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Abstract. In this paper we study decidability and complexity of de-
cision problems on matrices from the special linear group SL(2,Z). In
particular, we study the freeness problem: given a finite set of matrices
G generating a multiplicative semigroup S, decide whether each element
of S has at most one factorization over G. In other words, is G a code?
We show that the problem of deciding whether a matrix semigroup in
SL(2,Z) is non-free is NP-hard. Then, we study questions about the num-
ber of factorizations of matrices in the matrix semigroup such as the finite
freeness problem, the recurrent matrix problem, the unique factorizabil-
ity problem, etc. Finally, we show that some factorization problems could
be even harder in SL(2,Z), for example we show that to decide whether
every prime matrix has at most k factorizations is PSPACE-hard.

Keywords: matrix semigroups, freeness, decision problems, decidabil-
ity, computational complexity

1 Introduction

In general, many computational problems for matrix semigroups are proven to
be undecidable starting from dimension three or four [3, 5, 8, 16, 25]. One of the
central decision problems for matrix semigroups is the membership problem.
Let S = ⟨G⟩ be a matrix semigroup generated by a generating set G. The
membership problem is to decide whether or not a given matrix M belongs to
the matrix semigroup S. In other words the question is whether a matrix M can
be factorized over the generating set G or not.

Another fundamental problem for matrix semigroups is the freeness problem,
where we want to know whether every matrix in the matrix semigroup has a
unique factorization over G. Mandel and Simon [22] showed that the freeness
problem is decidable in polynomial time for matrix semigroups with a single
generator for any dimension over rational numbers. Indeed, the freeness problem
for matrix semigroups with a single generator is the complementary problem of
the matrix torsion problem which asks whether there exist two integers p, q ≥ 1
such that Mp = Mq+p. Klarner et al. [17] proved that the freeness problem in
dimension three over natural numbers is undecidable.
⋆ This research was supported by EPSRC grant EP/M00077X/1.
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Decidability of the freeness problem in dimension two has been already an
open problem for a long time [7, 8]. However the solutions for some special cases
exist. For example Charlier and Honkala [10] showed that the freeness problem
is decidable for upper-triangular matrices in dimension two over rationals when
the products are restricted to certain bounded languages. Bell and Potapov [4]
showed that the freeness problem is undecidable in dimension two for matrices
over quaternions.

The study in [8] revealed a class of matrix semigroups formed by two 2 × 2
matrices over natural numbers for which the freeness in unknown, highlighting
a particular pair: (

2 0
0 3

)
and

(
3 5
0 5

)
.

The above case was simultaneously solved in two papers [9] and [14], where
authors were providing new algorithms for checking freeness at some subclasses.

However the status of the freeness problem for natural, integer and complex
numbers is still unknown. The decidability of the freeness problem for SL(2,Z)
was shown in [9] following the idea of solving the membership problem in SL(2,Z)
shown in [11].

The effective symbolic representation of matrices in SL(2,Z) leads recently
to several decidability and complexity results. The mortality, identity and vector
reachability problems were shown to be NP-hard for SL(2,Z) in [1, 6]. For the
modular group, the membership problem was shown to be decidable in polyno-
mial time by Gurevich and Schupp [15]. Decidability of the membership problem
in matrix semigroups in SL(2,Z) and the identity problem in Z2×2 was shown to
be decidable in [11] in 2005. Later in 2016, Semukhin and Potapov showed that
the vector reachability problem is also decidable in SL(2,Z) [27].

In this paper we study decidability and complexity questions related to free-
ness and various other factorization problems in SL(2,Z). The new hardness
results are interesting in the context of understanding complexity in matrix
semigroups in general and the decidability results on factorizations in SL(2,Z)
can be important in other areas and fields. In particular, the special linear
group SL(2,Z) has been extensively exploited in hyperbolic geometry [12, 32],
dynamical systems [24], Lorenz/modular knots [21], braid groups [26], high en-
ergy physics [30], M/en theories [13], music theory [23], and so on.

In this paper, we show that the question about non-freeness for matrix semi-
groups in SL(2,Z) is NP-hard by finding a different reduction than the one used
in [1, 6]. Then we show both decidability and hardness results for the finite free-
ness problem: decide whether or not every matrix in the matrix semigroup has
a finite number of factorizations. Also we prove NP-hardness of the problem
whether a given matrix has more than one factorization in SL(2,Z) and unde-
cidability of this problem in Z4×4, or more specifically in SL(4,Z). Then it is
shown that both problems whether a particular matrix has an infinite number
factorizations or it has more than k factorizations are decidable and NP-hard
in SL(2,Z) while they are undecidable in Z4×4. Finally we show that some of
the factorizations problems could be even harder in SL(2,Z), for example we
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show that to decide whether every prime matrix has at most k-factorizations is
PSPACE-hard.

2 Preliminaries

In this section we formulate several problems, provide important definitions and
notation as well as several technical lemmas used throughout the paper.

Basic definitions. A semigroup is a set equipped with an associative binary
operation. Let S be a semigroup andX be a subset of S. We say that a semigroup
S is generated by a subset X of S if each element of S can be expressed as a
composition of elements of X. Then, we call X the generating set of S. Then, X
is a code if and only if every element of S has a unique factorization over X. A
semigroup S is free if there exists a subset X ⊆ S which is a code and S = X+.

Given an alphabet Σ = {1, 2, . . . ,m}, a word w is an element of Σ∗. For a
letter a ∈ Σ, we denote by a the inverse letter of a such that aa = ε where ε is
the empty word.

A nondeterministic finite automaton (NFA) is a tuple A = (Σ,Q, δ, q0, F )
where Σ is the input alphabet, Q is the finite set of states, δ : Q × Σ → 2Q is
the multivalued transition function, q0 ∈ Q is the initial state and F ⊆ Q is the
set of final states. In the usual way δ is extended as a function Q × Σ∗ → 2Q

and the language accepted by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F ̸= ∅}. The
automaton A is a deterministic finite automaton (DFA) if δ is a single valued
function Q×Σ → Q. It is well known that the deterministic and nondetermin-
istic finite automata recognize the class of regular languages [29].

Factorization and freeness problems. Let S be a matrix semigroup gener-
ated by a finite set G of matrices. Then we define a matrix M is k-factorizable
for k ∈ N if there are at most k different factorizations of M over G. In the
matrix semigroup freeness problem, we check whether every matrix in S is 1-
factorizable.

Problem 1. Given a finite set G of n × n matrices generating a matrix semi-
group S, is S free? (i.e., does every element M ∈ S have a unique factorization
over G?)

The above problem is well-known as the freeness problem. Clearly, the non-
freeness problem is to decide whether the matrix semigroup S is not free.

For a matrix M , if there exists k < ∞ where M is k-factorizable, then we say
that M is finitely factorizable. In other words, a finitely factorizable matrix M
has finitely many different factorizations over G. We define a matrix semigroup S
is finitely free if every matrix in S is finitely factorizable and define the finite
freeness problem as follows:

Problem 2. Given a finite set G of n × n matrices generating a matrix semi-
group S, does every element M ∈ S have a finite number of factorizations
over G?
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Freeness and finite freeness problems are asking about factorization proper-
ties for all matrices in the semigroup. In case where a semigroup is not free or
not finitely free, instead of asking whether the semigroup is free or finitely free,
it is possible to define problems for a given particular matrix in the semigroup
as follows:

Problem 3. Given a finite set G of n × n matrices generating a matrix semi-
group S and a matrix M in S, does M have

a. a unique factorization over G? (matrix unique factorizability problem)
b. at most k factorizations over G? (matrix k-factorizability problem)
c. an infinite number of factorizations over G? (recurrent matrix problem)

Group alphabet encodings. Let us introduce several technical lemmas that
will be used in encodings for NP-hardness and undecidability results. Our orig-
inal encodings require the use of group alphabet and the following lemmas for
showing the transformation from an arbitrary group alphabet into a binary group
alphabet and later into matrix form that is computable in polynomial time.

Lemma 4. Let Σ = {z1, z2, . . . , zl} be a group alphabet and Σ2 = {a, b, a, b} be
a binary group alphabet. Define the mapping α : Σ → Σ∗

2 by:

α(zi) = aibai, α(zi) = aibai,

where 1 ≤ i ≤ l. Then α is a monomorphism. Note that α can be extended to
domain Σ∗ in the usual way.

Lemma 5 (Lyndon and Schupp [20]). Let Σ2 = {a, b, a, b} be a binary group
alphabet and define f : Σ∗

2 → Z2×2 by:

f(a) =

(
1 2
0 1

)
, f(a) =

(
1 −2
0 1

)
, f(b) =

(
1 0
2 1

)
, f(b) =

(
1 0
−2 1

)
.

Then f is a monomorphism.

The composition of Lemmas 4 and 5 gives us the following lemma that ensures
that encoding the subset sum problem (SSP) and the equal subset sum problem
(ESSP) instances into matrix semigroups can be completed in polynomial time.

Lemma 6 (Bell and Potapov [6]). Let zj be in Σ and α, f be mappings as
defined in Lemmas 4 and 5, then, for any i ∈ N,

f(α(zij)) = f((ajbaj)i) =

(
1 + 4ij −8ij2

2i 1− 4ij

)
.

Symbolic representation of matrices from SL(2,Z). Here we provide an-
other technical details about the representation of SL(2,Z) and their proper-
ties [2, 28]. It is known that SL(2,Z) is generated by two matrices

S =

(
0 −1
1 0

)
and R =

(
0 −1
1 1

)
,
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which have respective orders 4 and 6. This implies that every matrix in SL(2,Z)
is a product of S and R. Since S2 = R3 = −I, every matrix in SL(2,Z) can be
uniquely brought to the following form:

(−I)i0Ri1SRi2S · · ·SRin−1SRin , (1)

where i0 ∈ {0, 1}, i1, in ∈ {0, 1, 2}, and ij ̸= 0 mod 3 for 1 < j < n.
The representation (1) for a given matrix in SL(2,Z) is unique, but it is

very common to present this result ignoring the sign, i.e. considering the pro-
jective special linear group. Let ΣSR = {s, r} be a binary alphabet. We define
a mapping ϕ : ΣSR → SL(2,Z) as follows: ϕ(s) = S and ϕ(r) = R. Naturally,
we can extend the mapping ϕ to the morphism ϕ : Σ∗

SR → SL(2,Z). We call
a word w ∈ Σ∗

SR reduced if there is no occurrence of subwords ss or rrr in w.
Then, we have the following fact.

Theorem 7 (Lyndon and Schupp [20]). For every matrix M ∈ SL(2,Z),
there exists a unique reduced word w ∈ Σ∗

SR in form of (1) such that either
M = ϕ(w) or M = −ϕ(w).

Following Theorem 7, all word representations of a particular matrix M in
SL(2,Z) over the alphabet ΣSR can be expressed as a context-free language.

Lemma 8. Let M be a matrix in SL(2,Z). Then, there exists a context-free
language over ΣSR which contains all representations w ∈ Σ∗

SR such that ϕ(w) =
M .

3 Matrix semigroup freeness

The matrix semigroup freeness problem is to determine whether every matrix in
the semigroup has a unique factorization. Note that the decidability of the matrix
semigroup freeness in SL(2,Z) has been shown by Cassaigne and Nicolas [9] but
the complexity of the problem has not been resolved yet despite various NP-
hardness results on other matrix problems [1, 6]. Here we show that the problem
of deciding whether the matrix semigroup in SL(2,Z) is not free is NP-hard by
encoding different NP-hard problem comparing to the one used in [1, 6].

Theorem 9. Given a matrix semigroup S in SL(2,Z) generated by the set G of
matrices, the problem of deciding whether S is not free is NP-hard.

Proof. We use an encoding of the equal subset sum problem (ESSP), which is
proven to be NP-hard, into a set of two-dimensional integral matrices [31]. The
ESSP is, given a set U = {s1, s2, . . . , sk} of k integers, to decide whether or not
there exist two disjoint nonempty subsets U1, U2 ⊆ U whose elements sum up
to the same value. Namely,

∑
s1∈U1

s1 =
∑

s2∈U2
s2.

Define an alphabet Σ = {0, 1, . . . , k − 1, 1, 2, . . . , (k − 2), (k − 1), k, a}. We
define a set W of words which encodes the ESSP instance.

W = {i · ai+1 · (i+ 1), i · ε · (i+ 1) | 0 ≤ i ≤ k − 1} ⊆ Σ∗.
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0 1 2 · · · k − 2 k − 1 k
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ε

ask−1
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ask

ε

Fig. 1. Structure of the matrix semigroup encoded by the set W . Each matrix in the
generating set of the matrix semigroup corresponds to each transition of the automaton
structure.

We define ‘border letters’ as letters from Σ \{a} and the inner border letters
of a word as all border letters excluding the first and last. We call a word a
‘partial cycle’ if all inner border letters in that word are inverse to a consecutive
inner border letter. Moreover, we note that for any partial cycle u ∈ W+ the first
border letter of u is strictly smaller than the last border letter if we compare them
as integers. Fig. 1 shows the structure of our encoding of the ESSP instance.

First we prove that if there is a solution to the ESSP instance, then the
matrix semigroup generated by matrices encoded from the set W is not free.
Let us assume that there exists a solution to the ESSP instance, which is two
sequences of integers where each of two sequences sums up to the same integer x.
Then, the solution can be represented by the following pair of sequences:

Y = (y1, y2, . . . , yk−1, yk) and Z = (z1, z2, . . . , zk−1, zk),

where yi, zi ∈ {0, si}, 1 ≤ i ≤ k and
∑k

i=1 yi =
∑k

i=1 zi = x. Note that yi ̸= zi
in at least one index i for 1 ≤ i ≤ k.

For a sequence Y , there exists a word wY = w1w2 · · ·wk ∈ W+ such that
wi = (i − 1) · ayi · i. Since ∑k

i=1 yi = x, the reduced representation of wY is
r(wY ) = 0 · sx · k as all inner border letters are cancelled. Analogously, we have
a word wZ for a sequence Z and its reduced representation r(wZ) is equal to
r(wY ) as the sum of integers in the sequence Z is equal to the sum of integers
in Y . As we have two words in W+ whose reduced representations are equal, the
semigroup generated by matrices encoded from the set W is not free.

Now we prove the opposite direction: if there is no solution to the ESSP
instance, then the matrix semigroup is free. Assume that there is no solution
to the ESSP instance and the matrix semigroup is not free. Since the matrix
semigroup is not free, we have two different words w,w′ ∈ W+ whose reduced
representations are equal, namely, r(w) = r(w′).

For a word w, we decompose w into subwords w = u1u2 · · ·um such that each
ui ∈ W+, 1 ≤ i ≤ m is a partial cycle of maximal size. Similarly, we decompose
w′ into subwords of maximal partial cycles as follows: w′ = u′

1u
′
2 · · ·u′

n. Since
r(w) = r(w′), it follows that r(ui) = r(u′

i) should hold for 1 ≤ i ≤ m and m = n.
On the other hand, since w ̸= w′, there exists i, 1 ≤ i ≤ m where ui ̸= u′

i. Note
that the maximal partial cycles ui and u′

i should have the same number of a’s
since r(ui) = r(u′

i) and the letter a cannot be cancelled by the reduction of
words. As we mentioned earlier, the first border letter and last border letter of
a partial cycle are integers where the first border letter is strictly smaller than
the last border letter. Let us say that i1 is the first border letter and i2 is the
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last border letter of ui and u′
i. Then, the number of a’s in ui and u′

i is the sum
of subset of integers from the set {si1+1, si1+2, . . . , si2}. It follows from the fact
that ui ̸= u′

i that we have two distinct subsets of the set {si1+1, si1+2, . . . , si2}
whose sums are the same. This contradicts our assumption since we have two
disjoint subsets of equal subset sum. ⊓⊔

Recently, Bell et al. proved that the problem of deciding whether the identity
matrix is in S, where S is an arbitrary regular subset of SL(2,Z), is in NP [2].
Since we can show that the matrix semigroup S is not free by showing that the
equation M1MM2 = M3M

′M4 is satisfied where M1 ̸= M3, M2 ̸= M4, and
Mi,M,M ′ ∈ S for 1 ≤ i ≤ 4. We can show that S is not free by showing that
the matrix M1MM2M

−1
4 M ′−1M−1

3 is the identity matrix.
Let M1M

∗M2M
−1
4 (M−1)∗M−1

3 be a regular subset of SL(2,Z) subject to
M1 ̸= M3, M2 ̸= M4 and M ∈ S. Then, we can decide whether or not S is free
by deciding whether or not a regular subset of SL(2,Z) contains the identity
matrix. Therefore, we can conclude as follows:

Corollary 10. Given a matrix semigroup S in SL(2,Z) generated by the set G
of matrices, the problem of deciding whether S is not free is NP-complete.

If the matrix semigroup is not free (not every matrix have unique factoriza-
tion) we still have a question whether each matrix in a given semigroup has only
a finite number of factorizations. Next we show that the problem of checking
whether there exists a matrix in the semigroup which has an infinite number of
factorizations is decidable and NP-hard in SL(2,Z).

Theorem 11. Given a matrix semigroup S in SL(2,Z) generated by the set G
of matrices, the problem of deciding whether S contains a matrix with an infinite
number of factorizations is decidable and NP-hard.

Proof. Let us consider a matrix semigroup S which is generated by the set G =
{M1,M2, . . . ,Mn} of matrices. Let w1, w2, . . . , wn ∈ Σ∗

SR be words encoding
the generators, such that ϕ(wi) = Mi for 1 ≤ i ≤ n. Then, we can define a
regular language LS corresponding to S as LS = {w1, w2, . . . , wn}+. Let A =
(Q,Σ, δ,Q0, F ) be an NFA accepting LS constructed based on S. For states q
and p, where the state p is reachable from q by reading ss or rrr, we add an
ε-transition from q to p. We repeat this process until there is no such pair of
states following to the procedure proposed in [11].

If there exists a matrix M which can be represented by infinitely many fac-
torizations over G, then there is an infinite number of accepting runs for the
matrix M in A. It is easy to see that we have an infinite number of accepting
runs for some matrix M ∈ S if and only if there is a cycle only consisting of
ε-transitions. As we can compute the ε-closure of states in A, the problem of
deciding whether there exists a matrix with an infinite number of factorizations
is decidable.

For the NP-hardness of the problem, we modify and adapt the NP-hardness
proof of the identity problem in SL(2,Z) [6]. We use an encoding of the subset
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0 1 2 · · · k − 2 k − 1 k

k + 1k + 2k + 3· · ·2k − 12k2k + 1
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ε

ask−1

ε
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ε
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bs1

ε

bs2

ε

bsk−1

ε

bsk

ε
b
x

Fig. 2. Structure of the matrix semigroup encoded by the set W .

sum problem (SSP), which is, given a set U = {s1, s2, . . . , sk} of k integers, to
decide whether or not there exists a subset U ′ ⊆ U whose elements sum up to
the given integer x. Namely,

∑
s∈U ′ s = x.

Define an alphabet Σ = {0, 1, . . . , 2k + 1, 1, 2, . . . , (2k + 1), a, b, a, b}. We de-
fine a set W of words which encodes the SSP instance.

W = {i · ai+1 · (i+ 1), i · ε · (i+ 1) | 0 ≤ i ≤ k − 1} ∪
{i · bi+1 · (i+ 1), i · ε · (i+ 1) | k + 1 ≤ i ≤ 2k} ∪
{k · ax · (k + 1)} ∪ {(2k + 1) · bx · 0} ⊆ Σ∗.

(2)

Fig. 2 shows the structure of the word encoding of the SSP instance. The
full proof for showing that the matrix semigroup S corresponding to W+ has a
matrix with an infinite number of factorizations if and only if the SSP instance
has a solution can be found in the archive version [18] of the paper. ⊓⊔

4 Matrix factorizability problems

In the matrix semigroup freeness problem, we ask whether every matrix in the
semigroup has a unique factorization. Instead of considering a question about ev-
ery matrix in the semigroup, we restrict our question to a given particular matrix,
which may have a unique factorization, a finite number of unique factorizations
or even an infinite number of unique factorizations.

4.1 Unique factorizability problem

In the matrix unique factorizability problem, we consider the problem of deciding
whether or not a particular matrix M in S has a unique factorization over G.
We first establish the decidability and NP-hardness of the problem.

Theorem 12. Given a matrix semigroup S in SL(2,Z) generated by the set G
of matrices and a particular matrix M in S, the problem of deciding whether the
matrix M has more than one factorization over G is decidable and NP-hard.
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Proof. From Lemma 8, we can represent a set of all unreduced representations
for M over ΣSR = {s, r} as a context-free language LM .

We can also obtain a regular language that corresponds to the matrix semi-
group S. Let G = {M1,M2, . . . ,Mn} be the generating set of S. Namely, S =
⟨M1,M2, . . . ,Mn⟩. Let w1, w2, . . . , wn ∈ Σ∗

SR be words encoding the generators,
such that ϕ(wi) = Mi for 1 ≤ i ≤ n. Then, we can define a regular language LS

corresponding to S as LS = {w1, w2, . . . , wn}+. Then, the intersection of LM∩LS

contains all words that correspond to the matrix M in the semigroup S. If the
cardinality of LM ∩LS is larger than one, we immediately have two different fac-
torizations for the matrix M over G. Therefore, let us assume that |LM ∩LS | = 1
and w be the only word in LM ∩ LS . Clearly, ϕ(w) = M and M can be gener-
ated by the set G. Note that each accepting path of w in LS corresponds to a
unique factorization of M over G. Now we can decide whether or not M has a
unique factorization over G by counting the number of accepting paths of words
in LM ∩ LS from an NFA accepting LS .

The NP-hardness can be proven by the reduction from the SSP in a similar
manner to the proof of Theorem 11. See Equation (2) for the word encoding of
the SSP instance. Let us pick the word w = 0 · ε · 1 in W and notice that the
matrix M = f(α(w)) which is encoded from w is in the matrix semigroup S.
We will show that the matrix M in S has at least two factorizations over the
generating set {f(α(w)) | w ∈ W} of S if and only if the SSP instance has a
solution. The full proof can be found in the archive version [18]. ⊓⊔

We reduce the fixed element PCP (FEPCP) [3] which is proven to be unde-
cidable to the unique factorizability problem over Z4×4 for the following unde-
cidability result.

Theorem 13. Given a matrix semigroup S over Z4×4 generated by the set G
of matrices and a particular matrix M in S, the problem of deciding whether the
matrix M has more than one factorization over G is undecidable.

4.2 Recurrent matrix problem

We first tackle the problem of deciding whether or not a particular matrix in the
semigroup has an infinite number of factorizations. Note that we call this decision
problem the recurrent matrix problem instead of the matrix finite factorizabil-
ity problem as we named for the other variants. The recurrent matrix problem
has been introduced by Bell and Potapov [3] and proven to be undecidable for
matrices over Z4×4 based on the reduction from FEPCP.

We show that the recurrent matrix problem is decidable and NP-hard for
matrix semigroups in SL(2,Z). We first mention that the recurrent matrix prob-
lem is different with the identity problem. One may think that the recurrent
matrix problem is equivalent to the identity problem since it is obvious that if
the identity matrix exists then every matrix in the semigroup has an infinite
number of factorizations. However, the opposite does not hold as follows:

SOFSEM-FOCS2017, 034, v10 (final): ’Matrix semigroup freeness problems in SL(2,Z)’ 9
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Proposition 14. Let S be a matrix semigroup generated by the generating set G
and M be a matrix in S. Then, the matrix M has an infinite number of factor-
izations over G if the identity matrix exists in S. However, the opposite does not
hold in general.

Now we establish the results for the recurrent matrix problem in SL(2,Z).

Theorem 15. The recurrent matrix problem in SL(2,Z) is decidable and in fact,
NP-hard.

We also consider the matrix k-factorizability problem which is to decide
whether a particular matrix M in the semigroup has at most k factorizations
over the generating set G.

Lemma 16. Given a matrix semigroup S in SL(2,Z) generated by the set G of
matrices, a particular matrix M ∈ S, and a positive integer k ∈ N, the problem
of deciding whether the matrix M has more than k factorizations over G is
decidable and NP-hard.

We mention that the matrix k-factorizability problem is also undecidable
over Z4×4 following Theorem 13.

5 On the finite number of factorizations

Recall that the matrix semigroup freeness problem examines whether or not
there exists a matrix in the semigroup has more than one factorization. The
finite freeness problem asks whether there exists a matrix in the semigroup
which has an infinite number of factorizations. In that sense, we may interpret
these problems as the problems asking whether the number of factorizations in
the semigroup is bounded by one (the freeness problem) or unbounded (the finite
freeness problem).

In this section, we are interested in finding a number k ∈ N by which the
number of factorizations of matrices in the matrix semigroup is bounded. In
other words, we check whether every matrix in the semigroup is k-factorizable.
However, it is not easy to define the k-freeness problem as we define the general
freeness problem by the following observation.

Let S be a matrix semigroup generated by the set G of matrices and M be
a k-factorizable matrix over G. Let us denote the number of factorizations of M
by dec(M). Thus, we can write dec(M) = k. It is easy to see that S is free if
for every matrix M in S, dec(M) = 1. Let us assume that dec(M1) = m and
dec(M2) = n for m,n ∈ N. Then, dec(M1M2) = k where k ≥ mn. This means
that if S is not free, then there is no finite value k such that every matrix in S
is k-factorizable.

In that reason, we define the following notion which prevents the multi-
plicative property of the number of factorizations. We say that a matrix M is
prime if it is impossible to decompose M into M = M1M2 such that dec(M) =
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dec(M1) × dec(M2), dec(M1) ̸= 1, and dec(M2) ̸= 1. We define a matrix semi-
group S to be k-free if every prime matrix M in S has at most k different
factorizations over G. Formally, a matrix semigroup S is k-free if and only if
max{dec(M) | M ∈ S, M is prime} ≤ k.

This definition gives rise to the following problem which is a generalized
version of the matrix semigroup freeness problem.

Problem 17. Given a finite set G of n × n matrices generating a matrix semi-
group S, does every prime element M ∈ S have at most k factorizations over G?

In this paper, we leave the decidability of the k-freeness problem open but
establish the PSPACE-hardness result as a lower bound of the problem, which
is interesting compared to the NP-hardness of the other freeness problems.

Theorem 18. Given a matrix semigroup S in SL(2,Z) generated by the set G
of matrices and a positive integer k ∈ N, the problem of deciding whether or not
every prime matrix in S has at most k factorizations is PSPACE-hard.

Proof. For the PSPACE-hardness of the problem, we reduce the DFA intersec-
tion emptiness problem [19] to the k-freeness problem. Note that given k DFAs,
the DFA intersection emptiness problem asks whether the intersection of k DFAs
is empty. The full proof can be found in the archive version [18]. ⊓⊔
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