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Strategies for reducing antiretroviral doses and drug costs can support global access, and numerous options are being investi-
gated. Efavirenz pharmacokinetic simulation data generated with a bottom-up physiologically based model were successfully
compared with data obtained from the ENCORE (Exercise and Nutritional Interventions for Cardiovascular Health) I clinical
trial (efavirenz at 400 mg once per day versus 600 mg once per day). These findings represent a pivotal paradigm for the predic-
tion of pharmacokinetics resulting from dose reductions. Validated computational models constitute a valuable resource for
optimizing therapeutic options and predicting complex clinical scenarios.

Global access to treatment would result in a more effective
strategy against the HIV pandemic, but there are several chal-

lenges in terms of drug production and distribution. Antiretrovi-
ral dosing strategies have been selected to inhibit viral replication,
but there is growing recognition that some antiretroviral drugs
may be administered at doses above those required for efficacy.
This may place a higher demand than necessary on medication
budgets and manufacturing costs in resource-limited settings,
where the need for these medications is greatest.

Alternative strategies for lowering doses and drug costs could
effectively support global access, and several reduction strategies
are being investigated (1). A rational identification of optimal
dose reductions is challenging and is commonly based on results
from large clinical studies.

Drug distribution can be quantitatively investigated through
computational approaches using data from clinical studies to pro-
vide a top-down description and its variability in populations (i.e.,
population pharmacokinetic [popPK] modeling) or integrating
drug-specific in vitro data in models to predict bottom-up phar-
macokinetics (PK) in populations of virtual patients (i.e., physio-
logically based pharmacokinetic [PBPK] modeling). PBPK mod-
eling is based on the mathematical representation of absorption,
distribution, and elimination processes that define pharmacoki-
netics (2). Drug-specific factors (lipophilicity, apparent permea-
bility, in vitro clearance, induction, and inhibition potential) and
patient-specific factors (demographics, enzyme expression, organ
volume, and blood flows) are integrated to provide a realistic de-
scription of pharmacokinetics (3–5). A virtual population of pa-
tients can be simulated by considering anatomical and physiolog-
ical characteristics and their covariances.

A pharmacokinetic assessment after administration of efa-
virenz (EFV) at 400 mg once daily (q.d.) versus 600 mg q.d.
conducted as part of the ENCORE (Exercise and Nutritional
Interventions for Cardiovascular Health) I study was recently
published (6). Three years before this clinical analysis, we pub-
lished a prediction about the 400-mg exposure of this drug that
was made by using PBPK modeling (7).

The purpose of this work is to exemplify the utility of PBPK
modeling in exploring the pharmacokinetic consequences of dose
reduction by reporting a formal comparison of the previous PBPK
prediction against the popPK (top-down) model that was con-
structed with the clinical data from ENCORE I (6).

The frequency of the CYP2B6(G516T) genotype (the G-to-T
change at position 516 encoded by CYP2B6) from our previously
published PBPK model was amended to match that in the popu-
lation of the ENCORE I trial to provide a more realistic descrip-
tion of interpatient variability. The medians of pharmacokinetic
variables, such as maximum concentration of drug in serum
(Cmax) and concentration of drug at 12 and 24 h (C12 h and C24 h,
respectively), obtained through the PBPK simulations, and their
variabilities were compared with model-predicted PK parameters
from ENCORE I. As shown in Fig. 1, the key pharmacokinetic
descriptors of EFV were accurately predicted by the PBPK model
after correcting the frequency of CYP2B6(G516T). The predicted
pharmacokinetic variables (Cmax, C12 h, and C24 h) were in satisfactory
agreement with the data observed for the dose reduction to 400 mg.
These findings can be viewed as a paradigm for predicting the phar-
macokinetic consequences of dose reduction. While PBPK modeling
cannot help establish the accuracy of existing pharmacokinetic ther-
apeutic cutoff values (which ENCORE I has shown is likely to be
inaccurate for EFV), it can certainly help define the potential for phar-
macokinetic success prior to costly and labor-intensive prospective
clinical trials. Therefore, integration of PBPK modeling prior to or
during the design of prospective studies is warranted to ensure effec-
tive deployment of available resources.

It is increasingly evident that computational approaches can
assist in answering questions that cannot easily be examined be-
cause of prohibitive ethical or logistical barriers. PBPK modeling
can act as a bridge from drug development through in vitro data to
the clinical scenario and reduce the number of clinical studies
required to optimize therapies. This modeling approach can sup-
port the design of clinical studies in terms of sample size, timing of
doses, and sampling, as recently indicated in several regulatory
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guidelines and documents (8–10). Our findings demonstrate the
utility of PBPK modeling for dose optimization, and a comparison
between bottom-up and top-down approaches can build the basis
for a future wider application of this modeling approach (11–13).
The pharmacology of antiretrovirals and other anti-infective
drugs is based on the coadministration of complex regimens, and
these drugs are often administered to patients with specific char-
acteristics that result in challenging clinical scenarios (14, 15).
Computational predictive models, such as the PBPK model, can
represent a pivotal resource from which to answer questions that
cannot otherwise be examined in preclinical or clinical develop-
ment, can support the rational design of therapeutic options and
can identify strategies for maximizing the efficiency and safety of
therapies in various populations of patients.
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FIG 1 Scatter dot plot representing the main pharmacokinetic descriptors
(area under the curve [AUC], Cmax, and C24 h) simulated through the PBPK
model (7) and the population PK model developed for ENCORE I (6) for EFV
at 400 mg q.d. (A) or 600 mg q.d. (B). The 25th percentiles (white circles), the
medians (black circles), and the 75th percentiles (patterned circles) are pre-
sented. The solid line represents the identity line, and the dotted lines represent
the 50% to 200% range.
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