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Abstract. We discuss recent theoretical models for programmable mat-
ter operating in a dynamic environment. In the basic Network Construc-
tors model, all devices are finite automata, begin from the same initial
state, execute the same protocol, and can only interact in pairs. The in-
teractions are scheduled by a fair (or uniform random) scheduler, in the
spirit of Population Protocols. When two devices interact, the protocol
takes as input their states and the state of the connection between them
(on/off ) and updates all of them. Initially all connections are off. The
goal of such protocols is to eventually construct a desired stable network,
induced by the edges that are on. We present protocols and lower bounds
for several basic network construction problems and also universality re-
sults. We next highlight minimal strengthenings of the model, that can
be exploited by appropriate network-transformation protocols in order
to achieve termination and the maximum computational power that one
can hope for in this family of models. Finally, we discuss a more applied
version of these abstract models, enriched with geometric constraints,
aiming at capturing some first physical restrictions in potential future
programmable matter systems operating in dynamic environments.

1 Introduction

The realization of computing systems and computer networks was indisputably
one of the most outstanding achievements of science and engineering of the last
century. The impact of Information and Communication Technologies on society,
industry, and everyday life was incomparable. Digital communications and the
Internet have made the world look much smaller, personal computers radically
changed office work, largely simplifying it, high processing speeds made it possi-
ble for the first time to simulate and accurately predict a wide range of physical
phenomena, from weather forecast to chemical reactions and whole-cell simula-
tions [KSM+12], and combined to increased storage capabilities, transformed the
world of paper to a world of digital information, where everything, from a data-
trace of successful collisions in CERN that produced the Higgs boson [CKS+12]
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to the human genome, can be stored and retrieved. Computing and Informa-
tion Sciences have been extremely successful in revealing the laws underlying
all possible ways of manipulating information. Every possible object, system or
problem can be encoded in an appropriate binary representation, which can then
be stored, processed, retrieved and transmitted. It would be reasonable to say
that the 20th century was the century of information.

However, the story does not seem to end here. The established knowledge
of manipulating information seems to have opened the road towards a vision
that will further reshape society to an unprecedented degree. This vision con-
cerns our ability to manipulate matter via information-theoretic and computing
mechanisms and principles. It will be the jump from amorphous information
to the incorporation of information to the physical world. Information will not
only be part of the physical environment: it will constantly interact with the
surrounding environment and will have the ability to reshape it. Matter will be-
come programmable [GCM05] which is a plausible future outcome of progress in
high-volume nanoscale assembly that makes it feasible to inexpensively produce
millimeter-scale units that integrate computing, sensing, actuation, and locomo-
tion mechanisms. This will enable the astonishing possibility of transferring the
discrete dynamics from the computer memory black-box to the real world and
to achieve a physical realization of any computer-generated object. “It will have
profound implications for how we think about chemistry and materials. Mate-
rials will become user-programmed and smart, adapting to changing conditions
in order to maintain, optimize or even create a whole new functionality using
means that are intrinsic to the material itself. It will even change the way we
think about engineering and manufacturing. We will for the first time be capable
of building smart machines that adapt to their surroundings, such as an airplane
wing that adjusts its surface properties in reaction to environmental variables”
[Zak07], or even further realize machines that can self-built autonomously.

This vision is not a human invention. It is an inspiration from a property
that pervades the biological world. Every biological organism is a collection of
relatively simple units of matter (the cells) coupled with information storing, pro-
cessing, and transmission capabilities. Moreover, the effort to realize this vision
has already begun and the first outcomes are more than promising. For example,
it has been already demonstrated that it is possible to fold long, single-stranded
DNA molecules into arbitrary nanoscale two-dimensional shapes and patterns
[Rot06]. Also, a system was recently reported that demonstrates programmable
self-assembly of complex two-dimensional shapes with a thousand-robot swarm
[RCN14]. “This was enabled by creating small, cheap, and simple autonomous
robots designed to operate in large groups and to cooperate through local in-
teractions and by developing a collective algorithm for shape formation that
is highly robust to the variability and error characteristic of large-scale decen-
tralized systems” [RCN14]. Other systems for programmable matter include the
Robot Pebbles [GKR10], consisting of 1cm cubic programmable matter modules
able to form 2-dimensional (abbreviated “2D” throughout) shapes through self-
disassembly, and the Millimotein [KCL+12], a chain of programmable matter



which can fold itself into digitized approximations of arbitrary 3-dimensional
(abbreviated “3D” throughout) shapes.

Apart from the fact that systems work is still in its infancy, there is also an
apparent lack of unifying formalism and theoretical treatment. The following are
some of the very few exceptions aiming at understanding the fundamental possi-
bilities and limitations of this prospective. The area of algorithmic self-assembly
tries to understand how to program molecules (mainly DNA strands) to ma-
nipulate themselves, grow into machines and at the same time control their
own growth [Dot12]. The theoretical model guiding the study in algorithmic
self-assembly is the Abstract Tile Assembly Model (aTAM) [Win98, RW00] and
variations. Recently, a model, called the nubot model, was proposed for studying
the complexity of self-assembled structures with active molecular components
[WCG+13]. This model “is inspired by biology’s fantastic ability to assemble
biomolecules that form systems with complicated structure and dynamics, from
molecular motors that walk on rigid tracks and proteins that dynamically alter
the structure of the cell during mitosis, to embryonic development where large-
scale complicated organisms efficiently grow from a single cell” [WCG+13]. An-
other very recent model, called the Network Constructors model, studied what
stable networks can be constructed by a population of finite-automata that in-
teract randomly like molecules in a well-mixed solution and can establish bonds
with each other according to the rules of a common small protocol [MS16b].
Interestingly, the special case of the model that cannot create bonds (known as
the Population Protocol model [AAD+06]) is known to be formally equivalent
to chemical reaction networks (CRNs), which model chemistry in a well-mixed
solution and are widely used to describe information processing occurring in
natural cellular regulatory networks [Dot14]. Also the recently proposed Amoe-
bot model, offers a versatile framework to model self-organizing particles and
facilitates rigorous algorithmic research in the area of programmable matter
[DDG+14, DGP+16].

At the same time, recent research in distributed computing theory and prac-
tice is taking its first timid steps on the pioneering endeavor of investigating the
possible relationships of distributed computing systems to physical and biological
systems. The first main motivation for this is the fact that a wide range of phys-
ical and biological systems are governed by underlying laws that are essentially
algorithmic. The second is that the higher-level physical or behavioral properties
of such systems are usually the outcome of the coexistence, which may include
both cooperation and competition, and constant interaction of very large num-
bers of relatively simple distributed entities respecting such laws. This effort, to
the extent that its perspective allows, is expected to promote our understanding
on the algorithmic aspects of our (distributed) natural world and to develop
innovative artificial systems inspired by them.

In the present paper, we shall focus on the Network Constructors model and
its existing variations. In Section 2, we present the basic Network Construc-
tors model and give the main definitions to be used in the sequel. In Section
3, we present protocols for the spanning line construction problem and bounds



for other basic network construction problems. Section 4 goes one step further,
showing how one can establish universality results. In Section 5, we show how
network-transformation protocols can exploit minimal strengthenings of the ba-
sic model, in order to maximize the computational power. Section 6 discusses a
geometric variant of the basic model, in which the nodes can be programmed to
self-assemble into complex 2D or 3D shapes. Finally, Section 7 highlights some
promising directions for future research.

2 The Network Constructors Model

Suppose a set of tiny computational devices (possibly at the nanoscale) are in-
jected into a human circulatory system for the purpose of monitoring or even
treating a disease. The devices are incapable of controlling their mobility. The
mobility of the devices, and consequently the interactions between them, stems
solely from the dynamicity of the environment, the blood flow inside the circula-
tory system in this case. Additionally, each device alone is incapable of perform-
ing any useful computation, as the small scale of the device highly constrains its
computational capabilities. The goal is for the devices to accomplish their task
via cooperation. To this end, the devices are equipped with a mechanism that
allows them to create bonds with other devices (mimicking nature’s ability to
do so). So, whenever two devices come sufficiently close to each other and in-
teract, apart from updating their local states, they may also become connected
by establishing a physical connection between them. Moreover, two connected
devices may at some point choose to drop their connection. In this manner, the
devices can organize themselves into a desired global structure. This network-
constructing self-assembly capability allows the artificial population of devices
to evolve greater complexity, better storage capacity, and to adapt and optimize
its performance to the needs of the specific task to be accomplished.

Our goal in [MS16b] was to study the fundamental problem of network con-
struction by a distributed computing system. The system consists of a set of
n processes that are capable of performing local computation (via pairwise in-
teractions) and of forming and deleting connections between them. Connections
between processes can be either physical or virtual depending on the applica-
tion. In the most general case, a connection between two processes can be in one
of a finite number of possible states. For example, state 0 could mean that the
connection does not exist while state i ∈ {1, 2, . . . , k}, for some finite k, that the
connection exists and has strength i. We considered the simplest case, which we
call the on/off case, in which, at any time, a connection can either exist or not
exist; that is, there are just two states for the connections, 1 and 0, respectively.
If a connection exists we also say that it is active and if it does not exist we say
that it is inactive. Initially all connections are inactive and the goal is for the
processes, after interacting and activating/deactivating connections for a while,
to end up with a desired stable network. In the simplest case, the output-network
is the one induced by the active connections and it is stable when no connection
changes state any more.



Our aim in [MS16b] was to initiate this study by proposing and studying
a very simple, yet sufficiently generic, model for distributed network construc-
tion. To this end, we assumed the computationally weakest type of processes.
In particular, the processes are finite automata that all begin from the same
initial state and all execute the same finite program which is stored in their
memory (i.e., the system is homogeneous). The communication model that we
considered is also very minimal. In particular, we considered processes that are
inhabitants of an adversarial environment that has total control over the inter-
process interactions. Such an environment is modeled by an adversary scheduler
that operates in discrete steps, selecting in every step a pair of processes which
then interact according to the common program. This represents very well sys-
tems of (not necessarily computational) entities that interact in pairs whenever
two of them come sufficiently close to each other. When two processes interact,
the program takes as input the states of the interacting processes and the state
of their connection and outputs a new state for each process and a new state
for the connection. The only restriction that we imposed on the scheduler, in
order to study the constructive power of the model, is that it is fair, by which
we mean the weak requirement that, at every step, it assigns to every reachable
configuration of the system a non-zero probability to occur. In other words, a
fair scheduler cannot forever conceal an always reachable configuration of the
system. Note that under such a generic scheduler, we cannot bound the running
time of our constructors. To estimate the efficiency of our solutions, we assume a
uniform random scheduler, one of the simplest fair probabilistic schedulers. The
uniform random scheduler selects in every step independently and uniformly at
random a pair of processes to interact from all such pairs. What renders this
model interesting is, as we shall see, its ability to achieve complex global behav-
ior via a set of notably simple, uniform (i.e., with codes that are independent of
the size of the system), homogeneous, and cooperative entities.

We now give a simple illustration of the above. Assume a set of n very
weak processes that can only be in one of two states, “black” or “red”. Initially,
all processes are black. We can think of the processes as small particles that
move randomly in a fair solution. The particles are capable of forming and
deleting physical connections between them, by which we mean that, whenever
two particles interact, they can read and write the state of their connection. To
keep this first model as simple as possible, we assume that fairness of the solution
is independent of the states of the connections. 3 In particular, we assume, for
the time being, that, throughout the execution, every pair of processes may be
selected for interaction.

Consider now the following simple problem. We want to identically program
the initially disorganized particles so that they become self-organized into a
spanning star. In particular, we want to end up with a unique black particle

3 This is in contrast to schedulers that would take into account the geometry of the
active connections and would, for example, forbid two non-neighboring particles of
the same component to interact with each other. Such a geometrically restricted
variant, studied in [Mic15], shall be discussed in Section 6.



connected (via active connections) to n−1 red particles and all other connections
(between red particles) being inactive. Conversely, given a (possibly physical)
system that tends to form a spanning star we would like to unveil the code
behind this behavior.

Consider the following program. When two black particles that are not con-
nected interact, they become connected and one of them becomes red. When
two connected red particles interact they become disconnected (i.e., reds repel).
Finally, when a black and a red that are not connected interact they become
connected (i.e., blacks and reds attract).

The protocol forms a spanning star as follows. As whenever two blacks in-
teract only one survives and the other becomes red, eventually a unique black
will remain and all other particles will be red (we say “eventually”, meaning
“in finite time”, because we do not know how much time it will take for all
blacks to meet each other, but, from fairness, we know that this has to occur
in a finite number of steps). As blacks and reds attract while reds repel, it is
clear that eventually the unique black will be connected to all reds while every
pair of reds will be disconnected. Moreover, no rule of the program can modify
such a configuration, so the constructed spanning star is stable (see Figure 1).
It is worth noting that this very simple protocol is optimal both with respect to
(abbreviated “w.r.t.” throughout) the number of states that it uses and w.r.t.
the time it takes to construct a stable spanning star under the uniform random
scheduler.

(a) (b) (c)

Fig. 1. (a) Initially all particles are black and no active connections exist. (b) After
a while, only 3 black particles have survived each having a set of red neighbors (red
particles appear as gray here). Note that some red particles are also connected to red
particles. The tendency is for the red particles to repel red particles and attract black
particles. (c) A unique black has survived, it has attracted all red particles, and all
connections between red particles have been deactivated. The construction is a stable
spanning star.

Our model for network construction has been strongly inspired by the Popu-
lation Protocol model [AAD+06] and the Mediated Population Protocol model
[MCS11]. In the former, connections do not have states. States on the connections
were first introduced in the latter. The main difference to the present model is



that in those models the focus was on the computation of functions of some input
values and not on network construction. Another important difference is that we
now allow the edges to choose between only two possible states which was not the
case in [MCS11]. As already mentioned, when operating under a uniform ran-
dom scheduler, population protocols are formally equivalent to chemical reaction
networks (CRNs). “With upcoming advances in synthetic biology, CRNs are a
promising programming language for the design of artificial molecular control
circuitry” [Dot14]. However, CRNs and population protocols can only capture
the dynamics of molecular counts and not of structure formation. Our model
then may be also viewed as an extension of population protocols and CRNs
aiming to capture the stable structures that may occur in a well-mixed solution.
From this perspective, our goal is to determine what stable structures can result
in such systems (natural or artificial), how fast, and under what conditions (e.g.,
by what underlying codes/reaction-rules).

2.1 Definitions

Definition 1. A Network Constructor (NET) is a distributed protocol defined
by a 4-tuple (Q, q0, Qout, δ), where Q is a finite set of node-states, q0 ∈ Q
is the initial node-state, Qout ⊆ Q is the set of output node-states, and δ :
Q×Q× {0, 1} → Q×Q× {0, 1} is the transition function.

The system consists of a population VI of n distributed processes/nodes. In
the generic case, there is an underlying interaction graph GI = (VI , EI) spec-
ifying the permissible interactions between the nodes. Interactions are always
pairwise. In the basic model, GI is a complete undirected interaction graph, i.e.,
EI = {uv : u, v ∈ VI and u 6= v}, where uv = {u, v}. Initially, all nodes in VI
are in the initial node-state q0. A central assumption of the model is that edges
have binary states. An edge in state 0 is said to be inactive while an edge in
state 1 is said to be active. All edges are initially inactive.

Execution of the protocol proceeds in discrete steps. In every step, a pair of
nodes uv from EI is selected by an adversary scheduler and these nodes interact
and update their states and the state of the edge joining them according to the
transition function δ.

A configuration is a mapping C : VI ∪ EI → Q ∪ {0, 1} specifying the state
of each node and each edge of the interaction graph. An execution is a finite or
infinite sequence of configurations C0, C1, C2, . . ., where C0 is an initial config-
uration and Ci → Ci+1 (‘→’ meaning “goes via a single interaction to”), for all
i ≥ 0. A fairness condition is imposed on the adversary to ensure the protocol
makes progress. An infinite execution is fair if for every pair of configurations C
and C ′ such that C → C ′, if C occurs infinitely often in the execution then so
does C ′. In what follows, every execution of a NET will by definition considered
to be fair.

Whenever we study the running time (counted in number of sequential inter-
actions) of a NET, we assume that interactions are chosen by a uniform random
scheduler which, in every step, selects independently and uniformly at random



one of the |EI | = n(n−1)/2 possible interactions. In this case, the running time
becomes a random variable (abbreviated “r.v.” throughout) X and our goal is
to obtain bounds on the expectation E[X] of X. Note that the uniform random
scheduler is fair with probability 1. We say that an execution of a NET on n
processes constructs a graph (or network) G, if its output stabilizes to a graph
isomorphic to G. We say that a NET A constructs a graph language L with
useful space g(n) ≤ n, if g(n) is the greatest function for which: (i) for all n,
every execution of A on n processes constructs a G ∈ L of order at least g(n)
(provided that such a G exists) and, additionally, (ii) for all G ∈ L there is an
execution of A on n processes, for some n satisfying |V (G)| ≥ g(n), that con-
structs G. Equivalently, we say that A constructs L with waste n− g(n). Define
REL(g(n)) to be the class of all graph languages that are constructible with
useful space g(n) by a NET. We call REL(·) the relation or on/off class. Also
define PREL(g(n)) in precisely the same way as REL(g(n)) but in the exten-
sion of the above model in which every pair of processes is capable of tossing an
unbiased coin during an interaction between them. In this case, we additionally
require that all graphs have the same probability to be constructed by the pro-
tocol. We denote by DGS(f(l)) (for “Deterministic Graph Space”) the class of
all graph languages that are decidable by a Turing Machine (abbreviated “TM”
throughout) of (binary) space f(l), where l is the length of the adjacency matrix
encoding of the input graph.

3 Basic Constructors

Probably the most fundamental network-construction problem, is the problem
of constructing a spanning line, i.e., a connected graph in which 2 nodes have
degree 1 and n − 2 nodes have degree 2. Its importance lies in the fact that a
spanning line provides an ordering on the processes which can then be exploited
(as discussed in Section 4) to simulate a TM and, in this way, to establish
universality of the model.

We begin with a lower bound on the expected time required by any NET to
construct a spanning line.

Theorem 1 (Line Lower Bound [MS16b]). The expected time to conver-
gence of any protocol that constructs a spanning line is Ω(n2).

Take any protocol A that constructs a spanning line and any execution of
A on n nodes. It suffices to show that any execution necessarily passes through
a “bottleneck” transition, by which we mean a transition that requires Ω(n2)
expected number of steps to occur. Observe that, in any execution, the set of
active edges eventually stabilizes (in this case, to a spanning line), which implies
that there is always a last activation/deactivation of an edge. The idea is to focus
on this last operation before stabilization, and show that either this operation
is a bottleneck transition or an immediately previous operation is a bottleneck
transition. In both cases, any execution passes through a bottleneck transition,
thus paying at that point an Ω(n2) expected number of steps. Indeed, if the last



modification was an activation, then the construction just before this modifica-
tion was either a line on n − 1 nodes and an isolated node or two disjoint lines
spanning all nodes. In both cases, the expected number of steps until the last
edge becomes activated is Ω(n2). On the other hand, if the last modification was
a deactivation, then this implies that the construction just before this modifica-
tion was a spanning line with an additional active edge between two nodes, u
and v, that are not neighbors on the line. The only interesting case is the one
in which the construction was actually a spanning ring. Then, by considering
the last modification of an edge that resulted in the ring, we obtain again an
expected number of Ω(n2) interactions.

We present now our simplest protocol for the spanning line problem.

Simple-Global-Line. Q = {q0, q1, q2, l, w}, δ: (q0, q0, 0)→ (q1, l, 1), (l, q0, 0)→
(q2, l, 1), (l, l, 0)→ (q2, w, 1), (w, q2, 1)→ (q2, w, 1), (w, q1, 1)→ (q2, l, 1).

In the initial configuration C0, all nodes are in state q0 and all edges are
inactive, i.e., in state 0. Every configuration C that is reachable from C0 consists
of a collection of lines and isolated nodes. Additionally, every line has a unique
leader which either occupies an endpoint and is in state l or occupies an internal
node, is in state w, and moves randomly along the line. Lines can expand towards
isolated nodes and two lines can connect their endpoints to get merged into a
single line (with total length equal to the sum of the lengths of the merged
lines plus one). Both of these operations only take place when the corresponding
endpoint of every line that takes part in the operation is in state l. A line resulting
from merging, has a w internal-leader and only waits until the random walk of
w reaches one endpoint and becomes an l leader. Figure 2 gives an illustration
of a typical configuration of the protocol.

q1

q2

q2

l

q1 w q2 q2 q1

q1
l

l q1
l

q1

w q1
q1

q0 q0 q0

q0

q0

q0

q0

q0

q0

Fig. 2. A typical configuration of Simple-Global-Line (after some time has passed).

Theorem 2 ([MS16b]). Protocol Simple-Global-Line constructs a spanning
line. It uses 5 states and its expected running time is Ω(n4) and O(n5).



For correctness, we have to prove two things: (i) there is a set S of output-
stable configurations whose active network is a spanning line, (ii) for every reach-
able configuration C it holds that C  Cs (‘ ’ meaning “goes in one or more
steps to”) for some Cs ∈ S.

For the running time upper bound, we have an expected number of O(n2)
steps until progress is made (i.e., for another merging to occur given that at least
two l-leaders exist) and O(n4) steps for the resulting random walk (walk of state
w until it reaches one endpoint of the line) to finish and to have the system again
ready for progress. This is because the state actually walks only if it interacts
with one of its (at most) two neighbors on the line. As only 2 interactions over
the Θ(n2) possible interactions allow the state to walk, the otherwise O(n2)-time
walk is delayed by a factor of O(n2). As progress must be made n− 2 times, we
conclude that the expected running time of the protocol is bounded from above
by (n− 2)[O(n2) +O(n4)] = O(n5).

Next, it can be proved that we cannot hope to improve the upper bound
on the expected running time by a better analysis by more than a factor of
n. For this, we can prove by a Chernoff bound, that the protocol with high
probability (abbreviated “w.h.p.” throughout) constructs Θ(n) disjoint lines of
length 1 during its course. A set of k disjoint lines implies that k − 1 = Θ(n)
distinct merging processes have to be executed in order to merge them all into a
common line and each single merging results in the execution of another random
walk. Let tmin be the first time at which there is a line L of length h ≥ k/4.
It holds that k/4 ≤ h ≤ k/2 − 1, so there is a remaining length of at least
k−h ≥ k−(k/2−1) = k/2+1 to get merged to L via distinct sequential mergings.
Now, if di denotes the length of the ith line merged to L, Y the r.v. of the
duration of all random walks, and Yi the r.v. of the duration of the i-th random
walk, we have E[Y ] = E[

∑j
i=1 Yi] =

∑j
i=1 E[Yi] =

∑j
i=1 n

2(h+d1 + . . .+di−1)di
≥ n2

∑j
i=1 hdi = n2h

∑j
i=1 di ≥ n2 · (k/4) · (k/2 + 1) = n2 ·Θ(n) ·Θ(n) = Θ(n4).

This proves the desired Ω(n4) lower bound.

By using more states, we can develop an alternative protocol that con-
structs a spanning line much faster. The main difference between this and
the previous protocol is that we now totally avoid mergings as they seem to
consume much time. As before, when the leaders of two lines interact, one
of them becomes eliminated and the edge is activated. But now, the leader
that has survived does not initiate a merging process. Instead, it steals a
node from the eliminated leader’s line and disconnects the two new lines: its
own line, which has increased by one and is called awake, and the eliminated
leader’s line, which has decreased by one and is called sleeping. The code follows:

Fast-Global-Line. Q = {q0, q1, q2, q′2, l, l′, l′′, f0, f1}, δ: (q0, q0, 0) → (q1, l, 1),
(l, q0, 0) → (q2, l, 1), (l, l, 0) → (q′2, l

′, 1), (l′, q2, 1) → (l′′, f1, 0), (l′, q1, 1) →
(l′′, f0, 0), (l′′, q′2, 1) → (l, q2, 1), (l, f0, 0) → (q2, l, 1), (l, f1, 0) → (q′2, l

′, 1).

In more detail, when two lines L1 and L2 interact via their l-leader endpoints,
one of the leaders, say w.l.o.g. that of L2, becomes l′ and the other becomes q′2.



We can interpret this operation as expanding L1 on the endpoint of L2 and
obtaining two new lines (still attached to each other): L′1 which is awake and
L′2 which is sleeping. Now, the l′-leader of L′1 waits to interact with its neighbor
from L′2 (which is either a q2 or a q1) to deactivate the edge between them and
disconnect L′1 from L′2. This operation leaves L′1 with an l′′-leader and L′2 with
a sleeping leader f1 (it can also be the case that L′2 is just a single isolated f0,
in case L2 consisted only of 2 nodes). Then l′′ waits to meet its q′2 neighbor to
convert it to q2 and update itself to l. This completes the operation of a line
growing one step towards another line and making the other line sleep. A sleeping
line cannot increase any more and only loses nodes to lines that are still awake
by a similar operation as the one just described. A single leader is guaranteed
to always win and this occurs quite fast. Then the unique leader does not need
much time to collect all nodes from the sleeping lines to its own line and make
the latter spanning.

Theorem 3 ([MS16b]). Protocol Fast-Global-Line constructs a spanning line.
It uses 9 states and its expected running time under the uniform random sched-
uler is O(n3).

A variant that backtracks many “sleeping” lines in parallel, is an immedi-
ate improvement of Fast-Global-Line. The improvement is due to the fact that
instead of having the awake leader backtrack sleeping lines node-by-node, we
now have any sleeping line backtrack itself, so that many backtrackings occur in
parallel. We have some first experimental evidence showing a small improvement
in the running time [ALMS15], but we do not yet have a proof of whether this
is also an asymptotic improvement. For example, is it the case that the run-
ning time of this improvement is O(n3/ log n) (or even smaller)? This question
is open.

Table 1 summarizes a variety of protocols and the corresponding upper and
lower bounds that are known for several basic construction problems [MS16b].

4 Generic Constructors

An immediate next question is whether there is a generic constructor capable of
constructing a large class of networks. In [MS16b], we answered this in the affir-
mative by presenting constructors that simulate a TM. The idea is to program
the nodes to organize themselves into a network that can serve as a memory
of size O(n2), which is asymptotically maximum and can only be achieved by
exploiting the presence or absence of bonds between nodes as the bits of the
memory (if only the nodes’ local space was used, then the total memory could
not exceed O(n)). Then the population draws a random network and simulates
on the distributed memory a TM that decides whether the network belongs to
the target ones. If yes, the population stabilizes to it, otherwise the random
experiment and the simulation are repeated (see Figure 3). What makes the
construction intricate is that all the sub-routines have to be executed in parallel
and potential errors due to this to be corrected by global resets throughout the
course of the protocol. This is summarized in the following theorem.



Protocol # states Expected Time Lower Bound
Simple-Global-Line 5 Ω(n4) and O(n5) Ω(n2)
Fast-Global-Line 9 O(n3) Ω(n2)
Cycle-Cover 3 Θ(n2) (opt.) Ω(n2)
Global-Star 2 (opt.) Θ(n2 log n) (opt.) Ω(n2 log n)
Global-Ring 9 Ω(n2)
2RC 6 Ω(n log n)
kRC 2(k + 1) Ω(n log n)
c-Cliques 5c− 3 Ω(n log n)
Graph-Replication 12 Θ(n4 log n)

Table 1. Some established upper and lower bounds [MS16b]. kRC (standing for k-
regular connected) protocol solves a generalization of global ring in which every node
has degree k ≥ 2, c-cliques partitions the processes into bn/cc cliques of order c each,
and Graph-Replication constructs a copy of a given input graph.

Theorem 4 (Linear Waste-Two Thirds [MS16b]). DGS(O(n2)+O(n)) ⊆
PREL(bn/3c). In words, for every graph language L that is decidable by a
(O(n2) + O(n))-space TM, there is a protocol that constructs L equiprobably
with useful space bn/3c.

qu qu qu qu qu

qd qd qd qd qd

U

D

qm qm qm qm qm
M

Fig. 3. A partitioning into three equal sets U , D, and M . The line of set U plays the
role of an ordering that will be exploited both by the random graph drawing process
and by the TM-simulation. The line of set U uses the Θ(n2) memory of set M as the
memory of the TM. Set D is the useful space on which the output-network will be
constructed. Sets U and M constitute the waste.

5 Network Transformations

We shall now consider minimal strengthenings of network constructors that can
maximize their computational power, also rendering them capable to terminate.



To this end, we now assume that the initial configuration of the edges can be
any configuration in which the active edges form a connected graph spanning
the set of processes. This choice is motivated by the fact that, without some
sort of initial connectivity (or bounded disconnectivity) we can only hope for
global computations and constructions that are eventually stabilizing (and not
terminating), roughly because a component can guess neither the number of
components not encountered yet nor an upper bound on the time needed to
interact with another one of them. 4 The initial configuration of the nodes is
either, again, the one in which all nodes are initially in the same state, q0, or (if
needed) the one in which all nodes begin from q0 apart from a pre-elected unique
leader that begins from a distinct initial leader-state l. Unfortunately, even with
the additional assumption of bounded initial disconnectivity, it can be proved
that non-trivial terminating computation is still impossible.

We now add to the picture a very minimal and natural, but extremely pow-
erful, additional assumption that, combined with our assumptions so far, will
lead us to a stronger model. In particular, we equip the nodes with the ability
to detect some small local degrees. For a concrete example, assume that a node
can detect when its active degree is equal to 0 (otherwise it only knows that its
degree is at least 1). A first immediate gain, is that we can now directly simulate
any constructor that assumes an empty initial network (like those presented in
the previous section): every node initially deactivates the active edges incident
to it until its local active degree becomes for the first time 0, and only when this
occurs the node starts participating in the simulation.

Our main finding in [MS16a], was that the initial connectivity guarantee
together with the ability to modify the network and to detect small local degrees
(combined with either a pre-elected leader or a natural mechanism that allows
two nodes to tell whether they have a neighbor in common), are sufficient to
obtain the maximum computational power that one can hope for in this family
of models. In particular, the resulting model can compute with termination any
symmetric predicate 5 computable by a TM of space Θ(n2), and no more than
this, i.e., it is an exact characterization. The symmetricity restriction can only
be dropped by UIDs or by any other means of knowing and maintaining an
ordering of the nodes’ inputs. This power is maximal because the distributed
space of the system is Θ(n2), so we cannot hope for computations exploiting
more space. The substantial improvement is that the universal computations are
now terminating and not just eventually stabilizing. It is interesting to point out
that the additional assumptions and mechanisms are minimal, in the sense that
the removal of each one of them leads to either an impossibility of termination
or to a substantial decrease in computational power.

4 Alternative ways to overcome this are to assume that the nodes know some upper
bound on this time [MS15], or, as we shall discuss in the next section, to assume a
uniform random scheduler and a unique leader and restrict correctness to be w.h.p..

5 Essentially, a predicate in this type of models is called symmetric (or commutative) if
permuting the input symbols does not affect the predicate’s outcome. This restriction
is imposed by the fact that, in general, the nodes cannot be distinguished initially.



The approach to arriving at the above characterization is to develop protocols
that exploit the knowledge of the initial connectivity of the active topology
and try to transform it to a less symmetric and detectable active topology,
without ever breaking its connectivity. The knowledge of initial connectivity and
its preservation throughout the transformation process, ensure that the protocol
always has all nodes of the network in a single component. Still, if the target-
network is symmetric, then there might be no way for the transformation to
determine when it has managed to form the network. Instead, the protocols
transform any spanning connected initial topology into a spanning line while
preserving connectivity throughout the transformation process. The spanning line
has the advantage that it can be detected under the minimal assumption that
a node can detect whether its local degree is in {1, 2} and that it is minimally
symmetric and, therefore, capable of serving as a linear memory. Preservation
of connectivity allows the protocol to be certain that the spanning line contains
all processes. So, the protocol can detect the formation of the spanning line
and then count (on the O(log n) cells, i.e., the nodes, of the linear distributed
memory) the size of the system. Then the protocol can use the spanning line as
it is, for simulating (on the nodes of the line) TMs of space Θ(n). Going one
step further, it is not hard for a protocol to exploit all this obtained information
and perform a final transformation that increases the simulation space to Θ(n2)
(in the spirit of the universal construction of the previous section).

In particular, given an initially connected active topology and the ability of
the protocol to transform it, the following set of results can be proved [MS16a]:

– The running time of any protocol that transforms any initial active topology
to a spanning line and terminates is Ω(n2 log n).

– If there is a unique leader and a node can detect whether its degree is equal
to 1, then there is a time-optimal protocol, with running time Θ(n2 log n)
(now defined as the maximum/worst-case expected running time over all
possible initial active topologies), that transforms any initial active topology
to a spanning line and terminates. This implies a full-power TM simulation
as described above.

– If all nodes are initially identical (and even if small local degrees can be
detected) then there is no protocol that can transform any initial active
topology to an acyclic topology without ever breaking connectivity. The
impossibility result is quite strong, proving that, for any initial topology G,
there is an infinite family G, such that if the protocol makes G acyclic then
it disconnects every G′ ∈ G in Θ(|V (G′)|) parts. The latter implies that it is
impossible to transform to a spanning line with termination.

– There is a plausible additional strengthening that allows the problem to
become solvable with initially identical nodes. In particular, the assumption
that two interacting nodes can tell whether they have a neighbor in common
(common neighbor detection mechanism). It can be proved that, with this
additional assumption, initially identical nodes can transform any connected
spanning initial active topology to a spanning line and terminate in time
O(n3). This implies a full-power TM simulation as described above.



We now describe the aforementioned time-optimal protocol for the simplest
case in which there is initially a pre-elected unique leader that handles the
transformation. Recall that the initial active topology is connected and the
goal is for the protocol to transform the active topology to a spanning line and
when this occurs to detect it and terminate (called the Terminating Line Trans-
formation problem). Ideally, the transformation should preserve connectivity
of the active topology during its course (or break connectivity in a controlled
way). The minimal additional assumption to make the problem solvable, is
that a node can detect whether it has local degree 1 or 2 (otherwise it knows
that it has degree in {0, 3, 4, ..., n−1} without being able to tell its precise value).

Line-Around-a-Star. There is initially a unique leader in state l and all other
nodes are in state q0. Nodes can detect when their degree is 1.

The leader starts connecting with the q0s (by activating the connection be-
tween them in case it was inactive and by preserving it in case it was already
active) and converts them to p′ trying to form a star with itself at the center.
When two p′s interact, if the edge is active they deactivate it, trying to become
the peripherals of the star. Additionally, if after such a deactivation the degree
of a p′ is 1, then the p′ becomes p to represent the fact that it is now connected
only to the leader and has become a normal peripheral. The same occurs if after
the interaction of the leader with a q0, the degree of the q0 is 1, i.e., the q0
immediately becomes a normal peripheral p.

When the leader first encounters a p, it starts constructing a line which has
as its “left” endpoint the center of the star and that will start expanding over
the peripherals until it covers them all. Whenever the leader interacts with an
internal node of the line, it disconnects from it (but it never disconnects from
the second node of the line, counting from the center; to ensure this, the protocol
has that node in a distinguished state i′ while all other internal nodes of the line
are in state i). The protocol terminates when the degree of the center becomes
1 for the first time (note that it could be 1 also at the very beginning of the
protocol but this early termination can be trivially avoided).

Theorem 5 ([MS16a]). By assuming a pre-elected unique leader and the abil-
ity to detect local degree 1, Protocol Line-Around-a-Star solves the Terminating
Line Transformation problem. Its running time is Θ(n2 log n), which is optimal.

For correctness, observe that every q0 eventually becomes p, because the center
forever attracts the q0s making them p′ and a p′ only disconnects from other pe-
ripherals until it becomes p. This implies that eventually each non-leader node
will become available for the line to expand over it and thus the line will even-
tually become spanning. Also, the protocol never disconnects the topology be-
cause it performs only two types of edge eliminations, (p′, p′) and (center, node
3 ≤ i ≤ k of the line of length k), which cannot lead to disconnection. Finally
it can be shown that the protocol terminates iff the active topology has become
a spanning line, by showing that after the line formation subroutine has per-
formed at least on step, the degree of the center first becomes 1 when the active
topology becomes a spanning line.



For the running time, the time needed for the leader to connect to every q0
(and convert all q0 to p′), is equivalent to the time needed for a particular node
to meet every other node, which takes Θ(n2 log n) expected time. Next consider
the time for all peripherals to disconnect from one another and become p. If
we study this after the time all q0 have become p′, it is the time (in the worst
case) needed for all edges to be picked by the scheduler, which takes Θ(n2 log n)
expected time. After the completion of both the above, we have a star with the
leader at the center and all peripherals are only connected to the leader. Next
consider the formation of the line over the peripherals. The right endpoint of the
line is always ready for expansion towards another available peripheral. The time
needed for the line to cover all peripherals is again the time to meet every other
node, therefore takes time Θ(n2 log n) to complete. We finally take into account
the time needed for the center to disconnect from the peripherals that are part
of the line. We can study this after the line has become spanning. This is simply
a star deformation, i.e., the time needed until the center meets all peripherals in
order to disconnect from them, taking again time Θ(n2 log n). Putting all these
together, we conclude that the running time of the protocol is Θ(n2 log n), which
matches the Ω(n2 log n) lower bound mentioned above, therefore the protocol is
time-optimal.

6 A Geometric Variant

We shall now discuss a more applied version of network constructors, that may
be obtained by adjusting some of the abstract parameters of the general model.
In particular, [Mic15] introduced some physical (or geometrical) constraints on
the connections that the processes are allowed to form. In the general network
constructors model, there were no such imposed restrictions, in the sense that,
at any given step, any two processes were candidates for an interaction, inde-
pendently of their relative positioning in the existing structure/network. For
example, even two nodes hidden in the middle of distinct dense components
could interact and, additionally, there was no constraint on the number of active
connections that a node could form (could be up to the order of the system).
This was very convenient for studying the capability of such systems to self-
organize into abstract networks and, as we discussed, it helped us show that
arbitrarily complex networks are in principle constructible. On the other hand,
this is not expected to be the actual mechanism of at least the first potential
implementations. First implementations will most probably be characterized by
physical and geometrical constraints. To capture this, it was assumed in [Mic15]
that each device can connect to other devices only via a very limited (finite
and independent of the size of the system) number of ports, usually four or six,
which implies that, at any given time, a device has only a bounded number of
neighbors. Moreover, the connections are further restricted to be always made
at unit distance and to be perpendicular to connections of neighboring ports.
Though such a model can no longer form abstract networks, we will see that it is
still capable of forming very practical 2D or 3D shapes. This is also in agreement



with natural systems, where the complexity and physical properties of a system
are rarely the result of an unrestricted interconnection between entities.

It can be immediately observed that the universal constructors of Section 4
do not apply in this case. In particular, those constructors cannot be adopted
in order to characterize the constructive power of the present variant. The rea-
son is that they work by arranging the nodes in a long line and then exploiting
the fact that connections are elastic and allow any pair of nodes of the line to
interact independently of the distance between them. In contrast, no elasticity
is allowed in the more local model that we now consider, where a long line can
still be formed, but only adjacent nodes of the line are allowed to interact with
each other. As a result, new techniques have to be developed for determining the
computational and constructive capabilities of this model. Another main novelty
of [Mic15], concerns an alternative approach to overcome the inability of such
systems to terminate, by exploiting the ability of nodes to self-assemble into
larger structures that can then be used as distributed memories of any desired
length and the existence of a uniform random scheduler. Achieving termination
is crucial here, as it allows us to develop terminating subroutines that can be se-
quentially composed to form larger modular protocols. Such protocols are more
efficient, more natural, and more amenable to clear proofs of correctness, com-
pared to protocols that are based on composing all subroutines in parallel and
“sequentializing” them eventually by perpetual reinitializations (like the one in
Section 4).

Now, every node has a bounded number of ports which it uses to interact
with other nodes. In the 2D case, there are four ports py, px, p−y, and p−x,
which for notational convenience are usually denoted u, r, d, and l, respectively
(for up, right, down, and left, respectively). Similarly, in the 3D case there are
6 ports. Neighboring ports are perpendicular to each other, forming local axes.
For example, in the 2D case, u ⊥ r, r ⊥ d, d ⊥ l, and l ⊥ u. An important
remark is that the above coordinates are only for local purposes and do not
necessarily represent the actual orientation of a node in the system. A node may
be arbitrarily rotated so that, for example, its x local coordinate is aligned with
the y real coordinate of the system or it is not aligned with any real coordinate.
Nodes may interact in pairs, whenever a port of one node w is at unit distance
and in straight line (w.r.t. to the local axes) from a port of another node v.

The transition function is now of the form δ : (Q× P )× (Q× P )× {0, 1} →
Q × Q × {0, 1}, where P = {u, r, d, l} (P = {py, pz, px, p−y, p−z, p−x}, respec-
tively, for the 3D case) is the set of ports. In every step, a pair of node-ports
(v1, p1)(v2, p2) is selected by an adversary scheduler and these nodes interact
via the corresponding ports and update their states and the state of the edge
joining them according to the transition function δ. A configuration is called
valid, if any connected component defined by it (when arranged according to
the geometrical constraints) is a subnetwork of the 2D grid network with unit
distances. Valid configurations restrict the possible selections of the scheduler at
each step. In particular, (v1, p1)(v2, p2) ∈ EI can be selected for interaction (or
is permitted) at step t iff the configuration that would result after an activation



between (v1, p1) and (v2, p2) is valid. The interactions are chosen by a uniform
random scheduler, which in every step selects independently and uniformly at
random one of the permitted interactions. The output shapes of a configuration
consist of those nodes that are in output or halting states and those edges be-
tween them that are active. We are usually interested in obtaining a single shape
as the final output of the protocol. We say that an execution of a protocol on
n processes constructs (stably constructs) a shape G, if it terminates (stabilizes,
resp.) with output G.

The following theorem gives a partial characterization of the constructive
power of the 2D version of this model.

Theorem 6 ([Mic15]). Let L = (S1, S2, . . .) be a connected 2D shape language,
such that L is TM-computable in space d2. Then there is a protocol that w.h.p.
constructs L. In particular, for all d ≥ 1, whenever the protocol is executed on a
population of size n = d2, w.h.p. it constructs Sd and terminates. In the worst
case, the waste is (d− 1)d = O(d2) = O(n).

The idea is again to organize the population in such a way that it can simulate
appropriate TMs; in this case, a type of shape-constructing TMs that will realize
their output-shape in the distributed system. Such a TM M constructs a shape
on the pixels of a

√
n ×

√
n square, which are indexed in a zig-zag way. M

takes as input an integer i ∈ {0, 1, . . . , n − 1} and the size n or the dimension√
n of the square (all in binary) and decides whether pixel i should belong

or not to the final shape, i.e., if it should be on or off, respectively. In order,
to self-organize and simulate the TM, the population first executes a counting
subroutine, which constructs w.h.p. a line of length Θ(log n), containing n in
binary. To do this, the protocol requires a pre-elected unique leader. The leader
maintains two distributed n-counters and uses them to implement two competing
processes, running in parallel. The first process counts the number of nodes that
have been encountered once by the leader and the second process counts the
number of nodes that have been encountered twice. The game ends when the
second counter catches up the first. It can be proved, via a probabilistic analysis
of random walks on lines with time and position dependencies, that when this
occurs, the leader will almost surely have already counted at least half of the
nodes. 6 Then the leader exploits its knowledge of n to construct a

√
n ×
√
n

square and successfully detect termination of the construction. When it is done,
it simulates the TM on the square n distinct times, one for each pixel. As already
mentioned, the input to the TM is each time the index of the corresponding pixel
and
√
n, in binary, while its output is an on or off decision for that pixel. Finally,

the protocol releases the connected shape consisting of the on pixels. It is worth
mentioning that it is still open whether the pre-elected leader assumption can
be dropped.

6 In practice, this estimation is expected to be much closer to n than to n/2. A first
indication is that, in all of our experiments for up to 1000 nodes the estimation was
always close to (9/10)n and usually higher.



7 Further Research

An obvious first target is to achieve complete characterizations of the con-
structible networks both in the basic and in the geometric model. It is also
worth noting that existing results on universal construction indicate that the
constructive power increases as a function of the available waste. A complete
characterization of this dependence would be of special value. Another intrigu-
ing question is whether there exists a network constructor for global line that
is asymptotically faster than O(n3). We also do not know yet whether count-
ing the size of the population w.h.p. and with termination is still possible if all
nodes are initially identical. Towards refining and extending the existing mod-
els, considering hybrid models of active and passive mobility seems interesting.
Also, it seems plausible, apart from geometric constraints, to take further phys-
ical considerations into account, like mass, strength of bonds, rigid and elastic
structure, and collisions. It would also be worth studying structures that opti-
mize some global property or that achieve a desired behavior or functionality.
Regarding fault-tolerance capabilities of programmable matter systems, proto-
cols that efficiently reconstruct broken parts of the structure would be of special
value. Moreover, we should draw more connections to natural processes and to
self-assembly and programmable matter models coming from other research ar-
eas (e.g., by comparing the various models via formal simulations). Finally, we
believe that more real systems of collectives of large numbers of simple interact-
ing entities (e.g., devices) are needed in order to inspire theory and highlight the
feasible mechanisms and, thus, the realistic modeling assumptions.
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