
ar
X

iv
:1

50
8.

06
40

1v
2 

 [h
ep

-la
t] 

 1
5 

Ju
l 2

01
6

Isospin splittings of meson and baryon masses from

three-flavor lattice QCD + QED

R. Horsleya, Y. Nakamurab, H. Perltc, D. Pleiterd, P. E. L. Rakowe,
G. Schierholzf , A. Schillerc, R. Stokesg, H. Sẗubenh,
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Abstract

Lattice QCD simulations are now reaching a precision where isospin breaking effects
become important. Previously, we have developed a program to systematically investigate
the pattern of flavor symmetry beaking within QCD and successfully applied it to meson
and baryon masses involving up, down and strange quarks. In this Letter we extend the
calculations to QCD+ QED and present our first results on isospin splittings in thepseu-
doscalar meson and baryon octets. In particular, we obtain the nucleon mass difference
of Mn − Mp = 1.35(18)(8) MeV and the electromagnetic contribution to the pion splitting
Mπ+ −Mπ0 = 4.60(20) MeV. Further we report first determination of the separation between
strong and electromagnetic contributions in theMS scheme.
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1 Introduction and general strategy

Isospin breaking effects are crucial for the existence of our Universe. Our Universe would not
exist in the present form if then − p mass difference would only be slightly different. If it would
be larger than the binding energy of the deuteron, no fusion would take place. If it would be a
little smaller, all hydrogen would have been burned to helium. Isospin breaking in hadron masses
has two sources, the mass difference of up and down quarks, and electromagnetic interactions.
Both effects are of the same order of magnitude and cannot be separated unambiguously due
to the nonperturbative nature of the strong interactions. This makes a direct calculation from
QCD+ QED necessary [1, 2, 3]. While substantial progress has beenmade, [3] is the only other
published work to report simulations with fully dynamical QCD + QED.

In [4, 5] we have outlined a program to systematically investigate the pattern of flavor sym-
metry breaking in three-flavor lattice QCD for Wilson-type fermions. Our strategy was to start
from the SU(3) symmetric point with all three quark masses equal, mu = md = ms, and ex-
trapolate towards the physical point keeping the average sea quark mass ¯m = (mu + md + ms) /3
constant. For this trajectory to reach the physical quark masses, ¯m is tuned to the physical value
of the average pseudoscalar meson massX2

π =
(

M2
K0 + M2

K+ + 2M2
π0 − M2

π+

)

/3. We denote the
distance from ¯m by δmq = mq − m̄ (q = u, d, s) . This impliesδmu + δmd + δms = 0 on our quark
mass trajectory. To describe how physical quantities depend on the quark masses, we Taylor
expand about the symmetric point [5]. This results in polynomials inm̄ andδmq, which we clas-
sify into representations of the SU(3) and S3 flavor groups. As we keep ¯m constant and change
only the octet part of the mass matrix, to first order inδmq flavor symmetry is broken by an SU(3)
octet, leading to Gell-Mann–Okubo mass relations. We follow a similar approach here with QED
added [2].

The symmetry of the electromagnetic current is similar to the symmetry of the quark mass
matrix. The simplifications that come fromδmu+δmd+δms = 0 in the mass case are analogous to
the simplifications we get from the identityeu+ed+es = 0. A difference between quark mass and
electromagnetic expansions is that in the mass expansion wecan have both odd and even powers
of δmq, whereas only even powers of the quark chargeseq are allowed. We consider contributions
of O(e2

q) only. Hence, QED corrections can be simply read off from the mass expansion presented
in [5], dropping the linear terms and changing masses to charges.

For the masses of octet mesons with the flavor structureab̄, and all annihilation diagrams
turned off, we find to leading order inαEM

M2(ab̄) = M2
0 + α (δma + δmb) + β

EM
0 (e2

u + e2
d + e2

s) + β
EM
1 (e2

a + e2
b) + β

EM
2 (ea − eb)

2

+ γEM
0 (e2

uδmu + e2
dδmd + e2

sδms) + γ
EM
1 (e2

aδma + e2
bδmb)

+ γEM
2 (ea − eb)

2 (δma + δmb) + γ
EM
3 (e2

a − e2
b) (δma − δmb)

+ γEM
4 (e2

u + e2
d + e2

s) (δma + δmb) + γ
EM
5 (ea + eb) (euδmu + edδmd + esδms)

(1)

up to corrections ofO(δm2
q). Several of the coefficients in (1) can be matched up with different

classes of Feynman diagrams shown in Fig. 1. The first diagram, with both ends of the photon
attached to the same valence quark, contributes to (βEM

1 + βEM
2 ). The second diagram, with the

photon crossing between the valence lines, contributes toβEM
2 . The last diagram, with the photon

being attached to the sea quarks, is an example of a diagram contributing toβEM
0 . It would be
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Figure 1: Examples of Feynman diagrams contributing to the meson electromagnetic mass to
O(e2

q). Wavy lines are photons, curly lines are gluons.

missed out if the electromagnetic field was quenched insteadof dynamical. Similar assignments
hold for the mixed (charge squared times mass) terms. For a single choice of sea quark masses,
the βEM

0 andγEM
4 terms can be absorbed into the constantM2

0 and theα term. However, for a
combined fit of both QCD and QCD+ QED data we will need these coefficients. More details
can be found in [6]. Similarly, for octet baryons with the flavor structureaab we find to leading
order inαEM

M2(aab) = M2
0 + α1 (2δma + δmb) + α2 (δma − δmb)

+ βEM
0 (e2

u + e2
d + e2

s) + β
EM
1 (2e2

a + e2
b) + β

EM
2 (ea − eb)

2 + βEM
3 (e2

a − e2
b)

(2)

up to corrections ofO(δm2
q). This excludes the case of baryons with three different quarks, as

in theΣ0 − Λ system [7]. Again, theβEM
0 term can be absorbed into the mass termM2

0. The
coefficientsβEM

1 , βEM
2 andβEM

3 can be matched up with distinct classes of Feynman diagrams
similar to the ones in Fig. 1.

Our goal is to compute the mass splittings of pseudoscalar mesons and octet baryons at the
physical point for QCD+ QED. This amounts to determining the coefficientsα, βEM andγEM

in (1) and (2). It greatly helps to vary valence and sea quark masses independently [5], which
is referred to as partial quenching (PQ). In this case the seaquark masses remain constrained
by m̄ = constant, while the valence quark massesµu, µd andµs are unconstrained. Defining
δµq = µq − m̄, the resulting modification of Eq. (1) to PQ octet mesons is

M2(ab̄) = M2
0 + α (δµa + δµb) + β

EM
0 (e2

u + e2
d + e2

s) + β
EM
1 (e2

a + e2
b) + β

EM
2 (ea − eb)

2

+ γEM
0 (e2

uδmu + e2
dδmd + e2

sδms) + γ
EM
1 (e2

aδµa + e2
bδµb)

+ γEM
2 (ea − eb)

2 (δµa + δµb) + γ
EM
3 (e2

a − e2
b) (δµa − δµb)

+ γEM
4 (e2

u + e2
d + e2

s) (δµa + δµb) + γ
EM
5 (ea + eb) (euδmu + edδmd + esδms) .

(3)

For octet baryons Eq. (2) becomes

M2(aab) = M2
0 + α1 (2δµa + δµb) + α2 (δµa − δµb)

+ βEM
0 (e2

u + e2
d + e2

s) + β
EM
1 (2e2

a + e2
b) + β

EM
2 (ea − eb)

2 + βEM
3 (e2

a − e2
b) .

(4)

The coefficientsα, βEM andγEM in (3) and (4) are identical to those in (1) and (2). This is to say
that hadron mass splittings are unaffected by PQ at this order, as PQ moves (e.g.) all octet mesons
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and baryons by the same amount. We would have to expand to cubic terms to see PQ errors in the
splittings [5]. Hence, PQ calculations offer a computationally cheaper way of obtaining them.

In QCD+ QED there is some ambiguity in the definition of the symmetricpoint. The defi-
nition we have chosen is that the electrically neutral pseudoscalar mesons have the same masses,
M2(uū) = M2(dd̄) = M2(ss̄) = M2(ds̄) = M2(sd̄) = M2(nn̄) , wheren is a fictitious electrically
neutral quark. As annihilation diagrams are neglected, different neutral mesons do not mix. We
denote the Wilson hopping parameterκ (introduced in (7) below) marking the symmetric point
by κ̄q. We then haveδmq = (mq − m̄) = 1/2κsea

q − 1/2κ̄q andδµq = (µq − m̄) = 1/2κval
q − 1/2κ̄q,

setting the lattice spacinga = 1. It should be noted that even when all three quark masses are
equal we do not have full SU(3) symmetry. Because of their different charges, theu quark is
always distinguishable from thed ands quark.

2 Lattice matters

The action we are using is
S = S G + S A + S u

F + S d
F + S s

F . (5)

HereS G is the tree-level Symanzik improved SU(3) gauge action withgauge couplingβ = 6/g2,
andS A is the noncompact U(1) gauge action [8, 9] of the photon,

S A =
1

2e2

∑

x,µ<ν

(

Aµ(x) + Aν(x + µ) − Aµ(x + ν) − Aν(x)
)2
. (6)

We employ the nonperturbativelyO(a) improved SLiNC fermion action [10] for each quark
flavor,

S̃ q
F =
∑

x

{1
2

∑

µ

[

q̄(x)(γµ − 1)e−ieq Aµ(x)Ũµ(x)q(x + µ̂) − q̄(x)(γµ + 1)eieq Aµ(x−µ̂)Ũ†µ(x − µ̂)q(x − µ̂)
]

+
1

2κq
q̄(x)q(x) −

1
4

cS W

∑

µν

q̄(x)σµνFµν(x)q(x)
}

. (7)

This action features single iterated mildly stout smeared QCD links with α = 0.1 [5] and un-
smeared QED links in the hopping terms, while the clover termcontains unsmeared QCD links
only. We keep the action deliberately local, as excessive smearing will lead to large autocorre-
lation times. Stout smearing is analytic, so a derivative can be taken, which makes the HMC
force well defined. The clover coefficient has been computed nonperturbatively in QCD [10].
We presently neglect electromagnetic modifications to the clover term. This will leave us with
corrections ofO(αEM e2

q a), which turn out to be no larger than theO(a2) corrections from QCD
in our simulations. We check this later by comparing neutralmeson masses with different quark
chargeseq (Fig. 3). Adding an electromagnetic clover term withcEM

S W = 1 would leave us with
corrections ofO(αEM e2

q g2a) (to this order inαEM), which is not a significant improvement, if at
all. Simulations are performed using the HMC and RHMC [11] algorithms. The gluon field and
the EM field are updated sequentially.

In this study, we limit our calculations to a single value of the strong coupling constant (lattice
spacing)β = 5.50, where we have our largest sample of dynamical QCD configurations [12].
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Furthermore, we restrict ourselves to simulations at the symmetric point,δmu = δmd = δms = 0,
which we define asX2

π/X
2
N = 0.126, whereX2

N =
(

M2
n + M2

p + M2
Σ− + M2

Σ+ + M2
Ξ− + M2

Ξ0

)

/6. We
may use eitherXπ or XN to set the scale [5]. After several tuning runs carried out on243 × 48
lattices we arrived at theκ values ¯κu = 0.124362, κ̄d = κ̄s = 0.121713. At theseκ values, we
study three different volumes, 243×48, 323×64 and 483×96, withO(2000) toO(500) trajectories.
We like to add that simulations at the symmetric point already catch the essential features of the
physical QCD+ QED vacuum, as flavor singlet quantities vary slowly along the m̄ = constant
trajectory [5].

On these ensembles we have computed PQ pseudoscalar meson and octet baryon masses for
a variety of quark masses ranging frommPS /mN = 0.22 to 0.5, with eq = −1/3, 0 and+2/3. This
leads to about 40 pseudoscalar masses and 70 baryon masses per ensemble. The baryons include
several artificial states containing the fictitiousn quark and charge 2 baryons with flavor structure
uuu′.

The action (5) is invariant under U(1) gauge transformations

Aµ(x)→ Aµ(x) + ∆µ α(x) , q(x)→ eieqα(x) q(x) . (8)

However, this is not the case for propagators of charged particles, which demands fixing the
gauge, as in perturbation theory. We choose the Landau gauge, which is defined by the condition
∆̄µAµ(x) = 0, where∆µ (∆̄µ) is the forward (backward) lattice derivative. The Landau gauge does
not eliminate all gauge degrees of freedom, but allows for shifts ∆µα(x) of the photon field with
∆2α(x) = 0, where∆2 = ∆µ∆̄µ [9]. To maintain (anti-)periodicity of the quark fields,α(x) must
be periodic up to a transformation of the form

eqα(x) =
∑

µ

2π
Lµ

nµxµ , nµ ∈ Z ,

0
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Figure 2: Left panel: The background field on the 243 × 48 lattice divided into three bins of
approximately constant~B2. Right panel: The bin averaged energy of the charged pion at rest
against the bin averaged〈~B2〉. The black square (�) indicates the ensemble average (EnAv) of
bothaMπ+ and〈~B2〉. The line is a one-parameter linear fit through the three masspoints.
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whereLµ is the extent of the lattice inµ direction. This gauge field redundancy can be eliminated
by adding multiples of 2π/eqLµ to Aµ(x), such that

−
π

|eq|Lµ
< Bµ ≤

π

|eq|Lµ
, Bµ =

1
V

∑

x

Aµ(x) . (9)

Taking eq = −1/3 in (9) serves both charges. The advantage of this procedureis that it leaves
the fermion determinant and Polyakov loops for all quark flavors unchanged. In other popular
gauges [3] this is not the case, but results in a permanent Polyakov loopΠxν ,ν,µ LEM

µ (xν) = 1,
which we would not know how to correct for in a simple manner.

The constant background field can be factored out from the link matrices, configuration by
configuration, and absorbed into the quark momenta by straightforward algebra.1 This leaves us
with photon propagators that are devoid of zero modes. In thepresence of a constant background
field Bµ the correlator of a single hadronH thus becomes [9]

〈0|H(t)H̄(0)|0〉 ≃ |ZH |
2 e−

√

M2
H+
(

~p+eH ~B
)2

t , (10)

whereMH, ~p andeH are mass, three-momentum and electric charge of the hadron,respectively.

This amounts to a shift of the rest energy of the charged hadrons,MH →

√

M2
H + e2

H
~B2 ≃ MH +

e2
H
~B2/2MH. We determine the ensemble average of~B2 directly on each of our three volumes. The

result is 0.024, 0.0079 and 0.000095 for the smallest to largest volumes, respectively. To extract
masses, we remove the influence of the background field effect by subtracting the associated
kinetic energy from the ensemble averaged lattice energy. To demonstrate the validity of this
procedure, we have divided a subset of our 243 × 48 ensemble into three bins of approximately
constant background field in Fig. 2 and plot the corresponding lattice energies for each of these
bins against the corresponding~B2. It shows that both the energies of the individual bins as well as
the ensemble averaged energy fall on a single straight line,in line with our subtraction method.
On the 483×96 lattice the effect of the background field is comparable to our statistical precision.
With the zero modes removed, we then can employ established methods, such as [13], to correct
for the remaining electromagnetic finite size effects associated with the long-range tail of the
photon field. Any residual effect of the background field will only act to modify the recoil energy
of any charged hadron propagator within loops.

Our strategy is to simulate at an artificial couplinge2 = 1.25, and then interpolate between this
point and pure QCD to the physical fine structure constantαEM = 1/137. This value is chosen so
that electromagnetic effects can be easily seen, but is still small enough that they scale linearly in
e2 and we do not need to consider higher order terms. Most importantly,Z3 = 0.94(3), obtained
from the vacuum polarization. Furthermore, in Figs. 4 and 5 of [6] we have plotted 1/κcq , 1/κ̄q
and the bare quark mass at the symmetric point, 1/2κ̄q−1/2κcq, againste2

q for eq = −1/3, 0 and 2/3
and found that all three quantities lie on a straight line. Inaddition, we find that the coefficients
α andα1, α2 in (3) and (4) agree to a good precision with the corresponding numbers in pure
QCD [5]. This rules out significant higher order correctionsin e2.

1Note that the transformationq(x) → ei∆x q(x) , q̄(x) → q̄(x) e−i∆x amounts to a shift of quark momentap →
p + ∆.
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Figure 3: The neutral pseudoscalar meson massesM2
PS (aā) on the 483 × 96 lattice as a function

of δµD
a for quark chargesea = −1/3 (blue), 0 (green) and 2/3 (red). Solid (open) symbols refer

to unitary (PQ) masses. The horizontal lines display the physicalπ0,K0 andηs meson masses,
the vertical lines indicate the physicalu ands quark masses.

3 Results

After the initial small volume tuning runs, it turns out thatthe chosenκ values do not quite
satisfy our constraint of equal neutral pseudoscalar mesonmasses. A more accurate estimate can
be determined from a fit to the pseudoscalar meson masses. On the 483 × 96 lattice we obtain

κ̄u = 0.124382, κ̄d = κ̄s = 0.121703, κ̄n = 0.120814, (11)

which is only a small displacement from the underlying simulation kappas. We shall expand
about theseκ values in our subsequent fits.

In contrast to QCD, equal meson masses at the symmetric pointno longer mean equal bare
quark masses. We renormalize the quark masses to remove thisdefect. We do so by absorbing the
QED terms of the neutral pseudoscalar mesons into the quark self-energies. On our symmetric
background,δmu = δmd = δms = 0, this is achieved by replacingδµq by the ‘Dashen’ scheme
mass [6]

δµD
q = [1 + (γEM

1 /α) e2
q] δµq . (12)

Substituting (12) into (3), and absorbingβEM
0 into M2

0 andγEM
4 into α, we obtain in the ‘Dashen’

scheme

M2(ab̄) = M2
0 + α (δµD

a + δµ
D
b ) + βEM

2 (ea − eb)
2

+ γEM
2 (ea − eb)

2 (δµD
a + δµ

D
b ) + γEM

3 (e2
a − e2

b) (δµD
a − δµ

D
b ) .

(13)

Note that since we choose the neutral pseudoscalar mesons tohave the same mass,βEM
1 = 0 by

definition. We define the critical point,κcq for each flavor, to be the point where the masses of
the neutral pseudoscalar mesons vanish. It is then easily seen that the ‘Dashen’ scheme quark
masses are all equal at the symmetric point, ¯µD

q = M2
0/2α, q = u, d, s andn, see [6] for further

details. It follows that the total electromagnetic contributions to the neutral pseudoscalar meson
masses,Mπ0 and MK0, are zero. In Fig. 3 we show the neutral meson massesM2(aā) against
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Figure 4: The chargeeN = +1 (p andΣ+) baryon massesM2
N(aab) on the 483 × 96 lattice as a

function of 2δµD
a + δµ

D
b . Solid (open) symbols refer to unitary (PQ) masses.

δµD
a . It is striking to see that the data fall perfectly on a straight line, which strongly supports

our group-theoretical classification of SU(3) flavor symmetry breaking as well as octet (Gell-
Mann–Okubo) type mass splitting.O(αEM e2

a a) corrections would result in deviations from the
straight line proportional toe2

a, for which we see no evidence. To be consistent, we also expand
the baryon masses in terms of the ‘Dashen’ masses,

M2(aab) = M2
0 + α1 (2δµD

a + δµ
D
b ) + α2 (δµD

a − δµ
D
b )

+ βEM
1 (2e2

a + e2
b) + β

EM
2 (ea − eb)

2 + βEM
3 (e2

a − e2
b) .

(14)

In Fig. 4 we show the chargeeN = +1 baryon massesM2(aab) against 2δµD
a + δµ

D
b . Again, the

data fall perfectly on a straight line, in accord with our flavor expansions.
For the total contribution of QCD+ QED it does not matter which scheme we use to define

the quark masses, but for the individual contributions of QCD and QED it will make a difference.
The fits of (13) and (14) to the lattice data are quite robust, giving χ2/dof = 0.7− 1.2. To obtain
physical numbers, we extrapolate the coefficientsβEM

i andγEM
i to αEM = 1/137 by scaling them

with a factor∼ 10/137. In our extrapolation to the physical point we keep the sum of the quark
masses constant. We chooseM2

π0 andM2
K0 −M2

K+ +M2
π+ −M2

π0 to determine the physicalκ values.
In Fig. 5 we show the result of the fit to the meson and baryon masses on the 483 × 96 lattice.
We obtainX2

π/X
2
N = 0.128(3), which is to be compared with the physical value, 0.126. This tells

us that we have hit the symmetric point with remarkable precision. UsingXπ to set the scale, the
lattice spacing turns out to bea = 0.068(2) fm. The figure also indicates that the baryon masses
extrapolate nicely to their experimental values, leaving little room for quadratic terms. Similarly
good results are found on the 323 × 64 lattice. Having found theκ values of the physical point
and the point where the ‘Dashen’ scheme masses vanish (the critical point), we can determine the
quark masses. For the quark mass ratios we find on the 483 × 96 lattice in the ‘Dashen’ scheme

mu

md
= 0.52(2),

ms

md
= 19.7(9). (15)

In [6] we have shown how to switch between the ‘Dashen’ andMS schemes. Applying this, we
find the ratiomu/md in theMS scheme atµ2 = 4 GeV2 decreases by less than a percent, whereas
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Figure 5: Fan plots of pseudoscalar meson (top) and baryon masses (bottom) on the 483 × 96
lattice as a function ofδµu + δµd, with δµu + δµd + δµs = 0. The baryon masses are the averages
of the isospin doublets.

ms/md remains a renormalization group invariant, even in the presence of QED. Hence Eq. (15)
represents our results in theMS scheme atµ2 = 4 GeV2.

In this Letter we are primarily interested in the isospin splittings of pseudoscalar meson and
octet baryon masses. To get to our final numbers, we need to correct for finite size effects first.
From QED we expect power-law corrections, due to the photon being massless, in addition to
exponential corrections from QCD. We correct for QCD finite size effects by using the results
of [14, 15], adapted to three flavors of PQ quarks. In case of the nucleon the corrections amount
to approximately 1% on the 483×96 lattice and to 5% on the 323×64 lattice. Having successfully
removed the zero modes, we can correct for the remaining QED effects by employing the mass
shift formulae of effective field theory (EFT) [13]. We test this in Fig. 6, where wecompare
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Figure 6: The QED contribution to thep − n mass splitting on the 323 × 64 and 483 × 96 lattices
compared with the prediction of [13].
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Figure 7: Mass splittings of pseudoscalar meson (top) and baryon masses (bottom) as a function
of the spatial size of the lattice. The numbers on the largestvolume have been extrapolated to
infinite volume using [13].

the QED contribution to thep − n mass splitting, (Mp − Mn)QED, with the prediction of [13] on
our two largest volumes. We find good agreement between the data and the analytic expression,
indicating that QED finite size effects are well accounted for by EFT. In Fig. 7 we present our
QCD+QED results for the isospin splittings of mesons and baryonsas a function of lattice size.
The curves represent the predictions of [13]. They have beendrawn through the points on the
483 × 96 lattice. We find good agreement between the curves and our points on the two largest
lattices, while the data on the 243× 48 lattice (withL ≈ 1.6 fm) appear to lie outside the range of
validity of the expansion. We consider the extrapolation ofthe 483 × 96 lattice points toa/L = 0
by [13] our best estimate of the infinite volume result. We compare this result with a fit to the
points on the two largest lattices. The differences are taken as an estimate of systematic error.
In Table 1 we list our final results for the mass splittings in the infinite volume, for the total and
the QED contribution separately. Following [6], we find the QED contributions in the ‘Dashen’
scheme and theMS scheme atµ2 = 4 GeV2 to differ by less than a percent. As a result, the
QED contributions in Table 1 also represent our results in the MS scheme atµ2 = 4 GeV2. The
traditional way of expressing the electromagnetic contributions is through∆π = M2

π+ − M2
π0 and

theǫ parameter,
(M2

K+ − M2
K0)QED− M2

π+ + M2
π0 = ǫ ∆π . (16)

On the 483 × 96 lattice we findǫ = 0.49(5), which translated toMS gives [6]

ǫ = 0.50(6). (17)

This result is well within the range quoted by FLAG [17], albeit with significantly reduced
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∆M QCD+ QED QED QCD [16] Experiment

Mπ+ − Mπ0 4.60(20) 4.59

MK0 − MK+ 4.09(10) −1.66(6) 3.93

Mn − Mp 1.35(18)(8) −2.20(28)(10) 3.51(31) 1.30

MΣ− − MΣ+ 7.60(73)(8) −0.63(8)(6) 9.07(47) 8.08

MΞ− − MΞ0 6.10(55)(45) 1.26(16)(13) 5.58(31) 6.85

Table 1: Mass splittings in the infinite volume, in units of MeV. The first error is the statistical
error from the extrapolation of the points on the 483 × 96 lattice. The second error (if any)
is a systematic error estimated from the fit to both the 483 × 96 and 323 × 64 volumes. The
QCD+ QED and QED results are compared with previous results from pure QCD [16] and the
experimental numbers.

uncertainty. We now can compare the baryon mass splittings of this calculation with our recent
results from pure QCD [16]. The QCD numbers are quoted in the fourth column of Table 1.
They have been brought in line with our new value ofǫ (17). Both sets of results are found
to be largely consistent. It is worth emphasizing that the QED and pure QCD contributions
to the nucleon mass splitting sum up nicely to the total QCD+ QED contribution, which is
encouraging. Finally, in the last column of Table 1 we quote the experimental mass splittings.
We observe good agreement for both octet pseudoscalar mesons and octet baryons. Since we
have not yet computed the QCD contribution to theπ0 mass fromπ0–η mixing, arising from
quark-line disconnected diagrams, we only quote the QED contribution to theMπ+ − Mπ0 mass
difference. It is worth noting that phenomenological estimatesfor the disconnected contribution
are of the order of 0.1 MeV [18], which is within the precisionof our present calculation. Figure 8
summarizes our results.

Both the total QCD+ QED mass splittings as well as the QED contributions satisfythe
Coleman-Glashow relation [19] by construction. So do the experimental values, which once
again supports our group-theoretical approach and truncation (14). The QED contribution to
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Figure 9: The allowed ratio of quark massesmu/md for a range of againstαEM. The solid circle is
our result in theMS scheme. The region of no fusion is to the left, the region where all hydrogen
is converted to helium stars is to the right.

the n − p mass splitting in the ‘Dashen’ andMS schemes turns out to be somewhat larger (in
absolute terms) than the numbers derived from the Cottingham formula [20]. It should be noted
though that the individual estimates [20] cover a wide rangeof values. To accommodate the
lower numbers from the Cottingham formula, the result of pure QCD [16] (fourth column of
Table 1) would have to be smaller by a factor up to two as well. Our QED result is also larger
than the recently reported lattice number in [3]. In our approach the QED and QCD separation
is defined within the meson sector. In contrast, [3] chose theQED part of theΣ+ − Σ− mass
difference to be zero, for which we identify a clear nonzero signal. This would be the case
if (2/3)βEM

1 + βEM
2 + (1/3)βEM

3 = 0 in our mass expansion (14). A fit to our data with this
constraint gives (Mn − Mp)QED = −1.71(28)(10) MeV in the ‘Dashen’ scheme. While this result
is largely compatible with the analysis of Walker-Loud, Carlson and Miller [20], (Mn−Mp)QED =

−1.30(50) MeV, it illustrates quite clearly that the QED part ofthen− p mass difference depends
sensitively on how electromagnetic and strong contributions are separated. While our results do
not support higher order terms in the quark mass expansion, it may be possible that one source
of the discrepancy could be related to nonlinearities in thechiral behavior of the electromagnetic
self energy [21] that are not being captured by the Taylor expansion.

As discussed in the introduction, the existence of the Universe as we know it is highly sensi-
tive to the magnitude of then − p mass difference. Having an analytic expression for the mass
of neutron and proton, Eq. (14), we can express the allowed region in terms of the fundamental
parametersmu,md andαEM, as shown in Fig. 9. Not shown are the bounds onαEM from the
stability of atoms [22]. It turns out that bothαEM and the ratio of light quark massesmu/md

are finely tuned. At the physical fine structure constant the ratio is restricted to a narrow region
aroundmu/md = 0.5.
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4 Conclusion and outlook

We have outlined a program to systematically investigate the flavor structure of hadrons in a full
QCD + QED lattice simulation. By treating the valence quark masses differently to those in
the sea allows for a range of valence quark masses and chargesto be explored and significantly
enhances our ability to accurately constrain the fit parameters in our flavor-breaking expansions.
As a result, we have successfully computed the isospin splittings of pseudoscalar meson and octet
baryon masses. By using our recently introduced ‘Dashen’ scheme as an intermediate step [6],
we are able to quote the first lattice results for the QED contribution to then − p mass splitting
in theMS scheme.

The calculations have been done at lattice spacinga = 0.068 fm. At this lattice spacing
discretization errors are expected to be less than 2% [12], which are well below our present
statistical and systematic errors. To reduce the errors andgain full control over the infinite
volume extrapolation, simulations on 643 × 128 lattices and larger will have to be done. To
further constrain our fits, and test for potentialδmq effects, we have started dynamical 1+ 1+ 1
flavor simulations along the ¯m = const line, withδmu , δmd , δms , 0 and sea quark masses
approaching the physical point. Finally, future simulations will also naturally be required on
lattices with different lattice spacings to allow for a continuum extrapolation.

Acknowledgment

This work has been partly supported by DFG through grant SCHI422/10-1 (HP) and the Aus-
tralian Research Council through grants DP140103067 (RDY and JMZ), FT120100821 (RDY)
and FT100100005 (JMZ). The numerical calculations were carried out on the BlueGeneQs at FZ
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