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CONSPECTUS 

 

 

It is now possible to reliably measure single molecule conductance in a wide variety of environments 

including organic liquids, ultra-high vacuum, water, ionic liquids and electrolytes. The most 

commonly used methods deploy scanning probe microscopes, mechanically formed break junctions 

or lithographically formed nano-gap contacts. Molecules are generally captured between a pair of 

facing electrodes and the junction current response is measured as a function of bias voltage. Gating 

electrodes can also be added so that the electrostatic potential at the molecular bridge can be 

independently controlled by this third non-contacting electrode. This can also be achieved in an 

electrolytic environment using a four-electrode bipotentiostatic configuration which allows 

independent electrochemical potential control of the two contacting electrodes. This is commonly 

realized using an electrochemical STM and enables single molecule electrical characterization as a 
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function of electrochemical potential and redox state of the molecular bridge. This has emerged as a 

powerful tool in modern interfacial electrochemistry and nanoelectrochemistry for studying charge 

transport across single molecules as a function of electrochemical potential and the electrolytic 

environments. Such measurements are possible in electrolytes ranging from aqueous buffers to non-

aqueous ionic liquids.  

In this article we illustrate a number of examples of single molecule electrical measurements under 

electrochemical potential control use a scanning tunneling microscope (STM) and demonstrate how 

these can help in the understanding of charge transport in single molecule junctions. Examples 

showing charge transport following phase coherent tunneling to incoherent charge hopping across 

redox active molecular bridges are shown. In the case of bipyridinium (or viologen) molecular wires 

it is shown how electrochemical reduction leads to an increase of the single molecule conductance, 

which is controlled by the liquid electrochemical gating. This has been referred to as to a “single 

molecule transistor configuration” with the gate voltage being provided by the controllable potential 

achieved through the electrochemical double layer. It is shown how the electrolyte medium can 

control such gating, with ionic liquids providing more efficient gate coupling than aqueous 

electrolytes. Control of the conductance of viologen molecular wires can also be achieved by 

encapsulating the viologen redox moiety within a molecular cage, thereby controlling its immediate 

environment. Molecular conductance can also be gated through multiple redox states. This has been 

shown for the redox moiety pyrrolo-tetrathiafulvalene which undergoes single molecule 

electrochemical transistor gating through three redox states in molecular junctions. Charge 

transport through this junction follows a 2-step hopping mechanism, demonstrating the role of the 

redox center in electron transfer across the molecular bridge. Recent electrolyte gating studies of 

rigid, conjugated redox-active metal complexes with tailored terpyridine coordinating ligands and 

anchors are also presented. These aforementioned studies have all been performed with gold 

electrode contacts.  
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The article concludes with recent data showing that it is now possible to study single molecule 

electrochemical gating with nickel electrodes. This opens up new perspectives for studying 

interfacial charge transfer with a wide variety of other electrode materials including semiconductor 

electrodes and also points towards future opportunities for coupling molecular spintronics and 

nanoelectrochemistry. 
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Nanoelectrochemistry emerged and developed as a distinct branch of electrochemistry in the later 

1990s and 2000s. With its focus on the electrochemical properties of materials at the nanometer 

size regime, it has relevance to practically every branch of electrochemistry. Nanoelectrochemistry 

has encompassed electrochemical investigations of newly-emerged nanomaterials, for example 

metal, oxide and semiconductor quantum dots and nanoparticles, carbon nanomaterials such as 

nanotubes and, more recently, graphene. New techniques and platforms for probing the nanoscale 

have also emerged, for example nanopores and nanometer-sized electrodes. An important 

nanoelectrochemical technique to emerge, which forms the basis of this account, is the ability to 

study the electrical properties of single redox-active molecules in nano-electrical junctions.  This can 

be applied in electrochemical environments, ranging from aqueous electrolytes to ionic liquids, 

under full electrochemical control. This has given electrochemists the ability to study charge transfer 

across single molecules as a function of the electrode potential and environment, giving new insights 

into electrochemical charge transfer mechanisms at the nanoscale. In this account, following an 

introduction to the techniques for the electrochemical (or electrolyte) gating of single molecules, we 

focus on key work from our group and our collaborators on this topic.   

The concept of measuring the conductance of single molecules in an electrochemical environment is 

shown in Figure 1. The molecular bridge is attached between two facing metallic electrodes 

separated by nanometer dimensions. Attachment is usually through chemisorption groups at either 

end of the molecule. In this way electrical properties of the molecular junction can be measured 

through application of a bias voltage. Additional electrodes are needed in order to control the 

electrode potential. The contacting electrodes serve as working electrode 1 and 2, respectively, 

while counter and reference electrodes are placed remote from the nano-gap. This is a four-

electrode bipotentiostatic configuration which allows independent potential control of the two 

working electrodes, as commonly used in in-situ electrochemical STM.  In this way the electrode 

potential can be changed while the bias voltage between the contacting electrodes is maintained at 

a constant potential. 
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Figure 1. A schematic illustration of a single molecule wire in an electrical junction under 

electrochemical conditions. Reprinted with permission from ref. 1. Copyright 2012 American 

Chemical Society. 

In Figure 1 the two contacting electrodes have been labeled as source and drain, while a “gating 

voltage” (Vg) is achieved through the counter electrode / reference electrode combination. In this 

way it is clear that the molecule is placed in what is equivalent to a “single molecule transistor 

configuration” with the gate voltage being provided by the controllable potential achieved through 

the electrochemical double layer. These have also been referred to as “single molecule field effect 

transistors” (FETs).  Single molecules can also be assembled into nano-fabricated solid-state 

junctions with source-drain separation controllable to sub-nanometer precision, and a third 

underlying electrode which acts as a back-gate.2 This back-gate can, for instance, be separated 

physically from the molecular junction by an intervening dielectric such as SiO2 but still enables 

electrostatic control at the molecule through application of the gate voltage. However, these 3-

terminal solid-state platforms can be difficult to fabricate, and there is no control over the degree of 

gate coupling to the molecule from device to device. On the other hand liquid electrochemical gating 

can be both efficient, reliable and has the ability, given an appropriate electrode/electrolyte 

combination, to achieve gating over relatively large voltage ranges.  

The most commonly used methods for single molecule electrical measurements under 

electrochemical control use a scanning tunneling microscope (STM) and these are adapted from 2-
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terminal single molecule techniques with no electrochemical control. Typically, gold tips and 

substrates are employed in the formation of gold│molecule│gold electrical junctions. The STM can 

be used in either a “contact” or “non-contact” fashion to form the junctions. The former method, 

known as the in-situ break junction (BJ) technique,3 is illustrated in Figure 2. In this method, the STM 

tip is first directed into metallic contact with the gold surface. During withdrawal of the tip, a single 

gold point contact is formed (step 2 in Figure 2), which gives a conductance plateau at 1G0 (G0 is the 

quantum unit of conductance, given by 2e2/h; 77 S) . As the tip is retracted further, this gold bridge 

breaks to leave an open nano-gap into which single or small groups of molecules can adsorb, as 

illustrated here for 4,4’-bipyridine (Step 3, Figure 2).3 Typically, the conductance drops at this stage 

from 1G0 to several orders of magnitude lower or less; for instance the conductance of a gold-

bipyridine-gold single molecule junction is ~10-3 G0 while that for a gold-1,8-octanedithiol-gold single 

molecule junction is a further 2 orders of magnitude lower. As the tip is retracted further, the 

molecular junction itself breaks, whereupon the junction current abruptly falls.  As a result, the 

junction conductance is typically high at close tip-to-substrate separations, with tilted molecular 

bridges in the junctions. This evolves into a current plateau as the tip is further retracted with a 

rather abrupt end to the plateau as the molecular junction breaks. Many of these current-distance 

traces are compiled together in current or conductance histograms, with the plateau features 

manifesting as peaks in the histograms which correspond to favored junction conductance values.3 

Multiple peaks in the histogram can correspond to integer numbers of molecules in the junction or 

different binding geometries associated with the surface anchoring groups. Examples of current-

distance retraction curves and histograms obtained by the BJ method by the Tao group are shown in 

Figure 3 (these data were obtained in 0.1 M NaClO4 solutions under electrochemical conditions at -

0.2 V vs. Ag/AgCl).4 Figure 3a and b show data corresponding to the gold-atomic point contact stage 

with clear current plateaus at 1G0 and a histogram peak at G0 (peaks at 2 and 3 G0 are also marked 

and these are related to multiple rather than single point contacts). At the molecular junction stage 

of tip retraction, current plateaus and conductance histogram peaks are seen at ~10-2 G0 for 
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benzenedithiol (BDT) molecular junctions (Figure 3c and d), and 6 x 10-4 G0 for the longer and less 

conjugated molecule benzenemethanedithiol (BMDT, Figure 3e and f).4  

 

Figure 2: An illustration of the in-situ BJ method for molecular junction formation with an STM. 
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Figure 3: Conductance versus distance traces recording during BJ experiments showing conductance 

histograms of gold point contact (a, b) and BDT molecular junctions (c, d) and BDMT junctions (e, f) 

measured under electrochemical conditions at -0.2 V vs. Ag/AgCl in 0.1 M NaClO4 solutions. For 

clarity the conductance traces have been displaced on the x-axis.4 Reprinted with permission from 

ref. 4. Copyright 2012 American Chemical Society. 

Molecular junctions can also be formed without the need to first form a metallic point control. This 

can be achieved by the so-called I(s) method developed in our laboratories,5 where I is current and s 

is retraction distance of the STM tip. Here the STM tip is approached close to the substrate surface. 

Under such conditions, target molecules can stochastically bridge the gap between the tip and 

surface.5,6 If the STM tip is then retracted, simple current-distance molecular junction curves 

resembling those obtained for the BJ method can result. Figure 4 schematically illustrates the I(s) 

technique with conductance distance curves in the presence of a molecular junction (upper curve) 

and in its absence (lower curve). The tip approaches the surface and molecular junction formation 
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can occur (A-B), the molecule is then extended in the junction as the tip retracts (C-D) but the 

molecular junction breaks and the current decays rapidly resulting in a current step.  

 

Figure 4. A schematic representation of the I(s) STM technique for molecular junction formation, 

showing four stages of the molecular junction formation (A-D) and corresponding conductance-

distance curves with stages B-D labelled. The lower curve shows the conductance-distance response 

in the absence of molecular bridge formation. Reproduced from ref. 7 with permission from the PCCP 

Owner Societies. 

Other methods exist for determining single molecule conductance under electrochemical conditions. 

In the I(t) method, the STM tip is positioned at constant height, close to the metal surface covered 

with the adsorbed target molecule.6 In this configuration, molecular bridges between the STM tip 

and surface form intermittently, giving rise to current jumps or “blinks”. These jumps can be 

accumulated and analyzed to give molecular conductance.6 This method has also been combined 

with ac small amplitude mechanical modulation of the STM tip distance.8 The ac response can be 

used to recognize the presence of a bridging molecule, while the DC junction current is used to 

quantify the molecular conductance.8 Current-voltage traces can also be recorded either during a 
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current blink or in an automated fashion during tip retraction while a molecular junction is in place. 

An alternative method for forming junctions is the so-called “jump-to-contact” method. In this 

method a foreign metal is electrochemically plated on the STM tip.9-11 This metal can be transferred 

from the STM tip to the substrate as the STM tip is rapidly approached and retracted from the 

surface under bipotentiostatic electrode potential control. This is a very interesting technique since 

it allows the formation of metal-molecule-metal electrical junctions from a wide variety of metals 

which can be electrodeposited such as Ag, Cu and Pd.9-11 

The first studies of redox active single molecule wired electrical junctions (with the molecular target 

directly tethered by chemisorption between two metallic contacts) were performed by Haiss et al.5 

Bipyridinium or viologen (V2+) molecular wires were the focus of this study with the V2+ moiety being 

readily electrochemically reduced to its radical cation form V+. in aqueous electrolytes. The reduction 

of the viologen molecular wire contacted in a single molecular junction is schematically shown in 

Figure 5. The molecular bridge is connected at both end to the gold electrodes (the STM tip and gold 

substrate, respectively) through thiol anchoring groups. Such chemisorption end groups have been 

referred to as “molecular alligator clips” for electrically wiring the molecule into the junction. Notice 

here also, that the central viologen group is separated from the contacts by -S(CH2)6 spacers; the 

shorthand notation adopted for this molecule is “6V6” with the “6” representing the -S(CH2)6 linkers 

and the “V” the central viologen moiety. These spacers act to ensure that the viologen moiety is not 

directly electronically coupled to the gold contacts, thereby promoting electrochemical charge 

hopping type modes of electron transfer across the junction when the electrode potential of the 

metal contacts is brought close to the reversible potential for the redox couple (see later). Figure 6 

shows the dependence of single molecular conductance on electrode potential, here plotted as the 

overpotential.5 Each point of this plot is obtained from an individual conductance histogram 

recorded for many I(s) junction formation processes. The conductance increases as the reversible 

potential is approached from positive overpotentials and reaches a plateau at negative 

overpotential. Over this electrode potential range the conductance increases by around six-fold as a 
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result of the electrochemical gating. It is notable however that the conductance rise as the electrode 

potential is made more negative is slow and has a sigmoidal shape rather than a bell-shaped curve 

which would be expected for electrochemical hopping mechanisms discussed later in the text. This 

slow rise of conductance with electrode potential has been referred to as “soft gating” and this is 

described further below.  

 

Figure 5. An illustration of electrochemical switching in an electrical junction of the viologen bridge 

(6V6) from its dication to cation radical state. 
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Figure 6. Single molecule conductance of a viologen molecular bridges (6V6) versus electrochemical 

overpotential. The conductance increases in a sigmoidal fashion as the electrode potential is made 

more negative. Adapted from ref. 12. Copyright 2008 American Chemical Society. 

The data for the viologen system shown in Figure 6 was recorded with aqueous electrolytes.5 More 

recently, ionic liquids have been employed for such measurements on a variety of molecular redox 

systems, including viologens,13 pyrrolo-tetrathiafulvalene1 and  conjugated redox-active metal 

complexes14. Ionic liquids were first used for electrochemical scanning tunneling spectroscopy 

studies on redox active monolayers,15 but it was later established that they can also be used for 

single molecule wire studies.16 Single molecule data for the electrochemical gating of 6V6 in ionic 

liquids (Figure 7) starkly contrasts to data for the same molecule gated in aqueous electrolytes 

(Figure 6).13  In ionic liquids a bell shaped profile is observed, with the conductance being in a high 

state around zero overpotential and low at both sufficiently negative and positive overpotentials 

respectively.13 The peak at close to zero overpotential is a strong indication that charge transfer 

across the molecular bridge occur by a 2-step electrochemical hopping-type mechanism rather than 

a resonant electron transfer, since the latter mechanism predicts that the conductance peak is 

shifted by the reorganization energy away from zero overpotential.17-19 A description of the resonant 

electron transfer model and the reason for this shift away from zero overpotential is given in a 

separate review 19. 
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Figure 7. Single molecule conductance for a viologen molecular bridge (6V6) recorded as a function 

of electrochemical overpotential in ionic liquid electrolytes. Reprinted from ref. 13. Copyright 2015 

American Chemical Society. 

The electrochemical gating behavior shown in Figure 7 has been interpreted with a “two-step 

electrochemical hopping mechanism” from Kuznetsov and Ulstrup which is illustrated in Figure 8. 

This illustration shows the gold contacts at either side, with electron transfer to/from the Fermi 

levels of these electrodes. Following pre-organization of the molecule and environment to enable a 

Frank-Condon electronic transition, the electron transfer occurs onto the viologen group in the 

center of the nano-gap, marked as Step (1) in this figure. This is an electrochemical reduction with a 

rate constant ka. In the two-step adiabatic model, relaxation occurs (step 2) followed by electron 

transfer to the Fermi level of the other contact (step 3, electrochemical rate constant, kb). As 

relaxation occurs (step 2) many electrons can transfer through the molecular junction in a “cascade” 

which gives rise to the current amplification seen in the conductance-overpotential relation in Figure 

7. The process is characterized by the two electrochemical rate constants, ka and kb which have the 

following form: 20 

Here eff is a characteristic nuclear vibrational frequency, e is the electron charge, η is the 

electrochemical overpotential, kB is Boltzmann’s constant, T the temperature, λ is the reorganization 

energy and Vbias is the bias voltage between the STM tip and substrate. The parameters γ is the 

fraction of the bias voltage experienced at the site of the redox center. From these two rate 

constants, the steady-state current flowing across a symmetrical molecular junctions is given in the 

adiabatic (strong coupling) limit by:20  

𝑘𝑎 ≈
𝜔𝑒𝑓𝑓

2𝜋
𝑒𝑥𝑝  −

[𝜆−𝑒𝜂−𝛾𝑒𝑉𝑏𝑖𝑎𝑠 ]2

4𝜆𝑘𝐵𝑇
   

𝑘𝑏 ≈
𝜔𝑒𝑓𝑓

2𝜋
𝑒𝑥𝑝  −

[𝜆+𝑒𝜂−(1−𝛾)𝑒𝑉𝑏𝑖𝑎𝑠 ]2

4𝜆𝑘𝐵𝑇
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Where nel is the number of electrons transferred through the junction during the relaxation step 

(step 2 in Figure 8). The full form of the Kuznetsov Ulstrup equation20 is: 

𝑗𝑒𝑛ℎ ≈ 𝑗0exp(−𝜆
4𝑘𝑇⁄ )

exp(
𝑒|𝑉𝑏𝑖𝑎𝑠|

4𝑘𝑇⁄ )

𝑐𝑜𝑠ℎ(
𝑒(0.5−𝛾)𝑉𝑏𝑖𝑎𝑠−𝑒𝜉𝜂

2𝑘𝑇
)
  

This equation describes the enhanced current (jenh) flowing across the molecular junction. An 

expression for j0 is given in 20 and ξ is the fraction of the electrode potential experienced at the redox 

site. Through application of this equation, values for the reorganization energy and the fraction of 

the electrochemical potential drop experienced at the redox site can be obtained.   

 

Figure 8. The two-step electrochemical hopping mechanism of charge transfer through a redox 

active single molecular junction.  

The slow and broad rise of the conductance as the electrode potential is made negative for 6V6 

molecular junctions in aqueous electrolytes (Figure 6), giving the absence of a maximum, was 

initially ascribed to configurational fluctuations influencing the charge transport mechanism.21 A 

model involving both superexchange-based electron transport and pre-organization of the molecular 

bridge was proposed for this 6V6 system, rather than a sequential electron transfer process. In this 

𝑖𝑡𝑢𝑛𝑛
𝑠𝑡𝑟𝑜𝑛𝑔

= 2𝑒𝑛𝑒𝑙

𝑘𝑎𝑘𝑏

𝑘𝑎 + 𝑘𝑏
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model, the molecular bridge must reach, through pre-organization, molecular configurations in 

which electron tunneling is more facile. In other words, both the molecular nuclear coordinates and 

the environment pre-organize to produce a configuration in which electron tunneling is more 

facile.21 In this ‘soft gating’ model, the redox active viologen center is not reduced over the range of 

overpotentials represented in Figure 6. More recently, with the ability to perform single-molecule 

electrochemical gating in ionic liquid, we have turned our attention to the influence of ionic liquids 

on charge transport across the viologen bridge.13 Figure 9 shows comparative data for 6V6 recorded 

in aqueous and ionic liquid electrolytes and it is notable how much the charge transport patterns 

change between these two environments. The analysis in Figure 9 is based on the 2-step KU model 

(“electrochemical hopping type model”) being operative in both aqueous and ionic liquid media and 

differs from previous work21 which had used a superexchange model to describe electron transport 

across the viologen bridge in aqueous environments. Using this model the key differences between 

the two environments are in the reorganization energies and in the parameter ξ, which is the 

fraction of the electrode potential experienced at the viologen redox center. The reorganization 

energies (λ) computed from these data for the aqueous environment is substantially lower than that 

found for the ionic liquid electrolytes. The high value for the ionic liquid environment reflects the 

reorganization of these generally highly structured liquids within the nano-gap environment 

between the STM tip and metal substrate.13 The high reorganization energy of the ionic liquid 

consequently leads to a decreased junction conductance (Figure 9). The data shown in figure 9 for 

6V6 in ionic liquid yields ξ=1, corresponding to 100 % of the applied electrode potential being 

experienced at the viologen redox center.13  This shows that ionic liquid electrolytes are highly 

effective media for single molecule electrolyte gating. Indeed, gating efficiency for such liquid 

electrolyte single molecule transistor configuration generally greatly exceeds what is achievable in 

solid-state 3-terminal platforms created using nanolithography.13 On the other hand the aqueous 

data in Figure 9 gives a low gating parameter ξ of 0.2, which means that only 20 % of the applied 

electrode potential is experienced by the viologen moiety in the Au│6V6│Au nanogap.13 
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Figure 9. Single molecule conductance for a viologen molecular bridge (6V6) recorded as a function 

of electrochemical overpotential in aqueous (red line and triangles) and ionic liquid electrolytes 

(blue line and squares). Reprinted from ref. 13. Copyright 2015 American Chemical Society. 

Single molecule electrochemical gating data for 6V6 shows the impact of the liquid environment on 

controlling charge transport across these molecular electrical junctions.22 Recently, we have devised 

another chemical method for controlling the immediate environment of the viologen moiety in the 

nano electrical junction. This was achieved by threading the 6V6 viologen wire within a 

cucurbit[8]uril CB[8] host (Figure 10). The local microenvironment within the cavity leads to an 

increase in the single molecule conductance of 6V6. This is consistent with the 2-step 

electrochemical hopping model and it is envisaged that the conductance increase is a result of 

lowering of the solvent (water) reorganisation energies of “high energy” water surrounding the 

viologen group and encapsulated with the host. 
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Figure 10. A schematic illustration of electron transport through a viologen-cucurbit[8]uril 

supramolecular complex. The viologen redox moiety is threaded within the CB[8] host which 

controls the environment surrounding the viologen guest. Reprinted from ref. 22. Copyright 2016 

American Chemical Society. 

 

Ionic liquids also offer the opportunity to extend the potential window beyond what can be usually 

achieved with aqueous electrolytes. This had been put to effect in the study of the redox active 

molecular bridge containing the redox moiety pyrrolo-tetrathiafulvalene (pTTF).1 In particular the 

molecular bridge 6pTTF6 has been studied, which possesses -S(CH2)6 linkers on either end of the 

pTTF group. In aqueous electrolytes only the first oxidation of this moiety could be studied,12 while 

in ionic liquids 3 redox states could be accessed, with oxidation of pTTF to both its cation and 

dication state. This is apparent from monolayer voltammetry of self-assembled monolayers on gold 

electrodes (Figure 11).  The electrode potential dependence of the single molecule conductance is 

shown in figure 12, with the conductance rising at the reversible potential for the first oxidation and 

rising again at the second oxidation. These data have been fitted to the Kuznetsov Ulstrup 2-step 

hopping model showing the role of the pTTF redox center in electron transfer across the molecular 

bridge.1 As for the viologen system high values of the gating parameter ξ are obtained for these data 

in ionic liquids.1 
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Figure 11. Cyclic voltammograms for self-assembled monolayers of 6pTTF6 recorded on Au(111) in 

the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMOTf) at the marked 

sweep rates. These show two oxidation waves, 6pTTF6→6pTTF6+ and 6pTTF6+→6pTTF62+, 

respectively. Reprinted from ref. 1. Copyright 2012 American Chemical Society. 
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Figure 12. Single molecule conductance for the illustrated pyrrolo-tetrathiafulvalene (pTTF) 

molecular bridge recorded as a function of electrochemical overpotential in ionic liquid electrolyte. 

Single molecule electrochemical transistor gating is shown through the illustrated three redox states 

of the molecular junction. Reprinted from ref. 1. Copyright 2012 American Chemical Society. 

There has recently been much interest in transition metal-containing molecular wires, particularly 

those in which oligo(phenyleneethynylene) units are used to connect organometallic metal centers 

to electrodes via terminal contact groups. However, to date none of these has been suitable for a 

detailed conductance-overpotential study owing to insufficiently-reversible redox chemistry. To test 

the conductance-overpotential relationship for related rigid, conjugated redox-active metal 

complexes, we have examined the complexes [M(pyterpy)2]2+/3+ (M = Co, Fe; pyterpy = 4'-(pyridin-4-

yl)-2,2':6',2''-terpyridine).14 For these measurements we took advantage of the wide redox window 

afforded by ionic liquids; the M(II)/M(III) redox potential for [Fe(pyterpy)2]2+/3+ in particular was 

+0.78 V vs. ferrocene/ferrocenium. We found that under these conditions, the conductance-

overpotential relationships for both metal complexes (Figure 13) were very similar to those of pTTF 

(above); the behavior could likewise be fitted to the Kuznetsov-Ulstrup model, with fitting 

parameters of λ = 0.80 eV, ξ = 0.5, γ = 0.40 for the Co complex, while those for the iron complex 

were λ = 0.77 eV, ξ = 0.8 and γ = 0.55. The reorganization energies for [M(pyterpy)2]2+/3+ are notably 

lower than for either the viologens or pTTF (1.3 and 1.2 eV respectively), while the degree of gate 

coupling experienced by the metal complexes is also lower, indicating that the screening is not so 

effective. This may be due to the metal-centered redox orbitals being better shielded by the 

surrounding ligand ‘shell’.  



20 
 

 

Figure 13. Conductance–overpotential plots for (a) [Co(pyterpy)2]2+/3+ and (b) [Fe(pyterpy)2]2+/3+ in 1-

butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIM TFSI). Data at each potential 

shown as points; the line corresponds to the fitting to the Kuznetsov-Ulstrup model, q.v. ref. 14. 

Reproduced from Ref. 14 with permission from the Royal Society of Chemistry. 

As part of a study aimed at addressing the question of whether there is a correlation between 

molecular junction conductance and electrochemical rate constant for redox-active molecules, Zhou 

et al had earlier investigated the conductance-overpotential relationship for [Os(pyterpy)2]2+ 

(isoelectronic with [Fe(pyterpy)2]2+) over its Os(II)/Os(III) redox wave. Using an aqueous electrolyte 

(0.1 M NaClO4), they determined a broad, sigmoidal conductance increase, from 2.1 nS for the Os(III) 

redox state to 17.8 nS for the Os(II) state, reminiscent of the behavior we earlier observed for 

viologens in aqueous media (although in this electrolyte, over the timescale of molecular 

conductance determination experiments, the Os(II)/Os(III) voltammetry was not fully 

electrochemically reversible).23 As in the case of the viologens, this is an example of the 

conductance-overpotential relationship being governed more by the medium than by the molecular 

structure. However, the molecular structure evidently also plays a role, as is clear from the behavior 

of pTTF in both aqueous and ionic liquid environments. Moreover, in a pioneering study on another 

relatively rigid, conjugated redox system, an oligoaniline contacted to the gold electrodes by thiol 

groups, it was found that this exhibited a peak in the molecular conductance at around the value of 
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the redox potential for the oxidation of the oligoaniline from its insulating (leucoemeraldine) to its 

conducting (emeraldine) form in aqueous electrolyte (0.05 M H2SO4).24 

The vast majority of electrochemical single molecule gating studies have been performed with gold 

electrodes. The reason for this is that defined surface electrochemistry can be achieved with gold 

electrodes with a relatively wide variety of stable surface anchoring groups and importantly gold is 

oxide free over a reasonably wide potential window and it is easy to prepare. However, there are 

good reasons for developing other contacting materials. These include analysis of charge transport 

mechanisms with other contacts presenting different Fermi levels, level alignment and electronic 

density of states, and exploiting magnetic properties and spin-dependent transport through the use 

of ferromagnetic contacts. We have been endeavoring, with our collaborators Brooke and 

Schwarzacher in Bristol and Mao in Xiamen to extend the range of metals available for single 

molecule electrochemical gating studies. We showed that single molecule measurements could be 

made with cobalt contacts through the use of electroplating and ionic liquids.25 This study used 

conventional electroplating to deposit high quality cobalt thin films on an underlying gold substrate. 

However, due to the sensitivity of cobalt to surface oxidation, ionic liquids were then employed as 

media for the removal of the surface oxide by electroreduction, followed by self-assembly of the 

target molecules in the same medium.  The resulting molecular monolayers were shown to be of 

good quality as assessed by infrared spectroscopy and electrochemical characterization. Using STM, 

with cobalt tips, the conductance of cobalt│ODT│cobalt junctions (ODT=1,8-octanedithiol) was 

determined.25 The molecular conductance value measured for the Co/ODT/Co junction was found to 

be similar to those of Au/ODT/Au and Co/ODT/Au junctions. This was attributed to the relatively 

small difference in work function of cobalt and gold, in combination with the relatively large gap 

between the metal Fermi energy and the frontier orbitals of ODT.25 

Recently, single molecule electrochemical gating studies have been performed with nickel surfaces 

and nickel STM tips for the archetypal 4,4’-bipyridine system, by our collaborators in Bristol, Brooke 

and Schwarzacher.26 Through control of the surface preparation, electrode potential and surface pH, 
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the nickel contacts could be maintained oxide-free in the 4-electrode bipotentiostatic STM-BJ 

setup.26 In this way electrochemical gating of nickel│4,4’-bipyridine│nickel junctions could be 

studied, and the importance of spin-polarized Ni d-electrons in charge transport was determined.26 

Figure 14 shows a comparison between conductance histograms for this system using nickel or gold 

electrodes. Both the conductance (left) and electrochemical gating (right) are enhanced with the 

oxide-free nickel electrodes. Note that the mechanism of charge transport here is phase-coherent 

tunneling of electrons through the LUMO tail of the 4,4’-bipyridine molecular bridge. As the 

electrode potential is adjusted to more negative values, the energy alignment between the LUMO 

and the metal Fermi energies becomes closer, in other words the Fermi energy position climbs up 

the molecular LUMO tail. This non-resonant mechanism, in which the molecular bridge does not 

change redox state, can be well-represented by DFT transport computations in which the LUMO to 

Fermi level energy spacing can be adjusted to mimic the electrochemical gating effect.26 The ab-

initio transport computations presented in this paper theoretically reproduce the higher 

conductance and stronger gating for the nickel│4,4’-bipyridine│nickel junctions and show that spin-

polarized  d-electrons mediate charge transport through these junctions. The junction current is 

highly spin-polarized due to this hybridization of the nickel d band and the frontier LUMO orbitals of 

the 4,4’-bipyridine.26 
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Figure 14. (A) Conductance histograms recorded for 4,4’-bipyrdine under electrochemical conditions 

with either Au or Ni electrodes as marked. Molecular conductance peaks are between ~ 10-2 – 10-3 

G0. (B) Corresponding plots of molecular conductance versus electrochemical gating voltage. 

Reprinted with permission from ref. 26. Copyright 2014 American Chemical Society. 

 

In summary, STM based techniques for studying charge transfer across single molecule bridges in 

electrochemical environments have been valuable tools in nanoelectrochemistry and modern 

electrochemical surface science, in particular in advancing the understanding of charge transfer 

across redox active molecular bridges. Over the last decade major advances, by us and other groups, 

have been made in understanding charge transfer mechanisms, ranging from phase-coherent 

transport mechanisms to electrochemical hopping-type mechanisms. In other works, 

electrochemical redox switching has also proved to be valuable for analyzing quantum interference 

phenomena in molecular wires.27,28 New methods of contacting single molecules within 

nanoelectrochemical junctions have also been devised which are able to enhance both conductance 

and single molecule electrochemical gating. 26,29,30 STM based single molecule electrical methods 

have also been successfully applied in ionic liquid electrolytes, which has enabled larger electrode 

potential windows to be employed, thereby allowing electrochemical gating across multiple 

molecular redox states to be established. 1,13,15,16 Ionic liquids have also been shown to promote 

strong gate coupling making them particularly valuable for studying single molecule field effect 

transistor effects.1,13 The majority of such studies to date have employed gold electrodes, but 

recently it has been become possible to study single molecule electrochemical gating with nickel 

electrodes.26 This opens up new opportunities for coupling molecular spintronics and 

nanoelectrochemistry and also points towards future opportunities for investigations with other 

contacts such as semiconductor electrodes. 
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