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Abstract

Aperiodic “quasi-crystallographic” tilings were first constructed around 1970,
most prominently by R.Penrose, and gained interest throughout science when
the so-called quasi-crystals were discovered in the mid 80s (and won D.
Shechtman a Nobel prize in 2011). Aperiodic tilings turned out to be a use-
ful model for these new molecular structures, in particular explaining their
formerly unknown symmetries.

An important method to construct such aperiodic tilings is the method of
canonical projection from higher dimensional lattices. Lattices are the orbits
of special type of crystallographic groups. For example, Penrose tilings can
be obtained from a lattice tiling of E5, by the cut-and project method.

The main and final aim of the research project will be to develop a mathemat-
ical theory of crystallographic tilings and generalize the method of canonical
projection to other crystallographic groups than lattices.

Using this method one can hope to construct (interesting), completely new
types of aperiodic tilings.
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Chapter 0

Introduction

0.1 Objective of Research

There has been plenty of work done with regard to crystallography. After
the discovery of quasi-crystals in the 1980s, crystallographers became inter-
ested in other substances found in nature. New areas had been opened in
mathematics. Modern crystallographic groups and tiling theory improved
and developed from different directions and perspectives.

Penrose tiling is a good example allowing one to think and build upon one’s
knowledge. In the mid of 70s, Roger Penrose discovered aperiodic tiles, which
gained popular attention [22]. Penrose tilings displayed a remarkable rota-
tional symmetry that: every pattern in the tiling appears to rotated by 36
degrees, and in the same manner.

The second direction we should consider is the discovery of quasi-crystals. In
the 1980s, Shechtman discovered a new class of solids called quasi-crystals.
Quasi-crystals have a structures that are ordered but not periodic. A quasi-
crystal pattern can occupy all space, but lacks translational symmetry. These
patterns have sharp diffraction patterns and some of them have 8 or 10 folds;
(see [29] for details).

Immediately after the discovery of quasi-crystals, scientists noticed that quasi-
crystals can be modeled by aperiodic tilings and other cut-and-project tilings;
(see the presentation of history in[26]).

Today, after several decades, many kinds of aperiodic crystals have been
discovered and many of their properties and structures are known; (see [29]
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and [26]). These tilings, in turn, can be generated in a number of ways in-
cluding matching rules, cut-and-project methods, and substitutions.

Tilings were then studied from a dynamical system point of view. Tilings of
En generate dynamical systems by moving them around with translations (or
more general isometries) of En, and closing the resulting orbit with respect
to a distance function defined between arbitrary tilings. This began in the
1980s, when people studied substitution tilings in one and two dimensions
and then moved to higher dimensional substitution. See [7], [30], [27], and
[20] for more details.

In the beginning, the procedure we intend to follow was:
Pick out tiles and project them. This technique works in Penrose tiling, but
we have seen lots of problems. For instance, looking at these techniques [10],
we see that they have a monograph on cut-and-project (set of points) that
are more specific than Delone sets, because simplicity is important. This is
followed by an immediate specialization in lattices and projecting those sets
of points. A remark that is always made is that we can obtain the tilings
and the Voronoi-cell tilings from the set of points, but this was never stud-
ied. There are difficulties on this basis; one of these difficulties is that the
automorphism group may gets larger (see Chapter 5).

The main question of the thesis is:

Does the cut-and-project method still work when we replace lat-
tices with more general “crystallographic” tilings, and what are
the properties of the resulting cut-and- project tilings?

The first problem was that surprisingly enough, no notion of “crystallo-
graphic tiling” in the following very natural sense seems to exist in the liter-
ature.

Definition 0.1.1 [=Definition 5.1.2]
An isometrically simple tiling T ⊂ En is crystallographic if its automorphism
group Aut(T ) in Isom(En) is crystallographic.

Then the automorphism group of a crystallographic tiling should completely
determines the equivalence type. However, a reasonable classification theory
is not possible with respect to the standard equivalence relation (Translational-
Mutual Local Derivability; for short MLD) in [26]. We will see in several
examples that two tilings are MLD, but do not have the same automorphism
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group. To resolve this issue, we introduce isometrical-MLD by imposing
the taxicab metric dO on Isom(En) (as in section 1.2), then replacing trans-
lations by isometries in the original definition, as we will see in Chapter 4.

Definition 0.1.2 [=Definition 4.2.9]
Let T and T ′ two tilings of En. Then T ′ is called γ-locally derivable from T
if there exists a radius R, such that for x ∈ En and φ ∈ Isom(En), we derive
the following:

[T ]BR(x) = [φ(T )]BR(x) implies [T ′]{γ(x)} = [γφγ−1T ′]{γ(x)}.

If T is γ−1-locally derivable from T ′, and T ′ is γ-locally derivable from T ,
then T and T ′ are called isometrical-MLD.
Informally this means that the properties of T ′ at each point γ(x) ∈ En are
determined by the properties of T in a ball of some given radius R around x.

This definition allows to prove strong results:

Theorem 0.1.3 [=Theorem 5.2.1]
For any two crystallographic tilings T, T ′ of En; T ′ is γ-LD from T , if and

only if
γ Aut(T ) γ−1 ⊂ Aut(T ′).

As a consequence of Theorem 0.1.3, we are able to prove:

Theorem 0.1.4 [=Theorem 5.2.3 ]
Two crystallographic tilings are MLD if and only if their automorphism
groups are conjugated by an isomorphism.

Vice versa, there are not more crystallographic groups than crystallographic
tilings:

Theorem 0.1.5 [=Theorem 5.3.1 ]
For every crystallographic group Γ ⊂ Isom(En), there exists a simple tiling
T with Aut(T ) = Γ.

Up till now, we have constructed crystallographic tilings, which were obvi-
ously a generalization of lattice tiling.

A well-known method to construct aperiodic tilings (for example, the Penrose
tiling) was the cut-and-project method. This method starts with a lattice
in a high-dimensional space, wherein a subset of the tiling is selected and
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projected to a lower dimensional space.

We can generalize the cut-and-project construction from lattices to these
more general crystallographic tilings. The ingredients of the construction
are as follows:

A point set data {(Xi, ti)i} of a tiling T is a finite set of points Xi for each pro-
totile ti that is invariant under the isometry group of ti; (see Definition 6.1.2).

Theorem 0.1.6 [=Proposition 6.1.3 ]
Given a point set data {(Xi, ti)i} the point set XT =

⋃
t∈T,γ(ti)=t

γ(Xi) is a
Delone set.

Here is a brief description of cut-and-project data for the Euclidean space
En:
Let E ⊂ En be an m-dimensional projection subspace, E⊥ ⊂ En be the
orthogonal complement, and fix a window K ⊂ E⊥. Then the projection to
E for the intersection of XT with the cylinder K×E, yields XT ′ (see Section
6.2).

Theorem 0.1.7 [=Theorem 6.2.11]
XT ′ is a Delone set.

Theorem 0.1.8 [=Theorem 6.2.12 ]
The Voronoi-cell tiling V T (XT ′) associated to the Delone set XT ′ is simple
tiling.

Note that we first tried a different procedure to construct a cut-and-project
tiling: We picked certain faces of tiles and projected them. This technique
works in the case of Penrose tilings but in more general settings, lots of prob-
lems occurred: In particular, the projected tiles intersect each other or they
leave gaps on the projection subspace.

In monographs like [10] on the cut-and-project method, only Delone sets
are projected, and immediately specialized to orbits of lattices. Usually a
remark is added that tilings can be obtained from the point sets by using
e.g. Voronoi-cell decomposition, but the properties of the resulting tilings are
rarely studied, let alone proven. For example, the phenomena that Voronoi-
cell tilings can have larger automorphism groups than the Delone sets from
which they are constructed (see Section 6.1), is never discussed.

We conclude this section by highlighting some open questions about tilings
constructed by the cut-and-project method from crystallographic tilings:
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(i) What are the hulls of the cut-and-project tilings?
One possibility could be that it is (a quotient of) the hull of the pro-
jected crystallographic tiling, since moving around this tiling together
with window K and projection subspace E will move around the cut-
and-project tiling on E.

(ii) How does the orbit of the cut-and-project tiling lie inside the hull?
If the orbit is dense but nowhere open, the cut-and-project tiling could
be a candidate for an aperiodic tiling.

(iii) Do we obtain MLD cut-and-project tilings when we change to crys-
tallographic tilings with the same automorphism group, respectively
choose different point set data?

0.2 Thesis Outline

The thesis structure is as follows:

Chapter 1 collects definitions, notations, concepts, constructions and tech-
niques mainly from Euclidean geometry, group theory and topology. In this
chapter, we look at the groups Trans(En), En and Isom(En) in the Eu-
clidean space, and we define several topologies on them which turned out to
be the same [17] ,[14]. Bieberbach’s Theorem is also presented [9] as it is an
important tool for our work in the following chapters. We also introduce the
Taxicab metric and discuss its properties. Finally, in this chapter, we define
and discuss first properties of Delone set, convex hulls and polytopes.

In Chapter 2, we define tilings in general, followed by simple tiling. Voronoi-
cell tiling is constructed from a crystallographic group by Voronoi-cell decom-
position of orbits. Then, we prove that the constructed Voronoi-cell tiling is
simple.
It is important to know that (in this chapter and the following ones), even if
results and examples look familiar, it is difficult to find proofs and construc-
tions in the literature, so we provide or expand them ourselves.

Within Chapter 3, we discuss the metric on the tiling space ΩT . Impor-
tant to mention that this metric is defined using isometries, not just in the
case of translation as in [26]. Tiling spaces and its hull were also discussed.

Chapter 4 is dedicated to studying in details the equivalence relation be-
tween tilings, and also between tiling spaces. We define isometrically mutual
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local derivability and discuss its properties in tilings and tiling spaces.

In Chapter 5, we introduce the definition of crystallographic tiling. Then,
we give an example by calculating the automorphism group of T to demon-
strate whether Aut(T ) is crystallographic or not. A relation between two
crystallographic tilings is discovered wherein two crystallographic tilings are
MLD if and only if their automorphism groups are conjugated by an isomor-
phism. Finally, we construct a crystallographic tiling by proving that, for
every crystallographic group, Γ ⊂ Isom(En), there exists a simple tiling T
with Aut(T ) = Γ.

Within Chapter 6, we describe a more general construction of cut-and-project
tilings from an arbitrary given crystallographic tiling T not only lattices, and
given cut-and-project data (that is, projection subspace and window), in de-
tail.
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Chapter 1

Mathematical Preliminaries

In this chapter, we will illustrate basic definitions and notations which will
provide the background for our work in the following chapters. This has been
constructed through several chapters from [8], [9], [23], [16], and [21].

To understand the context of this work, it was important to devote a great
deal of time and effort to acquire a solid foundation in crystallographic
groups. This was achieved through a combination of background reading
and work [31],[28], [2], and[32].

1.1 Crystallography

In crystallography, a crystal should have a bounded pattern that is repeated
until it fills up space. This repeating cell can be described as a covering do-
main. Our main sources for the theoretical material presented in this section
are [9], [33] and [3].

Crystallography is no more than the study of certain permutation groups
on points of Euclidean space. We begin by investigating the permutations of
Rn: translations and isometries in general.

1.1.1 Affine Space and Euclidean Space

An affine space is a geometric structure that generalizes the properties of
Euclidean space independent of the concepts of distance. Also, it has no
distinguished point that serves as an origin.

Notation 1.1.1 (i) En = {(x1, x2, ..., xn) | x1, ...., xn ∈ R} is a set of
points with no additional structure.

10



(ii) Perm(En) is the group of 1− 1 maps/permutations, with group com-
position given by the composition of maps.

(iii) Trans(En) is the group of translations which is a subgroup of Perm(En):
For each (τ1, ..., τn) ∈ Rn, there is a translation τ : En → En such that
τ : (x1, ..., xn)→ (x1 + τ1, ..., xn + τn).

Notice that τ is a 1−1 map, as the inverse of τ is given by (−τ1, ...,−τn).

Fact 1.1.2 Trans(En) is an n-dimensional real vector space, together with
two binary operations (addition and scalar multiplication), which are defined
as follows:

• s+ τ = (s1 + τ1, ..., sn + τn) ; s, τ ∈ Trans(En).

• λτ = (λτ1, ..., λτn) ; λ ∈ R and τ ∈ Trans(En).

Definition 1.1.3 Affine space is defined as the set En, together with its
group of translations, Trans(En).

This description of space does not specify a basis. It does not even pick
out an origin. We can clarify this situation through the following construc-
tion:

Construction 1.1.4 Fixing a particular point O ∈ En via the evaluation
map evO : Trans(En) → En, given by τ → τ(O), so 0 → O. Consequently,
this map endows En with an origin O, symbolized by EnO. Addition and
scalar multiplication in EnO are derived from the evaluation map evO.

Take two points O and O′ in En. EnO is a vector space obtained from En by
fixing the point O via the evaluation map evO, which is given by τ → τ(O).
A similar process is undertaken for EnO′ . Then, we can obtain an isomorphism
between EnO and EnO′ by:

EnO
∼=←− Trans(En)

∼=−→ EnO′

Here, if τ ∈ Trans(En), we can describe the map EnO → EnO′ as sending

τ(O)→ τ(O′). Let
−−→
OO′ ∈ Trans(En) denote the unique translation sending

O to O′. Then,

−−→
OO′

(
τ(O)

)
= (
−−→
OO′ + τ)(O) = (τ +

−−→
OO′)(O) = τ(O′).

11



This means that
−−→
OO′ : EnO → EnO′ is a vector space isomorphism.

In particular, −−→
OO′(P +O Q) =

−−→
OO′(P ) +O′

−−→
OO′(Q)

and −−→
OO′(λ ·O P ) = λ ·O′

−−→
OO′(P )

where λ ∈ R and P,Q ∈ En.

Definition 1.1.5 If f ∈ Aff(En), the map ad f : Trans(En)→ Trans(En)
is defined as

(ad f)(τ) = fτf−1 ; τ ∈ Trans(En) .

Notice that ad f(τ) is really a map Trans(En) → Trans(En). This
follows easily from Trans(En) C Aff(En); see [9] for more details.

Notation 1.1.6 • For s, τ ∈ Trans(En); 〈s, τ〉 = (s1, ..., sn)·(τ1, ..., τn) =∑n
i=1 siτi we equip Trans(En) with an inner product 〈·, ·〉. We can in-

duce an inner product 〈·, ·〉O on every EnO via the evaluation map evO.

• For τ ∈ Trans(En), we define the norm on τ by:

‖ τ ‖=
√
〈τ, τ〉.

• Similarly as in Trans(En), the norm on EnO induced by evO : Trans(En)→ En.

Now, we can introduce distance on En using the norms above:
For P,Q ∈ En, we define the distance by

d(P,Q) =‖ P −Q ‖ .

Notice that, the norm on EnO, and the norm topology on EnO′ induce the same
distance on EnO and EnO′ :

It suffices to show that for P,Q ∈ En ‖ P −O Q ‖O=‖ P −O′ Q ‖O′ :
Suppose τ ∈ Trans(En) s.t. τ(O) = O′. Then,
‖ R ‖O=‖ τ(R) ‖O′=‖ τ(O)−O +R ‖O′ , hence

‖ P −O Q ‖O =‖ (P −O)− (Q−O) +O ‖O
=‖ P −Q+O ‖O
=‖ τ(O)−O + P −Q+O ‖O′
=‖ P −Q+O′ ‖O′
=‖ P −O′ Q ‖O′ .

(1.1)

12



From now on, the distance on En agrees with the norm on each EnO. In
particular, for two points P,Q ∈ En, we define ‖ P − Q ‖:=‖ P −O Q ‖,
independently of O.

Remark 1.1.7 The orthogonal group of Trans(En), expressed asO(Trans(En)),
is the group of all linear maps θ : Trans(En) → Trans(En), which preserve
the inner product, that is 〈θ(τ), θ(p)〉 = 〈τ, p〉 ; τ, p ∈ Trans(En).

Notation 1.1.8 Isom(En) denotes the group of all isometries on En, that
are the distance-preserving affine maps on En.
Note that Isom(En) ∼= Trans(En)oO(EnO), for any point O ∈ En.

1.1.2 The topological spaces Trans(En),En,En
O

and Isom(En)

Working through different chapters in[21], [32] and [13], we introduced differ-
ent topologies on Trans(En),En,EnO and Isom(En) by describing open and
closed sets, and converging sequences on the topologies of these spaces, and
defining its basis.

Even if theses topologies turn out to be the same, it is useful to have them
available. One reason for this is that it will be easier to view and check
results and proofs.

The norm topology on Trans(En)

The vector space Trans(En) has a norm topology or strong topology, derived
from its inner product. See Notation 1.1.6.

Definition 1.1.9 For τ ∈ Trans(En), we define the norm of τ by:

‖ τ ‖=
√
〈τ, τ〉.

Definition 1.1.10 For the normed space (Trans(En), ‖‖), we define the fol-
lowing:

(i) Given τ ∈ Trans(En), the open ball centered at τ with radius ε > 0 is
the set:

B(τ, ε) = {τ ′ ∈ Trans(En) | ‖ τ − τ ′ ‖< ε}.

(ii) U is open set in Trans(En) if:

∀τ ∈ U ∃ε > 0 s.t. B(τ, ε) ⊆ U.
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(iii) W is closed ⇐⇒ W c is open,
where W c is the complement of W , W c = Trans(En) \W .

The collection τ of open sets in Trans(En) forms a topology on Trans(En),
called the norm topology.

Definition 1.1.11 A sequence (τn) ∈ Trans(En) converges in norm topol-
ogy to τ ∈ Trans(En), expressed by τn −→n τ if:

∀ε > 0 ∃N ∈ N s.t. ‖ τn − τ ‖< ε ∀n ≥ N .

Similarly in EnO for any origin O ∈ En.

The norm topology on En

Open and close sets in En are defined in the same way as in Definition 1.1.10
with respect to the norm on EnO induced by evO. This does not depend on
the choice of O.

The norm topology on EnO, O-topology agrees with the norm topology on
EnO′ O′-topology. In other words, the norm topologies on EnO and EnO′ define
the same topology on En.

The topology of pointwise convergence on Trans(En)

Definition 1.1.12 Considering τ ∈ Trans(En) as a map τ : En → En, we
say that a sequence (τn) converges pointwise to τ , as expressed by τn −→pc τ
if

∀ε > 0 ∀P ∈ En ∃N ∈ N s.t. ‖ τn(P )− τ(P ) ‖< ε ∀n ≥ N .

Closed sets in pointwise topology of Trans(En) are defined using se-
quences.

Definition 1.1.13 For pointwise topology of Trans(En), we define:

(i) A set F in Trans(En) is closed if:

∀τn −→pc τ ; (τn) ⊂ F =⇒ τ ∈ F .

(ii) A set U is open ⇐⇒ U c is closed.
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Topology of uniform convergence on Trans(En)

Definition 1.1.14 Considering τ ∈ Trans(En) as a map τ : En → En, we
say that a sequence (τn) in Trans(En) converges uniformly to τ , as expressed
by τn −→uc τ if:

∀ε > 0 ∃N ∈ N s.t. ‖ τn(P )− τ(P ) ‖< ε ∀n ≥ N, ∀P ∈ En.

Theorem 1.1.15 The topologies of pointwise convergence and uniform con-
vergence of Trans(En) agree with the norm topology of Trans(En).

Proof We aim to show that the following are equivalent:

(i) τn −→n τ .

(ii) τn −→uc τ .

(iii) τn −→pc τ .

(i) =⇒ (ii) If τn −→n τ in Trans(En), then τn(O) −→ τ(O) in EnO. Since
s(P ) = s(O) +P for any translation s ∈ Trans(En) and any P ∈ EnO, we see
that:

‖ τn(P )− τ(P ) ‖O=‖ τn(O) + P − τ(O)− P ‖O=‖ τn(O)− τ(O) ‖O .

Consequently, τn −→uc τ in the topology of uniform convergence for En
O.

(ii) =⇒ (iii) If τn −→uc τ , then τn(P ) −→ τ(P ) for any point P ∈ EnO,
implies τn −→pc τ in Trans(En).
(iii) =⇒ (i) If τn −→pc τ , then τn(O) −→ τ(O) in EnO. So, τn −→n τ , as evO
preserves the norms on Trans(En) and EnO.
Hence, the topologies of pointwise convergence and uniform convergence of
Trans(En) agree with the norm topology of Trans(En). 2

Henceforth, we do not distinguish between norm topology, the topol-
ogy of pointwise convergence, and the topology of uniform convergence on
Trans(En). Also, we simply write τn −→ τ for a sequence τn converging to
τ in Trans(En).

The topology on O(EnO)

The topology on O(EnO) induced by the operator norm on O(EnO) ⊂ End(EnO).

That is ‖ a ‖op= sup{‖a(w)‖
‖w‖ | w 6= 0} ; a ∈ O(EnO) and w ∈ EnO. Notice that

open and closed sets are defined in the same way as in Definition 1.1.10 (with
respect to operator norm).
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The topologies on Isom(En)

The topology on Isom(En) is the product topology on the set Trans(En)oO(EnO)
having as basis the collection of all open sets of the form U × V , where U is
an open subset of Trans(En) as in Definition 1.1.13, and V is an open subset
of O(EnO) as in Definition 1.1.10.

We also can define the topology of pointwise convergence on Isom(En) in
the same way as in the section about (the topology of pointwise convergence
on Trans(En)).

Lemma 1.1.16 The topology of pointwise convergence on Isom(En) coin-
cides with the product topology on Trans(En)oO(EnO).

In particular, the product topology on Isom(En) is induced by
Trans(En)oO(EnO) and Trans(En)oO(EnO′) for different O,O′ ∈ En.

1.1.3 Crystallographic Groups and Bieberbach’s
Theorem

We will now introduce crystallographic groups. The following definition
agrees with our understanding of crystals.

Definition 1.1.17 A subgroup Γ of Isom(En) is called crystallographic group
if it is discrete and Isom(En) /Γ is compact.

Notice that a subgroup Γ of Isom(En) is called a discrete subgroup, if for
a sequence (yn) ⊂ Γ and y ∈ Γ such that yn −→ y, the sequence of yn is
eventually constant.
From ”crystals”, point of view, ”discrete” should mean that the crystal pat-
tern never bunches up, that is, there are no accumulation points in the orbit
of a point.

Remark 1.1.18 It is enough to test that (yn) is eventually constant for
y = idEn , the identity map in Isom(En).

Example 1.1.19 Crystallographic groups in two dimensions are called wall-
paper groups, whereas crystallographic groups in three dimensions are called
space groups.

The bridge between geometry and algebra is found in the following re-
markable theorem as stated by Bieberbach.
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Theorem 1.1.20 [[9]; Bieberbach’s Theorem, pp.532]
Let Γ be a crystallographic group of Isom(En). Then, Γ satisfies the following
two conditions:

(1) Γ∩Trans(En) is a finitely generated abelian group of rank n = dim(En),
which spans Trans(En) as a vector space.

(2) ad Γ ∼= Γ/Γ ∩ Trans(En); the point group of Γ is finite (see Defini-
tion 1.1.5 for the meaning of ad).

By adding some translations to Γ we obtain a crystallographic group,
the so-called symmorph of Γ, which is the product of its translations and
orthogonal maps making up the point group of Γ:

Proposition 1.1.21 [[9], p.534-535]
For every crystallographic group Γ ⊂ Isom(En) there exists a crystallo-

graphic group Γ∗ such that

(i) Γ∗ ∩ Trans(En) is a lattice of full rank containing Γ ∩ Trans(En).

(ii) the point group of Γ∗ is isomorphic to the point group of Γ, and

(iii) there is a point O ∈ En and a subgroup G ⊂ Γ∗ ∩O(EnO) isomorphic to
the point group of Γ∗ such that

Γ∗ ∼= (Γ∗ ∩ Trans(En)) oG ⊂ Trans(En)oO(EnO) = Isom(En) .

1.1.4 Crystallographic Restriction for Crystallographic
Groups

The cornerstone of the theory of crystallographic groups is the Crystallo-
graphic Restriction Theorem. See Chapter 3.2 in [19] for more details.

A crystallographic group Γ ⊂ Isom(En) can only contain finite cyclic
groups Ck where the order k is an element of a finite set of integers only
depending on n. If n = 2, 3 then k ∈ {1, 2, 3, 4, 6}.

Theorem 1.1.22 [[19], Crystallographic Restriction Theorem, p.49-53]
Let Γ ⊂ Isom(En) be a crystallographic group, and let R ∈ O(EnO) be an
orthogonal map fixing the origin O ∈ En. Then R ∈ Γ implies that the
characteristic polynomial p(λ) = det(R− λ1Eno ) has integers coefficient only,
that is p(λ) ∈ Z[λ].
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This theorem will not be used later on. On the other hand, it shows that
the cut-and-project method may produce tilings or point sets in En that have
symmetries allowed by the Crystallographic Restriction Theorem only in EN
for N > n.

Theorem 1.1.23 [[19], Theorem3.2, page 52]
Consider a locally finite planar point set with n-fold symmetry that is con-
structed from a lattice in Rd by a symmetry preserving (partial) projection.
Then, d is bounded from below by a number only depending on n.

The cut-and-project tilings from crystallographic tilings discussed in Chap-
ter 6 should allow to further decrease the lower bound in this theorem. This
is left to further investigations.
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1.2 Taxicab Metric On Isom(En)
Before defining a metric on tilings, we introduce a metric dO on the isometries
Isom(En) ⊂ Trans(En)oEnd(EnO) for each center O ∈ En. We can choose
the taxicab metric:

dO(φ, ψ) = ‖τ − σ‖Eucl + ‖b− a‖op ,

derived from the Euclidean metric on Trans(En) and the operator norm on
End(EnO); where φ, ψ ∈ Isom(En) such that φ = τa, ψ = σb.

Some properties of ‖ · ‖op and dO are presented in the following two lem-
mas:

Lemma 1.2.1 (i) ‖a‖op = 1 ; a ∈ O(EnO).

(ii) ‖a · b‖op ≤ ‖a‖op · ‖b‖op; a, b ∈ End(EnO), with equality if a ∈ O(EnO).

(iii) ‖aba−1 − idEn‖op = ‖b− idEn‖op ; a, b ∈ O(EnO).

(iv) ‖ab− idEn‖op ≤ ‖a− idEn‖op + ‖b− idEn‖op ; a, b ∈ O(EnO).

(v) a ·σ =
−−−−−−−→
Oa
(
σ(O)

)
·a ; a ∈ O(Eno ) and σ ∈ Trans(En). Here,

−−−−−−−→
Oa
(
σ(O)

)
is the translation from O to a

(
σ(O)

)
.

Proof (i) By definition of the operator norm and the orthogonal group,
as a ∈ O(EnO) preserves distances.

(ii) By definition, we also see that ‖a · b‖op ≤ ‖a‖op · ‖b‖op if
a, b ∈ End(EnO), and ‖a · b‖op = ‖a‖op · ‖b‖op if furthermore a ∈ O(EnO).

(iii) Notice that,

‖aba−1 − idEn‖op = ‖aba−1 − a · idEn · a−1‖op
= ‖a‖op · ‖b− idEn‖op · ‖a−1‖op
= ‖b− idEn‖op ; as a ∈ O(EnO).

(1.2)

(iv) Notice that,

‖ab− idEn‖op = ‖ab− a+ a− idEn‖op
≤ ‖a‖op · ‖b− idEn‖op + ‖a− idEn‖op
≤ ‖a− idEn‖op + ‖b− idEn‖op ; as a ∈ O(EnO).

(1.3)
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(v) Choose p ∈ En. Let A be the linear map in GL(Rn), describing a as a
linear map with center O; we have:

(a · σ)(p) = a(p+ σ) = A(p+ σ −O) +O

= A(p−O) + A · σ +O

= A(p−O) +O + A · σ
= a(p) + A · σ
= A · σ + a(p)

= A
(
σ(O)−O

)
+ a(p)

=
(
A ·
(
σ(O)−O

)
+O −O

)(
a(p)

)
=
−−−−−−−→
Oa
(
σ(O)

)(
a(p)

)
.

(1.4)

Hence, a · σ =
−−−−−−−→
Oa
(
σ(O)

)
· a . 2

Lemma 1.2.2 (i) dO(a · σ, idEn) = dO(σ · a, idEn).

(ii) dO(χ−1, idEn) = dO(χ, idEn).

(iii) dO(χ · ψ, idEn) ≤ dO(χ, idEn) + dO(ψ, idEn).

(iv) dO(σ, τ) = ‖σ − τ‖Eucl ;σ, τ ∈ Trans(En).

(v) dσ(O)(χφχ
−1, χψχ−1) = dO(φ, ψ); χ, φ, ψ ∈ Isom(En) .

(vi) dO(χψχ−1, idEn) ≤ dO(ψ, idEn)
(
1 + dO(χ, idEn)

)
.

(vii) dσ(O)(φ, ψ) ≤ (1+‖σ‖Eucl)dO(φ, ψ) for all σ ∈ Trans(En), φ, ψ ∈ Isom(En).

Proof (i) Notice that,

dO(a · σ, idEn) = dO(
−−−−−−−→
Oa
(
σ(O)

)
· a, idEn); by Lemma 1.2.1 (v)

= ‖a
(
σ(O)

)
−O‖Eucl + ‖a‖op

= ‖σ‖Eucl + ‖a‖op; since a ∈ O(EnO)

= dO(σ · a, idEn).

(1.5)
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(ii) Take χ = σ · a, then χ−1 = a−1σ−1 =
−−−−−−−−−−→
Oa−1

(
σ−1(O)

)
· a−1. Then:

dO(χ−1, idEn) = dO(
−−−−−−−−−−→
Oa−1

(
σ−1(O)

)
· a−1, idEn)

= ‖a−1
(
σ−1(O)

)
‖Eucl + ‖a−1 − idEn‖op

= ‖σ−1‖Eucl + ‖a−1 − a−1 · a‖op
= ‖ − σ‖Eucl + ‖a−1‖op · ‖idEn − a‖op; by Lemma 1.2.1 (ii)

= ‖σ‖Eucl + ‖a− idEn‖op
= dO(χ, idEn).

(1.6)

(iii) Take χ = σ · a and ψ = τ · b. Then:

dO(χ · ψ, idEn) = dO(σ
−−−−−−→
Oa
(
τ(O)

)
· ab, idEn)

= ‖σ +
−−−−−−→
Oa
(
τ(O)

)
‖Eucl + ‖a · b− idEn‖op

≤ ‖σ‖Eucl + ‖τ‖Eucl + ‖a− idEn‖op + ‖b− idEn‖op;
by Lemma 1.2.1 (iv)

= dO(σa, idEn) + dO(τb, idEn)

= dO(χ, idEn) + dO(ψ, idEn).

(1.7)

(iv) Obvious by definition of dO.

(v) Take χ = σa, φ = τb and ψ = µc, such that a, b, c ∈ O(EnO) and
σ, τ, µ ∈ Trans(En). Notice that

dσ(O)(σφσ
−1, σψσ−1) = dσ(O)(στbσ

−1, σµcσ−1)

= ‖στσ−1 − σµσ−1‖Eucl + ‖c− b‖op
= ‖τ − µ‖Eucl + ‖c− b‖op
= dO(φ, ψ).

(1.8)
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Then:

dσ(O)(χφχ
−1, χψχ−1) = dσ(O)(σaφa

−1σ−1, σaψa−1σ−1)

= dO(aφa−1, aψa−1); by (1.8)

= dO(aτba−1, aµca−1)

= dO(
−−−−−→
Oaτ(O)aba−1,

−−−−−→
Oaµ(O)aca−1)

= ‖
−−−−−→
Oaτ(O)−

−−−−−→
Oaµ(O)‖Eucl + ‖aba−1 − aca−1‖op

= ‖τ − µ‖Eucl + ‖b− c‖op
= dO(φ, ψ).

(1.9)

(vi) Take χ = σa and ψ = τb; then:

χψχ−1 = σ · a · τ · b · a−1 · σ−1

= σ ·
−−−−−−→
Oa(τ(O)) · aba−1 · σ−1

= σ ·
−−−−−−→
Oa(τ(O)) ·

−−−−−−−−−−−→
Oaba−1(σ−1(O)) · aba−1.

(1.10)

Now, if we calculate the metric dO, we get:

dO(χψχ−1, idEn) = ‖σ +
−−−−−−→
Oa(τ(O)) +

−−−−−−−−−−−→
Oaba−1(σ−1(O))‖Eucl + ‖aba−1 − idEn‖op

≤ ‖τ‖+ ‖σ +
−−−−−−−−−−−−→
Oaba−1

(
σ−1(O)

)
‖Eucl + ‖b− idEn‖op

= dO(ψ, idEn) + ‖σ +
−−−−−−−−−−−−→
Oaba−1

(
σ−1(O)

)
‖

= dO(ψ, idEn) + ‖
−−−−−−−−−−→
Oaba−1

(
σ(O)

)
−
−−−−→
Oσ(O)‖

= dO(ψ, idEn) + ‖aba−1
(
σ(O)

)
− σ(O)‖

= dO(ψ, idEn) + ‖
(
aba−1 − idEn

)(
σ(O)

)
‖

≤ dO(ψ, idEn) + ‖aba−1 − idEn‖op · ‖σ‖
= dO(ψ, idEn) + ‖b− idEn‖op · ‖σ‖.

(1.11)

Therefore,

dO(χψχ−1, idEn) ≤ dO(ψ, idEn)
(
1 + dO(χ, idEn)

)
.

(vii) By (v) we know dσ(O)(φ, ψ) = dO(σ−1φσ, σ−1ψσ), hence with φ = τ1β1,
ψ = τ2β2, where τ1, τ2 ∈ Trans(En) and β1, β2 ∈ O(EnO),
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dO(σ−1τ1β1σ, σ
−1τ2β2σ) = dO

(
σ−1τ1

−−−−−−−→
Oβ1(σ(O))β1, σ

−1τ2

−−−−−−−→
Oβ2(σ(O))β2

)
≤ ‖τ1 − τ2‖Eucl + ‖

−−−−−−−→
Oβ1(σ(O))−

−−−−−−−→
Oβ2(σ(O))‖Eucl

+ ‖β1, β2‖op
≤ ‖τ1 − τ2‖Eucl + ‖β1 − β2‖op · ‖σ‖Eucl + ‖β1 − β2‖op
≤ (1 + ‖σ‖Eucl)dO(φ, ψ).

(1.12)

Hence,
dσ(O)(φ, ψ) ≤ (1 + ‖σ‖Eucl)dO(φ, ψ).

2

Proposition 1.2.3 The metric dO makes Isom(En) into a metric space.

Proof Clearly, by definition, dO is symmetric, positive, and dO(τa, τa) = 0.
We aim to prove that dO(τa, τ ′′a′′) ≤ dO(τa, τ ′a′) + dO(τ ′a′, τ ′′a′′).
This follows from the triangle inequalities for ‖ · ‖Eucl and ‖ · ‖op:

dO(τa, τ ′′a′′) = ‖τ − τ ′′‖Eucl + ‖a− a′′‖op
≤ ‖τ − τ ′‖Eucl + ‖a− a′‖op + ‖τ ′ − τ ′′‖Eucl + ‖a′ − a′′‖op
= dO(τa, τ ′a′) + dO(τ ′a′, τ ′′a′′).

(1.13)

Therefore, the triangle inequality holds for this metric. Hence, the metric dO
on Isom(En) is a metric space. 2

The topology on Isom(En) induced by the metric dO coincides with the
topology introduced in Section 1.1.2.
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1.3 Delone Sets, Convex Hulls and Polytopes

1.3.1 Delone sets

There is a good way to construct simple tilings from point sets D ⊂ En with
certain properties, as we will see later through, the so-called Voronoi-cell
tilings.

Definition 1.3.1 A set X in En is relatively dense if it has a finite covering
radius. The covering radius of X is the infimum of radii r, such that every
point of En is within distance r of at least one point in X; that is, it is the
smallest radius, such that closed balls of that radius centered at the points
of X have En as their union:

covering radius = inf{r :
⋃
x∈X

Br(x) = En}.

Definition 1.3.2 A set X in En is uniformly discrete if it has a nonzero
packing radius. The packing radius of X is half that of the infimum of
distances between distinct members of X:

packing radius =
1

2
inf{d(x, x′) : x 6= x′ ∈ X}.

Based on the definitions above, we can define Delone sets as follows:

Definition 1.3.3 A Delone set is a set X in En that is both uniformly
discrete and relatively dense, i.e., if there are numbers R > r > 0, such that
each ball of radius r contains at most one point of X, and every ball of radius
R contains at least one point of X.

1.3.2 Convex Hulls and Polytopes

The convex hull of a set X of points in Rn is the smallest convex set that
contains X.

Definition 1.3.4 A convex polytope in Rn is the convex hull of a finite set
of points {p1, ..., pk} ⊂ Rn.

Remark 1.3.5 : The convex hull of points {p1, ..., pk} ⊂ Rn is defined as
the set of points {p =

∑k
i=1 tipi |

∑k
i=1 ti = 1} ⊆ Rn, which we denote by

〈p1, ..., pk〉.

• We say that the points p1, ..., pk minimally generate the convex hull
〈p1, ..., pk〉 if the convex hull of a proper subset of {p1, ..., pk} is also a
proper subset of 〈p1, ..., pk〉.
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• In general, D ⊂ Rn is called a convex set if for all p, q ∈ D and for all
t ∈ [0, 1], we have tp+ (1− t)q ∈ D.

Lemma 1.3.6 The convex hull is convex.

Proof Take the convex hull P = {
∑n

i=1 tipi |
∑n

i=1 ti = 1} and take
Q,R ∈ P such that:

Q =
n∑
i=1

aipi ;
n∑
i=1

ai = 1

and

R =
n∑
i=1

bipi ;
n∑
i=1

bi = 1.

We aim to show that the line connecting Q,R is contained in P , i.e., we must
show that

(1− t)Q+ tR ∈ P ; 0 ≤ t ≤ 1.

Now:

(1− t)Q+ tR = (1− t)
n∑
i=1

aipi + t
n∑
i=1

bipi

=
n∑
i=1

(
(1− t)ai + tbi

)
pi

(1.14)

and

n∑
i=1

(
(1− t)ai + tbi

)
= (1− t)

n∑
i=1

ai + t
n∑
i=1

bi

= 1− t+ t

= 1.

(1.15)

Hence, (1− t)Q+ tR ∈ P , and so, P is convex. 2

Definition 1.3.7 An open half-space [closed half-space] is defined as the
following set:
{x ∈ Rd | 〈x, y〉 > α} [respectively {x ∈ Rd | 〈x, y〉 ≥ α}] for suitable
y ∈ Rd, y 6= 0, α ∈ R .

LetK be a subset of Rd. We say that a hyperplaneH = {x ∈ Rd | 〈x, u〉 = α}
cuts K if the two open half-spaces determined by H contain points of K, i.e.,
there exists x1, x2 ∈ K such that 〈x1, u〉 < α and 〈x2, u〉 > α.
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Definition 1.3.8 We say that H is a supporting hyperplane of K if H does
not cut K, but H ∩K 6= ∅; where K is the closure of K in Rn.

Definition 1.3.9 Suppose K is a convex subset of Rd. A set F ⊂ K is a face
of K, if either F = ∅ or F = K, or if there exists a supporting hyperplane
H of K, such that F = K ∩H. These faces are called proper faces.

Definition 1.3.10 We say that a maximal proper face of K is a facet of K.

Lemma 1.3.11 Let P be a convex polytope, and let Aut(P ) ⊂ Isom(En) be
the group of isometries γ ∈ Isom(En) such that γ(P ) = P . Then there is a
finite set K ⊂ P such that γ(K) = K for all γ ∈ Aut(P ).

Proof First, we have to show that, Aut(P ) is finite. Notice that convex
polytopes are the convex hull of a finite set of extremal vertices. From this we
can conclude that Aut(P ) is contained in the permutation group of extremal
vertices. Since the permutation group is finite, this means that the symmetry
group of a convex polytope is finite. Consequently, we can take one point
p ∈ P and the orbit Aut(P ) · p under the isometry group. As Aut(P ) is
finite, the orbit is also finite, and by construction, it is clear that the orbit is
invariant under the isometry group of P . 2

Theorem 1.3.12 [[11], Theorem 1, page 31-32]
Each polytope K ⊂ Rd is the intersection of a finite family of closed half-
spaces; the smallest such family consists of those closed half-spaces containing
K, whose boundaries are the affine hulls of the facets of K.

Definition 1.3.13 Let t be a convex polytope in Rn; particularly, let t be
the convex hull of the points p1, ..., pk ∈ Rn. Assume that the points p1, ..., pk
minimally generate t. Then:

(i) The points p1, ..., pk are called the vertices of t.

(ii) The convex hull Eij of two points pi, pj (that is, the connecting line
segment) is called an edge of t if Eij ⊂ ∂t.

(iii) The convex hull Fi1,...,ie = 〈pi1 , ..., pie〉 is called anm-face if Fi1,...,ie ⊂ ∂t,
Fi1,...,ie has dimension m, and an (m− 1)-face is called a facet.
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Chapter 2

Simple Tilings In General

First and foremost, we will discuss certain kind of tilings (simple tilings).
Then, we will construct periodic tilings from crystallographic groups (by
Voronoi-cell decomposition).
To this end, I worked through [26] with my supervisor along with several
chapters from [12],[4] and [25].

2.1 Tilings

A tiling is a subdivision of En into areas {ti}i∈I called tiles. More precisely:

Definition 2.1.1 A set of convex polytopes {ti}i∈I in En is called a tiling
of En if:

(i)
⋃
ti = En .

(ii) ti ∩ tj ⊆ ∂ti ∩ ∂tj ∀i 6= j.

Example 2.1.2 Tilings constructed by thick rhombs and thin rhombs pro-
totiles which were discovered by Penrose are called Penrose tilings, see Figure
2.1. It is clear that Figure 2.1 is a tiling as all conditions in Definition 2.1.1

are satisfied.
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Figure 2.1: Penrose tiling by thick and thin rhombs “prototiles”; [15].

Note that, all tilings with “thick rhomb” and “thin rhomb” should meet
with the same marking edges to obtain Penrose tilings, as in Figure 2.2. The
thick rhombs has angles of 72, 108, 72, and 108 degrees, whereas the thin
rhombs has four corners with angles of 36, 144, 36, and 144 degrees. Notice,
patches can be only joined if the arrows coincide.

Figure 2.2: Thick and thin rhombs matching rules; [18].
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In Definition 2.1.1; we restrict our choice of tiles to be convex polytopes.
It is possible to construct tilings with non-convex, non-polytopes tiles. It
is believed that we can turn such tilings into (in whatever sense) equivalent
tilings with convex polytopes as tiles, using for example the Voronoi-cell de-
composition. But this is rarely proven in the literature.

Definition 2.1.3 A patch of tiles in a giving tiling T is a number of tiles of
the tiling T , whose union is a bounded subset of Rn.

Notation 2.1.4 (i) If A is a bounded subset of Rn, then [T ]A denotes the
patch of a tiling T consisting of all tiles that intersect A.

(ii) If T is a tiling, then T + r is the tiling with all tiles in T shifted by r,
where r ∈ Rn. More generally, if φ is an isometry of En, then φ(T ) is
the tiling, with all tiles in T mapped by φ.

Definition 2.1.5 Let P be a set of points p1, p2, ... in En. The Voronoi-
cells of P subdivide En into cells, such that a point q lies in the cell Vp(P ),
corresponding to pi ∈ P iff ||q − pi|| ≤ ||q − pj|| for each pi ∈ P , i 6= j.

Construction 2.1.6 Given a Delone set D with covering radius R and pack-
ing radius r, the Voronoi-cells

Vp(D) = {x ∈ En : ||x− p|| ≤ ||x− q|| for all q ∈ D}

satisfy the following properties:

(i) Vp(D) is a closed convex polytope containing B(p, r) and contained in
B(p,R).

(ii) Two Voronoi-cells intersect only at their boundaries.

Therefore, the union {Vp(D) : p ∈ D} of Voronoi-cells is a tiling in the
sense of Definition 2.1.1. It is called the Voronoi-cell tiling associated to D
and denoted by V T (D).
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2.2 Simple Tilings

The main reason for introducing simple tilings is that the more general defini-
tion of tilings in Definition 2.1.1 allows for strange shapes and arrangements.

Definition 2.2.1 An (isometrically) simple tiling of Rn is a tiling in which:

(i) There is only a finite number of tile types called prototiles, up to isome-
tries. That is, there is a finite subset {t1, ..., tr} ⊂ T , such that every
tile t ∈ T is obtained from one of the t1, ..., tr say ti, by an isometry,
and t can not be obtained from tj; j 6= i by an isometry.

(ii) Tiles meet full-facet to full-facet. This means that, for all tiles ti, tj in
the tiling T , the intersection ti ∩ tj is either empty, or both a face of ti
and a face of tj. In particular, if the dimension of ti ∩ tj is n− 1, then
ti ∩ tj is both a facet of ti and a facet of tj.

Example 2.2.2 The tiling in Figure 2.3 is not simple; since the second
condition (ii) of Definition 2.2.1 is false. The picture shows that for some
ti, tj ∈ T the intersection ti ∩ tj is neither a facet of ti nor tj.

Figure 2.3: Non-simple pentagon tiling; [6].
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Remark 2.2.3 Originally, simple tilings were defined as built up from a fi-
nite number of prototiles up to translations. The class of isometrically (or
rotationally) simple tiling is larger:
An example for this is pinwheel tiling, which is constructed as the substi-
tution tiling induced by Conway’s triangle decomposition of a rectangular
triangle with side lengths 1 and 2 at a right angle, as shown in Figure 2.4:

2

1

√
5

Figure 2.4: Pinwheel Tiling (Conway triangle decomposition into homothetic
smaller triangles).

There were extensively studied by Radin [24] who showed that the trian-
gular tiles point to an infinite number of directions. Hence, they can not be
obtained as translates of a finite number of prototypes.

Remark 2.2.4 To distinguish between translationally and isometrically sim-
ple tilings, we add ”translationally” and ”isometrically”.
When speaking of simple tilings we always mean ”isometrically simple tiling”.

Usually, Voronoi-cell tiling constructed from a Delone set V T (D) is not
simple. On the other hand, under some conditions, this is the case. To find
these conditions, we need the following proposition as a preparation.

Proposition 2.2.5 For a Delone set X ⊂ En, there exists a radius R such
that: for all x ∈ X, BR(x) contains the Voronoi-cell of x.

Proof As a Delone set, X ⊂ En is relatively dense, that is

∃r ∀y ∈ En : Br(y) ∩X 6= ∅.

Let y1, ..., yn, yn+1 be the vertices of a regular n-simplex S in En barycentered
in a point x◦ ∈ X, such that d(yi, x◦) = R′ � r for i = 1, ..., n, n + 1. This
means in particular that the difference vectors y1−x◦, ..., yn−x◦ are linearly
independent and yn+1 − x◦ = −

∑n
i=1(yi − x◦).

Relative density implies:

∃xi ∈ Br(yi) ∩X ; i = 1, ..., n, n+ 1.

31



Now, by continuity and homogeneity of the linear independence condition,
the difference vectors x1 − x◦, ..., xn − x◦ are still linearly independent and
xn+1 − x◦ = −

∑n
i=1 ai(xi − x◦) with ai > 0, i = 1, ..., n.

Consequently, there is an affine-linear transformation α of En continuously
dependent on the x1, ..., xn+1, such that:

α(x◦) = (0, ..., 0) , α(x1) = (1, 0, ..., 0) , α(xn) = (0, ..., 0, 1) and

α(xn+1) = α
(
−

n∑
i=1

ai(xi − x◦)
)

= −(a1, ..., an).

Then, the Voronoi-cell Vx◦({x◦, x1, ..., xn+1}) is given as the intersection of

x◦ x2

x1

x3

z1 = 1
2

z2 = 1
2

a1z1 + a2z2 = −a21
2
− a22

2

Figure 2.5: Voronoi-cell of simplicial point configuration in E2.

the half-spaces:

{zi ≤
1

2
; i = 1, ..., n}

and

{
n∑
i=1

aizi ≥ −
n∑
i=1

a2
i

2
} ;

where z1, ..., zn are coordinates of EnO.
This shows that the Voronoi-cell Vx◦ is compact and continuously dependent
on x1, ..., xn+1.
Since the diameter D(x1, ..., xn+1) of Vx◦({x◦, x1, ..., xn+1}) also depends con-
tinuously on x1, ..., xn+1, we can find an R > 0 such that:
For points x ∈ X with ‖x− x◦‖ > 2 ·R , the half-space
{y ∈ En : ‖y − x◦‖ ≤ ‖y − x‖} contains Vx◦({x◦, x1, ..., xn+1}); hence, it
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contains Vx◦(X).
Note that the construction of this radius R only depends on the relative po-
sition of x1, ..., xn+1 to x◦, and since we have chosen yi as the vertices of a
regular simplex centered in x◦, we can choose the same R for all x◦ ∈ X.
This implies that R satisfies the assertion of the proposition.

2

Proposition 2.2.6 The Delone set X has simple Voronoi-cell tiling V T (D)
if for R� 0 there are only finitely many point set configurations X ∩BR(x)
for all points x ∈ X, up to isometries.

Proof Immediate consequence of Proposition 2.2.5 and Construction 2.1.6.
2

2.3 Voronoi-cell Tilings from Crystallographic

Groups

Recall that Γ ⊂ Isom(En) is a crystallographic group if Γ is discrete and
Isom(En)/Γ is compact. Then, upon picking a point p ∈ En:
Γ(p) = {γ(p) : γ ∈ Γ} ⊂ En is the Γ-orbit of p.

Theorem 2.3.1 The Voronoi-cell tiling V T (Γ(p)) is a simple tiling, and
Γ(p) is a Delone set.

Proof First, we aim to show that V T (Γ(p)) has a finite number of tiles (up
to translation). Notice that the connection between Voronoi-cells Vp(Γ(p))
and Vγ(p)(Γ(p)) is given by the equality Vγ(p)(Γ(p)) = γ(Vp)(Γ(p)), because

||γ(p)− γ(q)|| = ||p− q||.

As every γ ∈ Γ can be written as a product of the form

γ = t · γp ; t ∈ T n, γp ∈ Γp,

where Γp is the point group of Γ centered in p (see Theorem 1.1.20), and T n

is a lattice of full rank in Trans(En) containing Γ∩Trans(En) (see Proposi-
tion 1.1.21 in Section 1.1.3). Therefore, every Vγ(p)(Γ(p)) is a translation of
γp(Vp(Γ(p))), i.e.,

Vγ(p)(Γ(p)) = γ(Vp(Γ(p))) = t · γp(Vp(Γ(p))).

Hence, we only have a finite number of tiles if we allow translations, as
γp(Vp(Γ(p))) contains only finitely many possible tiles because Γp is finite.
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Second, we aim to show that, the Voronoi-cell Vp(Γ(p)) is a convex polytope,
i.e., it is a convex hull of finitely many points pi or equivalently, it is the
intersection of a finite number of half-spaces, according to Theorem 1.3.12.
We know that:

Vp(Γ(p)) = {x ∈ En : ||x− p|| ≤ ||x− q|| ∀q ∈ Γ(p)}

=
⋂

q∈Γ(p)

{x ∈ En : ||x− p|| ≤ ||x− q||} (2.1)

where Hp,q := {x ∈ En : ||x − p|| ≤ ||x − q||} is a half space given by the
equation (q − p) · x ≤ 1

2
(q − p) · (p+ q).

Suppose t1, ..., tn are the generators of the lattice T ⊂ Γ.
Claim: Only finitely many translations t in the lattice T ⊂ Γ are needed,
such that the half spaces Hp,tγ(p) cut out the Voronoi-cell Vp(Γ(p)), where γ
runs through Γp.
Proof of the claim: We know that the Voronoi-cell Vp(Γ(p)) is contained in
the intersection of the half spaces Hp,±ti(p), and hence, Vp(Γ(p)) is compact.
Therefore, there is a maximal distance K such that:

||x− p|| < K ∀x ∈ Vp(Γ(p)).

Since Γp is finite, there exists M : ||p − γ(p)|| < M for all γ ∈ Γp. Now, if
||t|| → ∞, then ||p− tγ(p)|| → ∞; also notice that:

||p− tγ(p)|| = ||p− γ(p)− t||
≥ |‖p− γ(p)‖ − ‖t‖|

(2.2)

Hence,

1

2
||p− tγ(p)|| ≥ 1

2
|‖p− γ(p)‖ − ‖t‖|

≥ 1

2
||t|| − 1

2
M > K

(2.3)

for ||t|| > M+2K. This means that, the half space Hp,tγ(p) contains Vp(Γ(p))
in its interior, and hence, is not necessary to cut out Vp(Γ(p)). The claim
follows because there are only finitley many t in the lattice T of Γ with
||t|| ≤M + 2K.
Finally, we aim to show that the tiles of V T (Γ(p)) meets full facet to full facet.
Let Lp,q := Hp,q ∩Hq,p be a hyperplane cutting out a facet Vp(Γ(p))∩Lp,q of
Vp. Notice that Lp,q 6= Lp,q′ , implies dim(Lp,q ∩ Lp,q′) = n − 2. Therefore, a
facet of Vp(Γ(p)) is cut out by exactly one Lp,q = Lq,p. Hence,

x ∈ Vp(Γ(p)) ∩ Lp,q ⇐⇒ ‖x− p‖ = ‖x− q‖ ≤ ‖x− q′‖ ∀q′ ∈ Γ− {p, q}
⇐⇒ x ∈ Vq(Γ(q)) ∩ Lp,q.

(2.4)
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Therefore, Vp(Γ(p)) ∩ Lp,q = Vq(Γ(q)) ∩ Lp,q and Vp(Γ(p)), Vq(Γ(q)) meet full
facet to full facet. Hence, V T (Γ(p)) is a simple tiling.

We have already shown that Vγ(p)(Γ(p)) = γ(Vp(Γ(p))). Hence there exist
r > 0 such that Br(γ(p)) ⊂ Vγ(p)(Γ(p)) and R > 0 such that
BR(γ(p)) ⊃ Vγ(p)(Γ(p)), for all γ ∈ Γ. Then r is a packing radius and R a
covering radius of Γ(p), and we conclude that Γ(p) is a Delone set. 2
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Chapter 3

Metrics on Simple Tiling
Spaces

From each simple tiling T , we will construct a space ΩT of tilings and study
the topology of ΩT . The first step is to define a metric on the space Ω of all
simple tilings.

3.1 The Tiling Metric d

For two tilings T ,T ′ of En, we say that T, T ′ are ε-close if they agree on a
ball of radius 1/ε around the origin, up to an isometry of size ε or less. The
definition below explains this more precisely.

Definition 3.1.1 The distance d(T, T ′) between two tilings of En in Ω is
defined as the smaller of ln(3

2
) and ln

(
1 + 1/R(T, T ′)

)
, that is:

d(T, T ′) = inf
(

ln(
3

2
), ln(1 +

1

R(T, T ′)
)
)
.

To calculate R(T, T ′), we use the metric dO on Isom(En) defined in the first
Chapter:

R(T, T ′) = sup
r
{∃φ, ψ ∈ Isom(En) s.t. dO(φ, idEn), dO(ψ, idEn) <

1

2r
and

[φ(T )]Br(O) = [ψ(T ′)]Br(O)}.
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Proposition 3.1.2 (Ω, d) is a metric space. We call d the tiling metric.

Proof We have to show that:

(i) d(T, T ′) = d(T ′, T )

(ii) d(T, T ′) ≥ 0 and d(T, T ′) = 0 iff T = T ′

(iii) d(T, T ′′) ≤ d(T, T ′) + d(T ′, T ′′)

(i)+(ii) Clearly, by definition, d is symmetric, positive, and d(T, T ) = 0.
Suppose T 6= T ′, then there exists tiles t ∈ T, t′ ∈ T ′, such that t 6= t′,
but the interiors t◦, t′◦ intersect. Therefore, for ε small enough and for all
φ, ψ ∈ Isom(En) with dO(φ, idEn), dO(ψ, idEn) < ε, we have

φ(t) 6= ψ(t′) and (φ(t))◦ ∩ (ψ(t′))◦ 6= ∅.

Choose r > 1
2ε

(hence ε > 1
2r

) such that Br(O) ∩ t and Br(O) ∩ t′ are both
non-empty. The argument above shows that whatever φ, ψ ∈ Isom(En) with
dO(φ, idEn), dO(ψ, idEn) < 1

2r
, we choose:

[φ(T )]Br(O) 6= [ψ(T ′)]Br(O) .

The same holds for all r′ ≥ r; hence, R(T, T ′) ≤ r and d(T, T ′) 6= 0.

(iii)We aim to prove triangle inequality. Suppose R(T, T ′) > 2, then there
exist 2 < r ≤ R(T, T ′) and φ, ψ ∈ Isom(En), such that

dO(φ, idEn), dO(ψ, idEn) <
1

2r

and
[φ(T )]Br(O) = [ψ(T ′)]Br(O).

Similarly, suppose R(T ′, T ′′) > 2, then there exist 2 < r′ ≤ R(T ′, T ′′) and
χ, ω ∈ Isom(En), such that

dO(χ, idEn), dO(ω, idEn) <
1

2r′

and
[χ(T ′)]Br′ (O) = [ω(T ′′)]Br′ (O).

Choose r0 = rr′

r+r′
. [φ(T )]Br(O) = [ψ(T ′)]Br(O), implies [χ(φ(T ))]χ(Br(O)) =

[χ(ψ(T ′))]χ(Br(O)). Assume χ = τ · a, where a ∈ O(EnO), τ ∈ Trans(En), then
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we have a(Br(O)) = Br(O). Therefore, [χ(φ(T ))]τ(Br(O)) = [χ(ψ(T ′))]τ(Br(O)).
By the choice of r0, we see that Br0(O) ⊂ τBr(O), since:

‖τ‖ = dO(τ, 0) ≤ dO(τ, 0) + dO(a, idEnO) = dO(τa, idEn) <
1

2r′

and

r − 1

2r′
=

2rr′ − 1

2r′
> r0 .

Hence,

(∗) [χ(φ(T ))]Br0 (O) = [χ(ψ(T ′))]Br0 (O).

[χ(T ′)]Br′ (O) = [ω(T ′′)]Br′ (O) implies [ψ̄
(
χ(T ′)

)
]ψ̄Br′ (O) = [ψ̄

(
ω(T ′′)

)
]ψ̄Br′ (O),

with ψ̄ = χψχ−1. Since by Lemma 1.2.2 (v) we have:

dO(ψ̄, idEn) = dO(χψχ−1, idEn) ≤ dO(ψ, idEn)
(
1+dO(χ, idEn)

)
<

1

2r

(
1+

1

2r′
)
,

by exchanging the roles of r and r′, we find, as in the previous argument
that:

r′ − 1

2r
(1 +

1

2r′
) ≥ ro =

rr′

r + r′
⇐⇒ (r + r′)r′ − (r + r′) · 2r′ + 1

4rr′
≥ rr′

⇐⇒ 4rr′
(
rr′ + (r′)2

)
− (r + r′)(2r′ + 1) ≥ 4r2r′2

⇐⇒ 4r(r′)3 − (2rr′ + r + 2r′2 + r′) ≥ 0

⇐⇒ 4r(r′)3 ≥ 2rr′ + 2r′2 + r + r′

⇐⇒ 2(r′)2 · 2r′r ≥ (2r′ + 1)(r + r′);

(3.1)

as (2r′ + 1)r + (2r′ + 1)r′ = (2r′ + 1)(r + r′).
The last inequality in (3.1) holds because, if r, r′ > 2, then:

2(r′)2 = (r′)2 + (r′)2 ≥ 2r′ + 1

2rr′ = rr′ + rr′ ≥ r + r′ .
(3.2)

Therefore,

(∗∗) [χψ(T ′)]Bro (O) = [ψ̄
(
χ(T ′)

)
]Bro (O) = [ψ̄

(
ω(T ′′)

)
]Bro (O).

Since

dO(χφ, idEn) ≤ dO(χ, idEn) + dO(φ, idEn)

≤ 1

2r′
+

1

2r

=
1

2r0

(3.3)
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and

dO(χψχ−1ω, idEn) ≤ dO(χψχ−1, idEn) + dO(ω, idEn)

≤ 1

2r
+ (

1

2r

1

2r′
) +

1

2r′

=
1

2ro
+

1

2r
· 1

2r′
.

(3.4)

(*) and (**) show that: 1
r0

+ 1
2r

1
r′
≥ 1

R(T,T ′′)
, which implies

d(T, T ′′) = ln
(
1 +

1

R(T, T ′′)

)
≤ ln

(
1 +

1

r0

+
1

2r
· 1

r′
)

i.e. d(T, T ′′) ≤ d(T, T ′) + d(T ′, T ′′), because ln
(
1 + 1

R(T,T ′′)

)
≤ ln(1 + 1

r
) +

ln(1 + 1
r′

) (by taking exp for both sides). Hence, the triangle inequality fol-
lows.
If R(T, T ′) ≤ 2 or R(T ′, T ′′) ≤ 2, then the triangle inequality follows imme-
diately from the definition of d. 2

The distance d on the space of tilings depends on the chosen origin O,
but the topology on the space of tilings induced by this distance does not.

Proposition 3.1.3 For two different points O,O′ ∈ En, the metrics dO and
dO′ induce the same topology on a space of tilings of En.

Proof The underlying reason for the assertion to hold is that by Lemma 1.2.2
(vii), the metrics dO, dO′ on En are comparable, that is, there exists a constant
C > 1 such that for all φ, ψ ∈ Isom(En),

1

C
· dO′(φ, ψ) ≤ dO(φ, ψ) ≤ C · dO′(φ, ψ).

Furthermore, we use that Br(O
′) ⊂ B2r(O) for r > ‖

−−→
OO′‖Eucl, and vice

versa.
In more details, assume that RO(T, T ′) > 2 · ‖

−−→
OO′‖Eucl holds for two simple

tilings T, T ′ of En. By definition there exist r > ‖
−−→
OO′‖Eucl and φ, ψ ∈ Isom(En)

such that dO(φ, idEn), dO(ψ, idEn) < 1
4r

and [φ(T )]B2r(O) = [ψ(T ′)]B2r(O). Con-
sequently,

dO′(φ, idEn), dO′(ψ, idEn) <
C

4r
<
C

2r
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and
[φ(T )]Br(O′) = [ψ(T ′)]Br(O′).

C > 1 implies B r
C

(O′) ⊂ Br(O
′), and hence RO′(T, T

′) ≥ 1
2C
· RO(T, T ′).

Reversing the roles of T and T ′ we conclude RO′(T, T
′) ≤ 2C · RO(T, T ′) if

RO′(T, T
′) > 2 · ‖

−−→
OO′‖Eucl. This shows the comparability of the metrics dO

and dO′ for small distances, hence the induced topologies are equal. 2

We want to show that a tiling shifted by an isometry close to idEn is close
to the original tiling in the sense of the metric d. For this purpose, we must be
able to construct square roots of isometries. For translation τ ∈ Trans(En)
this is easy:
If we compose τ

2
with itself, we obtain τ . But for orthogonal maps α ∈ O(EnO),

more work needs to be done. The existence of a square root
√
α of α =

(√
α
)2

follows from a general decomposition theorem for orthogonal maps:

Theorem 3.1.4 [[4], Description of isometries, pp.292-293]
Suppose V is a real inner-product space and α ∈ L(V ). Then α is an isom-

etry if and only if there is an orthonormal basis of V with respect to which
α is a block diagonal matrix:

α =


M1 0 . . . 0

0
. . . 0

...
... 0

. . . 0
0 . . . 0 Mr

 ;

where each block Mi on the diagonal is of the form: Mi = (1) or (−1) or(
cos θ − sin θ
sin θ cos θ

)
, the rotational matrix with angle θ ∈ (0, π).

As long as Mi 6= (−1), there exists Ni such that Mi =
(
Ni

)2
. For

Mi = (1), we have Ni = (1), and for Mi =

(
cos θ − sin θ
sin θ cos θ

)
, we can choose

Ni =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
.

If we set β =


N1 0 . . . 0

0
. . . 0

...
... 0

. . . 0
0 . . . 0 Nr

, we have β2 = α. Hence, β is the

square root of α.
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Lemma 3.1.5 For α and β as above,

‖β − idEn‖op ≤ ‖α− idEn‖op.

Proof Since the basis on which we can write α and β have α − idEn and
β − idEn in block form is orthonormal, the square of the operator norms
‖α − idEn‖2

op and ‖β − idEn‖2
op is the sum of the squares of the operator

norms ‖Mi − id‖2
op and ‖Ni − id‖2

op.
If Mi = Ni = (1), then these operator norms are 0.

If Mi = R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
and Ni = R

(
θ
2

)
, then:

‖R(θ)− idR2‖op = max(x,y)∈S1‖R(θ)− idR2)

(
x
y

)
‖Eucl

= max(x,y)∈S1‖
(
x(cos θ − 1)− y sin θ
x sin θ + y(cos θ − 1)

)
‖Eucl

= max(x,y)∈S1

√(
x(cos θ − 1)− y sin θ

)2
+
(
xsinθ + y(cos θ − 1)

)2

= max(x,y)∈S1

√
x2(cos θ − 1)2 − 2xy(cos θ − 1) sin θ + y2 sin2 θ+

x2 sin2 θ + 2xysinθ(cos θ − 1) + y2(cos θ − 1)2

=
√

(cos θ − 1)2 + sin2 θ

=
√

cos2 θ − 2 cos θ + 1 + sin2 θ

=
√

2− 2 cos θ.

(3.5)

Since 2− 2cosθ ≥ 2− 2cos θ
2
≥ 0 if θ ∈ (0, π), we get:

‖β − idEn‖op ≤ ‖α− idEn‖op.

2

Proposition 3.1.6 For a simple tiling T and φk ∈ Isom(En).

If dO(φk, idEn) −→ 0 , then d(φk(T ), T ) −→ 0.

Proof Put φk = τkαk where τk ∈ Trans(En) and αk ∈ O(EnO). Then, by
the assumption:

‖τk‖Eucl = dO(τk, idEn) −→ 0 and ‖αk‖op = dO(αk, idEn) −→ 0.
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Notice that,

d
(
φk(T ), T

)
= d
(
τk(αk(T )), T

)
≤ d
(
τk(αk(T )), αk(T )

)
+ d
(
αk(T ), T

)
.

Now, if we show that d
(
τk(αk(T )), αk(T )

)
−→ 0, and d

(
αk(T ), T

)
−→ 0, we

are done.
First, notice that d

(
τk(αk(T )), αk(T )

)
≤ ln

(
1 + dO(τk, idEn)

)
:

Choose k large enough such that dO(τk, idEn) = ‖τk‖ < 2, and set

ψ = − τk
2
, χ = τk

2
. For r < 1

dO(τk,idEn )
we have dO(ψ, idEn) = dO(τk,idEn )

2
< 1

2r
,

dO(χ, idEn) = dO(τk,idEn )
2

< 1
2r

and [ψ
(
τk(αk(T ))

)
]Br(O) = [χ

(
αk(T )

)
]Br(O). So,

by definition of R
(
τk(αk(T )), αk(T )

)
, we have:

R
(
τk(αk(T )), αk(T )

)
≥ 1

dO(τk,idEn )
> 1

2
, that implies:

d
(
τk(αk(T )), αk(T )

)
= ln

(
1+

1

R
(
τk(αk(T )), αk(T )

)) ≤ ln
(
1+dO(τk, idEn)

)
−→ 0;

when k −→∞.
Second, let βk be the square root of αk in O(EnO) as in the construction in
Theorem 3.1.4. Setting γk := β−1

k , we have:

‖γk−idEn‖op = ‖βk−idEn‖op ≤ ‖αk−idEn‖op; by Lemma 1.2.2(ii) and Lemma 3.1.5.

Furthermore, for any R > 0,

γk
(
αk(T )

)
= βk(T ) implies [γk

(
αk(T )

)
]BR(O) = [βk(T )]BR(O).

Therefore,

R
(
αk(T ), T

)
−→∞ if ‖αk − idEn‖op −→ 0 for k −→∞;

and hence, d
(
αk(T ), T

)
−→ 0, as required. 2
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3.2 Tiling Spaces

We now know what simple tilings are. From each tiling T , we will construct
a complete space ΩT of tilings and study it.

Definition 3.2.1 The orbit of a tiling T is the set O(T ) of isometrically
shifted copies of T . That is:

O(T ) = {φ(T )| φ ∈ Isom(En)}.

Note that the orbit O(T ) may not be complete. See [26] for more exam-
ples.

Definition 3.2.2 A tiling space Ω is a set of simple tilings made up of the
same set of prototiles (finitely many up to isometry), that is:

(i) closed under isometry, i.e., if T ∈ Ω then φ(T ) ∈ Ω, for all φ ∈ Isom(En).

(ii) complete in the tiling metric, i.e., every Cauchy sequence of tilings in
Ω has a limit in Ω.

Lemma 3.2.3 The space of all simple tilings made up of the same set of
prototiles (finitely many up to isometry), together with the metric d is a
complete metric space.

Proof Suppose (Tk)k∈N is a Cauchy sequence of simple tilings. If neces-
sary, pass to a subsequence such that ln(1 + sk) = d(Tk, Tk+1) is decreas-
ing and

∑∞
1 sk < ∞. It follows from the definition of d that there exists

φk, φ
′
k ∈ Isom(En); dO(φk, idEn), dO(φ′k, idEn) < 1

2
sk such that:

(∗) [φk(Tk)]B 1
sk

(O) = [φ′k(Tk+1)]B 1
sk

(O)

Notice that [φk(Tk)]B 1
sk

(O) = φk
(
[Tk]B 1

sk

(φ−1
k (O))

)
. Hence, (*) becomes

φk
(
[Tk]B 1

sk

(φ−1
k (O))

)
= φ′k

(
[Tk+1]B 1

sk

(φ′−1
k (O))

)
,

=⇒ φ′−1
k φk

(
[Tk]B 1

sk

(φ−1
k (O))

)
= [Tk+1]B 1

sk

(φ′−1
k (O)).

Claim 1: B 1
sk

(
(φ′−1

k )(O)
)
⊂ B 1

sk+1

(
φ−1
k+1(O)

)
.

Proof of claim 1:

x ∈ B 1
sk

(
(φ′−1

k )(O)
)
⇐⇒ ‖x− (φ′k)

−1(O)‖Eucl <
1

sk
. (3.6)
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On the other hand,

x ∈ B 1
sk+1

(
φ−1
k+1(O)

)
⇐⇒ ‖x− (φk+1)−1(O)‖Eucl <

1

sk+1

. (3.7)

By suitably choosing the sequence (sk)k∈N, this implies together with:

‖(φ′k)−1(O)−O‖ = ‖φ′k(O)−O‖ < 1

2
sk,

and

‖φ−1
k+1(O)−O‖ = ‖φk+1(O)−O‖ < 1

2
sk+1;

that

‖x−φ−1
k+1(O)‖ ≤ ‖x−(φ′k)

−1(O)‖+‖(φ′k)−1(O)−φ−1
k+1(O)‖ < 1

sk
+

1

2
sk+

1

2
sk+1

<
1

sk+1

.

Hence, x ∈ B 1
sk+1

(
φ−1
k+1(O)

)
. 2

Define δk :=
∏∞

l=k(φ
′
l)
−1φl, where the terms with lower index are to the

right. The infinite composition exists because dO(φl, idEn), dO(φ′l, idEn) < 1
2sl

and
∑∞

l=k sl <∞. Then:

δk
(
[Tk]B 1

sk

(φ−1
k (O))

)
= δk+1(φ′k)

−1φk
(
[Tk]B 1

sk

(φ−1
k (O))

)
= δk+1

(
[Tk+1]B 1

sk

((φ′k)−1(O))

)
⊂ δk+1

(
[Tk+1]B 1

sk+1

(φ−1
k+1(O))

)
by claim 1.

(3.8)

Hence, T =
⋃∞
k=1 δk

(
[Tk]B 1

sk

(φ−1
k (O))

)
is a simple tiling made up of the same

set of prototiles as all the Tk.
Claim 2: d(Tk, T ) −→ 0.
Proof of claim 2: We need to find a sequence (tk)k∈N −→ 0 such that
dO(Tk, T ) ≤ ln(1 + tk). Notice that

δk
(
[Tk]B 1

sk

(φ−1
k (O))

)
= [δk(Tk)]

B 1
sk

(
δ−1
k (φ−1

k (O))
) = [T ]

B 1
sk

(
δ−1
k (φ−1

k (O))
).

So it is enough to choose tk such that dO(δk, idEn) < 1
2
tk and

B 1
tk

(O) ⊂ B 1
sk

(δ−1
k (φ−1

k (O))) ,
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because then [T ]B 1
sk

(δ−1
k (φ−1

k (O))) ⊃ [T ]B 1
tk

(O) = [δk(Tk)]B 1
tk

(O). We achieve

that by choosing 1
tk
≤ 1

sk
− dO(δ−1

k φ−1
k , idEn). Since dO(δ−1

k φ−1
k , idEn) −→ 0

by the considerations above and also sk −→ 0, dO(δk, idEn) −→ 0, the tk can
be chosen to converge to 0 as requested, too.

2

Definition 3.2.4 The hull ΩT of a tiling T is the closure of O(T ) in the
space of all simple tilings made up of the same set of prototiles as T .

To build our knowledge about hulls let us look at the hulls of some simple
1-dimensional tilings in the following two examples.

Example 3.2.5 Let T0 be a tiling with just one kind of tile ”white tile of
length one”, as in figure 3.1. First of all we identify the orbit of T0. Notice
that

Isom(E1) = Trans(E1) oO(E1
o),

where Trans(E1) = R and O(E1
o) = ±1 ⊂ GL(R) = {(a) : a ∈ R − {0}}.

Translations and reflections at any point transform all white tiles into all
white tiles i.e. every element is determined by the image one boundary point
of a white tile which means O(T0) is a circle. For the hull of T0, reflections
have norm 1 that means, isometries with distance < 1 from idE1 must be
translations. Therefore, the hull of T0 is again O(T0) which is just a circle.

Figure 3.1: White tile; see [26].

Example 3.2.6 Let T1 be the ”one black tile” tiling, as in figure 3.2. By
repeating the same argument as above, we see that translations and reflec-
tions at any point will move the black tile on and on to the left and to the
right, hence O(T1) = R. All white tilings of Example 3.2.5 are in the closure
of O(T1), since every patch of this tiling can be found in a tiling of O(T1),
both far enough to the right of the origin and far enough to the left.

Examples of hulls of higher-dimensional tilings will follow in Chapter 5.
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Figure 3.2: One black tile; [26].

Figure 3.3: The hull of ”one black tile”; see [26].

Theorem 3.2.7 [26]
If T is a simple tiling, then ΩT is compact.

Proof We aim to show that every sequence in ΩT has a convergent subse-
quence. As T is a simple tiling, there is only a finite number of tile types
up to isometry. Notice also that the number of ways in which tiles can abut
are finite, i.e., for each radius r, there are only a finite number of possible
patches, covering a ball Br(0) up to isometries τ · α with α ∈ O(EnO) and
τ a translation by a distance smaller than the diameter of the largest tile.
Since O(EnO) is compact, this set of isometries is (relatively) compact. Hence,
in any sequence of tilings in ΩT , there is a subsequence that converges on
Br. Using Cantor’s Diagonalization argument, from the subsequence that
converges on B1, pick a subsequence that converges on B2, a subsequence
of that converges on B3, a subsequence of that converges on B4, and so on.
Now, we take the first element of the sequence that converges on B1, and
the second element of the sequence that converges on B2, and so on. This
sequence of elements converges on every bounded set, and so, will form a
Cauchy sequence in the tiling space. Hence, this sequence has a limit in ΩT

since ΩT is complete.

2
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Chapter 4

Equivalences of Tilings and
Tiling Spaces

What does it mean when we say that two simple tilings or two simple tiling
spaces are equivalent? There are several different notions that explain this,
as we will see in this chapter.

Since we introduced a topology on tiling spaces in the previous Chapter,
we have the notion of a continuous map f : Ω → Ω′ between two tiling
spaces Ω,Ω′. The map f is a homeomorphism if f is 1− 1, onto and f−1 is
also continuous.
For a homeomorphism between simple tiling hulls, we only need to check
whether f is continuous, 1− 1 and onto, since f−1 is automatically continu-
ous as ΩT is compact according to Theorem 3.2.7.

Next, we want to consider continuous maps respectively homeomorphisms,
which interact properly with the action of the isometry group on the tiling
spaces.

4.1 Topological Isometric Conjugacy

Originally, such factor maps were defined only using translations. When re-
quiring f(φ(T )) = φ(f(T )) for arbitrary isometries, many homeomorphisms,
which are a topological conjugacy for translations, are no longer topological
isometric-conjugacies. The reason is that general isometries do not commute
with each other, but translations do.
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Example 4.1.1 Consider the map f of a tiling space Ω onto itself, such that
f(T ) = φ(T ), for φ ∈ Isom(En), and T ∈ Ω:
For example, if T is the standard lattice in E2 and ΩT its hull (with respect
to isometries) as constructed in Example 5.1.5. Choose φ as a translation by
v, that is, f : T ′ → T ′ + v for any T ′ ∈ ΩT . It is clear that f is a factor map
with respect to translations, since f(T ′ + w) = T ′ + w + v = f(T ′) + w. On
the other hand, f(ψ(T )) = ψ(T ) + v 6= ψ(T + v), if ψ is a rotation by 90◦

around (0,0), and v = (1
4
, 1

4
): Then ψ(T ) = T implies that ψ(T ) + v = T + v,

but ψ(T + v) 6= T + v, which means that f is not a factor map with respect
to isometries.

T
ψ(T ) = T + v

•
(0,0)

•v

Figure 4.1: Translated standard lattice tilings of E2 .

Remark 4.1.2 If we allow for an additional isometry on the affine space En
(in our case, just φ), then ΩT and ΩT ′ become topologically conjugated again
(see also Proposition 4.2.7).

This motivates the following definition:

Definition 4.1.3 For tiling spaces Ω and Ω′, the continuous map f : Ω→ Ω′

is called an isometric-factor map (γ-i-factor map for short) if there exists
γ ∈ Isom(En), such that for all φ ∈ Isom(En), and for all T ∈ Ω:

f
(
φ(T )

)
=
(
γφγ−1

)
(T ).

If f is also a homeomorphism, then f is called a topological isometric-
conjugacy (topological γ-i-conjugacy for short).

Remark 4.1.4 To distinguish between translationally and isometrically fac-
tor map/topological conjugacy, we add “translationally” and “isometrically”.
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If we only speak of factor map/topological conjugacy; we always mean “iso-
metrically factor map/topological conjugacy ”.
Similarly, for γ, we often leave γ out if it is clear from the context what γ is.

Lemma 4.1.5 The inverse map f−1 : Ω′ → Ω of a topological i-conjugacy
f : Ω→ Ω′ is also a topological i-conjugacy.

Proof For T ′ ∈ Ω′, there exists a unique T ∈ Ω, such that f(T ) = T ′ (as f
is a homeomorphism). f is a topological i-conjugacy; therefore, there exists
γ ∈ Isom(En) such that

f
(
φ′(T ′)

)
= (γ−1φ′γ)(T ′) ; ∀φ′ ∈ Isom(En)

⇐⇒ φ′(T ′) = f−1
(
(γ−1φ′γ)(T ′)

)
⇐⇒ γφγ−1(T ′) = f−1

(
φ(T ′)

)
; as φ′ = γφγ−1 .

(4.1)

By choosing γ′ = γ−1, we get:

f−1
(
φ(T ′)

)
=
(
γ′−1φγ′(T ′)

)
;∀T ′ ∈ Ω′.

Hence, f−1 is a topological γ−1-i-conjugacy. 2

Remark 4.1.6 If we define topological conjugacies using only translations,
the definition reduces to:

∀τ ∈ Trans(En), f(T + τ) = f(T ) + τ.

Since conjugating in the abelian group, Trans(En) is trivial. One could also
allow for automorphisms of Isom(En) different from φ → γ−1φγ (if they
exists at all). These notions of topological conjugacy on tiling spaces are
different, as Example 4.1.1 shows.

Example 4.1.7 Let T be the standard lattice tiling constructed from tiles
which are squares with vertices of the form (n,m), (n+1,m), (n,m+1), (n+
1,m + 1); n,m ∈ Z. and T ′ the slanted lattice tiling obtained from the
rhomb with vertices (0, 0), (1, 0), (2, 1), (1, 1) and all its translations by vec-
tors (n,m) ∈ Z2, see Figure 4.2.

There is a natural map f : ΩT ′ → ΩT , such that f is a 4-1 map.
Given a tiling T̄ ′ ∈ ΩT ′ , we obtain a tiling T̄ ∈ ΩT by halving each of the
rhombs in T̄ ′ and uniting two of these halves to a square whenever they meet
face-to-face along a diagonal edge.
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Figure 4.2: Standard lattice tiling and slanted lattice tiling of E2.

The following picture shows how we obtain the same standard lattice
tiling from 4 different slanted lattice tilings:

Figure 4.3: Standard lattice tile can be obtained from one of these four
different slanted lattice tiles.

The four slanted lattice tiles in Figure 4.3, are mapped to each other by
isometries in the cosets of D2 in D4.
Obviously, halving the rhombs commutes with applying an isometry on them,
so that f is an i-factor map (with γ = idE2).
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4.2 Mutual Local Derivability

The strongest notion of equivalence used in the literature is Mutual Local
Derivability; (MLD for short).

To obtain our results on crystallographic tilings in the sense of Chapter 5; we
have to extend the definition of MLD in [26] to isometrical MLD (Isometrical
case) by imposing the taxicab metric dO on Isom(En) (as in section 1.2),
then replacing translations by isometries in the original definition, as we will
see.

4.2.1 MLD Tiling Spaces

Definition 4.2.1 If Ω and Ω′ are tiling spaces, we say that Ω′ is isometric
locally derivable (γ-i-LD for short) from Ω if there is a surjective γ-i-factor
map f : Ω→ Ω′ that is defined locally. More precisely, there exists a radius R
such that, whenever two tilings T1, T2 ∈ Ω agree on a ball of radius R around
x ∈ En, the tilings f(T1) and f(T2) in Ω′ agree on the patches covering γ(x),
i.e.,

[T1]BR(x) = [T2]BR(x) then [f(T1)]{γ(x)} = [f(T2)]{γ(x)} .

If these implications hold, R will be called the i-LD radius.
If f−1 is a topological γ−1-i-conjugacy making Ω γ−1- i-LD from Ω′, then Ω
and Ω′ are called i-MLD.

Remark 4.2.2 To distinguish between translationally and isometrically MLD,
we add “translationally” and “isometrically”.
If we only speak of MLD, we always mean “isometrically-MLD”.
Similarly, for γ-LD, we often leave out γ if it is clear from the context what
γ is.

Example 4.2.3 Consider the standard lattice tiling T in the Euclidean
plane. By dividing the tiling T into halves, we get a new tiling T ′ (Fig-
ure 4.4). This gives a natural map f between the tiling spaces ΩT and ΩT ′

by setting f
(
φ(T )

)
= φ(T ′) for all φ ∈ Isom(En), since the hull ΩT of T

and ΩT ′ of T ′ are equal to the orbits of T and T ′ (see Example 5.1.5).
Clearly, f is continuous and an i-factor map (using γ = idE2), as its defining
equations shows.
Also, f is surjective, but is not a homeomorphism as it is not 1− 1, since a
given tiling in ΩT ′ can be obtained from two tilings T, T̄ in ΩT differing by a
translation of length 1

2
(see Figure 4.4). Therefore, f(φ(T )) = f(ψ(T )) and
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φ 6= ψ. The i-LD property is satisfied because we can obtain the red tile by
taking one of the black tiles and subdividing it, which is a local condition.
Then, we can find a radius R around x ∈ En, such that:

[T ]BR(x) = [T ′]BR(x) =⇒ [f(T )]{x} = [f(T ′)]{x}.

For example, R >
√

2 will do, because then, BR(x) will always contain a
square of any tiling in ΩT , for any x ∈ E2.

Figure 4.4: LD but not MLD lattice tilings (T=——, T ′=- - -, T̄=- - -).

Lemma 4.2.4 If Ω and Ω′ are two i-MLD tiling spaces, with i-MLD radius
R, then, for tilings T1, T2 ∈ Ω,

[T1]Br+R(x) = [T2]Br+R(x) =⇒ [f(T1)]Br(γ(x)) = [f(T2)]Br(γ(x)); for all r ≥ 0.

Proof By covering the ball Br+R(x) with balls BR(x′) where
|x′ − x| < r ⇐⇒ x′ ∈ Br(x), we will have:

[T1]Br+R(x) = [T2]Br+R(x) =⇒ [T1]BR(x′) = [T2]BR(x′) ; ∀x′ ∈ Br(x)

=⇒ [f(T1)]{x′} = [f(T2)]{x′}; ∀x′ ∈ Br(γ(x))

=⇒
⋃

x′∈Br(γ(x))

[f(T1)]{x′} =
⋃

x′∈Br(γ(x))

[f(T2)]{x′}

=⇒ [f(T1)]Br(γ(x)) = [f(T2)]Br(γ(x));

(4.2)

since
⋃
x′∈Br(x)[f(T1)]{x′} covers Br(γ(x)). 2

Lemma 4.2.5 Being i-MLD has an equivalence relation on tiling spaces.
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Proof Clearly, by definition, i-MLD is reflexive and symmetric. For tran-
sitivity, suppose T1, T2 ∈ Ω and T ′1 = f(T1), T ′2 = f(T2), T ′′1 = g(T ′2),
T ′′2 = g(T ′2), where f is a topological γf -i-conjugacy with i-LD radius Rf , and
g is a topological γg-i-conjugacy with i-LD radius Rg.
If [T1]BRf+Rg (x) = [T2]BRf+Rg (x), then, by using Lemma 4.2.4 we have:

[T ′1]BRg (γf (x)) = [T ′2]BRg (γf (x)).

Hence, by Definition 4.2.1, we have:

[T ′′1 ]{
γg

(
γf (x)

)} = [T ′′2 ]{
γg

(
γf (x)

)};

and g ◦ f is a topological (γg ◦ γf )-i-conjugacy.

2

Remark 4.2.6 :

(i) It is enough to check the γ-i-LD property of a γ-i-factor map f at a
given point x:
Take an isometry φ mapping y to x, i.e., φ(y) = x, such that
∀ T1, T2 ∈ Ω, we have:

[T1]BR(y) = [T2]BR(y) =⇒ [φ(T1)]BR(x) = [φ(T2)]BR(x) ;φ(T1), φ(T2) ∈ Ω

=⇒ [f
(
φ(T1)

)
]{γ(x)} = [f

(
φ(T2)

)
]{γ(x)}

as f is γ-i-LD

=⇒ [γφγ−1f(T1)]{γ(x)} = [γφγ−1f(T2)]{γ(x)};

as f is γ-i-factor map

=⇒ [φγ−1f(T1)]{x} = [φγ−1f(T2)]{x}

=⇒ [f(T1)]{γφ−1(x)} = [f(T2)]{γφ−1(x)}

=⇒ [f(T1)]γ(y) = [f(T2)]γ(y).

(4.3)

2

(ii) The properties of f(T ) near the point γ(x) are determined by the prop-
erties of T on a ball around x, for all tilings T in the tiling space Ω.

(iii) Originally, i−MLD was defined using only translations, and for tilings
rather than for tiling spaces; (see Definition 4.2.9).
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Proposition 4.2.7 The map f : Ω → Ω on a tiling space Ω, defined by
f : T → φ(T ) is a topological conjugacy defining an i-MLD homeomorphism;
φ ∈ Isom(En).

Proof To prove that f is continuous, we use a metric on Ω constructed
from the points O and φ(O). Since, as per Proposition 3.1.3, the induced
topologies are equal, it would suffice to show that:

∀ε > 0 ∃δ > 0 : dO(T, T ′) < δ =⇒ dφ(O)(f(T ), f(T ′)) < ε.

Choose 0 < ε < ln(3
2
) and pick δ := ε. dO(T, T ′) < δ, which means that there

exists ψ, ρ ∈ Isom(En), where dO(ψ, idEn), dO(ρ, idEn) < 1
2r

with r := 1
eδ−1

,
such that:

[ψ(T )]Br(O) = [ρ(T ′)]Br(O)

=⇒ φ([ψ(T )]Br(O)) = φ([ρ(T ′)]Br(O))

=⇒ [φψ(T )]Br(φ(O)) = [φρ(T ′)]Br(φ(O))

=⇒ [φψφ−1f(T )]Br(φ(O)) = [φρφ−1f(T ′)]Br(φ(O))

=⇒ dφ(O)(f(T ), f(T ′)) < ln(1 +
1

r
) = δ = ε

since dφ(O)(φψφ
−1, idEn) = dO(ψ, idEn) and dφ(O)(φρφ

−1, idEn) = dO(ρ, idEn)
by Lemma 1.2.2 (v). As required, this shows that f is continuous. 2

Clearly, f is 1− 1, since if we map two different tilings by an isometry φ, we
obtain two different tilings; also, f is onto since f

(
φ−1(T )

)
= T . Hence, f is

a homeomorphism.
f is a topological φ-i-conjugacy, since

f
(
ψ(T )

)
= φψ(T ) = φψφ−1φ(T ) = φψφ−1f(T ); ψ ∈ Isom(En).

Finally, we aim to show that f is i-MLD for any MLD radius R. First, notice
that f is φ-i-LD:

[T1]BR(x) = [T2]BR(x) ;∀T1, T2 ∈ Ω =⇒ [φ(T1)]BR(φ(x)) = [φ(T2)]BR(φ(x))

=⇒ [f(T1)]{φ(x)} = [f(T2)]{φ(x)}.

(4.4)

Similarly, f−1 is also φ-i-LD, since f−1 is given by φ−1. Hence, f is i-MLD.
2

Remark 4.2.8 There are tiling spaces which are topological i-conjugacies,
but not i-MLD. See, for example, the usual Penrose tiling space and the
rational Penrose tiling space in ([26], pp. 41-44).
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4.2.2 MLD Tilings

Definition 4.2.9 If T and T ′ are tilings, T ′ is said to be γ-i-locally deriv-
able from T , if for some finite radius R, the properties of T ′ at each point
γ(x) ∈ En are determined by the properties of T in a ball of radius R around
x. More formally, T ′ is γ-i-locally derivable from T if there exists a radius R
such that, for x ∈ En and φ ∈ Isom(En), we have the following property:

[T ]BR(x) = [φ(T )]BR(x) implies [T ′]{γ(x)} = [γφγ−1T ′]{γ(x)}.

If these implications hold, then the radius R will be called the i-LD radius.
If T is γ−1-i-locally derivable from T ′, and T ′ is γ-i-locally derivable from T ,
then T and T ′ are called i-MLD.

Notice that Remark 4.2.2 is applied in this section as well.

Notice that S-MLD definition which was mentioned in [5] does not con-
tain conjugation with γ (this is necessary for T and γ(T ) to be MLD); and
does not discuss its properties. In particular its connection to MLD of the
hulls of T and T ′, as we will see later on.

The following example shows that T and T ′ can be translationally-MLD,
but not isometrically-MLD.

Example 4.2.10 The standard lattice tiling T , and the slanted lattice tiling
T ′ are translationally MLD. T ′ is translationally LD from T because [T ]Br(x) =
[T − y]Br(x) implies y ∈ Z2, as the vertices of T are all in Z2. But y ∈ Z2 also
implies T ′ = T ′−y, hence we have an equality of patches [T ′]{x} = [T ′−y]{x}.
In the same way we can deduce that T is translationally LD from T ′. Hence,
T and T ′ are translationally-MLD.
On the other hand T ′ is not isometrically LD from T : Rotating T by 90◦

around a midpoint x of a tile of T does not change T but Figure 4.5 shows
that the patches of T ′ and the rotated tiling T ′ covering x are certainly
different.
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•
x

Br(x)

[T ′]Br(x)

ρ •
x

Br(x)

[ρ(T ′)]Br(x)

Figure 4.5: Rotation of tiles counterclockwise by 90◦.

Lemma 4.2.11 If T ′ is γ-i-locally derivable from T with LD-radius R, then
for every r:

[T ]Br+R(x) = [φ(T )]Br+R(x) =⇒ [T ′]Br(γ(x)) = [γφγ−1T ′]Br(γ(x)).

Proof By covering Br+R(x) with balls BR(x′), and Br+R(y) with balls
BR(y′), where |x′ − x| < r and |y′ − y| < r ⇐⇒ x′ ∈ Br(x) and y′ ∈ Br(y),
we will have:

[T ]Br+R(x) = [φ(T )]Br+R(x) =⇒ [T ]BR(x′) = [φ(T )]BR(x′) ; ∀x′ ∈ Br(x)

=⇒ [T ′]{γ(x′)} = [γφγ−1T ′]{γ(x′)} ; ∀x′ ∈ Br(x)

=⇒
⋃

x′∈Br(γ(x))

[T ′]{γ(x′)} =
⋃

x′∈Br(γ(x))

[γφγ−1T ′]{x′}

=⇒ [T ′]Br(γ(x)) = [γφγ−1T ′]Br(γ(x)).

(4.5)

2

Lemma 4.2.12 Being i-MLD has an equivalence relation on tilings.

Proof A tiling is trivially i-MLD with itself. If T and T ′ are i-MLD tilings,
then they are each locally derivable from the other; therefore, the property is
symmetric. Finally, we show transitivity. Suppose T, T ′ and T ′′ are tilings,
such that T ′ is γ-i-locally derivable from T with i-LD radius R, and T ′′ is γ′-i-
locally derivable from T ′ with i-LD radius R′. If [T ]BR+R′ (x) = [φ(T )]BR+R′ (x),

then, by Lemma 4.2.11, [T ′]BR′ (γ(x)) = [γφγ−1T ′]BR′ (γ(x)). Hence, by Defini-
tion 4.2.9, we have:

[T ′′]{γ′γ(x)} = [γ′γφγ−1γ′−1T ′′]{γ′γ(x)}.

Hence, T ′′ is (γ′γ)-i-LD from T , as required to show transitivity.

2
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Proposition 4.2.13 If a tiling T2 is obtained by applying an isometry θ ∈ Isom(En)
on a tiling T1, that is, T2 = θ(T1); then, T1 and T2 are i-MLD.

Proof Assume that [T1]Br(x) = [φ(T1)]Br(x):

=⇒ [T1]{x} = [φ(T1)]{x}

=⇒ θ
(
[T1]{x}

)
= θ
(
[φ(T1)]{x}

)
=⇒ [θ(T1)]{θ(x)} = [θφ(T1)]{θ(x)}

=⇒ [T2]{θ(x)} = [θφθ−1T2]{θ(x)}.

Hence, T2 is θ-i-LD from T1. Similarly, T1 is θ−1-i-LD from T2, and so, T1

and T2 are i-MLD.

2

Lemma 4.2.14 Let Tn −→ T and Sn −→ S convergent series of tilings,
such that [Tn]Br(x) = [Sn]Br(x) for some r > 0. Then,

[T ]{x} = [S]{x}.

Proof Let t ∈ [T ]{x} be a tile containing x. Since Tn −→ T , we see that
there exist tiles tn ∈ [Tn]Br(x) such that tn −→ t. This implies tn ∈ [Sn]Br(x) as
[Tn]Br(x) = [Sn]Br(x). Next, t ∈ [S]{x}, since Sn −→ S. Hence, [T ]{x} = [S]{x}.

2

Lemma 4.2.15 If T and T ′ are i-MLD tilings, then their associated hulls
ΩT and ΩT ′ are i-MLD.

Proof Suppose T ′ is γ-i-LD from T with i-LD-radius R, and T is γ−1-i-LD
from T ′ with i-LD-radius R. Construct the map f : ΩT → ΩT ′ by setting
f(T ) = T ′ and extend it to the orbit of T by f(φ(T )) = γφγ−1(T ′).
Claim 1: The map f : O(T ) → O(T ′) is continuous with respect to the
topologies induced from the hulls ΩT and ΩT ′ .
Proof of claim 1: Let Tn → T̄ be a convergent sequence in O(T ). Choose
φn, φ̄ ∈ Isom(En) such that Tn = φn(T ) and T̄ = φ̄(T ). Since the orbit O(T )
can be a nowhere closed dense subset of the hull ΩT , we cannot assume that
φn → φ̄. Instead we combine the definition of the distance between tilings
and that of local derivability.
Tn → T̄ tells us that there exists a large R � 0 and ψn, ψ̄n tending to idEn
such that

[ψnφn(T )]BR(x) = [ψ̄nφ̄(T )]BR(x).
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This implies

[T ]BR(φ−1
n ψ−1

n (x)) = [φ−1
n ψ−1

n ψ̄nφ̄(T )]BR(φ−1
n ψ−1

n (x)).

Since R will eventually be much larger than the LD-radius of T and T ′ we
may conclude

[T ′]BR′ (γφ−1
n ψ−1

n (x)) = [γφ−1
n ψ−1

n ψ̄nφ̄γ
−1(T ′)]BR′ (γφ−1

n ψ−1
n (x)) ,

for some R′ > R/2. Hence

[γφnγ
−1(T ′)]BR′ (γψ−1

n (x)) = [γψ−1
n ψ̄nφ̄γ

−1(T ′)]BR′ (γψ−1
n (x)).

Setting ψ̄′n := γψ−1
n ψ̄−1

n γ−1 and possibly further reducing R′ by an arbitrarily
small amount we obtain

[γφnγ
−1(T ′)]BR′ (γ(x)) = [ψ̄′nγφ̄γ

−1(T ′)]BR′ (γ(x))

since dO(ψ−1
n , idEn) −→ 0. Then Lemma 1.2.2 (vii) implies

γφnγ
−1(T ′) −→ γφ̄γ−1(T ′).

2

Claim 2: f is a γ-i-factor map, that is: f
(
φ(T̄ )

)
= γφγ−1f(T̄ ) ∀T̄ ∈ ΩT .

Proof of claim 2: If T̄ = limn→∞φn(T ), then:

f(T̄ ) = f
(
limn→∞φn(T )

)
= limn→∞f

(
φn(T )

)
; by claim 1

= limn→∞γφnγ
−1f(T ).

(4.6)

Now, we have,

γφγ−1f(T̄ ) = limn→∞γφφnγ
−1f(T )

= limn→∞f
(
φφnT

)
= f

(
φ
(
limn→∞φn(T )

))
; by claim 1

= f
(
φ(T̄ )

)
.

(4.7)

2

Claim 3: f−1 is a γ−1-i-factor map.
Proof of claim 3: f−1 can be defined by f−1(T ′) = T and extended to the
orbit, and then to the hull as above. Hence, similar to the proof of claim 2,
we will have:

f−1
(
φ(T̄ ′)

)
= γ−1φγf−1(T̄ ′) ∀T̄ ′ ∈ ΩT ′ .

2
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Claim 4: f is γ-i-LD.
Proof of claim 4: We first consider the case that T1, T2 are in the orbit of
T , with T1 = φ(T ) and T2 = ψ(T ).

[φ(T )]BR(x) = [ψ(T )]BR(x) =⇒ φ
(
[T ]BR(φ−1(x))

)
= [ψ(T )]BR(x)

=⇒ [T ]BR(φ−1(x)) = [φ−1ψ(T )]BR(φ−1(x))

=⇒ [T ′]{γ(φ−1(x))} = [γφ−1ψγ−1T ′]{γ(φ−1(x))}

=⇒ [φγ−1T ′]{x} = [ψγ−1T ′]{x}

=⇒ [γφγ−1T ′]{γ(x)} = [γψγ−1T ′]{γ(x)}

=⇒ [f
(
φ(T )

)
]{γ(x)} = [f

(
ψ(T )

)
]{γ(x)}.

(4.8)

2

Now, we can prove the general case:
Assume that T1 = limn→∞ φn(T ), T2 = limn→∞ ψn(T ), and [T1]BR(x) = [T2]BR(x).
Furthermore, define the distance on ΩT using the origin x (see Definition 3.1.1),
and the distance on ΩT ′ using the origin γ(x). Then, for a given R′ > R,
d
(
T1, φn(T )

)
−→ 0 implies that for n � 0, there exists φ′n, φ

′′
n ∈ Isom(En),

such that dx(φ
′
n, idEn), dx(φ

′′
n, idEn) is arbitrarily small and

[φ′nT1]BR′ (x) = [φ′′nφnT ]BR′ (x).

Similarly, for n� 0, there exists ψ′n, ψ
′′
n ∈ Isom(En), such that dx(ψ

′
n, idEn)

and dx(ψ
′′
n, idEn) are arbitrarily small and

[ψ′nT2]BR′ (x) = [ψ′′nψnT ]BR′ (x).

These two equalities imply that:

[T1]BR′ (φ′−1
n (x)) = [φ′−1

n φ′′nφnT ]BR′ (φ′−1
n (x))

and
[T2]BR′ (ψ′−1

n (x)) = [ψ′−1
n ψ′′nψnT ]BR′ (ψ′−1

n (x)).

SinceR′ > R and φ′n, ψ
′
n are arbitrarily close to idEn , we haveBR(x) ⊂ BR′

(
φ′−1
n (x)

)
respectively BR′

(
ψ′−1
n (x)

)
; hence,

[T1]BR(x) = [φ′−1
n φ′′nφnT ]BR(x)

and
[T2]BR(x) = [ψ′−1

n ψ′′nψnT ]BR(x).

Therefore, by assumption, φ̄n := φ′−1
n φ′′nφn and ψ̄n := ψ′−1

n ψ′′nψn are close to
φn and ψn such that:

[φ̄nT ]BR(x) = [ψ̄nT ]BR(x).
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Now, using the special case in the calculation (4.8) in the beginning of the
proof of claim 4, we conclude:

[f
(
φ̄n(T ))

)
]{γ(x)} = [f

(
ψ̄n(T )

)
]{γ(x)}.

Notice that limn→∞ φ̄nT = T1 and limn→∞ ψ̄nT = T2, hence, according to
Lemma 4.2.14 we have,

[f
(
T1

)
]γ(x) = [f

(
T2

)
]γ(x).

as claimed.
In a completely analogous way, we can show that the inverse f−1 is γ−1-i-LD.

2

Lemma 4.2.16 If Ω and Ω′ are i-MLD tiling spaces with i-MLD homeomor-
phism f : Ω→ Ω′, then T and f(T ) are i-MLD, for all tilings T ∈ Ω.

Proof Suppose ΩT and Ω′T are tiling spaces and γ-i-LD with the map
f : Ω → Ω′. If T ∈ Ω, the properties of f(T ) near the point γ(x) are
determined by the properties of T on some balls around x. Hence, the tilings
T and f(T ) are i-MLD. In more detail,

[T ]BR(x) = [φ(T )]BR(x) =⇒ [f(T )]{γ(x)} = [f
(
φ(T )

)
]{γ(x)} by Definition 4.2.1

=⇒ [f(T )]{γ(x)} = [γφγ−1f(T )]{γ(x)}.

(4.9)

Therefore, T and f(T ) are i-MLD, for all tilings T ∈ Ω.

2

60



Chapter 5

Crystallographic Tilings

5.1 Definitions and First Properties

Definition 5.1.1 The automorphism group of a simple tiling T ⊂ E is de-
fined as the set of all γ ∈ Isom(En), such that γ(T ) = T , that is:

Aut(T ) := {γ ∈ Isom(En)|γ(T ) = T}.

Definition 5.1.2 An isometrically simple tiling T ⊂ En is crystallographic
if its automorphism group Aut(T ) ∈ Isom(En) is crystallographic.

Example 5.1.3 The standard lattice tiling T consists of tiles which are
squares with vertices of the form (n,m), (n+1,m), (n,m+1),(n+ 1,m+ 1),
where n,m ∈ Z.

•
(0,0)

•
(0,1)

•
(1,0)

•
(1,1)

Figure 5.1: Standard lattice tilings of E2 .
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We calculate the automorphism group of T , Aut(T ) as follows:
φ ∈ Aut(T ) maps points (n,m) ∈ Z2 onto points φ(n,m) ∈ Z2. We can
write φ as a product of translation and orthogonal map, i.e., φ = τ · α; τ ∈
Trans(E2), α ∈ O(E2

O). Notice that (−τ)φ = α; α fixes the origin, therefore,
φ(0, 0) = (no,mo); no,mo ∈ Z, implies, τ := (no,mo). That means, ±τ ∈
Aut(T ), i.e., α ∈ Aut(T )∩O(E2

O). We know that α maps points (n,m) ∈ Z2

to points α(n,m) ∈ Z2. We also know that α is an orthogonal map, therefore,
det(α) = ±1, which means that α ∈ GL(2,Z) ∩O(E2

O).

Let A =

(
a11 a12

a21 a22

)
denote the 2× 2-matrix associated to α. Then,

A−1 =

(
a11 a12

a21 a22

)−1

= 1
det(A)

·
(
a22 −a12

−a21 a11

)
∈M(2,Z), with

det(A) = a11a22 − a12a21 = ±1. Also, A is orthogonal, hence,

A·AT =

(
a11 a12

a21 a22

)
·
(
a11 a21

a12 a22

)
=

(
a2

11 + a2
12 a11a21 + a12a22

a11a21 + a21a12 a2
21 + a2

22

)
=

(
1 0
0 1

)
.

Therefore the following entries for the matrix A are possible:

a11 = 1, a21 = 0, a12 = 0, a22 = ±1 or

a11 = −1, a21 = 0, a12 = 0, a22 = ±1 or

a11 = 0, a21 = 1, a12 = ±1, a22 = 0 or

a11 = 0, a21 = −1, a12 = ±1, a22 = 0.

This gives us eight matrices of Aut(T ) which are orthogonal maps fixing the
origin, i.e., Aut(T ) ∩O(E2

O) consists only of the following matrices:(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 1

)
,

(
−1 0
0 −1

)
,(

0 1
1 0

)
,

(
0 −1
1 0

)
,

(
0 1
−1 0

)
,

(
0 −1
−1 0

)
.

This is the dihedral group D4, or the symmetry group of the square with

vertices:

(
1
1

)
,

(
−1
1

)
,

(
−1
−1

)
,

(
1
−1

)
. Thus, we have completely described

the automorphism group of T as:

Aut(T ) = Z2 o
(
Aut(T ) ∩O(E2

O)
) ∼= Z2 oD4;

where Z2 are translations with integer coefficients and Aut(T )∩O(E2
O) ∼= D4

is the point group of Aut(T ).
Note that Isom(En)/Aut(T ) is compact, and therefore, Aut(T ) is a crystal-
lographic group (by definition).

62



In [19] crystallographic point sets was defined. The authors did not use
our notions; they defined periods of point sets (translations that transform
the point set into itself). Then, if we take all these periods together they
make up a group of translations. If this group is a lattice of full rank, then
this group is called Crystallographic Point set.
This is the same as in our case since when we say the automorphism group
has to be Crystallographic that means it contains a lattice of full rank; see
[19] for more details on Crystallographic Point sets.

Proposition 5.1.4 If T is a tiling such that its automorphism group Aut(T )
is a crystallographic group (a so-called crystallographic tiling (see Defini-
tion 5.1.2), then the hull ΩT = Isom(En)/Aut(T ).

Proof By construction of the orbit of T , O(T ) = Isom(En)/Aut(T ). Since
Aut(T ) is a crystallographic group, then, by definition of crystallographic
group, the quotient Isom(En)/Aut(T ) is compact, therefore closed, so
O(T ) = ΩT . Hence, ΩT = Isom(En)/Aut(T ), as required.

2

Example 5.1.5 According to Proposition 5.1.4, the hull of the standard
lattice tiling T is:

ΩT = Isom(En)/
(
Z2 o (Aut(T ) ∩O(E2

o))
)
.

Example 5.1.6 Let T ′ be the slanted lattice tiling constructed in the same
way as in Example 4.1.7. In a similar way as in Example 5.1.3; we can cal-
culate Aut(T ′) = Z2 oD2 where

D2
∼= Aut(T ′) ∩ O(E2

o) =

{(
1 0
0 1

)
,

(
−1, 0
0,−1

)}
; that is a crystallographic

group with point group ∼= D2, and ΩT ′ = Isom(E2)/Aut(T ′) (by Proposi-
tion 5.1.4).

For a crystallographic group Γ ⊂ Isom(En), we have:

Proposition 5.1.7 For almost all x ∈ En, the stabilizer StabΓ(x) = {idEnO}.

Proof For ρ ∈ O(EnO), we have ‖ρ · x−O‖ = ‖x−O‖ as the distance does
not depend on ρ. Also, we have ‖− τ ·x−O‖ = ‖x− τ −O‖, so for ‖τ‖ large
enough, we get ‖x−τ−O‖ > ‖x−O‖. Consequently, if γ = τ ·ρ ∈ StabΓ(x),
then τ can only be a finite number of translations.
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Proposition 1.1.21 shows that there exists a crystallographic group Γ∗ con-
taining Γ, such that Γ∗/Γ∗ ∩ Trans(En) ∼= G, and there exists a section
s : G→ Γ∗ such that:

Γ∗ = (Γ∗ ∩ Trans(En)) o s(G) ⊂ Trans(En) oO(EnO) = Isom(En).

Since StapΓ(x) ⊂ StabΓ∗(x), we only need to show the claim for Γ∗.
G is a finite group by Bieberbach’s Theorem, hence there is also only a finite
number of possible ρ’s. Therefore, |StabΓ∗(x)| <∞.

2

Remark 5.1.8 If StabΓ(x) = {idEn}, then the tile of V T (Γ · x) containing
γ · x is the image of the tile containing x under γ (and no other isometry of
Γ).
For γ1, γ2 ∈ Aut(T ), such that γ1(x) = x = γ2(x) we have γ−1

2 · γ1 · x = x,
hence by the definition of a stabilizer, γ−1

2 γ1 ∈ Stab(x) = {idEn}. This
implies γ1 = γ2.
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5.2 Equivalences Between Crystallographic

Tilings

Theorem 5.2.1 For any two crystallographic tilings T, T ′ of En, T ′ is γ-i-
LD from T , if and only if

γ Aut(T ) γ−1 ⊂ Aut(T ′).

Proof (=⇒) Assume that T ′ is γ-i-LD from T . If we choose Ro as an
LD-radius, then all R ≥ Ro are also LD-radii. Now, we can choose R such
that, for any x ∈ En,

⋃
σ∈Aut(T )∩Trans(En) σ

(
BR(x)

)
= En, since Aut(T ) is a

crystallographic group. So, Aut(T )∩Trans(En) is a lattice of translations of
full rank n, according to Bieberbach’s Theorem. Assuming that ρ ∈ Aut(T ),
we need to show γργ−1(t′j) ∈ T ′ for all tiles t′j ∈ T ′:
Choose γ(x) ∈ γργ−1(t′j)

o. ρ(T ) = T as ρ ∈ Aut(T ). This implies that
[T ]BR(x) = [ρ(T )]BR(x). Now, since T ′ is γ-i-LD from T , we get:

[T ′]{γ(x)} = [γργ−1(T ′)]{γ(x)} = {γργ−1(t′j)}.

Therefore, there exists t′k ∈ T ′ such that t′k = γργ−1(t′j) as required.
(⇐=)Assume γ Aut(T ) γ−1 ⊂ Aut(T ′). Again, Aut(T ) ∩ Trans(En) is a
lattice of translations of full rank n. Then, there exists R > 0, such that for
all x ∈ En:

(∗)
⋃

σ∈Aut(T )∩Trans(En)

σ
(
BR(x)

)
= En.

Assume [T ]BR(x) = [ρ(T )]BR(x) for some ρ ∈ Isom(En).
Claim: ρ ∈ Aut(T ).
Proof of the claim: Notice that, ∀σ ∈ Isom(En), R > 0, x ∈ En:

(∗∗) σ
(
[T ]BR(x)

)
= [σ(T )]BR(σ(x)).

It is enough to show: ρ(ti) ∈ T ∀ tiles ti ∈ T. From (*) we see that:

∃σ ∈ Aut(T ) ∩ Trans(En) s.t. σ(ti) ∈ [T ]BR(ρ−1(x)).

Also, from(**) and the assumption on ρ, we see:

ρ
(
[T ]BR(ρ−1(x))

)
= [ρ(T )]BR(x) = [T ]BR(x).

Therefore, there exists a tile tj ∈ T such that:

tj = ρ
(
σ(ti)

)
=
(
ρσρ−1

)
· ρ(ti).
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For σ′ = ρσρ−1, we have: ρ(ti) = (σ′)−1(tj) ∈ T . Therefore, it is enough to
show that: ρσρ−1 ∈ Aut(T ) for all σ ∈ Aut(T ) ∩ Trans(En), equivalently:

ρ
(
Aut(T ) ∩ Trans(En)

)
ρ−1 = Aut(T ) ∩ Trans(En).

This is true for ρ ∈ Trans(En), since translations commute.
In the general case:
Choose generators s1, ..., sn of Aut(T ) ∩ Trans(En), such that:

ρσρ−1 = ρ(k1s1 + ...+ knsn)ρ−1.

It is enough to show that: ρsiρ
−1 ∈ Aut(T )∩Trans(En); i = 1, ..., n. Choose

R large enough, such that for an R′ < R:

• (*) holds for R′.

• R′ + maxi=1,..,n ‖si‖Eucl < R.

Let s ∈ {s1, ..., sn}, then:

(ρsρ−1)
(
[T ]BR′ (x)

)
= (ρsρ−1)

(
[ρ(T )]BR′ (x)

)
by assumption on R,R′ and ρ

= (ρs)
(
[T ]BR′ (ρ−1(x))

)
by (**)

= ρ
(
[T ]BR′ (sρ−1(x))

)
by (**) and s(T ) = T

= [ρ(T )]BR′ (ρsρ−1(x)) = [T ]BR′ (ρsρ−1(x)) by (**).

(5.1)

Here, BR′
(
ρsρ−1(x)

)
⊂ BR(x) because R′ + ‖ρsρ−1‖Eucl = R′ + ‖s‖Eucl < R

(by assumption on R). From (5.1), we see that:

ti ∈ [T ]BR′ (x) =⇒ (ρsρ−1)(ti) ∈ T.

Let τ ∈ Aut(T ) ∩ Trans(En), then:

(ρsρ−1)
(
[T ]BR′ (τ(x))

)
= ρsρ−1

(
τ([T ]BR′ (x))

)
by (**)

= τ
(
ρsρ−1([T ]BR′ (x))

)
since translations commute

= τ
(
[T ]BR′ (ρsρ−1(x))

)
by (5.1)

= [T ]
BR′

(
(ρsρ−1)(τ(x))

) by (**).

(5.2)

Therefore,
∀tj ∈ [T ]BR′ (τ(x)) : ρsρ−1tj ∈ T.
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Since
⋃
τ∈Aut(T )∩Trans(En) BR′(τ(x)) = En, every tile of T lies in a patch

[T ]BR′ (τ(x)), i.e., every tile of T is mapped to another tile of T by ρsρ−1.
Hence, ρsρ−1 ∈ Aut(T ), as required. 2

Consequently, from γ Aut(T ) γ−1 ⊂ Aut(T ′), we have γργ−1 ∈ Aut(T ′),
hence, [T ′]{γ(x)} = [γργ−1T ′]{γ(x)}, as requested for T ′ being γ-i-LD from T .

2

Remark 5.2.2 Note that in the proof of direction ” =⇒ ”, we have not used
that Aut(T ′) is a crystallographic group. In particular, we have shown that
if an arbitrary tiling T ′ is γ-i-LD from the crystallographic Tiling T , then T ′

is itself a crystallographic tiling.

As a direct consequence of this theorem, we obtain:

Theorem 5.2.3 Two crystallographic tilings are MLD if and only if their
automorphism groups are conjugated by an isomorphism.

Remark 5.2.4 The two tilings of Example 4.1.7 have different automor-
phism groups, but are mutually locally derivable if one only uses translations
for the definition, that is:
Assume

[T ]BR(x) = [T + τ ]BR(x) ; for R� 0, τ ∈ Trans(En).

From the proof of Theorem 5.2.1, we see that:

τ ∈ Aut(T ) ∩ Trans(En) = Aut(T ′) ∩ Trans(En).

That implies,
[T ′]BR(x) = [T ′ + τ ]BR(x).

Therefore, T ′ is translationally-LD from T . Similarly, T is translationally-LD
from T ′ and hence, T and T ′ are translationally-MLD.
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5.3 Construction of Crystallographic Tilings

Theorem 5.3.1 For every crystallographic group Γ ⊂ Isom(En); there ex-
ists a simple tiling T with Aut(T ) = Γ.

Proof The strategy to construct a simple tiling T with Aut(T ) = Γ is as
follows:

(i) Choose x ∈ En such that StabΓ({x}) = {idEn}. Such an x must exists
according to Proposition 5.1.7.

(ii) Construct the Voronoi-cell tiling V T (Γ · x) of the orbit Γ · x of a point
x ∈ En as in (i). This is a simple tiling by Theorem 2.3.1.

(iii) Let tx ∈ V T (Γ ·x) be the tile containing x. Subdivide each tile γ · tx of
V T (Γ · x); γ ∈ Γ by cones, each having a face of γ(tx) as its basis and
the point γ · y as the vertex, where y is a sufficiently general point in
tx.

This subdivision tiling TΓ is simple and will have automorphism group Γ,
because the possibly existing additional automorphisms of V T (Γ · x) not
lying in Γ, do not map the subdivision cones onto each other.
In more detail, choose y such that the distances of y to the vertices of tx are
mutually distinct and are also different from all the lengths of edges of tx.
This is possible if we choose y away from a finite number of spheres around
the vertices of tx, with radii equal to the edge lengths of tx, and also away
from the finite number of hyperplanes reflecting one vertex of tx to another.
Obviously, Γ ⊂ Aut(TΓ). On the other hand, let δ ∈ Isom(En) be an
automorphism of TΓ. Let C1 ∪ C2 ∪ ... ∪ Cr = tx be the subdivision of
tx into cones Ci. Notice that, δ(C1) must be one of the subdivision cones in a
tile γ · tx ∈ V T (Γ ·x). Since the lengths of the edges to the vertex of the cone
are all different by construction, C ′1 := δ(C1) = γ(C1), and the vertex and
the edges of C ′1 must be mapped to the vertex of C ′1 and the same edges by δ
and γ. Since, vertices of C1 span all of En, δ and γ are uniquely determined
by the images of these vertices (as affine transformations of En), and hence,
are equal.

2

Example 5.3.2 The subdivision of the Voronoi-cell tiling is necessary to kill
additional automorphisms, as shown by the example of Γ = Z · e1 ⊕ Z · e2,
where e1 and e2 are orthogonal standard basis vectors in R2:
Obviously, every point x ∈ E2 has a trivial stabilizer in Γ, but the Voronoi-
cell tiling of Γ · x is the standard lattice tiling T consisting of tiles which are
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squares with vertices of the form (n,m), (n + 1,m), (n,m + 1), (n + 1,m +
1); with n,m ∈ Z, as in Figure 5.2.
In Example 5.1.5, we have calculated that:
Aut(T ) = (Z · e1 ⊕ Z · e2) oD4.

x

Figure 5.2: —–Voronoi-cell tiling of standard lattice orbit in E2 .

After the subdivision with y being sufficiently general; we obtain a tiling
with the automorphism group Z · e1 ⊕ Z · e2:

y

Figure 5.3: Tiling of E2 with automorphism group Z · e1 ⊕ Z · e2.
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Chapter 6

Cut-and-Project Method for
Crystallographic Tilings

Known quasi-crystallographic tilings like the Penrose tiling can be obtained
by projecting a subset of a point lattice onto a plane. We will describe a more
general construction of cut-and-project tilings from an arbitrary given crys-
tallographic tiling T, and not only lattices and given cut-and-project data
(that is, projection subspace and window), in detail.

As a first step, points must be chosen in each prototile to obtain a De-
lone set. The points in one prototile should be invariant under the isometry
group of the prototile, so it does not matter which isometry is applied on
the prototile to obtain an actual tile in the tiling; we always choose the same
points in the tile.

Then, the cut-and-project Delone set can be constructed using the cut-and-
project data, and from this set, we can construct the Voronoi-cell tiling. One
has to show that, the projected point set is also a Delone set, and that the
associated Voronoi-cell tiling is simple.

6.1 Delone Sets from Crystallographic Tilings

Take T to be a crystallographic tiling of En, and construct a Delone set X
out of it. To this purpose, choose finite sets of points Xi in each prototile
ti fixed by the symmetry group of the prototile. This is possible as per
Lemma 1.3.11.
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Example 6.1.1 An obvious set of points to choose would be the vertices of
the prototiles since vertices must be mapped to vertices by isometries. On
the other hand, vertices are not the only choice of the set of points. There are
some cases where one can determine the symmetry centres of the prototiles.
For example, if we take the standard lattice tiling in any dimension, there
is no difference whether we choose vertices or symmetry centres, since the
symmetry centres look like the shifted points of the vertices, as shown in
Figure 6.1.

×××

×

×

×

×

×

×

Figure 6.1: Standard lattice tiling with vertices ◦ and symmetry centers ×.

Definition 6.1.2 A point set data {(Xi, ti)i} of a tiling T consists of a finite
set of points Xi for each prototile ti that is invariant under the isometry
group of ti.

Proposition 6.1.3 Given a point set data {(Xi, ti)i} the point set

XT =
⋃

t∈T,γ(ti)=t

γ(Xi) ; γ ∈ Isom(En)

is a Delone set.

Proof Note that the union runs over all tiles t ∈ T , and for each t, we choose
an isometry γ ∈ Isom(En) mapping the prototile ti behind t to t = γ(ti).
Now,

⋃
t∈T t = En and ∃R : t ⊂ BR(x) for all points x ∈ t, where R only

depends on the prototile behind t. Since we only have a finite number of
prototiles, there exists an R working for all t at once. This means that⋃
x∈XT BR(x) = En, because for each t, x ∈ t ∩ XT . Hence, the covering

radius of XT is less than or equal to R, in particular the covering radius of
XT is finite.
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If the packing radius of XT is r, then open balls of radius r centered at the
points of XT will be disjoint from each other, and each open ball centered at
one of the points of XT with radius 2r will be disjoint from the rest of XT .
Now, for a given R and all choices of y ∈ En, there is only a finite number
of patches [T ]BR(y) up to isometries. This was already used in the proof of
compactness of hull (see Theorem 3.2.7). This means that there are only a
finite number of intersection sets BR(y)∩XT up to isometries. Furthermore,
for y ∈ En, the set

{d(x, x′) : x 6= x′ ∈ BR(y) ∩XT}

is finite, as BR(y) ∩XT only intersects a finite number of tiles and each tile
intersects XT in a finite set of points. Since,

{d(x, x′) : x 6= x′ ∈ BR(y) ∩XT}

is invariant under isometries, we conclude that

r :=
1

2
inf{d(x, x′) : x 6= x′ ∈ BR(y) ∩XT , y ∈ En} > 0.

Hence, from all what we have discussed, we have shown that XT is a Delone
set.

2

Remark 6.1.4 The important thing about choosing points in prototiles that
are fixed under the symmetry group of ti is that, for the definition of XT , we
need to get the same points in tile t independent of the isometry used to get
from ti to t. In Example 6.1.1, Xi is the symmetry centres of the prototiles
ti in the standard lattice tiling T where we can get the tile t1 from the tile t1
by a 90◦ rotation. It is clear that Example 6.1.1 satisfies Proposition 6.1.3.

Proposition 6.1.5 For a point set XT associated to a tiling T as above, the
Voronoi-cell tiling TXT is idEn-i-LD from T .

Proof TXT is idEn-i-LD from T if there exists a radius R such that, for
x ∈ En and φ ∈ Isom(En), we have:

[T ]BR(x) = [φ(T )]BR(x) =⇒ [TXT ]{x} = [φ(TXT )]{x}.

Now,

[T ]BR(x) = [φ(T )]BR(x) =⇒ [XT ]BR(x) = [φ(XT )]BR(x)

=⇒ [TXT ]{x} = [φ(TXT )]{x};
(6.1)

72



for large enoughR independent of x because by Proposition 2.2.5, the Voronoi-
cell around a point x ∈ XT only depends on points of XT up to a distance
of x that is independent of x. 2

There are many counterexamples of the other direction of Proposition 6.1.5.
That is, T is not LD from TXT . If T is a crystallographic tiling this is equiva-
lent to Aut(T ) $ Aut(TXT ). We will also check this condition in the following
examples.

Example 6.1.6 Choose the symmetry centres as the set of points of the
prototiles. The Voronoi-cell tiling we gain is just the shifted standard lattice
tiling (see Figure 6.2). So, T is LD from TXT by Proposition 4.2.7.

Figure 6.2: Standard lattice tiling (—–) and Voronoi-cell tiling of its
vertices (—–).

Example 6.1.7 For the slanted lattice tiling as in Example 4.1.7, if we
choose the point set XT as the vertices of T , this set coincides with the
vertices of the standard lattice tiling; if we choose the point set data as the
vertices or the symmetry centres, both cases will give us Delone set as a stan-
dard lattice tiling, which has more automorphisms than the slanted tiling.
Therefore, Aut(T ) $ Aut(XT ) = Aut(TXT ), and T is not LD from TXT .
If we take the standard lattice tiling and take points in the tiles that are
close to all the vertices and invariant under the automorphism group of
the square then from Figure 6.3 it is clear that Aut(TXT ) contains hor-
izontal and vertical translations by 1

2
. On the other hand, if we look at

XT , the horizontal translations by 1
2

are not contained in Aut(XT ). Hence,
Aut(T ) = Aut(XT ) $ Aut(TXT ), and T is not LD from TXT .
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Figure 6.3: Standard lattice tiling, point set data and Voronoi-cell tiling II.

Corollary 6.1.8

Aut(T ) ⊂ Aut(XT ) ⊂ Aut(TXT ).

Proof First of all, we will show that Aut(T ) ⊂ Aut(XT ). Let φ ∈ Aut(T ),
such that ∀t ∈ T : φ(t) ∈ T . Now, by construction, if γ(ti) = t for the
prototile ti and the isometry γ, we have:

φ(t ∩XT ) = φ
(
γ(Xi)

)
;

since by construction t ∩XT = γ(Xi). This implies that:

φ(XT ) =
⋃

t∈T ;γ(ti)=t

φ
(
γ(Xi)

)
=

⋃
t∈T ;γ(ti)=t

φ(t) ∩XT =
⋃

t∈T ;γ′(ti)=t

γ′(Xi) = XT ,

since φ is an automorphism of T , hence, φ(T ) runs over all tiles of T if t
does, and γ′ = φγ ∈ Aut(T ). Therefore, φ ∈ Aut(XT ).
The second step now is to prove thatAut(XT ) ⊂ Aut(TXT ). Assume φ ∈ Aut(XT )
and let t ∈ TXT . Notice that t = tx for some x ∈ XT , where

tx = {y ∈ En : d(y, x) ≤ d(y, x′)∀x′ ∈ XT} (6.2)

This implies d
(
φ(y), φ(x)

)
≤ d

(
φ(y), φ(x′)

)
for all x ∈ XT , and since φ(x′)

runs through all points of XT if x′ does, we have φ(tx) = tφ(x) which means
that φ ∈ Aut(TXT ).

2
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6.2 General Cut-and-Project Construction

We will first define cut-and-project data for the Euclidean space En.
Let E ⊂ En be an m-dimensional hyperplane, and E⊥ ⊂ En be an (n−m)-
dimensional hyperplane orthogonal to E. Let Π be the orthogonal projector
onto E, and Π⊥ the orthogonal projector onto E⊥, that is Π : En → E and
Π⊥ : En → E⊥.
Then, we fix a compact subset K ⊂ E⊥ such that K◦ 6= ∅ and K

◦
= K.

K will be called the window for the projection, E the projection hyperplane,
K×E the cylinder, (see Figure 6.4), and (K,E) cut-and-project data for En.

Construction in steps:
Given a crystallographic tiling T of En, cut-and-project data (K,E) for En
can be used to construct a new tiling T ′ of E through the following steps:

(i) Choose point-set data {(Xi, ti)i} of T as in section 6.1, where t1, t2, ..., tk
are the prototiles of T .

(ii) Construct the Delone set XT =
⋃
t∈T ;γ(ti)=t

γ(Xi) from the point-set
data, as in section 6.1.

(iii) Cut and project: Set XT ′ = Π
(
XT∩(K×E)

)
, where the cylinder K×E

is defined with respect to the unique intersection point in E⊥∩E as the
origin. This step requires that XT ∩ (K × E) is not empty, which will
be the case under the assumption on the window K discussed later.

(iv) T ′ is the Voronoi-cell tiling V T (XT ′) associated to XT ′ .

Remark 6.2.1 The intersection XT ∩ (K ×E) could be empty as in Figure
6.5). Here the projection subspace E has slope 1 with respect to the standard
lattice, so never passes through one of the lattice points, and the minimal
distance to the lattice points will even be positive. Therefore, if we choose a
small enough K ⊂ E⊥ window, the cylinder K × E will not contain any of
the lattice points.
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K

K × E

Figure 6.4: Cut-and-project method with projection subspace E and window
K.

K

K × E

Figure 6.5: The projection result is empty.
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Assumption on window K:

(∗) K◦ ∩ Π⊥(XT ) 6= ∅ .

Remark 6.2.2 Notice that:

(i) If the interior of a window K does not intersect Π⊥(XT ), we can move
K with an isometry ρ of E⊥ to a window ρ(K) with non-empty inter-
section with Π⊥(XT ).

(ii) If only the boundary of K intersects Π⊥(XT ), there are lots of cases to
distinguish, depending on whether components of the boundary contain
enough image points of XT .

Under this assumption with regard to the window K, T ′ displays the
following properties:

Theorem 6.2.3 XT ′ is a Delone set.

Theorem 6.2.4 T ′ is a simple tiling.

The proof for these facts will occupy the rest of the section.

The main tool for the proof of Theorem 6.2.3 and Theorem 6.2.4 is Kro-
necker’s Approximation Theorem (in several dimensions).

Theorem 6.2.5 [[1], First form of Kronecker’s Approximation Theorem]
If α1, ..., αn are arbitrary real numbers, if θ1, ..., θn are Z-linearly independent
real numbers, and if ε > 0 is arbitrary, then there exists a real number t > 0
and integers h1, ..., hn, such that:

|tθi − hi − αi| < ε for i = 1, 2, ..., n.

Remark 6.2.6 Kronecker’s Approximation Theorem as in [1] only states
that t is a real number, but the proof goes through if one stays restricted to
t > 0; this is what we need later.

Under additional assumptions on the αi Kronecker’s Approximation The-
orem holds for arbitrary real numbers θ1, ..., θN , irrespective of whether they
are Z-linearly independent or not.
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Corollary 6.2.7 If θ1, ..., θN are real numbers and α1, ..., αN are real num-
bers satisfying the same Z-linear relations as θ1, ..., θN , then for every ε > 0,
there exists a real number t > 0 and integers h1, ..., hN , such that:

|tθi − hi − αi| < ε for i = 1, 2, ..., N.

Proof By reordering, we can achieve that θ1, ..., θk are Z-linearly indepen-
dent, 1 ≤ k ≤ N , and for each θi; i = k + 1, ..., N , there is a Z-linear
relation:

n
(i)
1 θ1 + ...+ n

(i)
k θk − niθi = 0; n

(i)
1 , ..., n

(i)
k , ni ∈ Z.

By multiplying with
ΠNj=k+1nj

ni
we can achieve nk+1 = ... = nn = n > 0. By

Kronecker’s Approximation Theorem, for any ε′ > 0, there is a real number
t′ > 0, and there are integers h′1, ..., h

′
k, such that:

|t′θ1 − h′1 −
α1

n
| < ε′, ..., |t′θk − h′k −

αk
n
| < ε′.

This implies that:

|t′(n(i)
1 θ1+...+n

(i)
k θk)−(n

(i)
1 h
′
1+...+n

(i)
k h
′
k)−(n

(i)
1 α1+...+n

(i)
k αk)| < |n

(i)
1 +...+n

(i)
k |ε

′

⇐⇒ |t′nθi−h′i−nαi| < |n
(i)
1 + ...+n

(i)
k |ε

′; with h′i = n
(i)
1 h
′
1 + ...+n

(i)
k h
′
k ∈ Z.

Now, if we multiply |t′θi − hi − αi
n
| < ε′ for i = 1, ..., k with n, we get:

|t′nθi − nhi − αi| < |n|ε′.

Hence, ε′ := min{ ε
n
, ε

|n(i)
1 +...+n

(i)
k |
}, t = t′n > 0, hi := nh′i for i = 1, ..., k, and

hi = h′i for i = k + 1, ..., N are the choices required for the claim.

2

The next theorem shows the relative denseness of XT ′ in a special case,
where dim(E) = 1.

Theorem 6.2.8 The set XT ′ = Π
(
XT ∩ (K ×E)

)
is relatively dense in the

case that dim(E) = 1 and dim(E⊥) = N − 1.

Proof Aut(T ) is crystallographic, which means that there exists a lattice
of full rank Λ ⊂ Aut(T ). Since Λ ⊂ Aut(T ) ⊂ Aut(XT ), the orbit Λ · x of
a point x ∈ XT is contained in XT . Choose x ∈ XT such that Π⊥(x) ∈ K◦
(possible by Assumption (*) on the window K). Also, choose a basis of Λ
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and let x be the origin of the coordinate system on En given by this basis.
In terms of this basis, E = R · (θ1, ..., θN). Permuting the coordinates, we
can arrive at the conclusion that θ1, ..., θK are Z-linearly independent and
θK+1, ..., θN ∈ Qθ1 + ...+QθK . In particular, there is a (N −K)×K-matrix
M with integer entries such that:

M ′ ·


θ1

θ2
...
θN

 =

 dK+1 0

M
. . .

0 dN

 ·


θ1
...
θK
θK+1

...
θN


=


0
0
...
0

 .

Set H =

(x1, ..., xN) :

 dK+1 0

M
. . .

0 dN


x1

...
xN

 =

0
...
0


. Then,

E ⊂ H and dim H = K.
Claim 1: H ∩ Λ is a lattice ΛH of full rank K.
Proof of claim 1: H ∩Λ = ker φM ′ , where φM ′ : ZN → ZN−K is defined bya1

...
aN

→M ′ ·

a1
...
aN

. M ′ has rank N−K because of the (N−K)×(N−K)

diagonal matrix on the right. Hence, the Q-linear map φM ′ ⊗Z Q has rank
N−K, therefore, dim

(
ker(φM ′⊗ZQ)

)
= K and dim

(
ker(φM ′⊗ZQ)

)
is the

rank of the torsion-free part of the finitely generated abelian group ker φM ′ .
Since ker φM ′ is torsion-free as a subgroup of ZN , we have ker φM ′ ∼= ZK .

2

Now, choose a Z-basis of ΛH . This is also an R-basis of H. In terms of this,
write E = R · (θH1 , ..., θHK).
Claim 2: θH1 , ..., θ

H
K ∈ R are Z-linearly independent.

Proof of claim 2: It is enough to show that θH1 , ..., θ
H
K are Q-linearly in-

dependent. Let τi = (tH1i, ..., t
H
Ni) ∈ ZN , i = 1, ..., K be the chosen Z-basis

vectors of ΛH ⊂ ZN . Then,

T ·


θH1
θH2
...
θHK

 =

 tH11 . . . tH1K
...

...
tHN1 . . . tHNK

 ·

θH1
θH2
...
θHK

 =


θ1

θ2
...
θN

 ;

θ1, ..., θK are Z-linearly independent, hence, Q-linearly independent. There-

fore, the homomorphism θ : QK
(θ1,...,θK)
↪−−−−−→ R given by e1 7→ θ1, ..., eK 7→ θK is
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injective.

θ factorises by the map QK TH−→ QK given by the matrix TH =

 tH11 . . . tH1K
...

...
tHK1 . . . tHKK


through θH : QK

(θH1 ,...,θ
H
K )

−−−−−−→ R given by θH1 , ..., θ
H
K :

QK

QK R

(θH1 , ..., θ
H
K )TH

(θ1, ..., θK)

The matrix TH is of full rank since its rows are the first K rows of the rank
K matrix T , and the last N − K rows of T are linear combinations of the
first rows of T because the columns of T are in the kernel of the linear map

described by the matrix

 dK+1 0

M
. . .

0 dN

. Hence, QK TH−→ QK is an

isomorphism; therefore, QK
(θH1 ,...,θ

H
K )

−−−−−−→ R is injective.

2

For the theorem, it is enough to show that:

Π
(
ΛH · x ∩ ((K ∩H)× E)

)
is relatively dense on E because ΛH · x ⊂ Λ · x ⊂ XT .
Setting H := RN , E⊥ := E⊥ ∩H and Λ · x := ΛH · x. We can reduce to the
situation where (θ1, ..., θN) consists of Z-linearly independent coordinates.
Choose basis vectors σ1, ..., σN−1 of E⊥. The vectors θ, σ1, ..., σN−1 are also
a basis of RN . Therefore, we can use two basis of RN to get two maximum
norms on RN , denoted by ‖ · ‖Λ and ‖ · ‖E,E⊥ . Since RN is finite-dimensional,
these two norms are comparable. Henceforth, we will use ‖ · ‖E,E⊥ .
Claim 3:
∀ε > 0 ∃(n1, ..., nN) ∈ ZN and ∃t > 0 : ‖t · (θ1, .., θN)− (n1, ..., nN)‖E,E⊥ < ε

and Π⊥(n1, ..., nN) =
∑N−1

i=1 siσi with si ≥ 0.
Proof of claim 3: θ1, ..., θN are Z-linearly independent. As the metric is
comparable, we can achieve claim 3 by applying Theorem 6.2.5 (first form of
Kronecker’s Approximation Theorem). Take x′ := x+

∑N−1
i=1

ε
2
σi.
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xx′
E

E ′

Figure 6.6: Construction of E ′ through x′.

From the first form of Kronecker’s Approximation Theorem there exists
t > 0 and (n1, ..., nN) ∈ ZN , such that:

‖t · (θ1, ..., θN) +
N−1∑
i=1

ε

2
σi − (n1, ..., nN)‖E,E⊥ ≤

ε

2
.

Then,

‖t · (θ1, ..., θN)− (n1, ..., nN)‖E,E⊥ ≤ ‖t · (θ1, ..., θN) +
N−1∑
i=1

ε

2
σi − (n1, ..., nN)‖E,E⊥

+ ‖ ε
2

N−1∑
i=1

σi‖E,E⊥

≤ ε

2
+
ε

2
= ε.

(6.3)

Furthermore,

‖Π⊥
(N−1∑
i=1

ε

2
σi − (n1, ..., nN)

)
‖E,E⊥ = ‖Π⊥

(
t · (θ1, ..., θN) +

N−1∑
i=1

ε

2
σi − (n1, ..., nN)

)
‖E,E⊥

≤ ‖t · (θ1, ..., θN) +
N−1∑
i=1

ε

2
σi − (n1, ..., nN)‖E,E⊥

≤ ε

2
.

(6.4)

This means that the coefficients si of Π⊥(n1, ..., nN) =
∑N−1

i=1 siσi deviate at
most by ε

2
from ε

2
, so that si ≥ 0. 2
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Now, we can use claim 3 to find a radius R > 0, such that

∀y ∈ E, BR(y) ∩ Π(Λ · x) ∩ (K◦ × E) is not empty .

For each ε > 0, claim 3 gives 2N−1 points xi = (n1, ..., nN) ∈ ZN , i = 1, ..., 2N−1

such that for each xi there exists ti > 0 with

xi = (n1, ..., nN) = ti(θ1, ..., θN) + ...

and the sji run through all combinations of being positive and negative when
i runs from 1 to 2N−1.
The negative signs can be brought in by changing the relevant basis vectors
σj to −σj.
If we choose a small enough ε > 0, all the points xi have an orthogonal pro-
jection Π⊥(xi) =

∑
sjiσj ∈ K◦.

Claim 4: For every k � 0, there exists k1, ..., k2N−1 ≥ 0, such that
∑2N−1

i=1 ki ≥ k

and
∑2N−1

i=1 kixi ∈ K◦ × E.
Proof of claim 4: Assume that

‖Π⊥(
2N−1∑
i=1

kixi)‖E,E⊥ = ‖
2N−1∑
i=1

N−1∑
j=1

kisjiσj)‖E,E⊥ < ε.

Since all sji have absolute value less than ε, adding
∑N−1

j=1 sjiσj to Π⊥(
∑2N−1

i=1 kixi)
will not increase the norm of this vector if the sji has the correct sign. Since
all combinations of signs are achieved when i runs from 1 to 2N−1, this shows
that there exists an i◦ such that

‖Π⊥
( 2N−1∑
i=1,i 6=i◦

kixi + (ki◦ + 1)xi◦
)
‖E,E⊥ < ε.

Repeating this argument will make
∑2N−1

i=1 ki arbitrarily large.

2

The argument above also shows that, the points in Π(Λ·x)∩(K◦×E) are sepa-

rated at most byR = maxi=1,...,2N−1 ‖Π(xi)‖E,E⊥ . Since ‖Π(
∑2N−1

i=1 kixi)‖E,E⊥ =∑2N−1

i=1 ki‖Π(xi)‖E,E⊥ , claim 4 shows that the points in Π(Λ · x) ∩ (K◦ × E)
occur arbitrarily far away from x. Consequently,

BR(y) ∩ Π(Λ · x) ∩ (K◦ × E) always contains a point.

2
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The following more general theorem is a consequence of the proof of
Theorem 6.2.8 above.

Theorem 6.2.9 If the dimension of the hyperplane E is n, then the set

XT ′ = Π
(
XT ∩ (K × E)

)
is relatively dense (if the window K satisfies the assumption (*)).

Proof Choose lines E1, ..., En ⊂ E through a point x ∈ XT , whose spanning
vectors ei are linearly independent. Then, construct points in XT arbitrarily
close to lines Ei, as in claims 3 and 4 in the proof of Theorem 6.2.8 (using
E⊥i instead of E⊥ and the preimage of the window K in E⊥i , under the or-
thogonal projection E⊥i → E⊥). For p ∈ E, split up p− x =

∑
piei. Choose

points xi ∈ XT approximating Ei closest to x + piei. Then, the distance of∑n
i=1 xi to p is bounded independently of p.

2

Theorem 6.2.10 The set XT ′ = Π
(
XT ∩ (K × E)

)
is uniformly discrete.

Proof Aut(XT ) is crystallographic, that is, a subgroup of a product of a
lattice Λ of translations of full rank and a finite point group, of finite index
(see Proposition 1.1.21). For a fixed R, consider the following intersections:

BR(y) ∩ (K × E) ∩XT ; ∀y ∈ XT ∩ (K × E) .

Claim: There are only a finite number of these bounded point sets, up to
translations.
Proof of the claim: Take a fundamental domain D ⊂ RN of Λ. Notice
that D is compact as Λ is a lattice of full rank. Therefore, D ∩XT is finite,
i.e., D∩XT = {x1, ..., xs}. Now, for all x ∈ XT , there exists τ ∈ Λ such that
τ(x) ∈ D and τ(x) = xi; therefore,

⋃s
i=1 Λ · xi = XT .

In particular, if y = τ(xi) with τ ∈ Λ, then, for any radius R > 0:

BR(y) ∩XT = τ
(
BR(xi) ∩XT

)
,

as τ is an isometry in Aut(XT ). Therefore, there are only finitely many point
sets BR(y) ∩XT , up to translations in Aut(XT ).
If BR(y) ∩ XT and BR(y′) ∩ XT are mapped to each other by a transla-
tion, then BR(y) ∩ XT ∩ (K × E) and BR(y′) ∩ XT ∩ (K × E) may not be
mapped to each other by this translation because BR(y′) ∩ XT ∩ (K × E)
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and BR(y′)∩XT ∩ τ(K×E) are different. On the other hand, there are only
finitely many different point sets BR(y′)∩XT ∩τ(K×E) for all τ ∈ Aut(XT ),
because the number of points in BR(y′) ∩XT is finite. Hence, the claim fol-
lows. 2

XT ′ ⊂ E is relatively dense, that is, ∃R > 0, such that BR(y) ∩XT ′ 6= ∅ for
all y ∈ E. Choose points {yi}i∈I such that

⋃
BR(yi) = E. For each yi, choose

xi ∈ BR(yi)∩XT ′ such that if we take the radius 2R, then BR(yi) ⊂ B2R(xi).
This implies that

⋃
i∈I B2R(xi) = E,

⋃
i∈I B2R(xi) = Π

(⋃
i∈I B2R(xi)

)
with

xi ∈ XT ∩ (K × E) and Π(xi) = xi.
From the claim, the number of distances of points in the sets

Π
(
B2R(xi) ∩XT ∩ (K × E)

)
= B2R(xi) ∩XT ′ ;∀xi, i ∈ I

is finite, because projected translated points have the same distance as the
projected points themselves.
Now, choose 0 < r < 2R as the minimum of these distances:
For y, y′ ∈ XT ′ , there is xi, such that y ∈ B2R(xi). If y′ ∈ B2R(xi), then
d(y, y′) ≥ r (by the choice of r). On the other hand, if y′ /∈ B2R(xi), then
d(y, y′) ≥ 2R > r, also by the choice of r. Hence, in both cases d(y, y′) > r,
so XT ′ is uniformly discrete.

2

Theorem 6.2.11 XT ′ is a Delone set.

Proof Straightforward from Theorem 6.2.9 and Theorem 6.2.10.

2

Theorem 6.2.12 The Voronoi-cell tiling V T (XT ′) associated to the Delone
set XT ′ is a simple tiling.

Proof The claim made by Theorem 6.2.10 implies that there are only
finitely many types of projections:

Π
(
BR(y) ∩XT ∩ (K × E)

)
, up to translation in E , for all y ∈ XT .

This is the case since translating, and then projecting to E is the same as
projecting first and then translating inside E.
If we decompose the translation τ as τ = τE ⊕ τE⊥ , then, Π ◦ τ = τE ◦ Π.
Since projections of balls to E are balls of the same radius in E, we have:

Π
(
BR(y) ∩XT ∩ (K × E)

)
= XT ′ ∩BR

(
Π(y)

)
.
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Consequently, there are only finitely many point sets of type XT ′∩BR

(
Π(y)

)
,

up to translations in E.
By Proposition 2.2.5 on Delone sets, we know that for large enough R� 0,
XT ′ ∩ BR

(
Π(y)

)
determines the Voronoi-cell of Π(y) in V T (XT ′). Hence,

there is only a finite number of tile types in V T (XT ′); up to translations in
E, and so, V T (XT ′) is a simple tiling.

2
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List Of Symbols:

En Euclidean space

Isom(En) group of isometries

Rn real numbers in n dimension

Perm(En) group of 1-1 permutations

Trans(En) group of translations

τ refer to translation

s refer to translation

O fixed origin

evO evaluation map with fixed origin O

EnO Euclidean space with fixed origin O

EnO′ Euclidean space with fixed origin O′

OO′ unique translation sends O to O′

Aff(En) affine group

ad f map from translation to translation

defined as fτf−1

O(Trans(En)) orthogonal group of translations

O(EnO) orthogonal group of EnO

‖τ‖ the metric norm of τ

B(τ, ε) ball of radius ε centered at τ

Ui collection of open sets

U c complement of open set

〈·, ·〉O inner product on EnO

BO(τ, ε) ball of radius ε centered at τ with

respect to the fixed origin O
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τn sequence of translations

−→pc point-wise convergence

−→uc uniform convergence

−→n norm convergence

o semi-direct product

Γ Crystallographic group

Isom(En)/Γ quotient group

End(EnO) group of endomorphisms with fixed

origin

d◦(φ, ψ) taxi-cab metric defined on Isom(En)

‖ · ‖op operator norm

‖ · ‖Eucl Euclidean norm

idEn identity element in En

inf the infimum of a set ”greatest lower

bound”

sup the supremum of a set ” least upper

bound”

Br(x) ball of radius r around x

‖aij‖∞ max norm topology on End(EnO)

det(A) determinant of A

X̄ closure of a set X

X◦ interior of a set X

T Tiling

t refer to a tile in T

{ti}i∈I set of tiles in T

93



d(T, T ′) the tiling metric

T + r all tiles in T shifted by r ∈ Rn

φ(T ) Tiling with all tiles in T mapped by φ

[T ]A patch of a tiling T consists of all tiles

intersect A

D Delone set

Vpi Voronoi-cells

V T (D) Voronoi-cell tiling constructed by D

S regular n-simplex

V TΓ(p) Voronoi-tiling associated to Γ

Hp, q half space

Lp,q hyper-plane

d(T, T ′) distance between two tilings T, T ′

ΩT tiling space

(Ω, d) tiling metric space

[φ(T ) ]Br(0) patch of all tiles in T mapped by φ

with Br(0)

max the maximum ” largest value of a set”

O(T ) the orbit of a tiling T

f
(
φ(T )

)
factor map for T such that

f
(
φ(T )

)
= γφγ−1(T )

(Tn)n∈N sequence of tilings

Tn −→ T convergent series of tilings

Aut(T ) automorphism group of T

ΩT the hull of a tiling T
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limn→∞ value that a sequence ”approaches”

when n→∞

GL(2,Z) group of invertible 2× 2-matrices

with entries in Z

M(2,Z) group of 2× 2-matrices in Z

StabΓ(x) stabilizer of x in Γ

V T (Γ · x) Voronoi-cell tiling associated to the

orbit Γ · x which is a Delone set

⊕ addition as a binary operation

⊗ multiplication as a binary operation

D2 abelian-dihedral group where D2
∼= Z2

D4 abelian-dihedral group where

D4
∼= Z2 × Z2

{(Xi, ti)i} point set data

XT point set of {(Xi, ti)i}

E m-dimensional projection hyperplane

E⊥ n−m- dimensional projection

hyperplane orthogonal to E

Π orthogonal projector onto E

Π⊥ orthogonal projector onto E⊥

K window for the projection

K × E the cylinder

(K,E) cut-and-project data for En

dim(E) the dimension of E
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