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Abstract—Energy Harvesting Wireless Sensor Networks (EH-
WSNs) have been attracting increasing interest in recent years.
Most current EH-WSN approaches focus on sensing and net-
working algorithm design, and therefore only consider the energy
consumed by sensors and wireless transceivers for sensing and
data transmissions respectively. In this paper, we incorporate
CPU-intensive edge operations that constitute in-network data
processing (e.g. data aggregation/fusion/compression) with sens-
ing and networking; to jointly optimize their performance, while
ensuring sustainable network operation (i.e. no sensor node runs
out of energy). Based on realistic energy and network models,
we formulate a stochastic optimization problem, and propose a
lightweight on-line algorithm, namely Recycling Wasted Energy
(RWE), to solve it. Through rigorous theoretical analysis, we
prove that RWE achieves asymptotical optimality, bounded data
queue size, and sustainable network operation. We implement
RWE on a popular IoT operating system, Contiki OS, and eval-
uate its performance using both real-world experiments based on
the FIT IoT-LAB testbed, and extensive trace-driven simulations
using Cooja. The evaluation results verify our theoretical analysis,
and demonstrate that RWE can recycle more than 90% wasted
energy caused by battery overflow, and achieve around 300%
network utility gain in practical EH-WSNs.

I. INTRODUCTION

Modern energy harvesting technologies have enabled wire-
less sensor networks (WSNs) and the emerging Internet of
Things (IoTs) to operate in a more autonomous fashion; pow-
ered by renewable energy sources such as solar [1], vibration
[2], and wireless energy transfer [3]. Sustainable operation
promotes the ubiquitous deployment of energy harvesting
sensing systems (EH-WSNs), making IoT a major source
of big data. However, due to the limited energy harvesting
capacities of typically tiny devices, energy remains a scarce
resource. Furthermore, renewable energy is inherently time-
varying and exhibits a high degree of heterogeneity over
different sensor nodes. This has opened a new dimension
for sensing and networking algorithm design, which has been
attracting an growing research interest in recent years [4], [5].

In addition to efficient energy utilization, network con-
gestion is an issue that becomes heightened due to expo-
nentially increasing volumes of IoT data being transmitted
over the limited wireless spectrum resource [6]. An efficient
way to reduce bandwidth consumption is via in-network data
processing, where data is processed and reduced inside the
network. Typical in-network processing operations for IoT data
collections include raw sensor data compression, aggregation,
fusion, and feature extraction [7]–[9]. Beside data volume
reduction, in-network processing can also be viewed as data
pre-processing during the data acquisition phase, which can
significantly improve the efficiency and quality of overall IoT
data analytics (e.g. computational overhead reduction caused
by dimensionality reduction [10] and accuracy improvement
due to data cleaning [11]).
Since both energy harvesting and in-network data process-

ing are important IoT techniques, it is essential to study them
jointly. Because data processing operations are normally CPU-
incentive and therefore consume energy, the key research issue
here is to jointly optimize sensing (rate control), networking
(routing, scheduling, and data forwarding), and in-network
data processing for highly dynamic EH-WSNs. To our knowl-
edge, this triplet optimization has not been studied yet.

A. Contributions
This paper presents both theoretical and practical stud-

ies on how to optimize network performance in EH-WSNs
through in-network data processing while also ensuring sus-
tainable network operation (i.e. no device runs out of energy).
Our contributions are summarized as follows:
1. For system modeling, we propose a novel approach

called shadow sink to map data processing to virtual data
forwarding operations, in order to seamlessly combine data
processing and wireless networking. We also establish realistic
models for energy harvesting, energy storage (i.e. rechargeable
battery with finite capacity), and four energy consumption
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operations: sensing, data transmitting, data receiving, and in-
network data processing. Based on these models, a stochastic
optimization problem is formulated to maximize the aggre-
gate network utility while guaranteeing sustainable network
operation for EH-WSNs with arbitrary network topologies and
dynamics.
2. To solve the formulated problem in real-time, we de-

velop an adaptive algorithm, Recycling Wasted Energy (RWE),
that uses the Lyapunov optimization technique [12]. We
present two versions of RWE: an optimal partially-distributed
approach (RWE-opt) and a sub-optimal fully-distributed ap-
proach (RWE-dist). To our knowledge, RWE is not only the
first in-network data processing approach that considers both
energy and networking limitations in EH-WSNs, but also
the first approach that applies in-network data fusion to the
Lynaponov optimization framework.
3. Through rigorous theoretical analysis, we prove three

highly desired properties of RWE: bounded data queue sizes
(for limited storage resource of typical sensor nodes), sustain-
able operation, and asymptotical optimality.
4. We implement RWE-dist in the open source IoT operat-

ing system Contiki [13]. Through both experiments on the FIT
IoT-LAB testbed [14] and extensive trace-driven simulations
on Cooja (i.e. simulator for Contiki [13]), we demonstrate that
RWE manages to improve network performance significantly
in practical EN-WSNs, in terms of harvested energy utiliza-
tion, network utility, and network throughput.

B. Related Work

1) Energy Harvesting Networks: There exist a large body
of theoretical and practical research results in EH-WSNs [15],
including power management schemes [1], [16], [17], routing
[1], sensing [1], [18], [19], and path traveling optimization in
WSNs using wireless power transfer [20]. Recent approaches
that use Lyapunov optimization techniques [12] for joint power
management and network optimization [4], [5], [21], are most
relevant to our work. However, none of these work consider in-
network processing or complete energy consumers of practical
sensor nodes (i.e. sensors, transceivers, and CPU). Therefore,
they cannot be directly applied for in-network processing
optimization. More importantly, all current approaches are
theoretical work without practical implementation. In contrast,
our RWE has been implemented in Contiki OS and validate
its practical performance in FIT IoT-LAB testbed.

2) In-network Processing.: A large number of approaches
have been proposed for joint networking and in-network data
processing, such as in-network fusion in traditional battery-
based WSNs [9], [22]–[24], and in-network aggregation in
data center networks [25]. However, to our knowledge there
is no work existing on combining the in-network processing
approach for EH-WSNs. Furthermore, the current schemes
typically assume specific and constant network topologies (e.g.
fixed trees). In contrast, our RWE can work in networks with
general and time-varying topologies while adapting to, and
fully exploiting, the time-varying harvested energy.

C. Paper Organization
The next section presents the system model. The RWE

algorithm is proposed in Section III. Section IV provides
discussions and the theoretical analysis of the RWE algorithm.
We discussed the practical issues and implementation details
of RWE in Section V. Testbed experiments and extensive
trace-driven simulations are discussed in Section VI, and we
conclude this paper in Section VII. The proofs of all theorems
can be found in appendices (http://bit.ly/1MQQ1lo).

II. SYSTEM MODEL

We consider an energy harvesting network that consists of
a set of statically-deployed nodes N = S ∪ D, where S and
D represent the sets of all sensor nodes and IoT gateways
(sinks) respectively. The network can be modeled as a graph
G(N ,L) with arbitrary topologies, where L represents the
set of all wireless links. Let Nx ⊆ N be the set of all one-
hop neighbors of each node x ∈ N . The network operates
in a finite-horizon period consisting of discrete time slots
t ∈ {1, 2, ..., tend}, tend < ∞. At each slot, a sensor node
can have the following four operations: collecting raw sensor
readings, performing processing on data packets in its data
queue, transmitting or receiving data packets over wireless
links.

A. Sensing and Communication Models
1) Sensing Model: At each slot t, every node x collects

raw data readings from hardware sensor at a rate of rx(t) ≥ 0.
We denote the per packet energy cost for the sensing operation
(i.e. sensing price) of x ∈ S as psx(t), i.e. x’s total energy
cost for sensing is rx(t)psx(t). In practice, psx(t) may be very
different across nodes, depending on which type of sensor used
by x. For instance, the sensing price of a camera is normally
much higher than that of a temperature sensor.

2) Stochastic Link Capacity and Transmission Cost: Let
cx,y(t) ≥ 0 be the time-varying capacity of wireless link
(x, y) ∈ L at slot t, i.e. the maximum (integer) number of
data packets that can be successfully transmitted from x to
y during slot t, and fx,y(t) ≤ cx,y(t) be the actual number
of data packets transmitted over wireless link (x, y) at slot t.
In addition, denote cmax < +∞ as the finite upper bound
of all channel capacities (e.g. ∀t, ∀(x, y), cx,y(t) ≤ cmax),
depending on the actual wireless radios of the sensor nodes.
Denote ptx,y(t) and prx,y(t) as energy prices for the trans-

mitter x and receiver y at time slot t respectively, for a
successful transmission over wireless link (x, y) at slot t, i.e.
total energy costs for transmitting and receiving at slot t are
fx,y(t)ptx,y(t) and fx,y(r)prx,y(t) respectively. It can be seen
that both ptx,y(t) and prx,y(t) depends on the power consump-
tion of nodes’ wireless transceivers and the channel quality of
wireless link (x, y) at slot t (e.g. link-layer retransmissions).

3) Wireless Interference Model: Let the |L|-dimensional
vectors c(t) and f(t) represent link capacities and data trans-
mission rates overs all wireless links in L at slot t, respectively.
A set of wireless links are contention-free if all links in this set
can be active (i.e. transmitting data) simultaneously, depending



on the interference relations among them. For a given c(t),
we define a |L|-dimensional contention-free link rate vector
µ(c(t)). Here, the lth entry of µ(c(t)) is the capacity cl of
the link l, if l is scheduled to transmit; otherwise, entry l is
zero. The wireless links associated with the non-zero entries
in µ(c(t)) are contention free. We further define the link rate
region Γ(c(t)) as the set of all possible contention-free link
rate vectors µ(c(t)). At any slot t, a data transmission decision
f(t) should satisfy the following constraint:

f(t) ∈ Γ(c(t)) (1)

which captures both the physical and link layer constraints of
wireless transmissions.

B. In-Network Data Processing Model
1) Data Buffer Model: Each sensor node x ∈ S maintains

a data queue Qx(t) to store its own sensed raw data packets,
data packets processed by itself, and (raw and processed) data
packets received from its neighbors in Nx. Therefore, the
queue Qx(t) represents the set of data packets in node x’s
data queue at slot t.
Let Qx(t) ≥ 0 be the length of queue Qx(t), i.e.

Qx(t) = |Qx(t)|. Since sensor nodes normally have limited
RAM resources, we consider a finite buffer size Qmax in our
model, i.e. ∀x, ∀t, Qx(t) ≤ Qmax.

2) Data Processing Decisions: Assume each data packet
m in the network has a unique type θm ∈ Θ that identifies
the properties of m, including its source ID, data attributes,
correlation groups, Quality of Information (QoI), etc. Here,
the type space Θ is a finite and countable set that includes
all possible data types in a given network, which depends on
specific network objectives. A data processing decision [7],
[9], [26] of node x at slot t can be defined in a general form:

ξtx : ×Qx(t)Θ → ×|Qξ
x(t)|

Θ (2)

where Qξ
x(t) = ξtx(Qx(t)) represents the resulting set of

processed data packets. It is worth noting that a reasonable
local data processing decision ξtx should not result in an
increased queue length, i.e. |ξtx(Qx(t)| ≤ Qx(t). Data process-
ing operations that increase data volume should be performed
at the gateway, rather than inside the network.
It can be seen that each node x may be able to make

various data processing decisions ξtx, for a given Qx(t). For
instance, suppose Qx(t) contains three data packets with
readings {a, b, c} and the processing objective is to aggregate
the results and compute the average, then x has four choices of
processing decisions: computing (a+b)/2, (a+c)/2, (b+c)/2,
and (a + b + c)/3. Therefore, we can define the set of all
possible processing decisions as Ξt

x.
Definition 1 [Shadow Sinks and Virtual Data forwarding].
Define a shadow sink x′ associated to each sensor node x with
a virtual queue length Qx′(t) = 0, ∀t ≥ 1. A data processing
decision ξtx can be viewed as if x sends f̃x,x′ number of virtual
data packets to its associated shadow sink x′, where

f̃x,x′(t) = Qx(t)− |ξtx(Qx(t))| ≥ 0 (3)

The capacity of shadow link (x, x′) is defined as,

c̃x,x′(t) = max
ξtx∈Ξt

x

(Qx(t)− |ξtx(Qx(t))|) (4)

It can be seen that virtual data forwarding f̃x,x′(t) ≤
c̃x,x′(t) is similar to data forwarding over real-world wireless
links.

3) Energy Cost of Local Data Processing: Since data pro-
cessing operations are CPU-intensive, the energy consumption
of a data processing ECdp

x (t) for node x at slot t depends
on the computational complexity of corresponding processing
rule ξtx and the original data set before fusionQx(t). From (3),
we can see that the virtual forwarding rate f̃x,x′(t) is also a
function of ξtx and Qx(t). We can write ECdp

x (t) as a function
of f̃x,x′(t), i.e. ECdp

x (f̃x,x′(t)).
Here, ECdp

x (f̃x,x′(t)) can be either a linear or a non-
linear function of the virtual forwarding rate f̃x,x′(t). Simple
processing operations such as aggregations that are required
to compute the maximal, minimal, and average data values
normally result in a linear function. For instance, let e1

and e2 be the energy costs of atomic addition and division
operations respectively. The energy consumption for average
value computation can be easily obtained:

ECdp
x (f̃x,x′(t)) = e1f̃x,x′(t) + e2

The function ECdp
x (f̃x,x′(t)) could be non-linear, for more

complex processing operations; such as Kalman-filter based
data fusion, and image fusion [27], [28]. Due to the page
limits, we do not discuss the detailed analysis for energy
consumption of these processing operations in this paper.

C. Data Queue Length Dynamics
Consider the sensing, transmitting, receiving and data pro-

cessing operations, it can be seen the queue length dynamics
of a sensor node x ∈ S can be described as

Qx(t) ≤ Qmax (5)

Qx(t+1) = |Qx(t)−fout
x (t)−f̃x,x′(t)|++rx(t)+f in

x (t) (6)

where the operator |a|+ means max(a, 0); and fout
x (t) =∑

y∈Nx
fx,y(t) and f in

x (t) =
∑

y∈Nx
fy,x(t) represent the

total numbers of transmitted and received packets at slot t
respectively. The queue length of all sinks are always zero.

D. Models for Energy Harvesting, Storage, and Consumption
There are three key components in the embedded energy

harvesting system of each sensor node: energy harvester,
energy storage, and energy consumers. Specifically, consider
a node x ∈ S at slot t, let hx(t) ≥ 0, Bx(t) ≥ 0,
and ECx(t) ≥ 0 be the amount of its harvested energy,
residual battery level, and energy consumption respectively.
In our model, we consider a battery with finite-capacity, i.e.
∀x, t, Bx(t) ≤ Bmax.
For a sensor node x at slot t, its total energy consumption

ECx(t) is the sum of energy costs by operations for sensing,
transmitting, receiving, and data processing



ECx(t) = psx(t)rx(t) + ECdp
x (t) +

∑

y∈N (t)

ptx,y(t)fx,y(t)

+
∑

y∈N (t)

pry,x(t)fy,x(t) (7)

Considering the hardware of real sensor nodes, the total per-
slot energy consumption ECx(t) should be upper bounded by
a finite value Emax (i.e. ∀x, t, Ex(t) ≤ Emax), which depends
on the maximum total power consumption of sensor nodes and
the duration of a slot. Generally, Emax ≪ Bmax, because Emax

(typically in mJ) is multiple orders of magnitude smaller than
Bmax (typically in kJ) in practice.
The dynamic energy system of each can be modeled as:

0 < Bx(t) ≤ Bmax, ∀x ∈ S, 1 ≤ t ≤ tend (8)
Bx(t+ 1) = Bx(t)− ECx(t) + hx(t), ∀x, t (9)

Here, (9) represents the recharging and discharging process
of the battery ; and (8) highlights the bounded battery capacity.
More importantly, the constraint ∀x, t, Bx(t) > 0 ensures
sustainable operation, which is expected to be achieved by
every sensor node in the network, i.e. no node runs out of
energy at any slot.

E. Optimization Objective
We do not make any probabilistic (e.g. specific distribu-

tion) and stochastic (e.g. Markov process) assumptions of the
dynamic network states, including harvested energy, energy
costs (for sensing, processing, transmitting, and receiving),
as well as transmission and data processing capacities. The
objective of this paper is to seek an algorithm that can solve the
following finite-horizon stochastic optimization problem, by
making sensing rate control r(t) = (r1(t), ..., r|S|(t)), wireless
transmission f(t), and data processing f̃(t) decisions at each
slot 1 ≤ t ≤ tend.

maximize
r(t), f(t), f̃(t)

1

tend

tend∑

t=1

∑

x∈S

Ux(rx(t)) (10)

subject to
f(t) ∈ Γ(c(t)), 1 ≤ t ≤ tend (11)
0 ≤ rx(t) ≤ rmax, 1 ≤ t ≤ tend ∀x ∈ S (12)
0 ≤ f̃x,x′(t) ≤ c̃x,x′(t), 1 ≤ t ≤ tend, ∀x ∈ S (13)

1

tend

tend∑

t=1

(ECx(t)− hx(t)) ≤ 0, ∀x ∈ S (14)

1

tend

tend∑

t=1

(f in
x (t) + rx(t)− fout

x (t)− f̃x,x′(t)) ≤ 0 (15)

Constraints (5), (6), (7), (8), and (9)

where the utility function Ux(rx(t)), x ∈ S is a concave,
differentiable and increasing function of sensing rate rx(t),
such as the α-fairness utility function [29] that considers both
throughput and fairness between sensing rates. The objective
(10) is to maximize the time-average total sensor utilities over
the time horizon of the system. Constraint (12) represents that
the sample rate rx(t) is bounded by a finite value rmax < ∞

in practice. Constraint (14) ensures that each node cannot
consume more energy than it can harvest. Constraint (15)
states that the total amount of each node’s incoming data must
be no more than that of its outgoing data.

III. RWE ALGORITHM
This section presents our RWE algorithm, a theoretically

optimal solution to the stochastic problem formulated in
Subsection II-E. At each slot t, RWE operates as follows:

1. Sensing Rate Control. Each node x ∈ S, set its optimal
sensing rate as

r∗x(t) = min(rmax, U
′−1(

Qx(t) + psx(t)(Bmax −Bx(t))

V
))

(16)
where V ≥ 0 is a system parameter which will be explained
later. U ′−1() represent the inverse function of the first deriva-
tive of utility U(). For instance, consider an approximate
proportional fair utility U(rx(t)) = ln(rx(t) + 1), then
r∗x(t) = min(rmax, V/(Qx(t) + psx(t)(Bmax −Bx(t))) − 1).

2. Local Data Processing. Each node x ∈ S, compute its
optimal processing action

f̃x,x′ (t) =

⎧
⎨

⎩

argmax
0≤f̃x,x′(t)≤c̃x,x′(t)

g(f̃x,x′ (t)) if Bx(t) ≥ Emax

0 otherwise
(17)

where
g(f̃x,x′ (t)) = Qx(t)f̃x,x′(t)

−ECdp
x (f̃x,x′(t))(Bmax −Bx(t)) (18)

For instance, consider a linear function ECdp
x (f̃x,x′(t)) =

pdpx (t)f̃x,x′(t). Objective (18) can be easily maximized by set-
ting f̃x,x′(t) = c̃x,x′(t), if Qx(t)−pdpx (t)(Bmax−Bx(t)) > 0.
Otherwise, f̃x,x′(t) can be set as zero to maximize (18).

3. Scheduling. For each link (x, y) ∈ L, compute a weight

wx,y(t) =

⎧
⎨

⎩
ŵx,y(t) if (

Qy(t)

Qmax − η
< 1) ∧ (Bx(t), By(t) ≥ Emax)

0 otherwise
(19)

where η = rmax + cmax and

ŵx,y(t) = Qx(t)−Qy(t)− ptx,y(t)(Bmax −Bx(t))

− prx,y(t)(Bmax −By(t)) (20)

Then compute the contention-free link with maximum aggre-
gated weights,

µ∗(t) = arg max
µ(t)∈Lf

∑

(x,y)∈µ(t)

wx,y(t) (21)

Where Lf ⊂ 2L is the set of all contention-free links.
For general interference relations, the optimal solution to
the scheduling problem (21) is centralized and NP-hard (e.g.
[30]), which is therefore intractable in practice. Therefore,



we implemented a fully distributed suboptimal scheduler, the
lightweight Longest Queue First (LQF), which have the po-
tential to achieve a near-optimal performance in practice [31]–
[33]. Here, RWE with optimal and distributed LQF schedulers
are named as REW-opt and RWE-dist respectively.

4. Data Forwarding. The data forwarding rate fx,y(t) over
each link (x, y) ∈ L is set according to

fx,y(t) =

{
cx,y(t) if wx,y > 0 and (x, y)u ∈ M(t)

0 otherwise
(22)

5. Data and Energy Queue Update. After performing the
sensing, data processing, and data forwarding operations, each
sensor node x updates its battery level using (9) and (8), and
queue backlog according to (5) and (6).

IV. ANALYTICAL RESULTS
This section presents the discussions and theoretical anal-

ysis of the RWE performance.

A. Discussions
By using RWE, each sensor node makes the optimal

decisions in real-time and in a fully distributed manner (i.e.
RWE-dist, when adopts distributed matching). These decisions
are based on the current system states only, and no knowledge
regarding the future network state is required by RWE.

1) Control Overheads and Scalability: The RWE-dist has
three types of control overheads

• Communication Overhead. At each slot, every node
broadcasts a beacon to communicate its queue backlog
to its one-hop neighbors. For distributed scheduling, each
node transmits at most one control packet to each of
its neighbors [31], [34], [35]. Hence, the communication
overhead of RWE-dist is O(D) per node per slot, where
D is the average node degree of the EH-WSN.

• Computational Overhead. At each slot t, every node
x ∈ S performs two simple arithmetic calculations for
sensing and data processing, and |Nx| simple arithmetic
calculations for scheduling and data forwarding. Con-
sequently, the computational overhead of RWE-dist is
O(D) per node per slot.

• Storage Overhead. The simple operations required by
RWE result in relatively easy implementation (also small
size of programming code) and therefore small usage of
ROM. Furthermore, the RAM occupation is also limited,
Since the sizes of all data queues are deterministically
bounded by Qmax.
In summary, the RWE-dist algorithm is scalable, since the

per-node overheads of RWE for communication, computation,
and storage are independent to the network size |N |.

B. Analytical Results
1) Asymptotically Optimality: We divide the time horizon

of the system, 1 ≤ t ≤ tend, into K successive frames
with size of T slots (i.e. tend = KT ). Assuming that there
exists an ideal algorithm operating in the first slot of each

frame k = KT − T + 1, 1 ≤ K ≤ tend/T that can obtain
full information during the future T slots (i.e. the future
energy budget and parameters, channel qualities, and data
processing opportunities of all nodes in the kth frame). Based
on future knowledge, the ideal algorithm solves the following
optimization problem:

maximize
r(t), f(t), f̃(t)

1

T

kT−T+1∑

t=kT

∑

x∈S

Ux(rx(t)) (23)

s.t.
kT∑

t=kT−T+1

(f̃x,x′(t) + fout
x (t)− f in

x (t)− rx(t)) ≥ 0(24)

kT∑

t=kT−T+1

(ECx(t)− hx(t)) ≤ 0, ∀x ∈ S (25)

per-slot constraints : (5)-(9), and (11)-(13)

The objective (23) demonstrates that the ideal algorithm
optimizes the global social utility over each frame 1 ≤ k ≤ K .
Define the U ideal

k (T ) to be the optimal aggregated utility (23)
achieved by the ideal algorithm for the kth T -slot frame. Due
to the complete future knowledge requirement, it is impossible
to design such an ideal algorithm to achieve U ideal

k (T ) in
practice. However, U ideal

k (T ) can be used as a performance
baseline.
Theorem 1. Part 1: If the optimal (centralized) scheduler is
adopted, the time-average aggregate utility achieved by RWE-
opt satisfies:

Uopt =
1

KT

KT∑

t=1

U(t) ≥
1

K

K∑

k=1

U ideal
k (T )−

MT + Z

V
(26)

where

M =
1

2
|S|((cmax +max(rmax, c̃max))

2+max(h2max,E
2
max)))

Z = |S|max(Emax, hmax)Bmax

+|S|2(c2max + cmax max(rmax, c̃max))

are constant values
Part 2: Under the node-exclusive interference model (e.g.
[31]), the time-average aggregate utility achieved by RWE-
dist with distributed greedy scheduler satisfies:

Udist ≥
1

2K

K∑

k=1

U ideal
k (T )−

MT + Z

V
(27)

Proof. The proof of Theorem 1 can be found in Appendix A
(http://bit.ly/1MQQ1lo). !
When T = tend, the ideal algorithm is the optimal

solution to the problem (10), therefore Uopt ≤ U ideal
k (tend).

In addition, as (Mtend+Z)/V are a constant value, RWE-opt
asymptotically achieves the optimal, as V → +∞.



2) Deterministic Bounded Data Queue: Memory is a
limited resource for typical low-cost sensor nodes. Theorem 2
below shows that all data queue backlogs are deterministically
bounded by using RWE.
Theorem 2. Suppose the initial queue backlogs is empty,
i.e. Qx(1) = 0, ∀x ∈ S, then Qx(t) is always less than
Qmax, ∀t ≥ 1, if

V ≤ min
x∈S

(Qmax − η)/U ′
x(0) (28)

Proof. The proof of Theorem 2 can be found in Appendix B
(http://bit.ly/1MQQ1lo). !
In practice, η, U ′

x(0), and Qmax are normally fixed and can
be determined in advance. Therefore, the parameter V can be
set to guarantee the inequality (28). For instance, if the utility
function of a sensing x is chosen as Ux(rx(t)) = ln(rx(t)+1),
then U ′

x(0) = 1 and V can be smaller than Qmax− η to avoid
packet drops caused by data buffer overflow.

3) Sustainable Network Operation.: A key objective of
our design is to achieve sustainable network operation. The-
orem 3 below demonstrates the RWE can achieve the strong
guarantee of sustainable network operation.
Theorem 3. Sustainable network operation can be guaranteed
by RWE, if Bx(1) > 0, ∀x ∈ S and

V ≤ min
x∈S

Emax(Bmax − Emax)/U
′
x(0) (29)

Proof. The proof of Theorem 3 can be found in Appendix C
(http://bit.ly/1MQQ1lo) !.

V. IMPLEMENTATION OF RWE-DIST
We implemented RWE-dist in Contiki [13], an open source

operating system for WSNs and the Internet of Things (IoTs).
This section highlights key details of our implementation.

A. RWE in CSMA-based EH-WSNs
RWE uses slotted Time Division Multiple Access

(TDMA), yet most current commercial short-range wireless
radios are based on Carrier Sense Multiple Access (CSMA),
such as the IEEE 802.15.4 radio used in our evaluation. To
implement the TDMA-based RWE over a CSMA network, we
used a simple technique proposed in [36]: If a wireless link
is scheduled to transmit, the corresponding transmitter will
reduce the size of its CSMA back-off window to aggressively
access the channel; otherwise, it will access the channel with
normal back-off window size.

B. An Example Data Processing Rule: Correlation-Group
Based in-network Fusion/Aggregation
It can be seen that RWE can be used for any in-network

data processing applications, as long as the processing rule
for each sensor node x can be determined. To evaluate the
practical performance of RWE, we implemented a simple but
typical data processing rule, which is described as follows:

• All sensor nodes with unique positive IDs are divided into
multiple groups with same sensor types and unique group

Fig. 1. Data packet format in our implementation.

IDs. Each raw or fused packet has a format as shown in
Fig.1. When a raw data packet is produced by a sensor
node x in group g, the header segments of this packet are
set as SOURCE ID= x, GROUP ID= g.

• A set of raw data packets with the same GROUP ID and
different SOURCE ID values can be fused, which will
result in a fused data packet with the same GROUP ID
and a SOURCE ID with a value of −1.

• A set of hybrid fused and raw data packets with the same
group ID can be further fused. The SOURCE ID of the new
fused packet is assigned −1.
It can be seen that above correlation-group based in-

network fusion/aggretation captures realistic characteristics of
a large class of applications. For instance, above rule can repre-
sent the in-network aggregation computations of the average,
maximal, and minimal of spatial-correlated sensor readings
(e.g. temperature, air condition, and noise). In addition, this
fusion rule can also be pixel-level multi-sensor image fusion
such as [27], [37], which combines multiple images produced
by different types sensors into a single image. For brevity,
our implementation assumes the energy consumption of data
processing ECdp

x (f̃x,x′(t)) takes a simple linear form

ECdp
x (f̃x,x′(t)) = pdpx fx,x′(t), ∀x ∈ S (30)

where the per packet processing price pdpx depends on the
computational complexity of the specific data processing op-
eration. Table I below summarizes our implementation details.

TABLE I
IMPLEMENTATION DETAILS

Operating System Testbed ROM RAM MAC
Contiki FIT IoT-LAB 6 kB 3.5 kB CSMA+LQF

VI. EVALUATION
We performed our evaluation experiments for RWE-dist on

100 sensor nodes (M3 Open Nodes) selected from the Lille
site offered by FIT IoT-LAB testbed [14], as shown in Fig. 2
(a) and (b).
Each M3 open node has a ARM Cortex M3 micro-

controller, a 64 kB RAM, a IEEE 802.15.4 radio AT86RF231,
several types of sensors, and a rechargeable 3.7 V LiPo battery
(Bmax = 650 mAh, around 8.7 Kilojoules). The transmission
power was set as -17 dBm.
We used a one-month real solar data trace [38] shown in

Fig.2 (c)1 as the energy source in our evaluations. In our

1Since the solar data granularity is five minutes, each slot (i.e. a second) in
our evaluation represents 300 seconds in reality. This significantly increased
the evaluation speed, and enabled us to evaluate the one-month performance
of RWE-dist within 2.5 hours.



(a) sensor node deployment (b) network topology

0 5 10 15 20 25 30

0.3

0.6

0.9

1.2

days

so
la

r p
ow

er
 (k

W
/m

2 )

(c) real solar data

Fig. 2. Experiment Settings:(a) Node deployment in FIT IoT-LAB; (b) The
network topology of the EH-WSN in the FIT IoT-LAB experiments, the blue
node at the right-bottom corner is the sink while other blue nodes are sensor
nodes; and (c) One-month real solar power data used in our evaluation [38].

evaluation, the duration of a slot was set as one second.
We consider typical solar powered sensor nodes, each of
which is equipped with a 3.8cm × 9cm solar panel (with
a photovoltaic transfer efficiency of 50% [39]). In order to
model the heterogeneous solar harvesting opportunities over
the networks, we added random noise equating to ±50% to
the original solar data for each sensor node.
According to the datesheet of the AT86RF231 (i.e. the

IEEE 802.15.4 transceiver used in our selected M3 sensor
nodes), the current consumption for data receiving and trans-
mitting (at -17dBm) are 12.3 mA and 7.4 mA respectively.
Therefore, we should set ptx,y(t) = 0.6prx,y(t) for each
wireless link (x, y) at every slot t. Furthermore, consid-
ering the dynamic channel quality of the IEEE 802.15.4
wireless channels, we set the time-varying per-packet re-
ceiving price prx,y(t) = 5ETXx,y(t) and transmitting price
ptx,y(t) = 0.6prx,y(t) = 3ETXx,y(t) (in mJ per packet). Here,
ETXx,y(t) is the ETX value of over wireless link (x, y) at
slot t, which was measured at real-time.
For the sensing and data processing energy pricing, we

considered two sets of typical applications: low-cost sens-
ing and multimedia sensing, which represent simple (e.g.
temperature samples) and complex (e.g. image) sensor data
structures respectively. For the low-cost sensing, the time-
varying sensing price psx(t) and data processing price pdpx (t)
were randomly assigned using a uniform distribution over a
range of [1, 2] (mJ per packet) for each sensor node x and slot
t; For the multimedia sensing, the ranges of sensing and data
processing price are [6, 8] mJ per packet. In addition, other
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Fig. 3. Testbed experiment results: the network utility and sustainable oper-
ation performance of RWE for low-cost and multimedia sensing applications.
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Fig. 4. Testbed experiment results: the impact of in-network data processing
(IP) on energy utilization.
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Fig. 5. Simulation results on Cooja: the impacts of data processing capacity and underlying routing topology on the network performance.

parameters were set as Ux(rx(t)) = ln(1+ rx(t)), rmax = 10,
η = 50, and V = 150, Qmax = 200.

A. Testbed Experiments

1) Network Utility and Battery Performance: Fig.3 shows
the network utility and battery performance for that RWE
with in-network data processing (IP) and without in-network
processing (referred as No IP, i.e. joint optimization for
sensing and networking only). The network utility in Fig.3(a)
is the time-average value at each slot t is computed as∑t

τ=1

∑
x∈S ln(1 + rx(τ))/t. It can been seen that around

200% and 150% utility improvements are achieved by adopt-
ing in-network processing for low-cost and multimedia ex-
periments. The fluctuations that appear in the time-average
network utility curves are caused by the periodically changing
solar power, which also demonstrate the adaptability of RWE.
Fig.3(b) shows the Cumulative Distribution Function

(CDF) for the battery levels collected at every second. Due
to the intermittent availability of solar energy, battery should
be charged during the day time in order to power network
during each night. RWE combines the optimization of battery
management and devices operations (sensing, transmitting,
receiving, and data processing), which ensures the sustainable
operations in all experiments.

2) Improve The Harvested Energy Utilization: Due to
limited energy harvesting capacities for typically tiny-size
sensor nodes, harvested energy is still an scare resource, which
should be utilized as much as possible. Fig.4 (a) visualizes the
amount wasted energy of the all devices in the network during
the whole duration of the two low-cost sensing experiments.
It can be seen that energy was wasted periodically, during
the strong solar radiation time of each day (normally between
1:00 PM to 3:00 PM), caused by battery overflow. This result
shows that in-network data processing manages to recycle a
significant amount of wasted energy, which is used to further
improve the network utility. Fig.4 (b) shows the CDF of
the wasted energy for all four experiments. In addition, by
recycling waste energy for in-network processing operations,
RWE reduced wasted energy by more than 75% for both low-
cost and multimedia sensing experiments.

B. Trace-driven Simulation based on Cooja
To further study the performance of RWE-dist, we also

construct simulations with a 100-node randomly-deployed EH-
WSN (99 sensor nodes and a sink) on Cooja, the simulator of
Contiki OS [13]. In all simulations, we only consider low-cost
sensing scenarios. All other parameters, including the network
utility, are the same as the testbed experiment settings.
Fig.5 demonstrates the impact of data processing capacity

and underlying routing topology on the network performance.
Here, the data processing capacity (i.e. c̃x,x′(t), x ∈ S, t ≥ 1)
was changed, by controlling the number of correlation groups
(GN=1 and GN=3 in Fig.5). As the number of correlation
groups increases, the average group size decreases resulting in
a smaller data processing capacity at each node, according to
the data processing rule defined in Subsection V-B. Fig.5(a)
and (c) clearly show that larger group number (i.e. GN=3)
results in worse network utility and energy utilization, due to
the smaller in-network processing opportunities and capacities.
We also test two underlying routing topologies for RWE:

no predetermined routing structure (i.e. the original RWE)
and a tree (i.e. RWE with a fixed single path route). It can
be seen that RWE can work with any network topology or
underlying routing structures, but nearly all current in-network
processing (fusion) approach in WSNs are based on fixed
trees. Fig.5(a) and (c) show that restricted routing topology
(i.e. tree) leads to lower network utility and worse energy
utilization for RWE with and without in-network process-
ing. Interestingly, the performance gain of using in-network
processing in routing tree simulations are higher than that
with unrestricted routing structures. Specifically, in-network
processing results in around 300% improvement of average
network utility (3.25 with IP and 0.83 without IP) and 97%
reduction of average wasted energy (0.73 with IP and 30.4
without). Finally, Fig.5(b) shows that all the 5 variants of RWE
achieve sustainable network operation.

VII. CONCLUSION

In this paper, we studied how to jointly optimize net-
working and in-network data processing in energy harvesting
WSNs (EH-WSNs). We develop a novel technique called



shadow sink to map data processing operations to virtual data
forwarding over virtual links. This enables us to formulate
a stochastic network problem for joint optimization of in-
network data processing and networking (sensing rate control,
routing, scheduling) for EH-WSNs with general topologies and
data processing rules, which aims to maximize network utility
while ensuring sustainable operations. To solve the formulated
problem, we develop an adaptive algorithm, Recycling Wasted
Energy (RWE), which makes the real-time sensing, wireless
transmission and data processing decisions in a distributed and
adaptive way. To our knowledge, RWE is not only the first
work on in-network data processing in EH-WSNs, but also
the first approach that applies in-network data processing to
the Lyapunov optimization framework.
Through rigorous analysis, we formally prove that RWE

manages to achieve asymptotical optimality, bounded data
queue size, and sustainable network operation. We implement
RWE on a popular IoT operating system Contiki OS, and
evaluate its performance through both real-world experiments
using the FIT IoT-LAB testbed and extensive trace-driven
simulations using Cooja. The evaluation results demonstrate
that RWE can achieve significant performance improvements,
in terms of harvested energy utilization and global network
utility. Interesting future work is to evaluated practical data
processing functions such as aggregate queries and entropy-
based image fusion.
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