan slices.

In the figure the lateral ventricles are represented by the dark areas towards the mid-

dle of the brain, surrounded by brain tissue which appears as grey (or white) matter.

Generally, the contrast between the ventricle and other parts of the brain is easily no-

ticeable, but in some slices (such as SAG slice number 160 in Figure 4.3), it is difficult

to identify the boundary of the ventricle because there is a grey shade (which is brain

tissue) appearing in the dark area. In this case, the thresholding technique will en-

hance the contrast so as to aid the identification of the ventricle. During thresholding,

each pixels brightness is compared with a predefined threshold. It will be considered

to be part of the object of interest or not according to this threshold. If the pixel value

is greater than the threshold the pixel colour is set to some predefined distinguishing
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colour (black in the case of the work described here), otherwise it will be identified as

background and set to an alternative predefined colour (white in the case of the work

described here).

(a) Slice no: 100 (b) Slice no: 130 (c) Slice no: 160

Figure 4.3: Examples of 3-D MRI brain scan slices in the Sagittal (SAG) plane

(a) Slice no: 100 (b) Slice no: 130 (c) Slice no: 160

Figure 4.4: Examples of 3-D MRI brain scan slices in the Sagittal (SAG) plane after
applying thresholding (threshold value = 0.30)

The key to the success of the thresholding process is thus the selection of a most

appropriate threshold value. For identifying ventricles in the 3-D MRI volumes of

interest the threshold value was manually set to 0.30. This was selected after the effect

of a range of different threshold values had been observed by a domain expert1. As a

result, if a pixel was darker than 0.30 (of interest) it was set to black, and otherwise

(not of interest) to white. Figure 4.4 shows the same MRI brain scan volume slices

as those given in Figure 4.3, but after application of the thresholding technique. Note

that for the work described in this thesis the thresholding function provided by Matlab

[2] was used (Matlab provides a suite of image processing functions). Using Matlab

the threshold value can be automatically assigned by the software or manually set by

a human user; the later was adopted.

1Dr. Vanessa Sluming, a leading Neuroimaging Scientist at University of Liverpool.
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4.2 Image Segmentation

As already noted, to identify VOI in 3-D data requires the application of some form of

segmentation process. As noted in Chapter 2, possible options were discussed in detail

in Section 2.2. In the context of 2-D data many segmentation algorithms exist, popular

examples include: (i) Otsu’s Thresholding method [93], (ii) Adaptive Region Growing

method [84] and (iii) Deformable and Level Set methods [74, 108]. However, it was

found that application of these “off-the-shelf” methods did not produce a satisfactory

result, possibly because the colour of the ventricles and their surrounding areas (brain

tissue, and third and forth ventricles) are very similar and connected to each other

in some views and the time complexity of the segmentation was expensive. Instead,

two alternative 3-D segmentation algorithms were proposed directed specifically at seg-

menting objects (such as the lateral ventricles) in MRI brain scan volumes: (i) volume

growing and (ii) bounding box. Details concerning these algorithms are presented in

detail in the following two subsections.

4.2.1 3-D Segmentation Using The Volume Growing Algorithm

The Volume Growing 3-D Segmentation algorithm comprises the following steps:

1. Select the starting slice.

2. Manually identify a “guide point” in the VOI (black area).

3. Grow the (2-D) regions with respect to the current slice.

4. Recalculate the guide point with respect to the region identified in (3).

5. Move to the slices on either side of the current slice if at start, otherwise move

forward or backward from the start slice as appropriate.

6. If the guide point is in a white region stop, otherwise go to (3).

The Volume Growing algorithm process requires the starting slice and the guide

point to be manually identified (Steps 1 and 2). The guide point is the pixel (voxel)

location in the 2-D MRI slice from which the region growing is to commence. Once

the guide point and start slice have been selected the region growing can start (Step

3). This is an automated process. We move out from the guide point in all possible

directions in the start slice, from the guide point, by first considering the immediate

neighbours to the guide point, then the neighbours of the neighbours, and so on. As we

proceed we reject pixels representing white space and store pixels representing black

space. We only grow black pixels. The process continues until the region cannot be

grown any further (we have only white pixels). Once the region of interest within the

current slice has been identified the location of the guide point is recalculated (Step
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4) by identifying the geometric centre of the region. This will then be the guide point

used when the process moves to the neighbouring slice(s). We either move to the two

neighbouring slices on either side of the current slice only if at the start of the process,

or simply the next slice once the process has started and repeat the process (Step 5).

The algorithm does this until guide points for the next slices are arrived at that do

not represent a black pixel. In this manner the volume is grown and all the ventricular

pixels are collected. Note that the process is repeated twice; once for the left ventricle

and once for the right ventricle.

(a) SAG slice no: 106 (b) SAG slice no: 107

(c) SAG slice no: 108

Figure 4.5: Illustration of the Volume Growing 3-D Segmentation Algorithm in the
Sagittal (SAG) plane
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(a) TRA slice no: 159 (b) TRA slice no: 160

(c) TRA slice no: 161

Figure 4.6: Illustration of the Volume Growing 3-D Segmentation Algorithm in the
Transverse (TRA) plane

Figures 4.5 and 4.6 illustrate the Volume Growing segmentation algorithm. With

respect to the figures image slices 106, 107, and 108 are in the SAG plane; and slices

159, 160, and 161 in the TRA plane. In each case the guide point for the volume

growing is shown with an ‘o’, while the recalculated guide point is shown with an ‘x’.

Thus in the SAG plane (Figure 4.5), and assuming SAG slice 106 is the start slice, the

growing proceeds from this manually identified guide point. Once the ventricle voxels

in this slice have been collected (grown) the guide point is recalculate (‘x’). We then

move to the slices on either side, 105 (not shown in Figure 4.5) and 107. In slice 107

the recalculated guide point is indicated with an (‘x’), and so on. The algorithm works

iteratively and is terminated when the condition in step 6 is reached. In the case of
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TRA slice 160 in Figure 4.6, where the guide point is not in a “black area” (the red

‘x’), the process collects the ventricle voxels and then terminates with respect to this

branch of the volume growing. Therefore, slice 161 will not be processed. Note that

both the left and right ventricles are processed in this manner.

A disadvantage of the Volume Growing algorithm is the need to manually select

a start slice and guide point. This is because the colour of the ventricles and their

surrounding areas are similar, or exactly the same in some cases except for a thin

brighter boundary line. Thus it is difficult to automatically calculate the guide point,

especially in the case of “small brains” where it is possible that an automatically calcu-

lated guide point may be wrongly calculated and the algorithm will therefore perform

unsuccessfully.

4.2.2 3-D Segmentation Using The Bounding Box Algorithm

The proposed Bounding Box 3-D Segmentation algorithm comprises three steps:

1. Define a bounding “box” that is expected to encompass the ventricles of interest

with respect to all relevant slices in the MRI volume.

2. For each slice collect the black pixels (voxels).

3. Apply noise removal.

The Bounding Box segmentation algorithm initially requires the specification of a

pre-defined target area (bounding box). The bounding box is rectangular in shape

and defined by the coordinates of its eight corners. To ensure that the bounding box

encompasses all the VOI voxels it needs to be defined in such a manner that it is

considerably larger than the expected VOI area (so that nothing is missed). Some

examples are given, in the context of ventricle segmentation, in Figure 4.7. In the

following step (Step 2) all black pixels are collected from each slice that is located

within the bounding box. Because the bounding box is defined so that a considerably

larger area than the expected ventricle area is covered, some black pixels located outside

the ventricle area (noise pixels) will also be collected. These are removed in Step 3 using

a simple noise reduction technique whereby the black pixels that are not connected to

the largest group of connected pixels were removed. In other words the largest group of

pixels is assumed to represent the VOI. Note that the reason that the noise reduction

was not applied in the case of the Volume Growing algorithm was that this algorithm

operated from “inside to out”, thus all identified voxels were deemed to be relevant

(connected to the VOI).

50



(a) Slice no: 100 (b) Slice no: 130 (c) Slice no: 160

Figure 4.7: Pre-defined target areas (Bounding Boxes) required for the Bounding Box
3-D segmentation algorithm with respect to MRI brain scan slices in the Sagittal (SAG)
plane

4.3 Evaluation

According to the previous subsections (Sub-sections 4.2.1 and 4.2.2) the output of the

proposed segmentation algorithms is a set of coordinate points (x, y and z ) in the three

dimensional Cartesian coordinate system (thus point clouds). The point clouds can be

transformed into a 3-D image by using various existing software products. An example

of an extracted lateral right ventricle 3-D image generated using the Meshlab open

source software [3] is shown in Figure 4.8.

Figure 4.8: Example of an extracted right ventricle generated using Meshlab

To evaluate the proposed 3-D segmentation algorithms experiments were conducted

using a volumetric data set comprising 85 MRI 3-D brain scans (of healthy subjects)

held by the Magnetic Resonance And Image Analysis Research Centre (MARIARC)

at the University of Liverpool. All of the images were a subset of the Epilepsy dataset

introduced in Chapter 3. The reason that this subset of images was selected for eval-

uation purpose was because the volume sizes of these 85 MRI brain scan had been

manually calculated by a domain expert2. The process of manual calculation of the

ventricle volumes was conducted by manually marking pixels which are in the ventricle

2Dr. Vanessa Sluming, a leading Neuroimaging Scientist at University of Liverpool.
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area on a computer screen, slice by slice in the COR plane. The number of marked

pixel on each slice was then summed and considered to represent volume of the given

ventricle in terms of voxels. As noted in Section 4.1.1, for each NRI brain scan there

are 256 image slices (256 x 256 pixels per slice) in each plane, the manual process of de-

termining volumes was therefore very time consuming, a few hours per brain scan. By

applying the proposed algorithms, using two sampling planes (SAG and TRA), to both

the left and right ventricle, eight volumes were obtained: (i) Volume Growing SAG

plane (left ventricle), (ii) Volume Growing SAG plane (right ventricle), (iii) Volume

Growing TRA plane (left ventricle), (iv) Volume Growing TRA plane (right ventricle),

(v) Bounding Box SAG plane (left ventricle), (vi) Bounding Box SAG plane (right

ventricle), (vii) Bounding Box TRA plane (left ventricle), and (viii) Bounding Box

TRA plane (right ventricle). The obtained volume sizes (mm3) were then compared

with the manually calculated volume sizes (mm3) obtained by the domain expert.

The reason why the COR plane was not used was that the lateral ventricles and

their surrounding area were sometimes connected to each other in this view (had the

same colour). This is illustrated in Figure 4.9 where it can be seen that the area of

the lateral ventricles (left and right dark areas in the middle of the figure) connect

to the area representing the third ventricle (dark area in the figure below the lateral

ventricles). It was therefore not possible to extract the boundary of the ventricles using

this plane.

Figure 4.9: Example of a MRI brain scan - COR plane

The results of the comparison are presented in Figures 4.10 to 4.13, where the

volumes obtained using both 3-D segmentation algorithms, and the manual technique,

are plotted. Figures 4.10 and 4.11 show the results in the SAG and TRA planes,

when using the Bounding Box 3-D segmentation algorithm, while Figures 4.12 and

4.13 show the results in the SAG and TRA planes, when using the Volume Growing 3-

D segmentation algorithm. In each case the results for both the left and right ventricles
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are given as two separate plots. For each plot the identification number for each volume,

sorted according to the associated ventricle size, is listed along the x-axis, while the

y-axis gives the volume size in mm3.

(a) Left Ventricle

(b) Right Ventricle

Figure 4.10: Comparisons between volumes obtained using manual estimation and the
Bounding Box algorithm in the Sagittal (SAG) plane
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(a) Left Ventricle

(b) Right Ventricle

Figure 4.11: Comparisons between volumes obtained using manual estimation and the
Bounding Box algorithm in the Transverse (TRA) plane
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(a) Left Ventricle

(b) Right Ventricle

Figure 4.12: Comparisons between volumes obtained using manual estimation and the
Volume Growing algorithm in the Sagittal (SAG) plane
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(a) Left Ventricle

(b) Right Ventricle

Figure 4.13: Comparisons between volumes obtained using manual estimation and the
Volume Growing algorithm in the Transverse (TRA) plane

From the Figure 4.10 to 4.13 it can be seen that all the segmented volume values

were marginally different to the manually estimated volume values. Of course the

manually estimated volumes do not provide a “gold standard”, and may themselves be

flawed due to human error. However they did provide a benchmark. Closer inspection

of the figures considering the error percentages shown in Figure 4.10 to 4.13 indicates

that the best performing algorithm, in comparison with the manual technique, was

found to be the Bounding Box algorithm when used in the SAG plane.
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(a) Left Ventricle

(b) Right Ventricle

Figure 4.14: Bland-Altman plot comparing volumes obtained using manual estimation
and the Bounding Box 3-D segmentation algorithm in the Sagittal (SAG) plane
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(a) Left Ventricle

(b) Right Ventricle

Figure 4.15: Bland-Altman plot comparing volumes obtained using manual estimation
and the Bounding Box 3-D segmentation algorithm in the Transverse (TRA) plane
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(a) Left Ventricle

(b) Right Ventricle

Figure 4.16: Bland-Altman plot comparing volumes obtained using manual estimation
and the Volume Growing 3-D segmentation algorithm in the Sagittal (SAG) plane
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(a) Left Ventricle

(b) Right Ventricle

Figure 4.17: Bland-Altman plot comparing volumes obtained using manual estimation
and the Volume Growing 3-D segmentation algorithm in the Transverse (TRA) plane

To give a deeper insight into the results obtained the differences in volume size

(mm3) between the manual and the proposed algorithms are presented using Bland-

Altman plots in Figures 4.14 to 4.17. A Bland-Altman plot is a statistical data plotting

technique for assessing the agreement or otherwise between two methods of measure-

ment [6]. The mean difference (bias estimate) and the 95 range of agreement (calculated

as the mean difference between +2SD and -2SD) are represented by the continuous hor-

izontal lines. From the figures it can be clearly seen that the mean difference between

the manually estimated volumes and the volumes collected by the Bounding Box tech-

nique when used in the SAG plane is the smallest (0.49 mm3 for the left ventricle and

0.68 mm3 for the right ventricle) and those collected by the Volume Growing technique

when used in the TRA plane is the largest (2.40 mm3 for the left ventricle and 1.96
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mm3 for the right ventricle).

Although both of the proposed VOI segmentation algorithms provided the same

functionality, there were some different trade-offs between them (other than segmenta-

tion effectiveness as demonstrated above). For the Volume Growing-based technique, it

required two initial inputs: a starting slice and a “guide point”. The limitation of the

algorithm was that the ventricle in the connecting slices might not appear continuously

in some cases. Consequently the starting slice and the guide point must be selected

with care. In addition, the technique may result in some small errors in cases where the

positions of the ventricle between any two connecting slices were significantly different.

In this case, the calculated new guide point might not be within the ventricle area in the

next slice and consequently the algorithm would terminate prematurely. As a result,

some parts of the ventricle might not be collected, which would explain the consistent

underestimation (leading to bias) when using the Volume Growing technique. For the

Bounding Box-based technique, the box had to be manually defined and thus required

some resource. The application of a noise reduction technique was also required in order

to remove noise voxels. This had the effect of increasing the runtime of the algorithm.

On the positive side the idea behind the technique was simple, easy to implement, and

effective.

4.4 Conclusion

This chapter has reviewed the necessary preprocessing and segmentation of the 3-D

MRI brain scan data used as a focus for the work presented in this thesis. Two 3-

D segmentation algorithms were proposed: (i) Volume Growing and (ii) Bounding

Box. The evaluation of the two techniques indicated that, although both techniques

worked well, the Bounding Box technique tended to be more accurate than the Volume

Growing technique (in the context of the size of the volumes identified). Once the VOI

have been identified the next stage is to find some mechanism whereby they can be

represented in such a way that as little significant information as possible is lost while

still permitting the application of data mining techniques (classification with respect

to this thesis). In the following three chapters three different representation techniques

are considered and evaluated using the lateral ventricle volumes identified using the

proposed Bounding Box 3-D segmentation algorithm applied in the SAG plane. Recall

that the three representation techniques considered are:

1. Statistical metrics based representation.

2. Point series based representation.

3. Oct-tree based representation.
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The first of these, the Statistical metrics based representation, is considered in the next

chapter, Chapter 5.
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Chapter 5

Volume of Interest Image
Classification Using Statistical
Metrics Based Representation

As noted in the foregoing chapters the application of techniques to classify 3-D image

data with respect to some common object that features across a given image set requires

the representation of the image objects in question using some appropriate format. In

this chapter the Statistical metric based VOI representation is presented, the first of

the three representations considered in this thesis, whereby a number of statistical

measures are used to represent volumes. The measures are then used to define a N-

dimensional feature space, one dimension per statistical measure, from which a feature

vector representation can be extracted, one feature vector per volume (ventricle). The

feature vectors generated are then used as input to selected classification mechanisms so

that classification models can be generated. The aim of the statistical representation,

presented in this chapter, is to provide a benchmark approach with which the two

alternative representations presented later in this thesis can be compared. The reminder

of this chapter is organised as follows. Section 5.1 describes the statistical metrics used.

The evaluation of the proposed approach, including discussion, is then presented in

Section 5.2. The chapter is summarised in Section 5.3 with some conclusions.

5.1 Statistical Metrics Based Image Classification

The usage of statistical techniques, as noted in Chapter 2, is widely reported in the

literature. In the context of 2-D, example applications can be found in [50, 52] while

in 3-D example applications can be found in [48, 117]. The metrics considered with

respect to the work presented in this chapter were:

1. Axis length (l): The axis length of a given ventricle.

2. Axis width (w): The axis width of a given ventricle.
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3. Axis depth (d): The axis depth of a given ventricle.

4. Maximum perimeter in the xy plane (pxy): The maximum perimeter of a

given ventricle in the xy plane.

5. Maximum perimeter in the yz plane (pyz): The maximum perimeter of a

given ventricle in the yz plane.

6. Maximum perimeter in the xz plane (pxz): The maximum perimeter of a

given ventricle in the xz plane.

7. Volume (vol): The volume of a given ventricle (directly related to the number

of voxels, note that in the case of the ventricles 1 voxel = 1 mm3).

8. Volume extent (vext): The value derived by dividing the volume (vol) by the

size of the minimum bounding cube surrounding the volume, as shown in Equation

5.1.

vext =
V ol

l × w × d
(5.1)

Thus we have three length measures, three perimeter measures and two volume

measures. These were selected because they seemed to be the most appropriate for use

with respect to the VOIBIC concept central to this thesis. The three length measures

(axis length, axis width and axis depth) were calculated from the maximum voxel

positions on each plane. Note that with respect to the nature of the lateral ventricles

two feature vectors were generated in each case, one for the left ventricle and another

for the right ventricle. As a result, two sets of feature vectors were produced for each

MRI brain scan and used as inputs for classifier generation. The evaluation of the

Statistical metrics based approach to VOIBIC is presented in the following section.

5.2 Evaluation

This section presents the results obtained with respect to the evaluation of the pro-

posed benchmark VOIBIC Statistical metrics based approach. The image sets used for

the evaluation were the Epilepsy and Musician datasets introduced in Chapter 3. The

reported metrics are: (i) Accuracy (Accu.), (ii) sensitivity (Sens.) and (iii) specificity

(Spec.). Note that Ten-fold Cross Validation (TCV) was used throughout the experi-

mentation. For TCV, the original sample is randomly partitioned into 10 equal sized

subsamples. Of the 10 subsamples, a single subsample is retained as the validation

data set for testing a generated model, and the remaining 9 subsamples are used as
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training data. The cross-validation process is then repeated 10 times (folds), with each

of the 10 subsamples used exactly once as the validation data. The 10 results from

the folds can then be averaged (or otherwise combined) to produce a single estimation.

The number of folds can be adjusted but 10 is most commonly used, hence TCV. All

the experiments were conducted using a 2.9 GHz Intel Core i7 with 8GB RAM on OS

X (10.9) operating system. The objectives of the evaluation were as follows:

1. To compare the operation of the proposed Statistical metrics based representation

in terms of a number of classification models.

2. To determine whether the use of additional meta data (age and gender), would

effect the quality of the classification.

3. To compare the relative efficiency of the approach when using meta data and

when not using meta data, and when using different classification models.

4. To identify which single statistical features contributed the most to successful

classification.

Each of the above objectives is discussed in further detail in the following four subsec-

tions, Sub-sections 5.2.1 to 5.2.4. For the first objective four classification methods were

considered: (i) artificial Neural Network (NN) [57], (ii) Decision Tree (DT) [96], (iii)

Baysian Network (BN)[46] and (iv) Support Vector Machine (SVM) [25] as provided

within the Waikato Environment Knowledge Analysis (WEKA) data mining workbench

[54]. The first objective is considered in Section 5.2.1 below, and the second, third and

forth objectives in Subsection 5.2.2, 5.2.3 and 5.2.4 respectively.

5.2.1 Usage of Different Classification Models

For the experiments using the four different classification models, and the Epilepsy

and Musicians datasets.,the results are presented in Tables 5.1 and 5.2 respectively.

The results are summarised in bar graph form in Figures 5.1 and 5.2. Note that the

‘NN’, ‘DT’, ‘BN’ and ‘SVM’ acronyms used in the tables indicate the four different

classification models considered: artificial Neural Network (NN), Decision Tree (DT),

Bayesian Network (BN) and Support Vector Machine (SVM) respectively. Each row

in the table shows the classification results obtained for each round of TCV with the

average (Avg) and standard Deviation (SD) presented in the bottom two rows of the

tables. The best average classification accuracy, sensitivity and specificity are presented

using bold font.

From Table 5.1 it can be seen that, with regard to the Epilepsy dataset, the best

classification accuracy and specificity, on average, were obtained when using SVM and

the best classification sensitivity when using Bayesian Networks. From Table 5.2 it
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NN DT BN SVM

TCV Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec.

1 57.32 62.50 52.38 59.76 65.00 54.76 59.76 65.00 54.76 62.50 52.38 59.76

2 51.22 57.50 45.24 60.75 63.58 57.92 60.19 63.02 57.36 59.76 65.00 54.76

3 62.20 65.00 54.76 58.30 61.13 57.47 57.32 62.50 52.38 58.30 61.13 57.47

4 59.76 65.00 54.76 60.75 63.58 57.92 59.76 65.00 54.76 62.50 52.38 59.76

5 51.22 57.50 45.24 59.76 65.00 54.76 59.76 65.00 54.76 60.75 63.58 57.92

6 57.32 62.50 52.38 58.30 61.13 57.47 60.19 63.02 57.36 59.76 65.00 54.76

7 59.76 65.00 54.76 59.76 65.00 54.76 60.19 63.02 57.36 62.50 52.38 59.76

8 57.32 62.50 52.38 58.30 61.13 57.47 60.75 63.58 57.92 60.75 63.58 57.92

9 59.76 65.00 54.76 60.75 63.58 57.92 57.32 62.50 52.38 59.76 65.00 54.76

10 59.76 65.00 54.76 60.75 63.58 57.92 60.19 63.02 57.36 59.76 65.00 54.76

Avg. 57.56 62.75 52.14 59.71 63.27 56.83 59.54 63.56 55.64 60.63 60.54 57.16

SD 3.67 2.99 3.80 1.07 1.60 1.45 1.21 1.03 2.12 1.45 5.76 2.23

Table 5.1: Classification results of Statistical metrics based classification for the
Epilepsy dataset

NN DT BN SVM

TCV Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec.

1 71.70 73.58 69.81 66.79 72.45 61.13 63.14 70.06 54.29 70.75 71.70 69.81

2 66.98 69.81 64.15 68.30 71.13 65.47 70.75 71.70 69.81 70.75 71.70 69.81

3 66.98 69.81 64.15 70.75 71.70 69.81 70.75 71.70 69.81 68.30 71.13 65.47

4 62.26 66.04 58.49 63.41 70.00 57.14 70.75 71.70 69.81 68.87 71.70 66.04

5 68.87 71.70 66.04 63.14 70.06 54.29 63.14 70.06 54.29 66.98 69.81 64.15

6 68.87 69.81 64.15 68.30 71.13 65.47 66.98 69.81 64.15 68.30 71.13 65.47

7 68.87 62.26 60.38 67.92 68.91 66.04 68.30 71.13 65.47 71.70 73.58 69.81

8 68.87 71.70 66.04 70.75 71.70 69.81 68.30 71.13 65.47 71.70 73.58 69.81

9 68.87 69.81 64.15 68.30 71.13 65.47 66.98 69.81 64.15 70.75 71.7 69.81

10 68.87 70.06 54.29 67.92 68.91 66.04 71.70 73.58 69.81 70.75 71.70 69.81

Avg. 68.87 69.46 63.17 67.56 70.71 64.07 68.08 71.07 64.71 69.89 71.77 68.00

SD 2.43 3.19 4.38 2.57 1.20 5.08 3.09 1.19 5.99 1.64 1.12 2.38

Table 5.2: Classification results of Statistical metrics based classification for the Musi-
cian dataset

can be seen that, with regard to the Musician dataset, the best classification accuracy,

sensitivity and specificity values, on average, were obtained when using SVM. However,

from Figures 5.1 and 5.2, which summarise the results presented un the tables, it can

be seen that the classification accuracy among the four classifiers was only marginally

different.

5.2.2 Usage of Meta Attributes

For the experiments to determine the effect of augmenting the statistical data with

meta data experiments were again conducted using the Musician and Epilepsy datasets

but only the SVM classification model generator (because experiments reported on in

the above sub-section had indicated that SVM classification produced good results).

Table 5.3 shows the classification results obtained using the Statistical metrics based
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Figure 5.1: Average classification accuracy of Statistical metrics based classification for
the Epilepsy dataset

VOIBIC approach for both the Epilepsy and Musician datasets. The same data is

summarised in Figure 5.3. With respect to whether it is beneficial to use additional

meta data or not, from the table and figure, it can be seen that classification accuracy,

sensitivity and specificity, when using augmented data, improved considerably for the

Epilepsy dataset and improved slightly for the Musician dataset. It was conjectured

that the meta attributes, age and gender, were thus a useful indicator for Epilepsy.

Augmented Non Augmented

Epilepsy Musicians Epilepsy Musicians

TCV Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec.

1 68.30 71.13 65.47 68.29 75.00 61.90 62.50 52.38 59.76 70.75 71.70 69.81

2 68.30 71.13 65.47 70.73 77.50 64.29 59.76 65.00 54.76 70.75 71.70 69.81

3 64.53 61.70 67.36 70.73 77.50 64.29 58.30 61.13 57.47 68.30 71.13 65.47

4 63.58 67.92 69.25 73.17 80.00 66.67 62.50 52.38 59.76 68.87 71.70 66.04

5 70.19 68.02 67.36 68.29 75.00 61.90 60.75 63.58 57.92 66.98 69.81 64.15

6 69.25 76.79 71.70 68.29 75.00 61.90 59.76 65.00 54.76 68.30 71.13 65.47

7 67.36 75.47 69.25 69.51 75.00 64.29 62.50 52.38 59.76 71.70 73.58 69.81

8 70.19 68.02 67.36 73.17 80.00 66.67 60.75 63.58 57.92 71.70 73.58 69.81

9 70.19 68.02 67.36 68.29 75.00 61.90 59.76 65.00 54.76 70.75 71.70 69.81

10 73.96 76.79 71.13 73.17 80.00 66.67 59.76 65.00 54.76 70.75 71.70 69.81

Avg. 68.59 70.50 68.17 70.36 77.00 64.05 60.63 60.54 57.16 69.89 71.77 68.00

SD 2.99 4.80 2.13 2.16 2.30 2.09 1.45 5.76 2.23 1.64 1.12 2.38

Table 5.3: Classification results of Statistical metrics based classification for Epilepsy
and Musician dataset using SVM

It is also interesting to note that, from results presented in Table 5.3 and Figure

5.3, the recorded accuracy, sensitivity and specificity values for the Musician dataset

were significantly better than those for the Epilepsy dataset when the meta attributes
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Figure 5.2: Average classification accuracy of Statistical metrics based classification for
the Musician dataset

were not used (and only slightly better when the meta attributes were used). It was

thus conjectured that the lateral ventricles might be a better indicator of musicical

ability than epilepsy. El Sayed et al. [40, 37], who published work on the classification

of 2-D MRI brain scan data in the context of the corpus callosum, but using the same

datasets as used in this thesis, also found this to be true.

5.2.3 Efficiency

For the experiments to determine the relevant efficiency of the proposed approach, using

augmented and non-augmented data and a number of different classification models,

the total run times for each TCV fold was recorded. This thus included classifier model

generation time and model testing time. The results (seconds) obtained are presented

in Table 5.4. Each row in the table shows the classification time (seconds) for each

round of TCV with the average (Avg) and standard deviation (SD) presented in the

bottom two rows of the table. Note that the experiments were conducted using a 2.9

GHz Intel Core i7 with 8GB RAM on OS X (10.9) operating system.

From the table it can be seen that, on average, the recorded run time using SVM

classifier generation was the fastest for the Epilepsy Augmented, the Epilepsy Non-

Augmented and the Musician Non-Augmented datasets; while the run time using

Bayesian Network was the fastest for the Musician Augmented dataset. Using De-

cision Trees produced the worst run time results for the Epilepsy Non-Augmented

and the Musician Non-Augmented dataset; while using Neural Networks produced the

worst results with respect to the Epilepsy Augmented and the Musician Augmented

datasets. It can also be seen that, on average, the run times with respect to the Musi-
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Figure 5.3: Avergae classification accuracy of Statistical metrics based classification
using SVM

Non-Augmented Augmented

Epilepsy Musician Epilepsy Musician

TCV SVM DT BN NN SVM DT BN NN SVM DT BN NN SVM DT BN NN

1 12.30 14.30 12.40 14.40 8.40 10.20 9.00 10.20 13.40 16.00 14.10 16.50 10.00 12.00 9.50 14.50

2 12.20 15.10 13.10 14.30 8.00 9.30 9.10 9.50 14.00 14.50 14.10 17.00 10.20 13.20 11.00 15.00

3 12.50 15.20 14.20 15.40 9.00 10.20 8.40 9.50 13.00 15.50 14.20 15.40 10.20 12.30 10.20 15.10

4 11.20 16.10 13.00 13.50 9.10 9.50 9.20 9.50 12.50 16.00 14.50 15.50 10.30 12.50 9.50 15.10

5 12.10 15.50 13.40 14.00 9.30 10.00 9.20 10.00 12.40 15.00 14.50 16.00 10.20 12.50 10.00 15.20

6 11.30 14.50 12.10 13.00 9.00 10.10 9.30 10.10 12.30 15.10 15.40 16.40 10.40 12.50 10.20 15.20

7 12.20 15.30 12.50 13.30 9.10 10.20 9.00 10.30 12.40 15.30 15.00 16.40 10.30 13.30 10.20 15.20

8 12.30 16.00 12.50 13.40 8.20 10.50 9.10 10.30 13.30 15.30 14.30 17.00 10.40 13.00 10.30 15.20

9 12.40 15.40 12.50 14.30 8.50 9.50 9.50 9.50 13.50 15.40 14.50 17.00 10.40 12.50 10.30 15.00

10 12.50 15.30 13.10 14.00 9.00 10.00 9.00 10.00 13.40 15.40 15.00 16.50 11.00 13.00 10.20 15.50

Avg. 12.10 15.27 12.88 13.96 8.76 9.95 9.08 9.89 13.02 15.35 14.56 16.37 10.34 12.68 10.14 15.10

SD 0.47 0.56 0.61 0.70 0.45 0.39 0.29 0.35 0.59 0.45 0.44 0.58 0.26 0.42 0.43 0.25

Table 5.4: Total run time (seconds) for classification (model generation and testing)

cian datasets was faster than those for the Epilepsy datasets. This was clearly because

the total number of MRI brain scans in the Epilepsy dataset (210 brain scans) was

more than those in the Musician dataset (160 brain scans). The average run time with

respect to each classifier generation model is given is given in Figure 5.4. Note that

‘Epilepsy’, ‘Epilepsy+’, ‘Musician’ and ‘Musician+’ indicate the Epilepsy dataset, the

Epilepsy dataset with augmented data, the Musician dataset and the Musician dataset

with augmented data respectively.

The results presented in Table 5.4 did not include the time required to generate

the representation. The run time required to generate the statistical metrics based

representation was 157 seconds for the Epilepsy dataset 112 seconds for the Musician

dataset. Thus, as expected, the generation time required for the Musician dataset was
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Figure 5.4: Average run time complexity of Statistical metrics based image classification

less than that required for the Epilepsy dataset (because the total number of MRI brain

scans was less than the total number of Epilepsy brain scans). The processing time per

brain scan volume for each data set was 0.7 seconds.

For completeness the total time complexity with regard to the Statistical metrics

based classification (statistical metric representation generation time plus classification

time) is shown in Table 5.5 and Figure 5.5. From the table and figure it can be seen

that the total run time complexity for the Musician dataset was the best and that for

the Epilepsy dataset with augmented data was the worst. Note that the run times

presented in the table and figure were generated using the best performing classifier,

namely SVM.

Dataset Representation time (s) Classification time (s) Total time (s)

Epilepsy 157 12.10 169.10

Epilepsy+ 157 13.02 170.02

Musician 112 8.76 120.86

Musician+ 112 10.14 122.14

Table 5.5: The total run time using Statistical metrics based classification (representa-
tion generation time plus classification time)
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Figure 5.5: The total run time using Statistical metrics based classification (represen-
tation generation time plus classification time)

5.2.4 Comparison of Attributes

For the experiments to determine which single attribute contributed the most to the

classification of the left and right ventricles each attribute was considered in isolation.

Each attribute was therefore used to generate a 1-D feature vector to represent the

identified VOI. TCV was again adopted. Only results obtained using the SVM clas-

sification model are reported here because earlier experiments, reported above, had

demonstrated that SVM produced the best results. The results are presented in Table

5.6 (best results highlighted in bold font). From the table it can be seen that “volume

extent” consistently provided the best results; while axis length and depth consistently

provided the worst results.

Epilepsy Musician

Attribute Accu. Sens. Spec. Accu. Sens. Spec.

Axis length (l) 51.22 57.50 45.24 44.34 46.23 42.45

Axis width (w) 53.77 58.49 49.06 51.38 55.15 47.60

Axis depth (d) 48.78 52.50 45.24 48.21 52.92 45.49

Maximum perimeter on xy plane (pxy) 54.72 58.49 50.94 56.60 59.43 53.77

Maximum perimeter on yz plane (pyz) 56.60 62.26 54.72 54.62 59.81 49.43

Maximum perimeter on xz plane (pxz) 51.98 54.72 49.06 50.38 54.15 46.60

Volume (vol) 50.31 49.06 50.94 55.09 59.81 50.38

Volume extent (vext) 64.15 64.15 64.15 59.76 65.00 54.76

Table 5.6: Classification results using Statistical metrics based classification, single
attribute feature vectors and SVM
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5.3 Conclusion

In this chapter a statistical metrics based approach to VOIBIC has been described.

The Statistical metrics based classification approach used the geometric attributes of

the lateral ventricles to generate feature vectors. Four classification mechanisms, SVM,

Decision Tree, Artificial Neural Network and Bayesian Network were considered with

which to evaluate the proposed approach. The recorded results indicated that a best

accuracy of 70.36% was produced. The results also demonstrated that SVM classifi-

cation, on average, was the best classification model to adopt in terms of effectiveness

when augmenting the data with the meta attributes, “age” and “gender”. Considering

the statistical metrics individually, volume extent provided the best results, while ven-

tricle width and depth produced the worst results. The main purpose of the statistical

VOIBIC approach presented in tis chapter was to estbalish a benchmark approach.

In the following Chapter an alternative approach to classifying 3-D MRI scans using

a Point series based image representation technique, that outperforms the proposed

Statistical metrics based techniques presented in this chapter, will be presented.
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Chapter 6

Volume of Interest Image
Classification Using Point Series
Representation

In this chapter, the proposed approach to VOIBIC founded on the concept of a point

series representation is presented. A point series in this case is a series (sequence) of

points used to represent an object in terms of (say) its perimeter or circumference. With

respect to the work in this chapter the point series represent the boundary features of

the VOI. Two techniques for generating the desired point series are considered: (i) Disc

based and (ii) Spoke based. Regardless of which technique is used the resulting point

series are represented as curves which can be represented as graphs where the x-axis

is the order (or sequence) of the points and the y-axis is the distance values associated

with the points. These can be translated into a feature vector representation to which

a number of classification model generation mechanisms can be applied, as in the case

of the statistical metrics based representation discussed in the previous chapter, or

alternatively they can be used directly using a K-Nearest Neighbour (KNN) approach.

For the first, a feature space representation is required. It is proposed in this chapter

that this be generated using Hough signature extraction [62]. For the KNN mechanism

a similarity measure is required. The simplest similarity measure that can be used is

the Euclidean distance between a labelled comparator series and a previously unseen

series. However, this requires that both series are of the same length. Instead it is

proposed that the “warping path” distance, generated using Dynamic Time Warping

(DTW) [11], is the most appropriate for this purpose.

The chapter is organised as follows. Section 6.1 describes the two techniques for

generating the point series from a given VOI (ventricle). This is followed in Section

6.2 with a description of the suggested classification processes to be adopted. The

evaluation of the proposed techniques, including a discussion of the results obtained, is

then presented in Section 6.3. Finally, the chapter is summarised in Section 6.4.
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6.1 Point Series Image Representation

As noted in the introduction to the chapter, the focus of the work presented is the rep-

resentation of VOIs (lateral ventricles in particular), in terms of their boundary, using

point series (curves). The conjecture was that this would serve to capture the nature

of the shape of the ventricles in a manner commensurate with prediction/classification.

The challenges of generating such point series are:

1. Identification/selection of the points to be included in the point series.

It is unclear whether it is best to include all boundary voxels in the desired point

series or some subset of the voxels. The argument for using all voxels is that all

the data is being used (nothing is being left out). The argument for using only a

subset of the voxels is that it is neither necessary or practical (from an efficiency

perspective) to use all the data. Thus we need to consider mechanisms to achieve

both.

2. Imposing an ordering on the identified/selected points. In 2-D it is

straightforward to impose an ordering given a collection of boundary pixels, we

simply select a point as the start point and then proceed in either a clockwise

or anti-clockwise direction until we return to the start point (as in the case, for

example, of chain coding [44]). However, in 3-D what this ordering might be is

less obvious.

As also noted in the introduction to this chapter two techniques for generating the

desired point series are proposed: (i) Disc based and (ii) Spoke based. The first uses all

the boundary voxels while the second uses a representative subset of the complete set

of boundary voxels. The input in both cases is a binary-valued 3-D image comprising

voxels labelled as being either black (belonging to the VOI) or white (not part of the

VOI). The output in both cases is a point series describing the VOI boundary. Both

the Disc based and Spoke based techniques operate with reference to a primary axis

selected from one of the three available axis: (i) Sagittal (xy), (ii) Coronal (yz ) and

(iii) Transverse (xz ). Consequently for each image three point series can be generated

for each ventricle. Thus, in total six curves are generated for each MRI image, three

describing the left ventricle and three describing the right ventricle. The distinction

between the two techniques is how the curves are generated. Each technique is described

in further detail in the following two subsections.

6.1.1 Disc-based Representation Technique

The Disc-based representation is founded on the idea of generating a point series by

considering a sequence of slices, slice by slice (along a primary axis), and collecting point

information from the boundary where each slice and the volume of interest intersect.
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The intersection is usually described by a circular shape, as illustrated in Figure 6.1

hence the technique is referred to as the “Disc” based technique. In this manner a

sequence of disc boundaries is generated and concatenated together to form a single

point series. In more detail, the Disc-based point series generation process is as follows:

1. Find the geometric centroid of the ventricle under consideration.

2. Starting at one end of the VOI (ventricle), with respect to the selected primary

axis, define the first “disc” d.

3. Calculate the distances from the identified centroid to the boundary points (vox-

els) describing the edge of d, obtained from the intersection of the disc and the

boundary of the VOI, and store the distances.

4. Define a follow on slice by moving one voxel along the selected axis and repeating

(3) until the entire VOI has been defined. Note that on start up there will be two

follow on slices one on either side of the centroid.

5. Use the collected distances to define a curve (point series) with distance along

the Y-axis and the sequential point numbers along the X-axis.

Figure 6.1: Representation of a ventricle (VOI) as a point series using the Disc-based
technique

An example of a curve generated using the Disc-based technique is given in Figure 6.2.

6.1.2 Spoke-based Representation Technique

The Spoke-based representation technique is illustrated in Figure 6.3. The technique

involves measuring the distance from the geometric centroid of the VOI to points on

the boundary, in a given plane. As such it is essentially a 2-D technique. The effect is

that of a sequence of spokes of different length radiating from the centroid, hence the

name of the technique. The generation process is as follows:
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Figure 6.2: An example of a point series curve generated using the Disc-based technique

1. Finding the centroid of the ventricle.

2. Generate a spoke, in some pre-define plane, radiating from the centroid to the

edge of the VOI (ventricle) and measure and record its length.

3. Repeat (2) with a new spoke generated by rotating the previous spoke by an angle

of θ◦. Continue in this manner until all 360◦ have been covered.

4. Use the collected distances to define a curve (point series) with spoke-distance

along the Y-axis and the sequential point numbers along the X-axis.

Figure 6.3: Representation of a ventricle (VOI) as a point series using the Spoke-based
technique

An example of a curve generated using the Spoke-based technique is given in Figure

6.4.

76



Figure 6.4: An example of a point series curve generated using the Spoke-based tech-
nique

6.2 Framework for Image Classification Based on Point
Series Representation

The point series based image classification approach starts with the identification of

the VOI as described in Chapter 4. Once the VOI have been identified the next step

is to generate point series describing the VOI using one or other of the techniques

presented in Section 6.1. After that the classification process is conducted using either:

(i) Feature space classification or (ii) KNN. Each is explained in further detail in the

following two sub-sections, Sub-sections 6.2.1 and 6.2.2.

6.2.1 Feature Space Classification

Using feature space classification the curves generated, as described above, are pro-

cessed to create a feature space from which feature vectors can be generated (one per

image). More specifically a signature based approach is proposed for generating the

model, founded on Hough signature extraction [62]. The generation of shape signatures

using the concept of the Hough Transform, as used in this thesis, was first proposed

by Paul Hough in 1962 [62]. The idea was widely adopted and became the basis for a

great number of image analysis techniques with respect to many application domains.

The Hough transform is mainly used for parametric shapes in images. The key idea

is to transform a shape pattern into a parameter space where the shape can be repre-

sented in a spatially compact way. With regard to the work presented in this thesis the

Straight Line Hough Transform (SLHT) was used, the first, and probably most used,

of the parameter-based transformations derived from the Hough concept. A signature

in this context is a set of feature values that can be used to describe some entity, a
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curve in our case. The feature values encompassed by a set of signatures thus describe

a feature space.

The process of generating the desired signatures commences by transforming the

curves (generated using one or other of the techniques described in Section 6.1.1 and

6.1.2) into a parameter space (accumulator matrix) A, comprised of M rows and N

columns where M is the maximum recorded (Disc or Spoke) distance and N is the total

number of points in the point series. ρ and θ are the parameters of the corresponding

curve in the parameter space (ρ, θ), where θ varies from the minimum to the maximum

value, giving the corresponding ρ value. Each row corresponds to one value of ρ, and

each column corresponds to one value of θ. The process for generating a signature from

an accumulator matrix, as first proposed in [130], is described as follows:

1. Create accumulator matrix A comprised of M rows and N columns.

2. Put “0” into all the cells in the accumulator matrix A.

3. Set ρ = “1”.

4. If ρ greater than N , go to (7).

5. Put “1” into the cell (ρ, θ), where θ is the distance value corresponding to ρ (ρ

is the order of point series).

6. Increment ρ and go back to (4).

7. Calculate a preliminary feature vector from the accumulator matrix A:

Fj =

M∑
i=1

A2
ij , j = 1..N

An example of the generation of accumulator matrix can be seen in Figure 6.5

and Table 6.1

78



Figure 6.5: Example of a curve Z

8 1 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0

6 0 1 0 0 0 0 0 0 0 0 0 0

5 0 0 1 0 0 0 0 0 0 0 0 1

4 0 0 0 1 0 0 0 0 0 0 1 0

3 0 0 0 0 1 0 0 0 0 1 0 0

2 0 0 0 0 0 1 0 0 1 0 0 0

1 0 0 0 0 0 0 1 1 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12

Table 6.1: Example of the accumulator matrix generated from the curve Z in Figure
6.5

8. Calculate the vector mean:

µ =
1

N

N∑
j=1

Fj

9. Normalise the feature vector:

FVj(θ) =
Fj
µ
, j = 1..N

In this process, the feature vector is calculated from the accumulator matrix A in

step (7) and is normalised according to its mean in steps (8) and (9). The extracted

feature vector describing the curve, which reflects the shape of the VOI, can finally

be used as a signature. The extracted signatures are then stored together with an

associated class label to which any established classifier generation mechanism can be

applied.
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6.2.2 KNN Classification

Using KNN the set of labelled curves defining a VOI can be used directly, without

transition into an intermediate representation as in the case of the feature space clas-

sification technique describe above, to classify unseen data as described in [33]. This

requires some kind of measure to determine the similarity between curves in the “curve

base” and a new unseen curve. The DTW algorithm is well-known in many areas.

It is a well tried and tested technique first described in the 1960s and extensively re-

searched in 1970s for application with respect to speech recognition systems. It has

more recently been used in the context of handwriting recognition systems [87], online

signature matching systems [36] and protein sequence alignment [127]. As noted earlier

warping distance as generated using the DTW algorithm [11] was used with respect to

this thesis.

DTW operates in two stages: (i) matrix generation and (ii) warping path calcula-

tion. Algorithm 1 gives the matrix generation process. The input is two curves X and

Y , the first of length m and the second of length n. We commence by stepping through

curve X and for each element x; in curve x stepping through curve Y . For each element

yi in Y we find the difference with xi and store this in Matrix A a location [i, j]. The

input to Algorithm 2 is the matrix A from Algorithm 1. The output is the warping

path distance.

Algorithm 1 The algorithm to generate time warping matrix

1: procedure MatrixGeneration
2: Input: X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}
3: Output: Matrix A
4: For i := 1 to m do
5: For j := 1 to n do
6: A[i, j]← xi ∼ yj . A[i, j] records the difference between xi and yj
7: EndFor
8: EndFor
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Algorithm 2 Algorithm to generate minimum warping path from Matrix A

1: procedure DTW
2: Input: Matrix A
3: Output: wp (Warping Path distance)
4: x← 0
5: y ← 0
6: While (y 6= m and x 6= n do)
7: if (x == m) then
8: y ← y + 1
9: else if (y == n) then

10: wp = wp+A[x, y]
11: else
12: dist1 = A[x, y + 1]
13: dist2 = A[x+ 1, y + 1]
14: dist3 = A[x+ 1, y]
15: if (dist1 < dist2) then . Distance 1 less than distance 2
16: if (dist1 < dist3) then . Distance 1 less than distances 2 and 3
17: wp← wp+ dist1
18: y ← y + 1
19: else . Distance 1 less than distance 2 but not less than distance 3
20: wp← wp = dist3
21: x← x+ 1

22: else if (dist2 < dist3) then . Distance 2 less than distances 1 and 3
23: wp = wp+ dist2
24: x← x+ 1
25: y ← y + 1
26: else . Distance 2 less than distance 1 but not less than distance 3
27: wp← wp+ dist3
28: x← x+ 1

29: EndWhile

Thus, given two curves, X with length m and Y with length n, a matrix A is

constructed with m rows and n columns. Each element (i, j) within matrix A describes

the distance between point i on curve X and the point j on curve Y . The goal is

to find the “warping path” through this matrix describing the shortest distance from

(0, 0) to (m,n). For instance, given two point series (curves) X = [1, 1, 2, 3, 2, 0] and

Y = [0, 1, 1, 2, 3, 2, 1], the matrix A is constructed as shown in Table 6.2. In the matrix

the x-axis represents curve X and the y-axis represents curve Y . The sequence, marked

in red colour, close to the diagonal, indicates the “warping path”. Using Algorithm

2 the algorithm starts from A[0, 0] and finds the neighbour which has the minimum

distance value. Note that the algorithm can move forward only, which means that from

a point (x, y), the path can only move to right (x+ 1, y), upwards (x, y+ 1) or diagonal

(x+ 1, y + 1). The algorithm then stops when the A[m,n] is reached.

According to the Table 6.2, the number of row M is the length of curve X and

the number of column N is the length of curve Y . To find the warping path the
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1 0 0 1 2 1 1

2 1 1 0 1 0 2

3 2 2 1 0 1 3

2 1 1 0 1 0 2

1 0 0 1 2 1 1

1 0 0 1 2 1 1

0 1 1 2 3 2 0

1 1 2 3 2 0

Table 6.2: Example of Matrix A considering distance between curve X and Y

(a) Sakoe-Chiba band (b) Itakura parallelogram

Figure 6.6: Global warping path constraints

algorithm computes no more than M multiplied by N times. Hence, O(MN) is the

computational cost of the application of DTW. In order to improve the efficiency, global

constraints may be introduced whereby we ignore matrix locations away from the main

diagonal. Two well known global constraints are the “Sakoe-Chiba band” [106] and

“Itakura parallelogram” [67]. As shown in Figure 6.6, alignments of points can be

selected only from the respective shaded regions. The Sakoe-Chiba band runs along

the main diagonal and has a fixed width R such that j − R ≤ i ≤ j + R for the

indices of the warping pathwk(i, j) (see Figure 6.6a). While the Itakura parallelogram

describes a region that constraints the slope of the warping path. More specifically,

for a fixed S > 1, the Itakura parallelogram consists of all points that are traversed

by some warping path having a slope between 1/S and S (see Figure 6.6b). There are

several reasons for using global constraints, one of which is that they slightly improve

the performance of the efficiency of the DTW distance calculation. However, the most

important reason is to prevent pathological warpings, where a relatively small section

of one time series maps onto a relatively large section of another. With respect to the

work presented in this thesis the “Sakoe-Chiba” band was adopted.
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6.3 Evaluation

A number of experiments were conducted, designed to compare the operation of both

the Disc-based and Spoke-based point series generation techniques coupled with both

Feature space and KNN classification. The objectives of the evaluation were as follows:

1. To compare the operation of the Disc-based point series generation with the

Spoke-based point series generation (recall that the Disc-based approach used

all the boundary voxels while the Spoke-based approach used a representative

subset).

2. To identify the most appropriate value for θ in the context of the Spoke-based

point series generation approach (recall that the greater the value of θ the fewer

the number of points in our point series).

3. To compare the usage of Feature space classification against KNN classification

in the context of the proposed point series representation.

4. To determine whether the use of additional meta data, age and gender, would

effect the quality of the classification.

The image sets used for the evaluation were the Epilepsy and Musician datasets in-

troduced in Chapter 3. Ten-fold Cross Validation (TCV) was used throughout the

experimentation. All the experiments were conducted using a 2.9 GHz Intel Core i7

with 8GB RAM on OS X (10.9) operating system. The overall effectiveness results are

presented in Tables 6.3 to 6.6. These are discussed in Section 6.3.1, 6.3.2, 6.3.3 and

6.3.4, with respect to the above objectives. Tables 6.3 and 6.4 show the classification

results obtained using the Feature space classification approach for the Epilepsy and

Musician datasets respectively, while Tables 6.5 and 6.6 show the results obtained us-

ing KNN classification approach for the Epilepsy and Musician datasets respectively.

Note that ‘Accu.’, ‘Sens.’ and ‘Spec.’ refer to accuracy, sensitivity and specificity

respectively.

Technique Accu. Sens. Spec.

Disc 59.43 58.49 60.38
Spoke (x = 1◦) 62.20 67.50 57.14
Spoke (x = 2◦) 64.63 70.00 59.52
Spoke (x = 3◦) 61.32 62.26 60.38
Spoke (x = 4◦) 58.49 62.26 57.42

Average 61.21 64.10 58.97

Table 6.3: Classification results for the Epilepsy dataset using Feature space classifica-
tion
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Technique Accu. Sens. Spec.

Disc 73.58 75.47 72.64
Spoke (x = 1◦) 78.62 83.02 76.42
Spoke (x = 2◦) 79.25 84.91 76.42
Spoke (x = 3◦) 74.21 75.47 73.58
Spoke (x = 4◦) 68.55 69.81 67.92

Average 74.84 77.74 73.40

Table 6.4: Classification results for the Musician dataset using Feature space classifi-
cation

Technique Accu. Sens. Spec.

Disc 62.20 67.50 57.14
Spoke (x = 1◦) 64.15 66.04 62.26
Spoke (x = 2◦) 69.81 71.70 67.92
Spoke (x = 3◦) 68.87 75.47 62.26
Spoke (x = 4◦) 60.98 67.50 57.14

Average 65.20 69.64 61.34

Table 6.5: Classification results for the Epilepsy dataset using KNN classification

Technique Accu. Sens. Spec.

Disc 77.36 81.13 75.47
Spoke (x = 1◦) 81.13 86.79 78.30
Spoke (x = 2◦) 82.39 88.68 79.25
Spoke (x = 3◦) 76.10 79.25 74.53
Spoke (x = 4◦) 69.81 71.70 68.87

Average 77.36 81.51 75.28

Table 6.6: Classification results for the Musician dataset using KNN classification

6.3.1 Disc-Based versus Spoke-Based

This section gives a discussion of the classification results obtained using Disc-based

and Spoked-based point series generation. From Tables 6.3 and 6.4 it can be seen

that, with respect to Feature space classification, the best classification accuracy and

sensitivity were obtained using the Spoke-based image representation with a Spoke

spacing of θ = 2◦. The best classification specificity was obtained using both the

Disc-based representation and the Spoke based representation with a spacing of: (i)

θ = 3◦ for the Epilepsy dataset and (ii) θ = 1◦ and θ = 2◦ for the Musicians dataset.

With respect to the KNN classification technique, from Tables 6.5 and 6.6, it can be

seen that for the Epilepsy dataset, the best classification accuracy and specificity were

obtained using the Spoke-based approach with a spacing of θ = 2◦, while the best
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sensitivity was obtained using the Spoke-based approach and a spacing of θ = 3◦. For

the Musician dataset, All the best classification accuracy, sensitivity and specificity

values were obtained using a Spoke spacing of θ = 2◦.

Figure 6.7: Curve generation time for the Epilepsy dataset

Figure 6.8: Classification time for the Epilepsy dataset

The performance of the proposed point series representation techniques in terms

of efficiency is shown in Figures 6.7 to 6.10. Figure 6.7 shows the curve generation

time for the Epilepsy dataset, while Figure 6.8 shows the total classification time using

TCV for the Epilepsy dataset. Likewise, Figure 6.9 shows the curve generation time

for the Musician dataset, while Figure 6.10 shows the total classification time using

TCV for the Musician dataset. Note that the time complexity in Figures 6.8 and 6.10

included the Hough signature extraction process (for Feature space classification) and

the Dynamic Time Warping similarity measurement process (for KNN classification).

From the figures it can be seen that the Spoke-based representation technique (4◦)

was the most efficient with respect to both curve generation and classification for both

datasets. This was because a smaller number of points was generated when θ = (4◦) as
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opposed to θ = (3◦) or less. The Disc-based representation was the least efficient for

both datasets because it generates all boundary points.

Figure 6.9: Curve generation time for the Musician dataset

Figure 6.10: Classification time for the Musician dataset

In the case of Spoke-based generation the point series contained fewer points than

Disc-based generation. The number of points obtained using the Spoke-based genera-

tion was obviously constant for all ventricles (360 point series for 1◦, 180 for 2◦, 120

for 3◦ and 90 for 4◦) but varied depending on the size of the ventricles in the case

of Disc-based generation (over a thousand points for most ventricles). Consequently,

according to Figures 6.7 and 6.9, the Spoke-based representation technique (using θ =

4◦) was the most efficient with respect to both curve generation and classification for

both the Epilepsy and Musician datasets, while the Disc-based representation was the

least efficient for both datasets. However, the performance results using Spoke-based

generation with θ = (4◦) were not good.

For the classification results, those obtained using the Spoke-based representation

were, on average, better than those obtained using the Disc-based representation. It is
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therefore concluded that the Spoke-based representation produced a better reflection

of the shape of the lateral ventricles than in the case of the Disc-based representation.

6.3.2 Best Value for θ

With respect to the Spoke-based 3-D image representation technique four different

values for θ (spoke spacings) were considered: {1◦, 2◦, 3◦, 4◦}. Thus four distinct point

series were generated in this case. The relationship between classification accuracy and

different spoke spacings is presented in Figure 6.11 to 6.14.

Figure 6.11: The relation between classification accuracy and spoke spacing for the
Epilepsy dataset

Figure 6.12: The relation between classification accuracy and spoke spacing for the
Epilepsy dataset with meta attributes
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Figure 6.13: The relation between classification accuracy and spoke spacing for the
Musician dataset

Figure 6.14: The relation between classification accuracy and spoke spacing for the
Musician dataset with meta attributes

It can be seen from Tables 6.3 to 6.10 that when using the Spoke-based approach

the classification accuracy, regardless of whether meta data was used or not, tended to

peak when using a spacing of 2◦ and then decreased when the spacing increased. It was

conjectured that this was because as the representation got coarser details concerning

the shape of the ventricles began to be missed, while at lower levels of spacing the

amount of detail collected tended to clutter the representation. According to the results,

it can be concluded that the spoke spacing of 2◦ was the best parameter setting for the

Spoke-based technique.

6.3.3 Feature Space Classification versus KNN Classification

For Feature space classification, the SVM implementation available from the Waikato

Environment Knowledge Analysis (WEKA) data mining workbench [54] was adopted.
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For KNN classification K = 1 was used. The classification results, in terms of all

accuracy, sensitivity and specificity, obtained using KNN classification tended, on av-

erage, to be better than those obtained using Feature space classification regardless of

whatever a Spoke or Disc-based point series generation was adopted. It was conjec-

tured that this was because the signature extraction process introduced a further level

of complexity during which some information concerning the shape of the volume of

interest was lost.

6.3.4 Use of Meta Attributes

Additional experiments were conducted using two meta attributes: (i) Age and (ii)

Gender; the aim here was to determine whether usage of such meta attributes effected

the quality of the classification outcomes. Tables 6.7 and 6.8 show the classification re-

sults obtained using Feature space classification approach and the age and gender meta

attributes for the Epilepsy and Musician datasets respectively, while Tables 6.9 and

6.10 show the results obtained using KNN and the age and gender meta attributes for

the Epilepsy and Musician datasets respectively. By comparing the results presented

in Tables 6.7 to 6.10 with those presented in Tables 6.3 to 6.6 it can be seen that a sig-

nificant improvement of effectiveness was recorded when the point series representation

was augmented with meta data.

From Tables 6.7 to 6.10 it can be seen that all the results were improved consider-

ably.

Technique Accu. Sens. Spec.

Disc 67.45 71.70 67.07
Spoke (x = 1◦) 72.70 73.58 67.92
Spoke (x = 2◦) 75.47 78.30 69.52
Spoke (x = 3◦) 73.58 75.47 63.81
Spoke (x = 4◦) 64.15 66.04 62.50

Average 70.75 73.02 67.61

Table 6.7: Classification results for the Epilepsy dataset with meta attributes using the
Feature space classification
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Technique Accu. Sens. Spec.

Disc 78.30 85.85 77.36
Spoke (x = 1◦) 82.08 86.79 81.13
Spoke (x = 2◦) 84.91 90.57 83.02
Spoke (x = 3◦) 77.36 79.25 75.47
Spoke (x = 4◦) 73.58 75.47 73.58

Average 79.25 83.59 78.11

Table 6.8: Classification results for the Musician dataset with meta attributes using
the Feature space classification

Technique Accu. Sens. Spec.

Disc 71.04 72.34 66.04
Spoke (x = 1◦) 70.45 74.47 69.81
Spoke (x = 2◦) 78.52 76.67 71.70
Spoke (x = 3◦) 75.18 75.47 67.92
Spoke (x = 4◦) 67.50 70.80 61.32

Average 72.54 73.95 67.36

Table 6.9: Classification results for the Epilepsy dataset with meta attributes using the
KNN classification

Technique Accu. Sens. Spec.

Disc 83.96 86.79 83.02
Spoke (x = 1◦) 84.91 90.57 85.85
Spoke (x = 2◦) 84.91 88.68 89.62
Spoke (x = 3◦) 77.36 81.13 75.47
Spoke (x = 4◦) 71.70 77.36 67.92

Average 80.57 84.90 80.38

Table 6.10: Classification results for the Musician dataset with meta attributes using
the KNN classification

The efficiency of the proposed point series approach augmented with meta attributes

is shown in Figures 6.15 and 6.16. Figure 6.15 shows total classification time using TCV

for the Epilepsy dataset and 6.16 shows those for the Musician dataset. Note that the

time complexities given in Figures 6.15 and 6.16 included the Hough signature extrac-

tion process (for Feature space classification) and Dynamic Time Warping similarity

measurement process (for KNN classification). By comparing the results presented in

Figures 6.15 and 6.16 with those presented in Figures 6.7 to 6.10 it can be seen that

the addition of meta data does not entail a significant computational overhead.
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Figure 6.15: Classification time for the Epilepsy dataset with meta attributes

Figure 6.16: Classification time for the Musician dataset with meta attributes

6.4 Conclusion

In this chapter an approach to VOIBIC using Disc-based and Spoke-based point series

generation coupled with Feature space classification and Direct (KNN) classification has

been described. The Hough transform was used to generate signatures describing the

curves generated from the proposed point series generation techniques. In the context of

direct classification Dynamic Time Warping was used to measure the distance between

curves. The reported evaluation indicated that the Spoke-based technique coupled

with Direct classification generated the best performance. In the following Chapter

an alternative approach to classifying 3-D MRI scans according to a common image

feature (VOI), founded on a tree representation, is presented.
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Chapter 7

Volume of Interest Image
Classification Using Oct Tree
Based Representation

In this chapter, the Oct-tree based representation for VOIBIC is presented. As already

noted in Chapter 2, the application of the techniques to classify 3-D image data to

some common object that features across an image set requires the representation of

the image objects in question using some appropriate format. The proposed approach

presented in this chapter is founded on the concept of Oct-trees and Frequent Sub-

graph Mining (FSM). In this approach the VOI is represented using an Oct-tree which

is then processed further by applying FSM to the tree so as to generate a set frequent

sub-graphs that can then be interpreted as features in a feature vector representation

to which standard classification techniques can be applied. There are a number of al-

gorithms that can be adopted for FSM, but with respect to the work presented in this

thesis the well-known gSpan algorithm [136] was adopted. More specifically a weighted

variation of gSpan called gSpan-ATW was used. The input to this algorithm was an

Oct-tree, and the output a set of frequently occurring subgraphs together with their

occurrence counts. Typically a large number of subgraphs are generated, many of which

are redundant (do not serve to discriminate between classes). Feature selection tech-

niques are typically used to reduce the overall number of identified frequent subgraphs.

A selected classification mechanisms can then be used to generate a classification model.

Figure 7.1 provides a schematic of the proposed approach. The approach com-

menced with the extraction of the VOIs (lateral ventricles) explained in Chapter 4.

Next, the VOIs were decomposed and represented as Oct-trees. After that, Frequent

Subgraph Mining (FSM) was used to discover frequent sub-trees. Then feature vectors

were generated and reduced by some selected feature selection techniques. Finally, the

classifier was generated and the classification results were obtained.

The remainder of this chapter is organised as follows. Section 7.1 describes the

process for generating the desired Oct-tree VOI representation. This is followed in
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Figure 7.1: Schematic illustrating the graph/tree based approach

Section 7.2 with a description of FSM and the gSpan algorithm in particular. The

evaluation of the proposed techniques, including discussion, is then presented in Section

7.3. Finally, the chapter is concluded with a summary in Section 7.4.

7.1 Oct-tree Image Representation

The focus of the work presented in this chapter is the representation of VOIs (lateral

ventricles) in terms of their boundary using the concept of Oct-tree decomposition.

There are many types of image decomposition, common mechanisms use hierarchical

data structures; examples for 2-D image data include Quad-trees and Scale Space rep-

resentations [26]. With respect to 3-D image data, including the work described in this

thesis, an Oct-tree representation is typically adopted. Oct-tree is a tree data structure

which, in the case of 3-D data, is constructed by repeatedly subdividing a given space

into “octants” [99, 68].

In the context of the representation of the VOIs in terms of Oct-tree, the voxels

describing each VOI are decomposed into homogeneous sub-regions [38, 41]. The de-

composition can be conducted according to a variety of image features such as colour

or intensity. With respect to the lateral ventricles a binary encoding was used. The

VOI was encapsulated in a minimum bounding box (MBB) The “cubes” in the MBB

representation part of the VOI were allocated a “1” (black) and the cubes not included
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a“0” (white). The decomposition process entails the recursive decomposition of the

VOI into octants. The decomposition continues until either sufficiently homogenous

cubes are identified or a user defined “maximum depth” was reached. The result is

then stored in the Oct-tree data structure whereby each leaf node represents a cube.

Leaf nodes nearer the root of the tree represent lager cubes than nodes further away.

Thus the tree is unbalanced in that some leaf nodes will cover larger areas of the VOI

than others. It is argued that cubes covering small regions are of greater interests than

those covering large regions because they provide more detail. The advantage of this

representation is that it maintains information about the relative shape and size of the

VOI. An illustration of the Oct-tree generation process is given in Figure 7.2.

Figure 7.2: Illustration of the Oct-tree hierarchical decomposition process given a VOI
surrounded by a MBB

7.2 Feature Extraction

Oct-tree are not well suited as input to classifier model generation. The Oct-tree needs

to be processed in some way so that a feature vector representation, compatible with

classifier model generation, can be formulated. The idea presented here is to apply

FSM to the Oct-tree data structure and then used the identified frequent sub-trees to

define a feature space. This section presents the process of generating this feature space.

Sections 7.2.1 and 7.2.2 provide an overview of graph mining and FSM respectively.

Section 7.2.3 then provides a description of gSpan, the adopted FSM algorithm with

respect to the work presented in this thesis. Section 7.2.4 then considers the feature

vector generation process.
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7.2.1 Graph Mining

Graph mining is the process of discovering hidden patterns (frequent subgraphs) within

graph database. From the literature graph mining can be categorised in terms of

transaction graph mining and single graph mining. In transaction graph mining the

dataset to be mined comprises a collection of small graphs (transactions). The goal is

to discover frequent recurring subgraphs across the dataset. In single graph mining the

input of the mining task is one single large graph, and the objective is to find frequent

subgraphs which occur within this single graph. Frequent Subgraph Mining (FSM) has

demonstrated its advantages with respect to various tasks such as chemical compound

analysis [64], document image clustering [9], graph indexing [135], etc.

The straightforward idea behind FSM is to “grow” candidate subgraphs in either a

Breadth First Search (BFS) or Depth First Search (DFS) manner (candidate genera-

tion), and then determine if the identified candidate subgraphs occur frequently enough

in the graph data for them to be considered interesting (support counting). The two

main research issues in FSM are thus how to efficiently and effectively: (i) generate

the candidate frequent subgraphs and (ii) determine the frequency of occurrence of

the generated subgraphs. Effective candidate subgraph generation requires that the

generation of duplicate or superfluous candidates is avoided. Occurrence counting re-

quires repeated comparison of candidate subgraphs with subgraphs in the input data,

a process known as subgraph isomorphism checking. FSM, in many respects, can be

viewed as an extension of Frequent Itemset Mining (FIM) popularised in the context of

Association Rule Mining (ARM). Consequently, many of the proposed solutions to ad-

dressing the main research issues effecting FSM are based on similar techniques found

in the domain of FIM.

It is widely accepted that FSM techniques can be divided into two categories: (i)

the Apriori-based approach (also called the BFS strategy based approach) and (ii) the

pattern growth approach. These two categories are similar in spirit to counterparts

found in ARM, namely the Apriori algorithm [5] and the FPgrowth algorithm [56]

respectively. The Apriori-based approach proceeds in a “generate-and-test” manner

using a BFS strategy to explore the subgraph lattice of the given database. Therefore,

before exploring any (k+ 1)− subgraphs, all the k-subgraphs should first be explored.

For each discovered subgraph g, this approach extends g recursively until all the fre-

quent supergraphs of g are discovered [55]. Pattern growth approaches can use both

BFS and DFS strategies, but the latter is preferable to the former because it requires

less memory usage. One of the main challenges associate with FIM and FSM is the

substantial number of patterns which can be mined from the underlying database. This

problem is particularly important in the case of graphs since the size of the output can

be extremely large. The significance of FSM with respect to the work described in

this thesis is that one of the techniques proposed uses this technique for the purpose
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of generating a feature space. The application of FSM algorithms to the datasets de-

scribed in this work entails a significant computational overhead because of the great

number of generated frequent subgraphs. To reduce this overhead a Weighted FSM

approach can be applied, the objective being to focus on the identification of those fre-

quent subgraphs that are likely to be the most significant according to some weighting

scheme.

7.2.2 Frequent Subgraph Mining

The concept of FSM was introduced in Section 7.2.1 above, where it was noted that

FSM is an approach to discovering graph structures that occur a significant number of

times across a set of graphs. As also noted in Section 7.2.1, there are two separated

problem formulations for FSM which can be identified as (i) transaction graph based

and (ii) single graph based. Recall that in transaction graph based mining, the input

data comprises a collection of relatively small graphs, whereas in single graph based

mining the input data comprises a very large single graph. The graph mining based

approach with respect to the work in this thesis focuses on transaction graph based

mining. The remainder of this section presents a detailed review of FSM. First, the

necessary definitions to support the discussion are introduced (the notation used is

given in Table 7.1).

Labelled Graph: A labelled graph G is a tuple of the form (V,E, lV , lE , fV , fE),

where V is a set of nodes, E ⊆ V ×V is a set of edges; LV and LE are sets of node and

edge labels respectively, and fV and fE are the corresponding functions that define the

mappings V → LV and E → LE . Note that the edge labels are not included in the

definitions used throughout this chapter.

Subgraph: Given two graphsG1 (V1, E1, LV1 , LE1 , fV1 , fE1) andG2 (V2, E2, LV2 , LE2 , fV2 , fE2).

G1 is a subgraph of G2 if G1 satisfies the following conditions [66].

V1 ⊆ V2, ∀(v) ∈ V1, fV1(v) = fV2(v),

E1 ⊆ E2, ∀(u,v) ∈ E1, fE1(u,v) = fE2(u,v).

Graph Isomorphism: A graph G1 (V1, E1, LV1 , LE1 , fV1 , fE1) is isomorphic to an

other graph G2 (V2, E2, lV2 , lE2 , fV2 , fE2), if and only if a bijection ψ : V1 → V2 exists

such that:

∀(u) ∈ V1, fV1(u) = fV2(ψ(u)),

∀(u), v ∈ V1, (u,v) ∈ E1 ↔ (ψ(u), ψ(v)) ∈ E2,

∀(u,v) ∈ E1, fE1(u,v) = fE2 (ψ(u), ψ(v)).
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Notation Description

D A graph database.
Gi A transaction graph such that Gi ∈ D.
k − (sub)graph A (sub)graph of size k in terms of nodes, edges or paths.
gk A k-(sub)graph.
Ck A set of subgraph candidates of size k.
Fk A set of frequent k subgraphs.
| · | The cardinality of a set.

Table 7.1: Notation used throughout this chapter

The bijection ψ is an isomorphism between G1 and G2. A graph G1 is subgraph

isomorphic to a graph G2, denoted by G1 ⊆sub G2, if and only if there exists a subgraph

g of G2 such that G1 is isomorphic to g [65].

In the context of transaction graph mining, the FSM aims to discover all the sub-

graphs whose occurrences in a graph database are over a user defined threshold, σ

(0 ≤ σ ≤ 1). Formally, given a database D comprised of a collection of graphs. The

occurrence of a subgraph g in D is defined by δD(g) = { Gi ∈ D | g ⊆sub Gi }. Thus,

the support of a graph g is defined as the fraction of the graphs in D to which g is

subgraph isomorphic:

supD(g) = |δD(g)|/|D| (7.1)

A subgraph g is then frequent if and only if supD(g) ≥ σ. The aim of FSM is thus

to find all frequent subgraphs in D. FSM has been widely studied. A number of FSM

algorithms have been proposed including: (i) AGM [66], (ii) FSG [76], (ii) FFSM [65],

(iv) SUBDUE [61] or (v) SLEUTH [24]. The weighted FSM algorithm, gSpan-ATW,

used with respect to the work presented in this thesis is a gSpan based algorithm [136].

The gSpan algorithm is therefore described in further detail in the following sub-section.

7.2.3 gSpan

An outline of the gSpan algorithm is given to Algorithm 3 and 4. The input to Al-

gorithm 3 is a subgraph c represented by a Depth First Search (DFS) encoding, a

minimum support threshold σ and a graph dataset D. The output is a set of frequent

subgraphs F . Note that the algorithm recursively calls a “subMining” procedure (Algo-

rithm 4) which is used to grow the current frequent subgraphs so as to generate a group

of candidate frequent subgraphs. The algorithm works recursively and stops when all

the subgraphs, whose appearance count is more than the pre-defined threshold σ, are

discovered.
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Algorithm 3 The gSpan Algorithm

1: procedure gSpan
2: Sort the labels in D by their frequency;
3: Remove infrequent vertices and edges;
4: Relabel the remaining vertices and edges in descending frequency;
5: F1 ← {all frequent 1-edge graphs in D};
6: Sort F1 in DFS lexicographic order;
7: F ← ∅;
8: for all c ∈ F1 do
9: subMining(c,D, σ, F );

10: D ← D - c;
11: if |D| < σ then
12: break;

Algorithm 4 subMining Procedure

1: procedure subMining(c,D, σ, F )
2: if c 6= min(c) then
3: return;

4: F ← F ∪ {c};
5: Ck ← ∅;
6: Scan D once, find every edge e such that c can be right-most extended to
c ∪ e, Ck ← c ∪ e;

7: Sort Ck in DFS lexicographic order;
8: for all gk ∈ Ck do
9: if support(gk) ≥ σ then

10: subMining(gk, D, σ, F );

Normally FSM is naturally computationally expensive because of the candidate

generation and support computation processes that are required. The generation of

candidate subgraphs needs to be conducted in a non-redundant manner so that the

same graph is not generated more than once. Thus graph isomorphism checking is

required to remove duplicate graphs. The computation of the support of a graph in the

graph database D also requires subgraph isomorphism checking. The gSpan algorithm

uses a canonical labelling and a lexicographical ordering of the input graph in D to

reduce the generation of duplicate graphs. Referring to the subMining procedure shown

in Algorithm 4, c 6= min(c) (line 2) guarantees that gSpan does not extend any dupli-

cate graph because the candidate generation process adheres to a canonical labelling.

Further, the rightmost extension shown at line 6 in the algorithm guarantees that the

complete set of frequent subgraphs will be discovered. Although gSpan can achieve

a competitive performance compared with other FSM algorithms, its performance de-

grades considerably when the graph size is relatively large or the graph features many

node and/or edge labels. One mechanism for addressing this issue is to use weighted

FSM.
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To this end a weighted of gSpan was adopted, more specifically gSpan-ATW [136].

The ATW weighing scheme and its consequent incorporation into gSpan are presented

in the following two sub-sections.

The Average Total Weighting (ATW) Scheme

The weighting scheme adopted with respect to the gSpan-ATW algorithm is the Aver-

age Total Weighting (ATW) scheme presented in [70], which in turn is inspired by the

work of [118]. Given a graph data set D = {G1, G2, . . . , Gt}, the weight for a subgraph

g is calculated by dividing the sum of the average weights in the graphs that contain g

with the sum of the average weights across the entire graph data set D. Thus:

Definition 7.3.1. Given a graph dataset D = {G1, G2, . . . , Gt} if Gi is node weighted

by assigning {w1, w2, . . . , wk} to a set of nodes {v1, v2, . . . , vk} respectively, then the

average weight associated with Gi is defined as:

Wavg(Gi) =

∑k
j=1wj

ki
(7.2)

Where wj can be determined using an appropriate weighting function described as

follows:

wj =
occ(vj)∑

1<i<t size(Gi)
(7.3)

Where occ(vj) denotes the number of times vj occurs in D, and size (Gi) denotes the

size of Gi in terms of the number of nodes in Gi. Thus, the total weight of D is further

defined as:

Wsum(D) =
t∑
i=1

Wavg(Gi) (7.4)

Using both equation (7.2) and (7.4), the weight of a subgraph can be calculated using

equation (7.5).

Definition 7.3.2. Given a graph data set D = {G1, G2, . . . , Gt} and an arbitrary

graph g, let the set of graphs where g occurs equal δD(g). Then, the weight of g with

respect to D is:

WD(g) =

∑
Gi∈δD(g)Wavg(Gi)

Wsum(D)
(7.5)
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WD(g) is used to quantify the actual importance of each discovered subgraph g in a

graph database. According to (7.1), the weighted support of a graph g is then defined

as the product of the support of g:

wsupD = WD(g) · supD(g) =
WD(g) · |δD(g)|

|D|
(7.6)

Definition 7.3.3. A subgraph g is weighted frequent with respect to D, if wsupD(g) ≥
τ , where 0 < τ ≤ 1 is a weighted support threshold.

Figure 7.3: Example dataset for illustrating the process of calculating weights using
the ATW scheme

Example: Considering the graph data set D = {G1, G2, G3} shown in Figure 7.3, where

the letter inside each node indicates the node label. Given a node with a label ‘b’ in

the candidate subgraph g (in Figure 7.3), occ(b) = 6, and
∑3

i=1 size(Gi) = 20. Thus

wD(b) = 6/20 = 0.3. Similarly, for nodes with labels ‘t’, ‘n’, ‘m’ and ‘k’ in D, the

weights of the nodes are wD(t) = 5/20 = 0.25, wD(n) = 3/20 = 0.15, wD(m) =

3/20 = 0.15 and wD(k) = 3/20 = 0.15 respectively. Given a subgraph g, which oc-

curs in G1 and G3, Wavg(G1) = 0.15+0.15+0.15+0.25+0.3+0.3+0.25
7 ≈ 0.2214,Wavg(G2) =

0.15+0.15+0.15+0.25+0.3+0.25+0.3
7 ≈ 0.2214,Wavg(G3) = 0.15+0.15+0.15+0.3+0.3+0.25

6 ≈ 0.2167.

Thus:

Wsum(D) = 0.2214 + 0.2214 + 0.2167 ≈ 0.6595,WD(g) = 0.2214+0.2167
0.6595 ≈

0.6643, wsupD = 2/3×WD(g) ≈ 0.4429.

The gSpan-ATW Algorithm

The ATW weighting scheme was incorporated into the gSpan algorithm to produce

gSpan-ATW [136]. To do this the procedure ‘subMining’, Algorithm 4 described in

Section 7.2.3 needed to be replaced with an alternative procedure ‘subMining-ATW’.
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This alternative procedure is presented in Algorithm 5. In Algorithm 5, a weighted

support threshold τ is introduced to replace the threshold σ used in Algorithm 3.

The subMining-ATW algorithm operates in a similar manner to the subMining

algorithm discussed above; level by level, following a “generate, calculate support and

prune” loop. A candidate subgraph, g, is considered to be frequent if its weighted

support, wsupD(g), is greater than some user specified threshold, τ ; otherwise it is

pruned. Note that, as in the case of the σ threshold, the lower the value of τ the

greater the number of frequent subgraphs that will be identified.

Algorithm 5 subMining-ATW Procedure

1: procedure subMining-ATW((c,D, σ, F ))
2: if c 6= min(c) then
3: return;

4: if Wd(c)× supD(c) ≥ τ then
5: F ← F ∪ {c};
6: else
7: return;

8: Ck ← ∅;
9: Scan D once, find every edge e such that c can be right-most extended to
c ∪ e, Ck ← c ∪ e;

10: Sort Ck in DFS lexicographic order;
11: for all gk ∈ C do
12: if WD(gk)× supD(gk) ≥ τ then
13: subMining-ATW(gk, D, τ, F );

7.2.4 Feature Vector Generation

Using the proposed gSpan-ATW algorithm, the identified frequent subgraphs (or sub-

trees) describe, in terms of size and shape, some part of a VOI that occurs regularly

across the dataset. These are then used to form the fundamental elements of a feature

space. In this context a feature space is an N dimensional space where N is equivalent

to the number of features identified. Using this feature space each image (VOI) can be

described in terms of a feature vector of length N , with each element having a value

equal to the frequency of that feature. The feature vectors for each MRI brain scan

with respect to the work presented in this chapter comprised the occurrence count for

each identified frequent subgraph. As in the case of the work presented in the previous

chapter this could be augmented with subject age and gender information.

7.3 Evaluation

This section describes the evaluation of the proposed graph based approach to VOIBIC.

A number of experiments were conducted to measure the effectiveness and efficiency of

the proposed approach. The objectives of the evaluation were as follows:

101



1. To compare the usage of two alternative classification model generators, Support

Vector Machine (SVM) and Decision Tree, in the context of the proposed Oct-tree

representation and classification effectiveness.

2. To identify the most appropriate value for the minimum support threshold τ for

use with respect to the gSpan-ATW algorithm.

3. Whether the use of additional meta data, age and gender, would effect the quality

of the classification.

4. To compare the run time efficiency of the proposed approach.

The image sets used for the evaluation were again the Epilepsy and Musician datasets

introduced in Chapter 3.

With respect to the gSpan-AWT algorithm four different minimum support thresh-

olds for τ were used to define frequent subgraphs ({20%, 30%, 40%, 50%}). As a result,

four sets of feature vectors were generated and used as inputs for each classifier. To

reduce the number of features (frequent sub-trees) Chi-square feature selection [81],

available within the Waikato Environment Knowledge Analysis (WEKA) data mining

workbench [54], was used. For the evaluation Ten-Fold Cross Validation (TCV) was

use, this results presented in the following subsections are average results across all ten

folds. All the experiments were conducted using a 2.9 GHz Intel Core i7 with 8GB

RAM on OS X (10.9) operating system. The evaluation results obtained with respect

to each of the above objectives are discussed in Section 7.3.1 to 7.3.3 below.

SVM Decision Tree

τ (%) Accu. Sens. Spec. Accu. Sens. Spec.

20 68.53 70.40 68.53 67.83 70.58 68.67
30 72.34 75.67 70.45 70.45 74.28 73.20
40 70.45 72.34 69.23 65.87 70.47 65.40
50 62.28 66.96 60.67 62.80 67.05 64.15

Average 68.40 71.34 67.22 66.74 70.60 67.86

Table 7.2: Classification results for the Epilepsy dataset using SVM and Decision Tree

7.3.1 Support Vector Machine classification versus Decision Tree Clas-
sification

As noted above for the comparison of the effectiveness of SVM classification versus

Decision Tree classification exaperimnets were conducted using the implementations

provided within the Waikato Environment Knowledge Analysis (WEKA) data mining

workbench [54]. Tables 7.2 and 7.3 show the classification results obtained using the

proposed Oct-tree based approach to VOIBIC for the Epilepsy and Musician datasets
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SVM Decision Tree

τ (%) Accu. Sens. Spec. Accu. Sens. Spec.

20 85.77 90.02 81.53 82.08 86.79 77.36
30 86.32 87.74 80.19 83.02 85.85 80.19
40 81.60 84.91 78.30 78.30 81.13 75.47
50 75.00 80.19 69.81 72.17 77.36 66.98

Average 82.17 85.72 77.46 78.89 82.78 75.00

Table 7.3: Classification results for the Musician dataset using SVM and Decision Tree

respectively (best results highlighted in bold font). Note that the abbreviations ‘Accu.‘,

‘Sens.‘ and ‘Spec.‘ used in the Tables in this Chapter indicate classification accuracy,

sensitivity and specificity respectively.

From Table 7.2 (Epilepsy) it can be seen that, with respect to Oct-tree classification,

the best classification accuracy, sensitivity and specificity were obtained when using

τ = 30% for both SVM and Decision Tree. From Table 7.3 (Musician), the best

classification accuracy for both SVM and Decision Tree were also obtained when using

τ = 30% while the best classification sensitivity for both SVM and Decision Tree

were obtained when using τ = 20%. For the musicians dataset the best classification

specificity for SVM was obtained when using τ = 20% while those for Decision Tree

was obtained when using τ = 30%. From the average results presented in the Tables

7.2, in terms of effectiveness, for the Epilepsy data set the two classification models

both operated in a similar manner; there was little to choose between them. For the

musicians data set SVM outperformed the decision tree classification model.

7.3.2 Best Value of Minimum Support Threshold

Referring back to Tables 7.2 and 7.3, with respect to both classification methods, it

can be seen that when using τ = 20% and τ = 30%, regardless of the dataset used,

the results were not significantly different in terms of classification accuracy, sensitivity

and specificity. However, the results then tended to decrease when the τ was increased

beyond 30%. This was because more frequent subgraphs were identified with low

support thresholds. It was likely that as the support threshold increases, significant

subgraphs were not discovered by the gSpan-AWT algorithm. The results obtained

therefore indicate that the best minimum support thresholds values to be used for tau,

with respect to the proposed oct-tree based VOIBC approach, was between 20% and

30%.

7.3.3 Use of Meta Attributes

Additional experiments were conducted using the two meta attributes used previously:

(i) age and (ii) gender; the aim here was to determine whether usage of such meta
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attributes effected the quality of the classification outcomes. Tables 7.4 and 7.5 show

the classification results obtained using the Oct-tree classification approach for the

Epilepsy and Musician datasets augmented with meta attributes (the best results are

shown in bold font).

SVM Decision Tree

τ (%) Accu. Sens. Spec. Accu. Sens. Spec.

20 77.36 82.08 72.64 75.57 80.19 70.75
30 78.30 81.13 75.47 76.42 81.13 71.70
40 75.47 80.19 70.75 70.28 76.42 64.15
50 67.45 72.64 62.26 64.15 68.87 59.43

Average 74.65 79.01 70.28 71.61 76.65 66.51

Table 7.4: Classification results for the Epilepsy dataset augmentation and using SVM
and Decision Tree

SVM Decision Tree

τ (%) Accu. Sens. Spec. Accu. Sens. Spec.

20 86.02 88.85 83.19 85.37 92.50 78.57
30 85.37 92.50 78.57 84.15 90.00 78.57
40 82.93 87.50 78.57 81.71 87.50 76.19
50 76.83 77.50 76.19 80.00 77.36 69.05

Average 82.79 86.59 79.13 82.81 86.84 75.60

Table 7.5: Classification results for the Musician dataset augmentation and using SVM
and Decision Tree

From Table 7.4 it can be seen that the best classification accuracy, sensitivity and

specificity results were obtained using Decision Tree classification and τ = 30%. The

best classification accuracy and specificity for SVM were also obtained when using τ =

30% while the best classification sensitivity was obtained using τ = 20%. From Table

7.5, all the best classification accuracy, sensitivity and specificity for Decision Tree were

obtained when τ = 20%. Likewise, the best classification accuracy and specificity for

SVM were obtained when τ = 20%. However the best classification sensitivity for SVM

was obtain when τ = 30%.

Comparing the results presented in Tables 7.4 and 7.5, using meta data, with those

presented previously in Tables Tables 7.2 and 7.3, where meta data was not used, it can

be seen that the usage of meta data improved the performance of the classifiers. This

was especially so in the case of the Epilepsy dataset. The results presented in Tables

7.4 and 7.5 also corroborate the conclusions draw from the earlier results: (i) the most

appropriate value for τ is between 20%and 30% and (ii) SVM tended to out perform

decision trees in terms of classification effectiveness.
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Figure 7.4: Run time complexity of Oct-tree generation and frequent subgraph mining
process using gSpan

7.3.4 Run Time Efficiency

In terms of the run time efficiency of the VOIBIC approach based on the proposed

Oct-tree representation techniques a sequence of plots are given in Figures 7.4 to 7.8.

Figure 7.4 shows Oct-tree generation time (minutes), for both the Epilepsy and Mu-

sician datasets, against a range τ threshold values. Note that the Oct-tree generation

time includes FSM (using gSpan) process. Figures 7.5 and 7.6 show the total TCV

classification time for the Epilepsy and Epilepsy+ (with meta data) datasets using

SVM and Decision Tree classification respectively. Likewise, Figures 7.7 and 7.8 show

the total TCV classification time for the Musician and Musicians+ (with meta data)

dataset using SVM and Decision Tree classification respectively.

Figure 7.5: Run time complexity of image classification for the Epilepsy dataset using
SVM classification
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Figure 7.6: Run time complexity of image classification for the Epilepsy dataset using
Decision Tree classification

From Figure 7.4 it can be seen that the run time for Oct-tree generation and FSM

process of Epilepsy dataset was slower than that of Musician dataset. The reason why

the runtime in the case of the Epilepsy dataset was longer than that for Musician

dataset was simply because the Epilepsy dataset was larger (210 volumes versus160

volumes). On the other hand, the run time for Oct-tree generation and FSM process

was least efficient when using τ (minimum support threshold) = 50% and best efficient

when using τ = 20%. This was because the number of subgraphs discovered from the

process decreased when τ increased.

From Figures 7.5 to 7.8 it can be seen that, as expected, total classification time,

with respect to the proposed Oct-tree representation techniques, was the most efficient

when using τ = 50% for both classification methods and both dataset; while when

using τ = 20% was the least efficient. This was because the number of identified

frequent subgraphs decreased as τ increased. Of course, as noted above, lower values

of τ are more effective. The reason why the runtime in the case of the Epilepsy dataset

was longer than that for Musician dataset was simply because the Epilepsy dataset

was larger (210 volumes versus160 volumes). Inspection of the figures also indicates

that the SVM classification mechanism performed slightly faster than decision tree

mechanism for both the Epilepsy and Musician datasets. Therefore, according to the

reported results, in this sub-section and the earlier sub-sections, it can be concluded

that SVM was a better classification mechanism than DT in terms of both effectiveness

and efficiency.
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Figure 7.7: Run time complexity of image classification for the Musician dataset using
SVM classification

Figure 7.8: Run time complexity of image classification for the Musician dataset using
Decision Tree classification

7.4 Conclusion

In this chapter an approach to VOIBIC, using an Oct-tree representation, and the use of

FSM has been proposed. The approach used a hierarchical decomposition whereby each

MRI scan was decomposed into hierarchy of “cubes” which could then be represented

using an Oct-tree structure. A FSM mechanism was then applied so that subgraphs

that occurred frequently across the entire image collection could be identified. The

frequent subgraphs were considered to describe a feature space; as such the input

image could be translated, according to this feature space, into a set of feature vectors

(one per image). A feature selection mechanism was applied to the feature vectors so as

to select the most significant features to which standard classification techniques could

be applied. The reported evaluation indicated that high classification accuracy results
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were obtained when using gSpan-ATW minimum support threshold (τ) values of 20%

and 30%. In the following chapter, this thesis is discussed with comparison among of

the proposed techniques.
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Chapter 8

Discussion

This penultimate chapter provides a discussion of the work presented in this thesis. The

main discussion points are directed at: (i) a comparison of the proposed approaches

in terms of earlier evaluation results, (ii) a statistical significance comparison and (iii)

a comparison with the previous work. The chapter is organised as follows. Section

8.1 presents the comparison among the proposed approaches in terms of the evaluation

results presented earlier in this thesis; results obtained from experiments undertaken

in terms of both classification effectiveness and efficiency. The following section, Sec-

tion 8.2, then presents the overall results obtained from statistical significance testing.

Finally, the comparison with the previous related work is then given in Section 8.3.

8.1 Comparison in Terms of Earlier Evaluation Results

The comparison of the proposed VOIBIC representations with respect to the evaluation

results presented earlier in this thesis was undertaken in terms of: (i) classification

effectiveness and (ii) efficiency. In terms of effectiveness the results reported earlier were

generated using a variety of parameter settings for each approach, and in some cases

variations of the approach under consideration. For the overall comparison reported

in this section the best performing parameter settings and/or variations with respect

to each approach was used (so as to consider each technique to its best advantage).

The comparison is also divided into two parts: (i) without augmentation and (ii) with

augmentation.

Tables 8.1 and 8.2 summarise the “best” classification results of obtained for the

Epilepsy and musicians datasets respectively. In the tables the acronyms ‘SMB’, ‘DB’,

‘SB’ and ‘TB’ refer to the Statistical Metric Based, Disc Based, Spoke Based, and Tree

Based approaches respectively (recall that the point series based technique was split

into two techniques, ‘DB’ and ‘SB’). Thus four different approaches are presented. The

‘Accu.’, ‘Sens.’ and ‘Spec.’ abreviations indicate classification accuracy, sensitivity and

specificity respectively as before. Best results are indicated in bold font.

From Table 8.1 it can be seen that, with respect to the Epilepsy dataset, the overall
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Technique Accu. Sens. Spec.

SMB 60.63 63.56 57.16
DB 62.20 67.50 57.14
SB 69.81 71.70 67.92
TB 72.34 75.67 70.45

Table 8.1: Best classification effectiveness results for Epilepsy dataset (without aug-
mentation)

classification accuracies obtained using the four proposed approaches were over 60%.

All the classification accuracy, sensitivity and specificity values obtained using the Tree

based approach were higher than the other three approaches considered. The lowest

classification accuracy and sensitivity values were obtained using the Statistical metrics

based approach, and the lowest classification specificity was obtained using Disc-based

approach.

Technique Accu. Sens. Spec.

SMB 69.89 71.77 68.00
DB 77.36 81.13 75.47
SB 82.39 88.68 79.25
TB 86.32 87.74 80.19

Table 8.2: Best classification effectiveness results for Musician dataset (without aug-
mentation)

From Table 8.2 it can be seen that, with respect to the Musicians dataset, the overall

classification accuracies obtained using the four proposed approaches were over 67%.

The classification accuracy and specificity obtained using the Tree based approach were

the best compared to the other three approaches, while the classification sensitivity

obtained using the Spoke-based approach was the best compared to the other three

approaches. The lowest classification accuracy, sensitivity and specificity values were

obtained using the Statistical metrics based approach.

Technique Accu. Sens. Spec.

SMB 68.59 70.50 68.17
DB 71.04 72.34 66.04
SB 78.52 76.67 71.70
TB 78.30 81.13 75.47

Table 8.3: Best classification effectiveness results for Epilepsy dataset (with augmen-
tation)

Tables 8.3 and 8.4 present a summary of the best classification effectiveness results

using augmented data with respect to the epilepsy and musicians data sets. From
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Table 8.3 the results indicate that, with respect to the augmented Epilepsy dataset, the

overall classification accuracies obtained using the four proposed approaches were over

68%. The classification sensitivity and specificity values obtained using the Tree based

approach were better than the other three approaches, while the classification accuracy

obtained using the Spoke-based approach was the best compared to the other three

approaches. The lowest classification accuracy and sensitivity were obtained using the

Statistical metric based approach, and the lowest classification specificity was obtained

using Disc-based approach.

Technique Accu. Sens. Spec.

SMB 70.36 77.00 64.05
DB 83.96 86.79 83.02
SB 84.91 90.57 85.85
TB 86.02 88.85 83.19

Table 8.4: Best classification effectiveness results for Musician dataset (with augmen-
tation)

From Table 8.4 it can be seen that, with respect to the augmented Musicians dataset,

the results indicated that the overall classification accuracies obtained using the four

proposed approaches were over 70%. The classification accuracy obtained using the

Tree based approach was the best compared to the other three approaches while the

classification sensitivity and specificity obtained using the Spoke-based approach were

the best compared to the other three approaches. All the lowest classification accu-

racy, sensitivity and specificity results were obtained using the Statistical metrics based

approach.

For the overall comparison in terms of efficiency (run time) the best performing

parameters and/or variations with respect to each technique were again used; and, as

before, the comparison was conducted with and without augmented data. Recall that

the recorded runtimes (seconds) were obtained over all ten runs of TCV where each

run includes: (i) representation generation, (ii) classification model generation, and (iii)

classification model testing. All the experiments were conducted using a 2.9 GHz Intel

Core i7 with 8GB RAM on OS X (10.9) operating system.

The efficiency result summaries are presented in Figures 8.1 to 8.2. In the figures, as

before, ‘SMB’, ‘DB’, ‘SB’ and ‘TB’ indicate the Statistical Metric Based, Disc Based,

Spoke Based and Tree Based approaches respectively. In the figures the augmented

and non-augmented versions of the Epilepsy and Musicians data sets are indicated by

‘Epilepsy’ and ‘Epilepsy+’, and ‘Musician’ and ‘Musician+’ respectively. From the

figures, it can be seen that Statistical metrics based approach was the most efficient for

all datasets (The run time was less than one minute) while the Tree based approach

was the least efficient for all datasets.
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Figure 8.1: Run time complexity for the classification process for the Epilepsy dataset
(with and without augmentation)

Thus, with respect to the work presented in this thesis, promising classification re-

sults were produced. From the foregoing it can be seen that there is a trade-off between

effectiveness and efficiency. If we wished to maximise both effectiveness and efficiency

it would be possible to argue that Spoke-based representation approach produced the

best results. However, in a medical context, such as that considered as a focus in this

thesis, effectiveness outranks efficiency. In the next section a statistical significance

comparison of the proposed approaches is presented.

8.2 Statistical Significance Comparison

This section presents the results obtained from conducting statistical significance test-

ing. Given any competition, at some level of granularity, one of the competitors will

always come first, the question is whether this outcome is statistically significant or

not? If ten people run down a corridor and get to the other end within seconds of each

other it might not be statistically significant to say that the winner was the fastest

it might simply be chance; if, on the other hand, the winner gets to the end of the

corridor thirty seconds ahead of the rest then it might be statistically significant to say

that he/she was the fastest.

There are a variety of mechanisms that can be used to establish statistical signif-

icance. The mechanism used here is the Friedman test [32, 45]. The Friedman test

statistic, χ2
F is based on the average ranked (AR) performances of the classification

techniques applied to each dataset, and is calculated as follows:
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Figure 8.2: Run time complexity for the classification process for the Musician dataset
(with and without augmentation)

χ2
F =

12N

K(K + 1)

[ K∑
j=1

AR2
j −

K(K + 1)2

4

]
(8.1)

where: (i) ARj = 1
N

∑N
i=1 r

j
i , (ii) N denotes the number of datasets used in the study,

(iii) K is the total number of classifiers considered and (iv) rji is the rank of classifier

j with respect to dataset i. χ2
F is distributed according to the Chi-square distribution

with K − 1 degrees of freedom. If the value of χ2
F is large enough, then the null

hypothesis that there is no difference between techniques can be rejected. The Friedman

statistic is well suited for comparing the significance of the results obtained with respect

to the proposed VOIBIC representations.

If the null hypothesis can be rejected a post hoc Nemenyi test [32] can be applied to

highlight significant differences between the individual representations. The Nemenyi

post hoc test states that the performances of two or more classifiers are significantly

different if their average ranks differ by at least a Critical Difference (CD), given by:

CD = qα,∞,K

√
K(K + 1)

12N
(8.2)

Note that in Equation 8.2, the value qα,∞,K is based on the Studentised range statistic

[32].

For the purpose of the evaluation AUC values were used. Table 8.5 reports the

AUCs for all four techniques when applied to the two datasets augmented with age

and gender. In the table, the techniques achieving the highest AUC with respect to

each dataset, and the overall highest ranked technique, are indicated in bold font. The

numbers in the parentheses indicate the average rank of each technique. The Friedman
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test statistic and corresponding p-value are also shown. From the table it can be seen

that the Tree Based approach (TB) has the highest Friedman score (average rank -

AR). The AR of the Point series approach is statistically worse than the AR for the

Tree based approach at the 5% critical difference level (α = 0.05). As the χ2
F values

were all significant (p < 0.005) the null hypothesis that there is no difference between

the techniques could be rejected and a post hoc Nemenyi test applied to each class

distribution.

Figure 8.3 shows the critical difference diagram for the data presented in Table

8.5. Note that this is a modified version of the Demsar 2006 significant diagram [78].

This figure shows the classification approaches listed in ascending order of ranked per-

formance on the y-axis, and the image classification approaches’ average rank across

two datasets displayed on the x-axis. The diagram displays the ranked performances

of the classification techniques, along with the critical difference tail, to highlight any

techniques which are significantly different to the best performing techniques. The CD

value for the figure was calculated as per Equation 8.2. The critical difference diagram

clearly shows that the TB approach is the best performing classification approach with

an AR value of 1.0; however, this result is not significant with respect to SB and DB,

while it is significant with respect to SMB.

Friedman test statistic = 6.00 (p < 0.005)

Approach Epilepsy (AUC.) Musician (AUC.) Average Rank (AR)

SMB 65.62 (4) 66.68 (4) 4
DB 68.12 (3) 78.59 (3) 3
SB 76.95 (2) 85.76 (2) 2
TB 77.30 (1) 86.10 (1) 1

Table 8.5: Area under the receiver operating characteristic Curve (AUC) results

8.3 Comparison with Previous Work

As noted in Section 3.2 of Chapter 3 there has been some previous work directed at

the epilepsy and musician datasets. Notably, that of Elsayed et al. [40, 37]. Although

it should be noted that in [37] the data was considered in terms of 2-D and focused

on the corpus callosum (an alternative feature found in MRI brain scans to the lateral

ventricles). It is possible to make some comparisons. The results are shown in Table

8.6 where the best AUC results with respect to the work presented in this thesis are

listed alongside the best AUC results reported in [37].

From the table it can be seen that in both cases better performance are recorded

with respect to the musician dataset than the epilepsy dataset. This is because epilepsy

is clearly a more complex conditions than musician ability. The results reported in
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Figure 8.3: Critical difference diagram for the proposed image classification approaches

Dataset Elsayed (2-D) Udomchaiporn (3-D)

Epilepsy 88.30 77.30

Musician 99.10 86.10

Table 8.6: Comparison of AUC between the work reported in this thesis (3-D) and
previous work (2-D)

[37] were better than those reported in this thesis for both datasets. It is interesting

that the best results from both the work in [37] and the work reported in this thesis

came from the usage of Tree-based representation techniques. However, it cannot be

concluded from the results presented in Table 8.6 that 2-D classification is better than

3-D classification. This is because the corpus callosum might be a better indicator of

musical ability and/or the presence of epilepsy than the ventricles. More experiments,

using the same parameter settings, but with alternative datasets, related to different

application domains, are required before any such conclusion can be made.

8.4 Conclusion

In the following chapter, this thesis is concluded with a summary, a review of the

main finding with respect to the research objectives presented in Chapter1 and some

suggested directions for future work.
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Chapter 9

Conclusion

This chapter provides a summary of the work presented in this thesis; including: a

summary of the proposed approaches to VOIBIC presented in the thesis, the main

findings in terms of the research question postulated in the introduction to this chap-

ter and the identified associated research issues, the research contributions and some

potential fruitful directions for future research. The chapter is organised as follows.

Section 9.1 presents the summary of the work presented in this thesis. The following

section, Section 9.2, then presents the main findings in terms of the research question

and contribution of this thesis. Ideas for future research directions are then given in

Section 9.3.

9.1 Summary of the Proposed Approaches

The work presented in this thesis was directed at the classification of 3-D objects found

in 3-D data sets, Volume Of Interest Based Image Classification (VOIBIC). To act as a

focus for the work MRI brain scan data was used where we wish to classify the images

according to the left and right lateral ventricles that are featured in such images. There

are four ventricles in a human brain: two lateral ventricles (referred to as the left and

right ventricles), a third ventricle which connects to both lateral ventricles and a fourth

ventricle that connects the third ventricle with the spinal cord. Only the left and right

lateral ventricles were considered with respect to the focus of the presented research.

This was because: (i) the lateral ventricles are relatively easy to identify within 3-D

MRI brain scans, so facilitating automatic extraction; and (ii) they are much larger

than the other two ventricles and consequently can be argued to be more significant.

VOIBIC entails several challenges of which the most significant are: (i) how best

to identify (segment) the VOI, and (ii) once identified how these VOI can best be

represented to support classification. Although many segmentation algorithms exist

these were found to be unsatisfactory, instead two bespoke segmentation algorithms

were proposed to achieve the desired segmentation:

1. Volume Growing technique.
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2. Bounding Box technique.

The first technique used the volume growing concept to capture the VOI. The process

started by manually identifying a starting slice as a guide point whose location was

in the ventricle area and then “growing” this point. An acknowledged disadvantage

of the Volume Growing algorithm was the need to manually select a start slice and

guide point. The second technique comprised three main steps: (i) definition of a

bounding box (rectangular shape) that is expected to encompass the VOI (ventricles)

with respect to all relevant slices in the given MRI volume, (ii) for each slice collection

of the black pixels (voxels), which will include the area of the lateral ventricles, and (iii)

application of appropriate noise removal. This process was relatively easy to implement,

however, it required bounding boxes to be defined for each image slice. The results of

the experiments comparing the operation of the two techniques indicated that the

accuracy of the Bounding Box segmentation process was significantly better than the

Volume Growing process.

The three VOI representation approaches, to support VOIBIC, considered in this

thesis were:

1. Statistical metrics based.

2. Point series based.

3. Tree based.

The first proposed approach was simply founded on the idea of statistical metrics.

The idea here was to provide for a benchmark representation to which the two other

approaches presented in the thesis could be compared. A number of statistical measures

were considered: width, length, height, perimeters in each plane, volume and volume

extent of the VOI. These were used to define a ND feature space from which feature

vectors for individual VOI could be extracted. For evaluation purposes the statistical

feature representation was tested with and without augmentation (the addition of age

and gender information). Two selected classification mechanisms, SVM and Decision

Tree, were adopted with respect to the evaluation. The reported results indicated that:

1. Reasonable results were obtained, a best accuracy of 78.52% was recorded with

respect to the musicians data set and a best accuracy of 86.02% with respect to

the epilepsy data set.

2. The augmented data considerably improved the classification results.

3. Overall the approach performed better with respect to the musicians data than

the epilepsy data set.

117



4. Classification effectiveness using Decision Tree classification, on average, was bet-

ter than when using SVM, but the usage of Decision Trees was more efficient.

The second representation considered in this thesis was founded on the concept

of a point series representation coupled with two classification paradigms: (i) feature

space classification and (ii) KNN classification. The basic idea was to represent VOI

boundaries in terms of a series of points. Two techniques were devised for generating

the desired point series: (i) Disc-based and (ii) Spoke-based. For the later a number

of different “spoke spacings were considered. For the Feature space classification a

feature space was generated using the Hough signature extraction mechanism. For KNN

classification the “warping path” distance, obtained using Dynamic Time Warping

(DTW) curve comparison, was used as the similarity measure. The evaluation results

obtained indicated that:

1. The Spoke-based technique, coupled with KNN classification, generated the bet-

ter results in terms of both classification effectiveness and efficiency.

2. Spoke-based technique, regardless of the adopted classification paradigm used,

out-performed the Disc-based technique in terms of both classification effective-

ness and efficiency.

3. A spoke spacing of 2◦ typically generated the best results in term of classification

effectiveness, although a spoke spacing of 4◦ would clearly be more efficient.

The third representation considered was a tree based representation, specifically an

Oct-tree representation. A hierarchical decomposition technique was used to generate

the desired Oct-trees, one tree per MRI brain scan. A weighted Frequent Subgraph

Mining (FSM) algorithm, gSpan-ATW, was then applied to identify frequently occur-

ring subgraphs (sub-trees) within the Oct-tree representation. The general assumption

for the application of the algorithm was that Oct-tree nodes further away from the

root were more significant than those nearer the root because the more distant nodes

encapsulated a greater level of detail. The identified frequent sub-trees were viewed as

defining a feature space which was then used to represent the image set. A given image

set could thus be recast into this format so that each image was represented by a feature

vector whose elements were some subset of the identified frequent sub-trees making up

the feature space. For evaluation purposes, and as in the case of the statistical-metric

based representation, two standard classifier generation techniques, SVM and Decision

Tree, were used. The reported evaluation results indicated that:

1. The best minimum support threshold (τ) for FSM was between 20% and 30%.

2. The classification effectiveness using SVM was typically better than when using

Decision Trees.
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3. As before the classification effectiveness for the Musician dataset was better than

that for the Epilepsy dataset.

9.2 Main Findings and Contributions

In this thesis, the concept of 3-D image classification according to the nature of VOIs

contained within 3D image datasets, was considered. Three VOIBIC approaches were

proposed. These approaches considered three different VOI representations to maintain

the structural information (shape and size) of VOIs coupled with some appropriate clas-

sification techniques. The proposed approaches were designed to address the research

questions introduced in Chapter 1. In this section, each of the identified research ques-

tions is discussed, together with the manner in which the research presented in this

thesis addressed each of these individual questions, as follows (research questions from

Chapter 1 repeated verbatim).

1. What is the most appropriate mechanism for identifying VOI, and in

particular the left and right ventricle VOI?:

The Bounding Box segmentation technique, as described in Chapter 4, was found

to be the most appropriate technique to identify VOIs. It was able to achieve

excellent accuracy in the context of lateral ventricle segmentation.

2. Assuming that we can establish a process for identifying the VOI, how

do we ascertain the quality of this VOI?:

Although there is no “gold standard” in the case of lateral ventricle shape eval-

uation “Bland-Altman”, a statistical test for assessing the degree of agreement,

indicated excellent quality of the proposed segmentation technique.

3. Once the VOI have been identified what would be the nature of the

VOI representations to be used so as to support classification?:

The proposed VOIBIC approaches, described in Chapters 5, 6 and 7, were all

able to capture the salient elements of the VOI under consideration (the lat-

eral ventricles) so as to retain the structural information (shape and size) of the

VOIs. The statistical comparison presented above indicated that the Tree Based

representation produced the best results in terms of AUC.

4. What are the most appropriate parameter settings for the considered

representations?:

Not all the representations considered required parameters. However, the re-

ported evaluation found that with respect to the Spoke-based representation (as

proposed in Chapter 6) a Spoke spacing of 2◦ was best able to capture the re-

quired VOI shape information. With respect to the Tree based representation (as
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proposed in Chapter 7), the a minimum support threshold value of between 20%

and 30% was best able to generate an “optimal” set of frequent subgraphs.

5. Given a specific representation what is the most appropriate classifi-

cation model to be used with that representation?:

It was anticipated that not all the proposed representations would be compati-

ble with a particular classification model. The proposed approaches worked in

different manners according to the nature of the proposed VOI representation.

The reported evaluation results indicated that: (i) the Statistical metric based

representation was most compatible with SVM classification, (ii) the Point series

based representation was most compatible with KNN classification and (iii) the

Tree based representation with SVM classification. Therefore, as anticipated, it

was not possible to identify a best classification model to adopt in the context of

VOIBIC.

6. What is the overall most appropriate VOI classification process in the

context of the ventricle application?:

The reported results indicated that there was a trade-off between classification ef-

fectiveness and efficiency. Although the statistical significance analysis presented

in Section 8.2 indicated that the Spoke-based Point series approach produced an

overall classification effectiveness as good as the Tree based representation, how-

ever, the efficiency aspect of the Spoke-based approach was significantly better

than the Tree based technique. It is thus possible to conclude that the Spoke-

based Point series representation coupled with KNN classification was the most

appropriate VOIBIC mechanism in the context of the ventricle application.

7. Given a VOI representation is there any benefit to be gained by aug-

menting the data?:

The evaluation reported earlier on in this thesis indicated that by augmenting

the proposed representations with meta data improved classification effective-

ness could be achieved. This was regardless of the representation, classification

paradigm and dataset used.

Returning to Chapter 1, the overriding research question was: “Can appro-

priate volumetric classification techniques that incorporate 3-D spatial

relationship information, while at the same time achieving effective

performance, be developed given the significant size of volumetric data

sets?”. The work presented in this thesis clearly indicates that the answer to

this question is that the proposed VOI representations, coupled with appropriate

classification techniques, can clearly classify such images in a way that is both

efficient and effective.
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The primary contributions of the research work presented in this thesis were listed

in Section 1.4 of Chapter 1. For completeness these are listed again here:

1. Two segmentation algorithms, the Volume Growing and Bounding Box algo-

rithms, to extract a particular VOI across an image dataset. Also an image

thresholding technique to help partition the images according to foreground and

background.

2. An approach to 3-D MRI classification using a representation based on statistical

metrics describing the geometry of a detected VOI. More specifically using geo-

metrical features such as: width, length, height, perimeter (with respect to the

three primary axes), volume and volume extent, of the VOI.

3. An approach to 3-D MRI classification based on a point series representation

coupled with Hough signature extraction. The latter used to produce signatures

from the generated point series curves, which were then used as the input to a

classification system.

4. An approach to 3-D MRI classification based on a point series representation

coupled with the well known K-Nearest Neighbour (KNN) algorithm and Dy-

namic Time Warping (DTW) to generate a “Warping Distance” as the similarity

measure.

5. An approach to 3-D MR classification based on an Oct-tree representation of

an identified VOI. The Oct-tree hierarchical representation was coupled with a

Frequent Subgraph Mining (FSM) algorithm to identify frequently occurring sub-

trees (within the Oct-tree representation) which were then used to define a feature

space from which feature vectors could be extracted to which an “off the shelf”

classification model could be applied.

6. An effective framework for classifying the nature of the left and right ventricles

in human MRI brain scans in order to support various kinds of diagnosis and

analysis.

9.3 Potential Future work

The research described in this thesis has indicated a number of potential research direc-

tions for the future. These research directions are briefly introduced in the concluding

section of this thesis below.

1. Alternative 3-D image representation techniques: A standard feature vec-

tor format was adopted with respect to the work described in this thesis, because

of its ease of use as it can be used as the input for standard classifiers. It would
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be worth while to investigate alternative 3-D representation techniques such as

meshes.

2. Alternative 3-D image classification mechanisms: A number of established

classification models were investigated with respect to the work presented in this

thesis. It would be of interest to investigate more classification models to which

the proposed representation techniques can be applied.

3. Deep learning: Deep learning methods, which are a form of machine learning

method, based on learning representations of data could be applied to the work

presented in this thesis. Deep learning is based on a set of algorithms that attempt

to model high-level abstractions in data by using a “deep graph with multiple

processing layers. Hence it could make better representations and create models

to learn these representations by simplifying the learning task for large-scale data.

Examples of potential deep learning frameworks which can be applied include:

deep neural networks, convolutional deep neural networks, deep belief networks

and recurrent neural networks.

4. Alternative domains or datasets: The evaluation described in this thesis has

concentrated on VOIBIC using the lateral ventricles found in 3-D MRI brain

scans. A further avenue for investigation would be to investigate the genericness

of the proposed approaches by considering other domains or datasets (for exam-

ple other human organs located in 3-D MRI scans such as the corpus callosum

considered in [40, 37]).

Whatever the case, the work presented in this thesis has provided a foundation on

which further investigations can be conducted.
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