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During walking, variability in step parameters allows the body
to adapt to changes in substrate or unexpected perturbations
that may occur as the feet interface with the environment.
Despite a rich literature describing biomechanical variability
in step parameters, there are as yet no studies that consider
variability at the body—-environment interface. Here, we used
pedobarographic statistical parametric mapping (pSPM) and
two standard measures of variability, mean square error (m.s.e.)
and the coefficient of variation (CV), to assess the magnitude
and spatial variability in plantar pressure across a range of
controlled walking speeds. Results by reduced major axis, and
PSPM regression, revealed no consistent linear relationship
between m.s.e. and speed or m.s.e. and Froude number. A
positive linear relationship, however, was found between CV
and walking speed and CV and Froude number. The spatial
distribution of variability was highly disparate when assessed
by m.s.e. and CV: relatively high variability was consistently
confined to the medial and lateral forefoot when measured
by m..e., while the forefoot and heel show high variability
when measured by CV. In absolute terms, variability by CV
was universally low (less than 2.5%). From these results, we
determined that variability as assessed by m.s.e. is independent
of speed, but dependent on speed when assessed by CV.

1. Introduction

Walking is a complex task involving the coordination of multiple
body segments over multiple cycles (steps) [1-3]. As one of
the most practised of all motor skills [4], variability allows us
to continuously construct adaptive coordination patterns as we

© 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.


https://core.ac.uk/display/80778829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.160369&domain=pdf&date_stamp=2016-08-17
mailto:j.mcclymont@liverpool.ac.uk
http://orcid.org/0000-0002-4257-6492
http://rsos.royalsocietypublishing.org/

Downloaded from http://rsos.royalsocietypublishing.org/ on October 25, 2016

move through the environment, resisting expected and unexpected perturbations that may occur causing
instability [5,6]. Studies of variability are thus central to understanding gait stability [7-9]. Control of
speed during walking is a coordinated task driven by the interactions of the nervous and musculoskeletal
systems and the environment [10]. Motor tasks such as a step cycle are provided a window of optimal
variability that enables accurate, stable completion of that task [11], despite internal and external
perturbations.

Variability in kinematic parameters is not always considered beneficial, but equally some degree of
variability is not always considered detrimental [9,12]. High variability in kinetic and kinematic variables
can increase energetic costs [13], and increase the risk of falls [14], but equally it can facilitate an increase
in motor performance [15]. Both younger (less than 65 years) and older (more than 65 years) adults
show increases in the variability in step parameters when walking at speeds faster, or slower than their
comfortable walking speed [4]; only there is a slightly wider distribution in the magnitude of variability
in older adults [12]. Thus, the nature of the relationship between motor control and biomechanical
variability is not simple, and is not yet completely understood; for example, we do not understand
how variability functions at the body-ground interface. Fortunately, plantar pressure records capture
the summation of kinetic and kinematic forces produced by the moving body against the ground.
Fluctuations in the centre of mass over the base of support, and perturbations that challenge stability and
balance during adaptive coordination, occur here at the foot-ground interface. It is therefore timely for a
systematic study characterizing variability in plantar pressure, and this is the goal of this contribution.

The variable nature of motor patterns and the potential for a change in substrate or speed with each
step imply that each pressure record will be slightly different [16,17]. A recent study of plantar pressure at
a single walking speed using approximately 500 records per subject, demonstrated large inter- and intra-
subject (i.e. step-to-step) pressure variation in the midfoot [18]. However, discussion of variability across
the whole plantar surface and the influence of speed were not considered as part of that contribution.

Here therefore, we compare the magnitude and spatial variability in plantar pressure records
across a wide range of controlled walking speeds (1.1-1.9ms™!) using a large dataset. Most previous
investigations of the effects of speed on peak plantar pressure distribution use self-selected walking
speeds, described as ‘slow’, ‘preferred” and ‘fast’ [19-30]. Here, we control for speed in order to
standardize the comparative analysis between walking speeds. We applied two calculators of variability
to this dataset: mean square error (m.s.e.) and coefficient of variation (CV) at a pixel level across the whole
plantar surface, using pedobarographic statistical parametric mapping (pSPM). The aims of this study
were to assess the effect of walking speed (1.1-1.9 m s 1) on the: (i) magnitude and (ii) spatial distribution
of variability across the whole plantar surface of the foot and (iii) to describe the spatial distribution of
variability using these two commonly used metrics in biomechanical studies, m.s.e. and CV.

2. Material and methods

A total of 16 subjects (11 male, 5 female, aged 21-47 years; table 1), without pathologies, abnormalities or
injuries, walked barefoot on a Zebris FDM-THM plantar pressure sensing treadmill at controlled speeds
of1.1ms 1, 13ms 1, 1.5ms™ 1, 1.7ms ! and 1.9ms ™! for 5min in a randomized trial order. The slowest
speed (1.1ms™!) was selected as slower than a ‘comfortable’ walking speed for healthy, young cohorts.
We are conscious that comfortable speed is relative to different ages and abilities; however, 1.1 ms~! may
generally be considered slow for healthy cohorts. The fastest speed, 1.9 ms™!, was chosen as the closest
speed to the accepted walk/run transition (defined as 1.88ms~! [31]). 1.3ms ™!, 1.5ms ! and 1.7ms ™!
were chosen for intuitive ease of analysis.

Peak pressure values from each sensor contacted on the treadmill, within the boundaries of each
foot, were extracted using a custom-written C program [28,29], yielding between 2780 and 3535 peak
pressure images (p-images) per subject across the five speed trials (table 1). This exceeds the required
sample size of 400 steps suggested for reliability in studies of variability in lower extremity kinematic
parameters [31]. All p-images within each speed trial were registered to each other in a vertical stack
using a two-stage rigid body transformation via an algorithm that minimized the m.s.e. between the
images, such that homologous structures optimally overlapped [32]. The first step recorded during each
subject’s walking trials was used as the registration template to which all subsequent images in each
speed trial were registered. The mean image from each speed trial was calculated from the stack and
used as the registration template for a second iteration of the same dataset [28].

Intra-subject analyses using pSPM were conducted on all pressure records to quantify spatial
variability at the five controlled walking speeds [32]. To quantitatively compare variability in peak
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Table 1. Summary of subjects’ anthropomorphic measurements and N pressure records collected at each walking speed. Leg length was n
measured as the distance from the greater trochanter to the plantar foot surface.

weight height leglength N N N N N

subject gender age (kg) MAms™ (13ms™) @15ms™) (17ms™") (19ms™)

=
=
N
=
~
wvi
N
~
=
o
=)
(=)
o
vl
N
oo
w
oo
@D
(=)}
N
[=)}
(=)
(=)
oo
D
O
=
w
o
=}
=}

605001 :€ ‘DS uado 0y BioBuiysigndiaaposieforsoss

pressure at different speeds, we used two different measures of variability. The algorithm used to register
p-images in pSPM is based on minimizing the m.s.e. between pixels globally, across each image. Previous
studies of walking speed using pSPM have sought to test if the mean pressure across the foot differs
across walking speeds [22,28]. Thus, in the context of previous studies using pSPM that examine changes
in pressure with speed [28] it is logical to assess variability relative to the mean pressure in each pixel at
each speed. The m.s.e. reflects the absolute variation of each pixel value from the same pixel value in the
mean p-image. In addition, we chose to calculate the CV as a widely used metric to quantify variability
in clinical [1,7,33-35] and sports biomechanics [36—40]. CV calculates the variance of the entire sample
about the mean but cannot take into consideration the error that arises from differences in pixel vector
values. However, the widespread use of CV to quantify variability in kinematic parameters during gait
allows us to compare levels of variability in plantar pressure to other biomechanical parameters (e.g. step
length, width, time and impulse).

The m.s.e. was calculated over non-zero pixels in each p-image within a subject’s total sample
according to

1 2
ms.e. = N Z (Ink — Ixk)%,

where N is the total number of non-zero pixels in the mean image, Iy is the mean of the subject’s overall
sample and Iy is an individual pedobarographic record. The CV was calculated over non-zero pixels in
each pedobarographic image within a subject’s total sample according to

m
CV=— x100,
s.d. x

where m is the mean value of each non-zero pixel over all pressure images in the sample, and s.d. is the
standard deviation of the sample across all p-images in each subject’s dataset. Each value is multiplied
by 100 to produce a percentage classed as high (more than 5%) or low (less than 5%) [41]. Very low levels
of variability are considered less than 3% [4].

The m.s.e. and CV of each non-zero pixel is summed to produce a total m.s.e. and CV value for each
individual pressure record, about the subject’s overall mean pressure image. Each speed trial produces
a different number of prints as more steps are generally taken at faster speeds. To standardize our
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comparisons we used a downsampling approach to extract random sub-samples of 400 prints from the
overall 1, a total of 100 times for each speed and calculated the mean m.s.e. and CV of these 100 samples
of 400 prints. This value was retained as representative for each speed. To assess changes in variability
with speed, we plotted m.s.e. and CV against speed using reduced major axis (RMA) regression, and
tested for linear changes with speed. In addition, we conducted topological regression analysis on the
m.s.e. analysis, to test for linear changes in variability across the plantar surface with speed. All image
processing and analysis described above was conducted using Matlab (MathWorks, USA).

3. Results

The main results of this study can be summarized as follows:

(i) The magnitude of variability in plantar pressure assessed by m.s.e. is disparate and observed
between speeds, and between subjects (figure 1). All subjects expressed CV less than 2.5%
(figure 1), which is less than that reported as ‘very low’ by standard measures of CV in
biomechanics literature (less than 3%).

(ii) RMA regression suggested positive linear trends in m.s.e. across walking speeds in 11 out of 16
subjects, and CV and speed in 15 out of 16 subjects (figure 1). R> and p-values strongly support
a linear increase in plantar pressure variability with speed when assessed by m.s.e. in 4 subjects,
and in 11 subjects when assessed by CV (R?>> 0.5, p <0.05) (table 2) (figure 1). Topological
regression analysis of m.s.e. and speed confirmed no statistical support for a systematic linear
increase in variability with speed (figure 2).

(iii) RMA regression suggested positive linear relationships between m.s.e. and Froude number in
11 out of 16 subjects, and CV and Froude number in 15 out of 16 subjects (figure 3). However, R
and p-values (R* > 0.5, p < 0.05) only strongly support linear increases in variability with Froude
number when assessed by m.s.e. in 4 subjects, but in 11 subjects when assessed by CV (table 2)
(figure 3).

(iv) Qualitative analysis of topological variation maps suggests that spatial distribution of m.s.e. is
highest in the forefoot, specifically the lateral and medial margins, under metatarsal heads five
and one, respectively, in all subjects, and is independent of speed (figure 4).

(v) Qualitative analysis of topological variation maps suggests that the spatial distribution of CV is
highest in the midfoot, medial phalanges, big toe and lateral margins of the heel in all subjects,
and is independent of speed (figure 5).

4. Discussion

Variability is a fundamental feature of all biological systems [42,43] and, to our knowledge; this is the
first attempt to understand the nature of variability in plantar pressure, and to quantify its relationship
with walking speed. Our overall findings are that: both within and between subjects: (i) the absolute
magnitude of variability in plantar pressure step-to-step is widely disparate across speeds, when
calculated by m.s.e. (figures 1, 3 and 4), but low in absolute terms (less than 2.5%) when calculated
by CV (figures 1, 3 and 5), (ii) RMA regression showed a linear increase in variability in plantar pressure
by m.s.e. with speed and Froude number in only 4 subjects (R? > 0.5, p <0.05) (table 2) (figure 1),
but in 11 subjects when assessed by CV with speed and Froude number (R? > 0.5, p < 0.05) (table 3)
(figure 3). Topological pixel-by-pixel analysis by pSPM did not provide any statistical support for an
increasing or decreasing linear relationship between m.s.e. and walking speed (figure 2); and finally
(iii) two commonly used metrics for quantifying variability provide directly contrasting pictures of
how variability in plantar pressure step-to-step is spatially distributed across the plantar surface of
the foot (figures 4 and 5). The main implication for these results is that when assessed by m.s.e., the
relationship between variability in plantar pressure and speed, does not follow the commonly reported
[1,4,12,34,41,44,45] biomechanical paradigm of variability measured in other lower limb kinematic
parameters, that is, becoming more consistent at speeds faster or slower than comfortable walking speed.

4.1. Magnitude of variability

The inter-subject range of variability in m.s.e. is high. For example, the subject with the highest m.s.e.
was 9.8x more variable in this parameter than the subject with the lowest m.s.e. at 1.5ms™! (figure 1).
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Figure 1. (a—p) RMA regression suggested positive linear trends in m.s.e. (v axis) across all walking speeds in 11 out of 16 subjects, and CV
(zaxis) and speed in 15 out of 16 subjects. However r* and p-values only strongly support a linear increase in plantar pressure variability
with speed in four subjects when assessed by m.s.e., but in 10 subjects when assessed by CV (> > 0.75, p < 0.05) (see table 2).

The subject with the highest CV was 2.3 x more variable than the subject with the lowest CV at 1.5ms™!
(figure 1). The m.s.e. is not used as a common calculator of variability in gait studies, and thus we cannot
directly compare magnitudes derived here to values measured for other gait parameters. However, the
large inter-subject variation in m.s.e. and CV is striking given our relatively homogeneous cohort of
healthy adults, who ranged from 21 to 44 years old with no pathology or pre-existing injuries and a low
BMI. CV less than 5% in kinematic step parameters is considered low [1,12,33,41,46-49], and less than
3% [4] very low. Here, we found variability in the kinetic step-parameter of plantar pressure assessed by
CV was less than 2.5% across all subjects.

Low variability in plantar pressure can be understood by Bernstein’s [50] dynamic systems theory.
Coordination is defined by mastering redundant degrees of freedom to produce a controllable movement
outcome [50]. The anatomical complexity of the foot provides multiple degrees of freedom, and optimal
performance is achieved by exploiting available high levels of redundancy [11]. Variability in plantar
pressure is low in order to coordinate the multiple available degrees of freedom in the foot complex,
accounting for potential changes in substrate compliance, direction, speed and slope: all inevitable
features of locomotion [33]. Controlled speed on a treadmill and thus, full sensorimotor awareness
that there are no expected or unexpected changes in speed, substrate or direction, increases the pattern
coordination of redundant degrees of freedom during normal walking, maintaining low variability. Each
step cycle is thus assembled temporarily, but flexibly to facilitate adaptability, and maintain balance and
stability [51]. It has been shown that when the sensorimotor system adopts functionally preferred states
of coordination between soft and hard tissues it is ordered and stable, reflecting consistency in motor
patterns [52] and thus low variability.

These results do not tend to support Todorov & Jordan’s [11] theory that variability is higher in kinetic
than kinematic parameters [11]. In their study of motor pattern behaviour using a computer controller,
variability was higher in kinetic (specifically force and control signal variability) than kinematic features
(joint angles), during a variety of hitting, trajectory and manipulative tasks. They suggested that higher
variability in kinetics than kinematics is an underlying natural property of the mechanical system being
controlled, rather than variability in the controller facilitating the movement [11]. However, in our study,

605001 :€ ‘DS uado 0y BioBuiysigndiaaposieforsoss


http://rsos.royalsocietypublishing.org/

Downloaded from http://rsos.royalsocietypublishing.org/ on October 25, 2016

Table 2. Regression statistics reveal a linear increase in m.s.e. with speed in only four subjects (subjects B, E, L, N). When assessed by CV, n
regression statistics reveal a linear increase in CV with speed in 10 subjects (subjects B, D, E, H, I, K, L, M, N, P).

subject calculation R p-values slope intercept
A m.s.e. 0.010181 0.87175 —0.43955 2.8989

605001 :€ ‘DS uado 0y BioBuiysgndiaaposieforsoss

variability in plantar pressure (kinetics) was consistently lower (less than 2.5%) than values considered
very low (less than 3%) for variability of lower extremity kinematics. This difference might be attributed
to the fact that our data reflect functional specifics of gait, whereas Todorov & Jordan’s [11] data were
derived from fine motor movements measured from a controller. Further investigation of this dataset is
required to understand this specific relationship.

4.2. Variability—speed relationship

We found that variability in plantar pressure does not follow the same U-shaped curve relationship
with speed, as do other lower limb step kinematic parameters. The strength of long-range correlations
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Figure 2. (a-p) Linear regression by pSPM (left panel) reveals no statistical support for linear changes in variability by m.s.e. with speed.
The left image is the inference map, showing areas of increasing or decreasing variability in pressure across the plantar surface. The
red pixels indicate that variability is increasing with speed around the periphery of the heel and forefoot only. The blue pixels indicate
that variability is decreasing with speed around periphery of the midfoot and occasionally the hallux. Statistically significant pixels are
concentrated almost exclusively around the periphery of mechanically distinct areas of the foot, thus they are most probably artefacts
of small changes in foot contact area, size and shape with speed. The mechanically distinct areas of the plantar surface, heel, mid- and
forefoot, remain white with no statistically significant relationships evident between variability and speed.

for each gait pattern consistently follows U-shaped curves, centred on the subjects preferred speed [5,53].
RMA regression statistics support an increasing variability in plantar pressure with speed when assessed
by m.s.e. in only 4 out of 16 subjects, but in 10 out of 16 subjects when assessed by CV (r*>0.75,
p <0.05] (table 2) (figure 1). When speed was normalized by Froude number, we found support for a
linear increase in plantar pressure variability when assessed by m.s.e. in 4 subjects, and in 11 out of
16 subjects when assessed by CV (12 > 0.75, p <0.05) (table 3) (figure 3). Almost all the same subjects
had strong statistical support between comparisons (tables 2 and 3); however, subjects exhibiting strong
statistical support were not consistently the same by speed or Froude number. All four subjects who
exemplify strong supporting statistics showed an increasing linear relationship between variability in
plantar pressure and speed when assessed by m.s.e. (tables 2 and 3) (figures 1 and 3).

The general lack of linear relationship was confirmed by topological pixel-by-pixel regression analysis
of m.s.e. versus speed using pSPM, that revealed no statistical support for a linear increase or decrease
in m.s.e. with speed (figure 2). Only pixels at the outer margin of the foot showed strong statistical linear
trends, as a direct result of small changes in foot area contact size and shape that occurs step-to-step and
at different speeds. Specifically, the red margins of the left inference prints in figure 2 indicate an increase
in m.s.e. with speed around the periphery of the heel and forefoot, while the blue margins indicate
a decrease in m.s.e. with speed around the periphery of the midfoot. It is likely that this significant
relationship reflects changes in pressure or contact area increasing with speed in the forefoot and heel,
and decreasing in pressure or contact area in the midfoot as speed increases. These artefacts could be
removed by use of a non-rigid body image registration approach.

As discussed, walking speed has previously been shown to influence variability in lower limb step
kinematics. Near the walk-run-walk transitions, stride duration increases before and after the transition
[54], and increases at slower walking speeds (0.2-0.6ms™!) compared with speeds of 0.8-1.4ms™'.
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Figure3. (a—p) RMA regression suggested positive linear relationships between m.s.e. (y axis) and Froude numberin 11 out of 16 subjects,
and CV (z axis) and Froude number in 15 out of 16 subjects. However, R and p-values (r* > 0.75, p = <0.05) strongly support linear
increases in variability with Froude in only four subjects when assessed by m.s.e. in four subjects, and in 11 subjects when assessed by
(V (table 3). Froude number is (Fr = v2/g x LL), where 2 is speed squared, g is gravity (9.81m s72) and LL is each subject’s leg length
measured from the superior apex of the iliac crest to the where the heel meets the floor.

A linear increase in variability is present in joint angles [55], step length [41], step time interval [47] and
step impulse [1]. Irrespective of the variable being measured, the data most commonly follow a U-shaped
function at speeds faster and slower than comfortable walking speed, [1,53,54,56-58]. When younger and
older adults are compared, stride time variability, and variability in frontal hip and knee motions, knee
internal and external rotation, trunk motions [12] and step width [47] increased with speed in older
adults. While the magnitude of variability is greater in older adults (more than 65), the variability—
speed relationship is consistent between younger and older adults [12]. The observed difference
here could be due to the fact that plantar pressure is not kinematic but kinetic, and this warrants
further investigation.

4.3. Spatial distribution of variability

Finally, we presented in this contribution a novel means of analysis of quantifying the spatial distribution
of step-to-step variation across the plantar surface using both m.s.e. and CV metrics. Using pSPM, we
visualized variability in plantar pressure distribution in variation maps that plotted the mean m.s.e. and
CV of each pixel from within the sample across the whole plantar surface of the foot, and combined
the means to represent one print for each speed (figures 4 and 5). The m.s.e. variation maps show
centres of highest variation to be highly localized under the lateral and medial forefoot, under metatarsal
heads five and one (figure 4). However, equally, by the same qualitative assessment, CV variation
maps show that the centres of highest variation lay more generally under the midfoot and phalanges
(figure 5). This disparity may be largely explained by the differences between the two metrics and the
‘typical” distribution of peak pressure across anatomical regions of the foot. The m.s.e. directly reflects
the tendency for absolute peak pressure values to vary about the sample’s absolute mean value, and
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Figure 4. (a—p) m.s.e. variation maps represent the distribution and magnitude of the combined mean m.s.e. in each pixel across the
plantar surface of the foot at each speed trial in all subjects. Intra-subject spatial variability measured by the mean m.s.e. is highest and
confined almost exclusively to the lateral and medial forefoot in all subjects; however, there is no consistent increasing or decreasing
relationship between mean m.s.e. and speed.
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may therefore be slightly susceptible towards bias indicating higher variation in areas of high absolute
pressure. By contrast, CV represents a normalized measure of variability and shows a strong preference
towards highlighting areas of low mean pressure as being highly variable. This generally explains why
high CV values (red) are evident around the periphery of the foot and within the midfoot, and lower CV
values (blue) are clustered where areas of high pressure exist, namely at the heel and forefoot (figure 5).

Although m.s.e. and CV appear qualitatively to paint opposing pictures of spatial variation, it is
possible that the step-to-step variations they highlight are not biomechanically contradictory. A recent
study found that pressure in the lateral forefoot was higher in steps where midfoot pressure was also
elevated; and conversely that the same subjects exhibited statistically significant increases in pressure
in the medial forefoot and hallux in steps where midfoot pressure was low [18]. Consistent with the
latter finding, Stolwijk and co-workers [59] found that Malawian subjects with anatomically and/or
functionally flatter feet also exhibited a more laterally placed centre of pressure in late stance. It is
therefore possible that the variability in the midfoot highlighted by CV maps (figure 5) is functionally
correlated to the forefoot variation seen in m.s.e. variation maps (figure 4), in terms of varying paths of
the centre-of-pressure in mid- to late stance. Such a relationship would imply that the function of the
midfoot and metatarsals one and five are highly interdependent.

Until we can obtain large samples of coronal transverse ground reaction force curves, we cannot
draw firm conclusions. We suggest, however, that theoretically such a scheme of variability in mid-
and forefoot pressure might reflect a biomechanical function for controlling perturbations in balance
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Figure 5. (a—p) CV variation maps represent the distribution and magnitude of the combined CV in each pixel across the plantar surface
of the foot at each speed trial in all subjects. Intra-subject spatial variability measured by the CV is highest under the big toe and medial
phalanges, as well as in the midfoot. There is no consistent increasing or decreasing relationship between mean CV and speed.

in late stance in the coronal plane, through internal/external foot rotation. It is further possible that
variability in mid- and forefoot pressure relates to the mechanical influence of a tunable gearing ratio
within the foot [60]: that is, the changing relative lengths of the muscle lever arm, and the load lever
arm measured from the centre of pressure. Pre-tensioning, the effect of dorsiflexion at the talocrural joint
on the plantar aponeurosis (PA) prior to heel strike [61], followed by a stretching of the PA around the
metatarsal heads during toe-off (the windlass mechanism) [62], contributes to increased stiffening of
the plantar soft tissues, and thus, increases the gear ratio at late stance [60]: when the centre of mass
is over the forefoot. Hypothetically, it may be possible that the combined variation in gearing [60] and
local stiffness [63]—with a potentially substantial contribution of varying tension of the transverse and
oblique heads of abductor hallucis [64,65]—could contribute to the observed step-to-step variation in
forefoot peak pressure, and to the extent to which medio-lateral transfer of pressure in late stance is
achieved [65] (figure 4).

Using topological analysis, the spatial distribution of variability across the foot remains constant
across walking speeds: areas of highest variability appear consistently confined to the lateral and medial
forefoot (as calculated by m.s.e; figure 4 and under the forefoot and heel (as calculated by CV; figure 5).
This is perhaps surprising given that systematic changes in peak pressure distribution with speed have
been consistently noted in the literature: that is, that peak plantar pressure is found to positively correlate
with absolute and normalized walking speed in the heel and forefoot [25-30,66]. In addition to an overall
increase in peak pressure, some have also noted decreasing pressure in the lateral midfoot, as a function
of walking speed [18,22,66-68]; some suggesting a greater medial shift in centre of pressure as walking
speed increases [64,65].
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Table 3. Regression statistics reveal a linear increase in m.s.e. with Froude number in only four subjects (subjects B, E, M, N). When n
assessed by CV, regression statistics reveal a linear increase in CV with speed in 10 subjects (subjects B, D, E, F, H, I, K, L, M, N, P).

subject calculation R p-values slope intercept
A m.s.e. 0.0046152 0.91357 —1.5868 2.5799
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4.4, Future directions

This study offers the first quantitative and qualitative description of not only the observed variability
in peak plantar pressure, but also the effect that speed has on the magnitude and spatial distribution of
variability at the body-environment interface. Future work should consider comparable and quantifiable
ways to compare kinetic and kinematic parameters, and the effects of sample size and step-to-step
variation on statistical comparisons of foot pressure. Analysis of variability in plantar pressure in
older people and people at risk of foot pathology such as diabetics, could assist in determining the
impact of neuromuscular and sensorimotor decline on variability in plantar pressure distribution and its
relationship to speed across ontogeny. Systematic changes in peak pressure across ontogeny have been
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demonstrated in a number of studies, and further insights into foot function may be gleaned if relatable
changes in variability were found to exist. Tunable gearing in children has been shown to mature quite
late: consistently low forefoot plantar pressures compared with adults [20] are recorded in children under
5 years old, and there is late development of the medial-to-lateral transfer of the centre of pressure [69].
Functionally, the forefoot delivers propulsive force from the hind- to the forefoot, facilitating toe-off;
however, before 7-8 years of age, accelerative power is driven from the hind- and midfoot [70]. That we
found variability in peak pressure is highest in the lateral and medial forefoot (assessed by m.s.e.), and
more generally in the forefoot (assessed by CV), is consistent with the findings of Li and co-workers [70].
Finally, a similar analysis should be completed during non-treadmill walking at comfortable walking
speeds, and on uneven terrain, to ascertain whether variability increases or decreases when speed is not
controlled, thus testing dynamic system theory.

5. Conclusion

Two measures of variability were used in this paper: one, a standard mathematical formula to assess
variability (m.s.e.), and another, a measure commonly applied to clinical questions (CV). We conducted
experiments solely on healthy young subjects, observing disparate levels of variability consistently
confined to the medial and lateral forefoot as assessed by m.s.e., and low levels of variability (less than
2.5%) in the forefoot and heel as assessed by CV. From these results, we determine that the magnitude of
variability assessed by CV is generally dependent on speed, while the spatial distribution of variability
in plantar pressure when assessed by m.s.e. is independent of speed. This paper presents the first
attempt to understand not only the nature of variability in plantar pressure, but also the influence that
speed has over the magnitude and spatial distribution of variability in plantar pressure. Functional
variability and the exploitation of functional redundancy are products of an adaptive biomechanical
system driven by motor control. Given the tendency for degradation of biomechanical systems, the study
of variability and its contribution to balance and stability in gait across ontogeny, is an essential feature
when understanding how to prevent, resist and recover from instability events during gait.
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