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Abstract

An approach is developed based on polynomial matrix theory for formulating
the equations of motion and for determining the response of multi-degree-of-
freedom (MDOF) linear dynamical systems with singular matrices and subject
to linear constraints. This system modeling may appear for reasons such as
utilizing redundant DOFs, and can be advantageous from a computational cost
perspective, especially for complex (multi-body) systems. The herein developed
approach can be construed as an alternative to the recently proposed method-
ology by Udwadia and coworkers, and has the significant advantage that it
circumvents the use of pseudoinverses in determining the system response. In
fact, based on the theoretical machinery of polynomial matrices, a closed form
analytical solution is derived for the system response that involves non-singular
matrices and relies on the use of a basis of the null space of the constraints ma-
trix. Several structural/mechanical systems with singular matrices are included
as examples for demonstrating the validity of the developed framework and for
elucidating certain numerical aspects.
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1. Introduction

The problem of modeling and determining the response of mechanical and
structural systems whose dynamics are subject to a number of constraints is,
undoubtedly, a fundamental one in analytical dynamics [1]. Dating back to
the 18th century, and based on pioneering work by Lagrange [17], Gauss [8],
and others, the field of (constrained) analytical dynamics has been the sub-
ject of numerous studies ever since. The present paper focuses on a rather
recent approach for the formulation and solution of the equations of motion of
constrained systems with potentially singular matrices, proposed in a series of
papers by Udwadia and coworkers [24, 25, 26, 27, 28, 29, 21].

Specifically, the technique developed by Udwadia and Phohomsiri [28] is
adapted and reformulated herein for deriving and solving the equations of mo-
tion of a structural/mechanical system with singular matrices. In this regard,
for a linear dynamical system subject to a number of constraints, the explicit
determination of the corresponding constraint forces as well as the formula-
tion of the respective governing equations can be a cumbersome task, especially
for complex multi-body systems; see [21, 18, 7, 3]. To address the aforemen-
tioned challenge, an alternative approach [28] advocates modeling the system
dynamics by utilizing, potentially, redundant (more than the minimum num-
ber) coordinates / degrees-of-freedom (DOFs), and neglecting, initially, the ef-
fect of the constraints. This can be advantageous particularly for complex (e.g.
multi-body) systems where decomposing them into a number of independently
modeled subsystems, makes the formulation of the equations of each of the con-
stituent bodies an easier task. It is only at the second stage of the approach
where the constraints are included in the augmented system of equations of
motion. Note, however, that due to the utilization of redundant coordinates or
when “half” degree of freedom is introduced, singular (mass, stiffness, damp-
ing, etc) matrices appear, and thus, a Moore-Penrose (pseudo) inverse matrix
methodology needs to be applied for determining the response of such systems.
Further, the approach provides with an explicit formula for the system response
acceleration, without engaging any auxiliary variables such as Lagrange multi-
pliers. It should be also noted that the method is applicable to systems subject
to holonomic and non-holonomic constraints or their combination, as well as
systems where the constraint forces may or may not be ideal.

In the present paper, an alternative formulation of the method introduced by
Udwadia and Phohomsiri [28] is presented. Specifically, while retaining all the
advantages of their method, our approach avoids the use of the Moore – Pen-
rose (pseudo) inverse matrix for the derivation and solution of the constrained
equations of motion, and accomplishes the same task by computing a basis for
the null space of constraints related matrix. If the uniqueness condition, dis-
cussed in [28], is satisfied by the constraints, the herein developed approach has
the significant advantage in comparison to [28] that it involves a square and
non–singular mass matrix.

Another significant contribution of the paper is the analytical solution of
the resulting second and higher order linear matrix differential equation, see
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[15] and [19]. In this regard, we recall a number of facts and results from the
theory of polynomial and rational matrices along with their use in the study of
higher order linear multivariable systems, see for example [30] and [31]. Under
this framework, a closed-form system response determination formula is derived,
which notably is valid even in cases of systems with singular mass matrices.

The outline of the paper is as follows: In section 2 the proposed alterna-
tive approach for deriving/formulating the equations of motion is presented.
In Section 3 the necessary mathematical background as well as several ele-
ments from polynomial matrix theory are delineated. In Section 4, a general
closed form solution is provided for the response determination of MDOF struc-
tural/mechanical systems with singular matrices subject to constraints. Finally,
in Section 5 concluding remarks and future research directions are provided.

In what follows R,C denote the fields of real and complex numbers respec-
tively, while the set of m × n matrices with elements from the aforementioned
fields is denoted by Rm×n and Cm×n.

2. Equations of Motion for Constrained Structural/Mechanical Sys-
tems with Singular Matrices

Following [28], in this section, a modified / alternative technique is presented
to derive the equations of motion when singular matrices, such as the mass
matrix, are present. The goal of the technique presented in [28] and its modified
version proposed in the present section, is the formulation of the equations of
motion for a discrete dynamical system, subject to holonomic or non – holonomic
and ideal or non – ideal constraints, in terms of generalized coordinates that
describe its configuration.

Let the equation of motion for the unconstrained system be

M(q, t)q̈(t) = Q(q, q̇, t), (1)

with given initial conditions q(0) = q0 and q̇(0) = q̇0, where q(t) ∈ Rn is the vec-
tor of generalized coordinates / degrees-of-freedom (DOFs) and Q(q, q̇, t) ∈ Rn is
a known n−vector depending on q, q̇ and t, expressing the external forces acting
on the system. The matrix M(q, t) ∈ Rn×n is a symmetric positive semidefinite
matrix, known in engineering dynamics as the mass or inertia matrix. In Eq.
(1), the singularity of the mass matrix, may be, for instance, due to the use of
redundant coordinates in the modeling process that are not in fact independent
with each other, or when half degree of freedom is introduced. The former case
has been addressed in [20], while the latter occurs when a massless mechanical
element is used. Note, however, that if the minimum number of independent
coordinates is utilized (i.e. generalized coordinates) the matrix M(q, t) is sym-
metric positive definite.

As in [26, 27, 29] we assume that the system described by Eq. (1) is subject
to m = h+ s constraints of the form

ϕi(q, t) = 0, i = 1, 2, . . . , h, (2)
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which are holonomic and

ψi(q, q̇, t) = 0, i = 1, 2, . . . , s, (3)

possibly non-holonomic. We assume further that the initial conditions q(0) = q0
and q̇(0) = q̇0 satisfy Eqs. (2) and (3) at t = 0. If ϕi(q, t) and ψi(q, q̇, t) are
smooth enough, differentiating twice both sides of Eqs. (2) and once those of
Eqs. (3), with respect to time, yields a vector condition of the form

A(q, q̇, t)q̈(t) = b(q, q̇, t), (4)

where A(q, q̇, t) ∈ Rm×n and b(q, q̇, t) ∈ Rm. When the constraints are imposed
on the unconstrained system of Eq. (1), additional constraint forces Qc(q, q̇, t)
appear on the right hand side of Eq. (1) to ensure that the constraints are
satisfied. Thus, the equation of motion becomes

M(q, t)q̈(t) = Q(q, q̇, t) +Qc(q, q̇, t). (5)

For our purposes we shall assume the constraint forces are not necessarily ideal,
so they can be decomposed as follows

Qc(q, q̇, t) = Qci (q, q̇, t) +Qcni(q, q̇, t), (6)

where Qci is the ideal component of the constraint force producing zero virtual
work, that is w(t)TQci (q, q̇, t) = 0 for any virtual displacement w(t), while Qcni
is the non – ideal component assumed to produce non-zero virtual work. It was
shown in [26] that the work produced by the constraint forces under virtual
displacements satisfies

w(t)TQc(q, q̇, t) = w(t)TQcni(q, q̇, t) = w(t)TC(q, q̇, t), (7)

where C(q, q̇, t) is an n−vector describing the nature of the non–ideal constraints
which can be obtained from experimental results or simple observation. Note
that in general C(q, q̇, t) does not have to coincide with the non-ideal constraint
force Qcni(q, q̇, t).

In most cases explicit knowledge of the constraint forces is not available. This
fact dictates the need for an alternative to Eq. (5) formulation of the equations
of motion, which avoids the explicit involvement of the term Qc(q, q̇, t) and is
the main goal of the present section.

Before we proceed with the presentation of the main result of this section,
we prove the following Lemma, which will be instrumental in the sequel.

Lemma 1. Let M ∈ Rn×n be positive semi-definite, A ∈ Rm×n and V ∈ Rn×k

be a matrix whose columns form a basis of kerA. Then, M̄ =

[
V TM
A

]
has

full column rank if and only if
[
M
A

]
has full column rank.
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Proof. (a) Assume that M̄ =

[
V TM
A

]
has full column rank and suppose

there exists a vector x, such that
[
M
A

]
x = 0 or equivalently that Mx = 0

and Ax = 0. Clearly, such vector would also satisfy M̄x = 0, which in view of

our initial assumption would imply x = 0. Hence,
[
M
A

]
has full column rank.

(b) Reversely, let
[
M
A

]
have full column rank and suppose there exists a

vector x 6= 0, such that M̄x = 0, which in turn implies V TMx = 0 and Ax = 0.
The last equation states that x ∈ kerA, thus there exists a vector z 6= 0, such
that x = V z (note that z 6= 0, because V is assumed to have full column rank).
Now, multiply V TMx = 0 on the left by zT , to get zTV TMx = 0 or xTMx=0.
Since,M is positive semi-definite the vector x satisfies alsoMx = 0. This would

imply that the vector x 6= 0, satisfies
[
M
A

]
x = 0 which contradicts our initial

assumption. Hence, M̄ has full column rank.

We are now ready to state and prove the main result of the present section.

Theorem 1. Consider the system described by Eq. (1) subject to m ≤ n inde-
pendent constraints of the form Eq. (4) such that rankA(q, q̇, t) = m. Then, the
acceleration of the constrained system, is uniquely determined by

q̈(t) = M̄(q, q̇, t)−1
[
V (q, q̇, t)T (Q(q, q̇, t) + C(q, q̇, t))

b(q, q̇, t)

]
, (8)

if and only if the matrix
[
M(q, q̇, t)
A(q, q̇, t)

]
has full column rank, where V (q, q̇, t) is

an n× (n−m) matrix whose columns form a basis of kerA(q, q̇, t), M̄(q, q̇, t) =[
V (q, q̇, t)TM(q, q̇, t)

A(q, q̇, t)

]
and C(q, q̇, t) is an n−vector describing the virtual

work done by the (possibly) non-ideal constraint force via Eq. (7).

Proof. Since the system is subject to constraints we assume the presence of
constraint forces Qc(q, q̇, t) acting on the system and the equation of motion is
(5). As shown in [25], virtual displacement vectors, w(t), satisfy

A(q, q̇, t)w(t) = 0. (9)

Thus, since V (q, q̇, t) spans kerA(q, q̇, t) there exists an (n −m) – vector, γ(t),
such that

w(t) = V (q, q̇, t)γ(t). (10)

Substituting the above expression of w(t) in Eq. (7) (omitting the middle part)
gives

γ(t)TV (q, q̇, t)TQc(q, q̇, t) = γ(t)TV (q, q̇, t)TC(q, q̇, t). (11)
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Taking into account that Eq. (7) holds for every virtual displacement w(t), and
hence for arbitrary γ(t), we drop the latter from Eq. (11) to get

V (q, q̇, t)TQc(q, q̇, t) = V (q, q̇, t)TC(q, q̇, t). (12)

Next, premultiply Eq. (5) by V (q, q̇, t)T , while making use of Eq. (12), and
appending Eq. (4), the following equation of motion is obtained[

V (q, q̇, t)TM(q, q̇, t)
A(q, q̇, t)

]
q̈(t) =

[
V (q, q̇, t)T (Q(q, q̇, t) + C(q, q̇, t))

b(q, q̇, t)

]
. (13)

Obviously, the above equation describes uniquely the acceleration, q̈(t), of the
constrained system, if and only if the n × n matrix M̄(q, q̇, t) is invertible.
Notably, according to Lemma 1, this is the case if and only if the matrix[
M(q, q̇, t)
A(q, q̇, t)

]
has full column rank, as assumed in the statement of the theo-

rem. Finally, the acceleration formula Eq. (8) is easily obtained by multiplying
both sides of Eq. (13) on the left by M̄(q, q̇, t)−1.

The above Theorem is directly comparable with the main result of [28].
However, in the present paper, the utilization of pseudo–inverses is avoided and
the proposed methodology provides a more compact form for the equation of
motion. If the matrix V (q, q̇, t) is constant, the computation of the null space
basis matrix V (q, q̇, t) can be accomplished using well established numerical
techniques, such as Gaussian elimination, QR decomposition or SVD (see [11]).
Moreover, it is noted that in many cases, as in the linear one which is presented
in the following section, the explicit inversion of M̄(q, q̇, t)−1 may not be even
necessary to be calculated analytically.

A secondary goal which can be easily accomplished in view of the result
of Theorem 1, is the recovery of the constraint forces. As mentioned earlier
constraint forces are not explicitly known in most cases. An easy way to obtain
a closed expression for Qc(q, q̇, t), if the assumptions of Theorem 1 hold, is to
substitute q̈(t) in Eq. (5) using the expression in Eq. (8) and in turn solve for
Qc, i.e.

Qc = MM̄−1
[
V T (Q+ C)

b

]
−Q. (14)

Notably, similar formulae for the recovery of the constraint forces can be found
in Udwadia & Kalaba approach (see [24, 26, 27]), but not in [28] where the
results are directly comparable to ours.

It is also worth noting that the proposed approach is in a sense “parallel” to
the one in [2] where an alternative proof of the method of Udwadia & Kalaba
(see [24, 26, 27]) for the formulation of the equations of motion , is presented. In
its original form the Udwadia & Kalaba formulation is based on Gauss’s princi-
ple and makes use extensive use of Moore – Penrose generalized inverses. The
approach taken in [2], avoids the use of pseudoinverses, by applying a decom-
position of the constraint forces along the tangential and normal flat surface
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in the local coordinate space, providing this way more compact equations of
motion and better insight into the geometry of the problem. On the other
hand, as mentioned earlier, our method is essentially a modified version of the
Udwadia & Phohomsiri [28], which is based on a different approach than the
one [24, 26, 27], but still involves the computation of generalized inverses. The
technique presented above bypasses the use of pseudoinverses, by computing a
basis V (q, q̇, t) for the right null space of A(q, q̇, t), which at a fixed instant,
is no other than the tangential flat surface in which virtual displacements lie.
The equation of motion (13) is then composed by two subsets of equations, the
first being equations corresponding to tangential component and the other (the
acceleration constraints Eq. (4)), corresponding to the normal surface in the
local coordinate space.

We demonstrate the proposed technique via the following example found in
[23].

Example 1. [23] We consider a unit mass particle constrained to move along
a vertical circular ring of radius R under the action of gravity. The Cartesian
coordinate system used has its origin at the center of the ring. The equation of
the unconstrained motion of the particle is[

ẍ
ÿ

]
=

[
0
−g

]
, (15)

and the (ideal) constraint for the circular motion is described by

x2 + y2 = R2. (16)

To formulate the equation of the constrained motion we differentiate the above
constraint twice, to obtain the equation of the form (4), which in our case reads

[
x y

] [ ẍ
ÿ

]
= −(ẋ2 + ẏ2). (17)

With notation used in the present section A(q, q̇, t) =
[
x y

]
and b(q, q̇, t) =

−(ẋ2 + ẏ2). The analysis used so far is identical to that in the illustrative
example in [23].

From this point on instead of trying to obtain an explicit expression of the
ideal constraint forceQc = Qci , as in [23], we shall focus on the direct formulation
of the equation motion. The matrix

V (q, q̇, t) =

[
y
−x

]
, (18)

clearly forms a basis of the right null space of A(q, q̇, t). Furthermore, C(q, q̇, t) =
0 since the constraint is ideal and obviously[

M(q, q̇, t)
A(q, q̇, t)

]
=

 1 0
0 1
x y

 , (19)
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has full column rank. Hence, the unique equation of motion is given by Eq. (13)[
y −x
x y

] [
ẍ
ÿ

]
=

[
gx

−(ẋ2 + ẏ2)

]
, (20)

or equivalently, [
ẍ
ÿ

]
=

1

x2 + y2

[
y x
−x y

] [
gx

−(ẋ2 + ẏ2)

]
=

1

R2

[
gxy − x(ẋ2 + ẏ2)
−gx2 − y(ẋ2 + ẏ2)

]
. (21)

This last expression of the acceleration is equivalent to Eq. (34) in [23]. Notice
that the constraint force Qci can be easily recovered by substituting the accel-
eration given by Eq. (21) into Eq. (5) and solve for Qc. In our case, this would
give

Qci =
1

R2

[
gxy − x(ẋ2 + ẏ2)
−gx2 − y(ẋ2 + ẏ2)

]
−
[

0
−g

]
=
gy − (ẋ2 + ẏ2)

R2

[
x
y

]
, (22)

which is identical to Eq. (40) in [23].
Following [23] we assume now that the constraint is non-ideal, due to the

presence of sliding friction between the ring and particle. Let the nature of the
non-ideal constraint generated by sliding friction between the ring and the mass
be described by

wTQc = wTC = −wT
[
ẋ
ẏ

]
µ |Qci |√
ẋ2 + ẏ2

, (23)

where w is the virtual displacement vector and µ is the coefficient of friction
and |Qci | is the magnitude of the ideal component of the constraint force given
by Eq. (22). The above relation states that frictional force acts on the opposite
direction of the motion and its magnitude is µ |Qci |. As in [23], taking into
account that due to the constraint, xẋ = −yẏ, we get

C =
µ |Qci |√
ẋ2 + ẏ2

[
ẋ
ẏ

]
= −µ |Q

c
i |

R

[
−y sgn(x)
|x|

]
sgn(ẏ). (24)

Using the proposed method the unique equation of motion is now given by Eq.
(13) [

y −x
x y

] [
ẍ
ÿ

]
=

[
gx+

µ|Qc
i |

R (y2sgn(x) + x |x|)sgn(ẏ)
−(ẋ2 + ẏ2)

]
(25)

=

[
gx+ µ |Qci |R sgn(x) sgn(ẏ)

−(ẋ2 + ẏ2)

]
, (26)

hence, [
ẍ
ÿ

]
=

1

x2 + y2

[
y x
−x y

] [
gx+ µ |Qci |R sgn(x) sgn(ẏ)

−(ẋ2 + ẏ2)

]
=

1

R2

[
gxy − x(ẋ2 + ẏ2) + µy |Qci |R sgn(x) sgn(ẏ)
−gx2 − y(ẋ2 + ẏ2)− µx |Qci |R sgn(x) sgn(ẏ)

]
, (27)
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which can be easily verified to be equivalent to Eq. (39) in [23].

3. Dynamics of Second and Higher Order LTI systems

In this section the tools required to obtain a closed form solution for linear
MDOF systems are developed. Before proceeding with the presentation of the
results regarding the dynamics of second and higher order linear time-invariant
(LTI) systems, we review some terminology from the theory of polynomial ma-
trices which play an instrumental role in the ensuing analysis. For more details
on the subject we refer the reader to [30], [10], [14].

Let R[s] denote the ring of polynomials in the indeterminate s with real
coefficients. The quotient field of the ring of real polynomials, i.e., the field of
real rational functions, will be denoted by R(s). A real polynomial matrix, is a
matrix whose elements are polynomials in some indeterminate s, i.e., a matrix of
the form P (s) = [pij(s)]m×n , where pij(s) ∈ R[s]. Notably, a polynomial matrix
can be alternatively written in the form of a polynomial in the indeterminate s
having as coefficients real constant matrices, i.e.

P (s) =

r∑
i=0

Pis
i, (28)

where Pi ∈ Rm×n and Pr 6= 0. The degree of P (s) is defined as the greatest
amongst the degrees of s in the entries of the matrix, hence considering the
above notation yields degP (s) = r. The set of n × n real polynomial matrices
endowed with the usual matrix operations is a ring denoted by R[s]n×n. The
normal rank of a polynomial matrix P (s) ∈ R[s]m×n, denoted by rankR(s)P (s),
is the maximum rank of P (s) over all s ∈ C. A polynomial matrix P (s) is
termed regular, if it is square and detP (s) 6= 0 for some s ∈ C, or equivalently
if it is square and of full normal rank. A regular polynomial matrix for which
detP (s) 6= 0 for every s ∈ C is called unimodular, or equivalently if and only
if detP (s) = c 6= 0. Unimodular matrices are units of the ring of square
polynomial matrices, in the sense that their inverses are polynomial matrices
themselves.

A rational function with a numerator degree less than or equal (less than)
to the denominator degree is called proper (strictly proper). The sets of proper
and strictly proper rational functions are rings denoted by Rpr(s), Rsp(s), re-
spectively. Clearly, r(s) ∈ Rpr(s) if and only if lims→∞ r(s) = c ∈ R. Moreover,
if c = 0, r(s) is strictly proper, while in case c 6= 0 the function r(s) is called
biproper. The set of m× n matrices with elements in the sets R(s), Rpr(s) and
Rsp(s) will be denoted by R(s)m×n,Rsp(s)m×n and Rsp(s)m×n. A square proper
rational matrix R(s) is called biproper if lims→∞ |R(s)| = c 6= 0. Biproper ma-
trices serve as units on the ring of square proper rational matrices, in the sense
that their inverses are proper rational matrices as well.

We are now in position to present a brief review of a series of results regarding
the dynamical interpretation of the structural invariants of polynomial matrices
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associated to LTI second and higher order systems. The majority of the results
presented below can be found in [30]. Next, consider systems of the form

P (ρ)ξ(t) = f(t), (29)

for t ≥ 0, where in general P (s) =
∑r
i=0 Pis

i ∈ R[s]n×n and rankR(s)P (s) = n,
ξ(t) is the pseudo-state vector, f(t) is a exogenous input or excitation and ρ = d

dt
is the differential operator (using right hand side differentiation at the origin).
It is also assumed that both ξ, f are smooth functions on R+, that is they
are arbitrarily often differentiable on R+ = [0,+∞). In the special case where
f(t) = 0, we shall refer to Eq. (29) as homogeneous.

A distinctive feature of the response of polynomial systems is without doubt
the possibility of impulsive behavior. The presence of non-trivial zero structure
at s = ∞ in a polynomial matrix P (s), associated with a LTI system, gives
rise to impulsive behavior. Impulsive behavior refers to solutions which are not
functional, but rather distributional and, in particular, linear combinations of
the Dirac δ generalized function and its distributional derivatives. The detailed
presentation of the distributional framework is beyond the scope of the present
paper. For more details on the subject we refer the reader to [9], [12], [13] and
references therein. Further, the purpose of the present paper is to exploit and
apply polynomial matrix theory concepts and tools to the case of structural
dynamical systems. In this regard, necessary and sufficient conditions for the
avoidance of the, generally undesirable, discontinuous or even impulsive behav-
ior are provided as well.

In order to obtain the response formula of Eq. (29), it is instrumental to
introduce some algebraic tools which will be useful in the ensuing analysis. Since
P (s) is assumed to be regular, its determinant which is a non-zero finite degree
polynomial vanishes only finite on a finite set of points in C. Thus, its inverse
exists for almost every s ∈ C, that is for all but a finite number of points in C,
and it is in general a rational matrix. In case P (s) is non-regular, existence and
uniqueness of the solution of Eq. (29) for given initial conditions and excitation
is not guaranteed (see [22] for a recent survey on the subject), indicating thus
insufficient or poor modeling of the underlying system. Applying polynomial
divisions between the numerators, and the denominators of the elements of
P (s)−1, we can obtain the following decomposition

P (s)−1 = Hpol(s) +Hsp(s), (30)

where Hpol(s) ∈ R[s]n×n is a polynomial matrix and Hsp(s) ∈ Rsp(s)n×n is a
strictly proper rational matrix. It is worth noticing that the presence of the
non–zero polynomial part Hpol(s) of P (s)−1, is strongly related to the presence
of zeros at s =∞ in P (s) (see [30]). Considering the above decomposition, the
Laurent expansion of P (s)−1 about s =∞ will be as follows

P (s)−1 =

ν∑
i=−∞

His
i. (31)
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The terms Hi in the above expansion are known in the literature as the Markov
parameters of the system (see for instance [14]) defined in Eq. (29), and they
can be effectively computed using the technique shown in [6].

The next important tool for deriving the response formula of Eq. (29) is
the (generalized) state space realization of Hsp(s) and Hpol(s). Starting with
Hsp(s), there are many techniques available in the literature (see for instance
[14] or [30]) for constructing a minimal state space realization of a strictly proper
transfer function, defined as follows

Definition 1. [14, Sec.6.2.2] Let G(s) ∈ Rsp(s)m×n with rankR(s) = min{m,n}
be a strictly proper matrix. A of G(s) ∈ Rsp(s)m×n is a triple of matrices
(AF , BF , CF ) ∈ Rσ×σ × Rσ×n × Rm×σ such that

G(s) = CF (sI −AF )−1BF . (32)

Such a state space realization is called if AF has the smallest possible dimensions
amongst all realizations of G(s).

Minimal state space realizations of a given strictly proper rational matrix
are characterized by the following result.

Proposition 1. [30, Prop. 1.88] A state space realization (AF , BF , CF ) ∈
Rσ×σ × Rσ×n × Rm×σ of G(s) ∈ Rsp(s)m×n is minimal if and only if

rank
[
BF AFBF · · · Aσ−1F BF

]
= rank


CF

CFAF
...

CFA
σ−1
F

 = σ. (33)

It is worth noticing that the dimension of AF in a minimal state space
realization of Hsp(s) is equal to σ = deg |P (s)|. It can be shown [14, Sec. 6.3.3],
that the spectrum of the matrix AF incorporates the finite zero structure of
P (s). Moreover, it can be easily verified (see [30, Sec. 4.2.3]) that

H−i = CFA
i−1
F BF , i = 1, 2, 3, . . . (34)

The polynomial part Hpol(s) can be “realized” following a similar procedure,
by applying a cumbersome manipulation (see [30, Sec. 4.2.3], [32]). As above,
consider a minimal state space realization (A∞, B∞, C∞) ∈ Rµ×µ × Rµ×n ×
Rm×µ of the strictly proper matrix s−1Hpol(s

−1). Thus

s−1Hpol(s
−1) = C∞(sI −A∞)−1B∞,

or equivalently,
Hpol(s) = C∞(I − sA∞)−1B∞, (35)

with the minimality conditions

rank
[
B∞ A∞B∞ · · · Aµ−1∞ B∞

]
= rank


C∞

C∞A∞
...

C∞A
µ−1
∞

 = µ (36)
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satisfied. Note that the matrix A∞ is nilpotent by construction. A triple
(A∞, B∞, C∞) satisfying Eqs. (35) and (36) is termed irreducible at s = ∞
generalized state space realization of Hpol(s). An irreducible generalized state
space realization of Hpol(s) captures the zero structure at infinity of the poly-
nomial matrix P (s) (see [30, Sec. 4.2], [32]) and considering Eqs. (35) and (31)
it is easy to verify that

Hi = C∞A
i
∞B∞, i = 0, 1, . . . , ν. (37)

In the light of the above results, the smooth response of Eq. (29) is described
by the following.

Theorem 2. Consider the system described by Eq. (29), where P (s) ∈ R[s]n×n

and detP (s) 6= 0 for some s ∈ C. Then, for initial conditions

x0 =


ξ (0−)
ξ(1) (0−)

...
ξ(r−1) (0−)

 , f0 =


f (0−)
f (1) (0−)

...
f (ν−1) (0−)

 , (38)

satisfying
H̄Yx0 = Ĥf0, (39)

and smooth on R+ excitation f(t), the response of Eq. (29) is given by

ξ(t) = C
F
eAF tQFXx0 +

∫ t

0

CF e
AF τBF f(t− τ)dτ

+

ν∑
i=0

C∞A
i
∞B∞f

(i)(t), (40)

where the triples (AF , BF , CF ) and (A∞, B∞, C∞) are respectively, a minimal
state space realization of Hsp(s), and an irreducible at s = ∞ generalized state
space realization of the Hpol(s), and

X =


Pr 0 . . . 0
Pr−1 Pr . . . 0
...

...
. . .

...
P1 P2 . . . Pr

 , Y =


P0 P

1
· · · Pr−1

0 P0
. . .

...
...

. . . . . . P1

0 · · · 0 P0

 , (41)

H̄ =



Hv 0 · · · 0
...

. . . . . .
...

...
. . . . . . 0

...
. . . . . . Hv

H2
. . . . . .

...
H1 H2 · · · Hr


, Ĥ =


Hν 0 · · · 0
...

. . . . . .
...

H2
. . . . . . 0

H1 H2 · · · Hν

 , (42)
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QF =
[
Ar−1F BF , Ar−2F BF , . . . , BF

]
. (43)

Proof. Following similar lines with [30, Sec. 4.2, 4.3] to derive the response
formula Eq. (39), we apply Laplace transform on both sides of Eq. (29), to take

P (s)ξ̂(s)−
[
sr−1I, . . . , sI, I

]
Xx0 = ˆf(s), (44)

where ξ̂(s), f̂(s) are Laplace transforms of ξ(t) and f(t) respectively. Next, Eq.
(44) is solved with respect to ξ̂(s) by premultiplying both sides by P (s)−1. This
results in

ξ̂(s) = P (s)−1
[
sr−1I, . . . , sI, I

]
Xx0︸ ︷︷ ︸

ξ̂free(s)

+P (s)−1 ˆf(s)︸ ︷︷ ︸
ξ̂dyn(s)

, (45)

from which it is clear that the Laplace transformed response ξ̂(s) consists of two
parts, the free response ξ̂free(s) which is due to the presence of non-zero initial
conditions, and the dynamic response ξ̂dyn(s) due to presence of the excitation
f(t).

We deal first with the dynamic response ξ̂dyn(s). In view of Eq. (30) we
may write

ξ̂dyn(s) = Hsp(s)f̂(s) +Hpol(s)f̂(s). (46)

Now, substitute in the above expression Hsp(s) using its minimal realization
(AF , BF , CF ) as in Eq. (32) and Hpol(s) using its irreducible at s =∞ realiza-
tion (A∞, B∞, C∞) as in Eq. (37), to obtain

ξ̂dyn(s) = CF (sI −AF )−1BF f̂(s) +

v∑
i=0

siC∞A
i
∞B∞f̂(s). (47)

Finally, apply inverse Laplace transform on both sides of Eq. (47), yielding

ξdyn(t) =

∫ t

0

CF e
AF τBF f(t− τ)dτ +

ν∑
i=0

C∞A
i
∞B∞f

(i)(t)+[
δ(v−1)(t)I, . . . , δ(1)(t)I, δ(t)I

]
Ĥf0, (48)

where δ(i)(t) denotes the i−th (distributional) derivative of Dirac’s δ distribu-
tion.

The free response ξ̂free(s) is in general a rational vector, thus it can be de-
composed into the sum of a polynomial and a strictly proper part. This decom-
position is crucial for the computation of the free response in the time domain,
since polynomial functions in the frequency domain give rise to impulses, i.e.
Dirac δ distributions and its derivatives in the time domain.
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As a first step we substitute the Laurent expansion of P (s)−1 at s = ∞,
given in Eq. (31) in

ξ̂free(s) =

(
ν∑

i=−∞
His

i

)[
sr−1I, . . . , sI, I

]
Xx0 (49)

=

[
ν∑

i=−∞
His

i+r−1, . . . ,

ν∑
i=−∞

His
i+1,

ν∑
i=−∞

His
i

]
Xx0 (50)

=

ν+r−1∑
i=−∞

si [Hi−r+1, . . . ,Hi−1, Hi]Xx0 (51)

=

ν+r−1∑
i=0

si [Hi−r+1, . . . , , Hi]Xx0︸ ︷︷ ︸
ξ̂polfree(s)

+

∞∑
i=1

s−i [H−i−r+1, . . . ,H−i]Xx0︸ ︷︷ ︸
ξ̂spfree(s)

.

(52)

In view of Eq. (34) the strictly proper part takes the form

ξ̂spfree(s) =

∞∑
i=1

s−i
[
CFA

i+r−2
F BF , . . . , CFA

i−1
F BF

]
Xx0 (53)

=

∞∑
i=1

s−iCFA
i−1
F

[
Ar−1F BF , . . . , BF

]
Xx0 (54)

=

∞∑
i=1

s−iCFA
i−1
F QFXx0 (55)

= CF (sI −AF )−1QFXx0. (56)

Applying inverse Laplace transform on the above expression we obtain

ξspfree(t) = CF e
AF tQFXx0. (57)

The polynomial part ξ̂polfree(s) can be simplified by taking into account (for more
details see [30, Sec. 4.2] or [31]) that

[Hi−r+1, . . . ,Hi]X + [Hi+1, . . . ,Hi+r]Y = 0,

for i = 0, 1, . . . , v + r − 1, (58)

and particularly that

[Hi−r+1, . . . ,Hi]X = 0, for i = v, v + 1, . . . , v + r − 1, (59)

because Hk = 0, for k > v. Thus, we can write

ξ̂polfree(s) = −
ν−1∑
i=0

si [Hi+1, . . . ,Hi+r]Yx0, (60)
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while the corresponding time domain response is

ξpolfree(t) = −
ν−1∑
i=0

δ(i)(t) [Hi+1, . . . ,Hi+r]Yx0

= −
[
δ(v−1)(t)I, . . . , δ(1)(t)I, δ(t)I

]
H̄Yx0. (61)

The free response formula can be found in [30, Sec. 4.2] or [31], using slightly
different notation.

With the above setup, the overall response of Eq. (29) is

ξ(t) = CF e
AF tQFXx0 −

[
δ(v−1)(t)I, . . . , δ(1)(t)I, δ(t)I

]
H̄Yx0+

+

∫ t

0

CF e
AF τBF f(t− τ)dτ +

ν∑
i=0

C∞A
i
∞B∞f

(i)(t)+

+
[
δ(v−1)(t)I, . . . , δ(1)(t)I, δ(t)I

]
Ĥf0. (62)

Clearly the response given by Eq. (62) may involve impulses. Since we are
interested only in functional solutions of Eq. (29), the initial condition vectors
x0, f0 have to be appropriately chosen, so that the terms involving Dirac delta’s
in Eq. (62) are eliminated, that is, if and only if

−
[
δ(v−1)(t)I, . . . , δ(1)(t)I, δ(t)I

]
H̄Yx0+

+
[
δ(v−1)(t)I, . . . , δ(1)(t)I, δ(t)I

]
Ĥf0 = 0, (63)

which is satisfied if and only if Eq. (39) holds. Under this condition, the
response formula Eq. (62) simplifies to Eq. (40). We should note that both the
response formula Eq. (62) and the compatibility condition (40) can be found
under slightly different formulation in [16].

Another point worth noticing, which plays a key role in the study of the
response of constrained linear mechanical systems, is that when the leading
coefficient matrix of P (s) is invertible, then Hi = 0 for all i = −r + 1,−r +
2, . . . , ν (see [31], Remark 3). If this is the case, both matrices H̄, Ĥ in Eq.
(39) vanish. As a result, the response of Eq. (29) is smooth for any choice of
the initial conditions vectors x0 and f0.

4. Application to Constrained LTI Structural Systems with Singular
Matrices

In this subsection, we focus on LTI structural systems subject to constraints
of a particular linear form. Our aim is to provide an explicit formulation of the
constrained equations of motion presented in Section 2, for this case. In this
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regard, consider an n−DOF structural system, which is described by the second
– order linear differential equations

Mq̈(t) + Cq̇(t) +Kq(t) = f(t), (64)

with given initial conditions q(0) = q0 and q̇(0) = q̇0, where M,C and K are
n× n positive semi-definite matrices representing the mass, (viscous) damping,
and stiffness coefficients of the system, respectively. The n−vector q(t) rep-
resents the coordinates of the system, and f(t) is the externally applied force
vector. As discussed previously singular M , C, and K matrices may appear for
various reasons such as the use of redundant coordinates/DOFs; see also [3, 28]
for a related discussion. It is further assumed that the system is subject to
ideal constraints which after appropriate differentiation with respect to t (see
discussion in Section 2) take the form

A2q̈(t) +A1q̇(t) +A0q(t) = g(t), (65)

where Ai ∈ Rm×n, i = 0, 1, 2, with rankA2 = m and g(t) ∈ Rm. Obviously, Eqs.
(64) and (65) are special cases of Eqs. (1) and (4), respectively. Let V be a
n× (n−m) matrix whose columns form a basis of ker(A2). Then, according to
the discussion in the previous section, we can pre-multiply Eq. (64) by V T and
append Eq. (65) to obtain the constrained equations of motion

M̄ q̈(t) + C̄q̇(t) + K̄q(t) = f̄(t), (66)

where

M̄ =

[
V TM
A2

]
, C̄ =

[
V TC
A1

]
, K̄ =

[
V TK
A0

]
, (67)

are square n× n, real matrices and

f̄(t) =

[
V T f(t)
g(t)

]
. (68)

Notice that in this particular case, we have assumed that the constraints are
ideal, so the term C(q, q̇, t) in Eq. (13) vanishes. For ease of notation we may
set P (s) = s2M̄ + sC̄ + K̄, and rewrite Eq. (66) in a more compact form as

P (ρ)q(t) = f̄(t). (69)

Now Theorem 2 can be applied to obtain smoothness conditions for the response
and determine it analytically. In this regard, to have a smooth response, the
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initial conditions must satisfy Eq. (39), which in our case takes the form
Hv 0
. . . Hv

H2
. . .

H1 H2


[
K̄ C̄
0 K̄

] [
q(0−)
q̇(0−)

]
=

=


Hν 0 · · · 0
...

. . . . . .
...

H2
. . . . . . 0

H1 H2 · · · Hν




f (0−)
f (1) (0−)

...
f (ν−1) (0−)

 . (70)

With the above setup, we may determine the response using Eq. (40), which
takes the form

q(t) = C
F
eAF t

[
AFBF BF

] [ M̄ 0
C̄ M̄

] [
q0
q̇0

]
+

+

∫ t

0

CF e
AF τBF f̄(t− τ)dτ +

ν∑
i=0

C∞A
i
∞B∞f̄

(i)(t). (71)

Further, as already noted in section 2, the matrix M̄ is non–singular if and

only if
[
M
A2

]
has full column rank. The above developed response deter-

mination technique for systems with singular matrices is demonstrated in the
following via numerical examples pertaining to structural/mechanical systems.
In both examples the systems presented are with singular mass matrix, since
the first example is modeled with using redundant coordinates, and the second
because of the presence of a “half” oscillator.

Example 2. Consider the simplified model of a quarter car suspension system
shown in Figure 1.(a), where m2 is 1/4 of the car mass, m1 is the wheel mass,
k1, k2 are the stiffness coefficients of the tire and the suspension respectively
and c is the damping coefficient of the suspension. It is assumed that the dis-
placements x(t), y(t) are zero when the system is in static equilibrium, whereas
u(t) represents the road profile.

The following parameters values are considered, i.e.

m1 = 30 Kg, m2 = 250 Kg, c = 100 Ns/m, (72)
k1 = 2000 N/m, k2 = 1000 N/m. (73)

Typically, the equations of motion for the structural/mechanical system are
formulated based on a Newtonian or a Lagrangian formulation. For the above
system this would lead to the equations[

m1 0
0 m2

]
¨̄q +

[
c −c
−c c

]
˙̄q +

[
k1 + k2 −k2
−k2 k2

]
q̄ =

[
k1u(t)

0

]
, (74)
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m2

k2 cc

m1

k1

u(t)

x(t)

y(t)

(a)

m2

k2 cc

x2(t)

y2(t)

Subsystem 2

(b)

m1

k1

x1(t)

y1(t)

Subsystem 1

Figure 1: Quarter car suspension (a) modeled as one system (b) separated into two subsystems.

where q̄(t)T =
[
x(t) y(t)

]
. Taking into account that the “constraints” in this

case are already incorporated in the equations of motion, the response can be
computed using the closed form solution of Eq. (71). Note that since the mass
matrix is invertible, the inverse of the matrix P (s) = s2M + sC + K will be
strictly proper, thus

(A∞, B∞, C∞) = (0, 0, 0). (75)
Furthermore, since P (s)−1 is strictly proper, a minimal state space realization
(AF , BF , CF ), which satisfies

P (s)−1 = CF (sIn −AF )−1BF , (76)

can be computed using any of the widely used techniques and algorithms avail-
able for this purpose (see for instance [14, Ch.8] or [30, Sec.1.11]). In the
present example Wolfram’s Mathematica functions StateSpaceModel[] and Min-
imalStateSpaceModel[] have been employed to obtain the following minimal re-
alization

AF =


0.182 1.04 0 0
−2.38 −0.392 0.852 0
0.103 0.0115 0.0514 0.997
−27.2 3.35 −101. −3.57

 ,

BF =


0 −0.00097
0 0.0095
0 −0.000335

0.366 −0.0175

 ,
CF =

[
0.168 0.0204 0.0913 0
0.42 0.0429 0 0

]
.

Equivalent results can be obtained using Matlab’s functions and minreal().
Next, the response given by Eq. (71), for initial conditions

x(0−) = y(0−) = ẋ(0−) = ẏ(0−) = 0, (77)
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and ground profile u(t) = sin(5t) is depicted in Figure 2. In the same figure the
numerical solution of Eq. (74) has been computed using the standard Runge -
Kutta method (dashed lines). Clearly, the results of the two approaches coincide.

2 4 6 8 10

−0.5

0.5

1

t

x(t)

x̂(t)

y(t)

ŷ(t)

Figure 2: The response of the constrained system using the classical approach- Case (a).
Responses x(t), y(t) obtained from Eq. (71) and x̂(t), ŷ(t) using the standard Runge - Kutta
numerical scheme.

Alternatively, adopting the approach proposed in [28] each of the constituent
subsystems is considered separately as a 2-DOF system as depicted in Figure
1.(b) for deriving the equations of motion. Then, appropriate constraints are
imposed. In particular, the equations of motion for both subsystems have the
form

Miq̈i + Ciq̇i +Kiqi = 0, i = 1, 2, (78)

where qi(t)T =
[
xi(t) yi(t)

]
,

Mi =

[
0 0
0 mi

]
, Ki =

[
ki −ki
−ki ki

]
, (79)

for i = 1, 2 and

C1 =

[
0 0
0 0

]
, C2 =

[
c −c
−c c

]
. (80)

Thus, the overall equation of the two, still unconnected, subsystems will have
the form

Mq̈ + Cq̇ +Kq = 0, (81)

where q(t)T =
[
q1(t) q2(t)

]
and

M =

[
M1 0
0 M2

]
, C =

[
C1 0
0 C2

]
, K =

[
K1 0
0 K2

]
. (82)
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In order to model the original system we need to take into account the (ideal)
constraints

y1(t) = x2(t), (83)
x1(t) = u(t), (84)

where u(t) is the ground profile. Differentiating twice with respect to time the
constraints Eqs. (83) and (84), yields a matrix equation of the form of Eq. (65),
i.e. [

0 1 −1 0
1 0 0 0

]
q̈(t) =

[
0
ü(t)

]
. (85)

Considering Eq. (65), A2 =

[
0 1 −1 0
1 0 0 0

]
, A0 = A1 = 0 and g(t)T =[

0 ü(t)
]
. Notice that the compound matrix

[
MT AT2

]T has full col-
umn rank, hence the two constraints are sufficient to uniquely determine the
equations of motion. The next step for the formation of the equations of the
constrained motion is to compute a basis of the null space of A2. Such a basis
is given by the columns of

V =


0 0
0 1
0 1
1 0

 . (86)

The matrix V has been computed here using Gaussian elimination on the
columns of A2. In more complex systems, where the matrix A2 is larger in
dimensions, the columns of V can be recovered using more numerically efficient
techniques, such as the singular value decomposition (SVD).

The equations of the constrained motion resulting from the application of
Eq. (66) have the form

M̄ q̈(t) + C̄q̇(t) + K̄q(t) = f̄(t), (87)

where

M̄ =


0 0 0 m2

0 m1 0 0
0 1 −1 0
1 0 0 0

 , C̄ =


0 0 −c c
0 0 c −c
0 0 0 0
0 0 0 0

 , (88)

K̄ =


0 0 −k2 k2
−k1 k1 k2 −k2

0 0 0 0
0 0 0 0

 , f̄(t) =


0
0
0
ü(t)

 . (89)

It can be easily verified that the mass matrix M̄ is non–singular. Consequently,
the inverse of the matrix P̄ (s) = s2M̄ +sC̄+ K̄ will be strictly proper, hence as
above the triple (A∞, B∞, C∞) vanishes and a minimal state space realization
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of P̄ (s)−1, computed using Mathematica’s above mentioned functions, is given
by

AF =



0.24 1.06 0 0 0 0 0 0
−2.33 −0.744 2.21 0 0 0 0 0
−7.16 −2.56 6.6 3.21 0 0 0 0
16.4 14. −49.6 −9.83 0 0 0 0
1.64 0.564 −1.41 −0.654 −0.00346 1.02 0 0
−1.13 −1.74 6.35 1.12 −0.0000117 0.00346 0 0
1.56 0.537 −1.34 −0.623 −0.00324 0.0464 −0.00306 1.02
−2.38 −1.57 5.7 1.01 −0.0000202 0.00323 0 0.00306


,

BF =



0 −0.0000409 0 0.00123
0 0.000397 0 −0.0119
0 0.00122 0 −0.0366

0.000364 −0.00865 0.0911 0.168
0 −0.000275 −0.000254 0.00812

−0.0000564 0.0011 −0.0105 −0.0188
0 −0.000261 −0.000249 0.00773

−0.0000367 0.000995 −0.00937 −0.017


,

CF =


−76.1 −17.8 64. 3.62 2.36 0.595 268. 27.4
−26. −12.6 64. 3.62 2.36 0.595 268. 27.4
−96.9 1.14 −6.15 −0.28 −265. −26.9 268. 27.4
−2.73 0.364 −2.73 −0.28 −265. −26.9 268. 27.4

 .

To obtain a response comparable to the one obtained in case (a), where the
system was modeled using classical techniques, we need to take into account
the relations x1(t) = u(t), y1(t) = x2(t) = x(t) and y2(t) = y(t) and use the
same ground profile, u(t) = sin(5t), as above. This dictates the choice of initial
conditions for the new coordinates and their derivatives, which in view of Eq.
(77) and the particular choice of u(t), should be

x1(0−) = 0, y1(0−) = 0, x2(0−) = 0, y2(0−) = 0,

ẋ1(0−) = 5, ẏ1(0−) = 0, ẋ2(0−) = 0, ẏ2(0−) = 0

With this setup, q(t) can be computed by Eq. (71) and the resulting response
is shown in Figure 3.

It can be readily seen that the computed x1(t) coincides with the ground
profile u(t) = sin(5t), while the coordinates y1(t), x2(t) coincide as required
by the constraint Eqs. (84) and (83). Moreover, from the comparison of the
plots in Figures (2) and (3), it is clear that x(t) = y1(t) and y(t) = y2(t) as
expected.

Example 3. In this example the system shown in Figure 4.(a) is considered
with the parameters values.

m = 10 Kg, c1 = 1 Ns/m, k1 = 2 N/m, k2 = 1 N/m. (90)

Using either Newton’s or Lagrange’s formulation the equation of motion for the
system in Figure 4.(a) becomes[

0 0
0 m

]
¨̄q +

[
c1 0
0 0

]
˙̄q +

[
k1 + k2 −k2
−k2 k2

]
q̄ =

[
0

F (t)

]
, (91)
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x1(t) = u(t)

y1(t) = x2(t)

y2(t)

Figure 3: The response of the constrained system using the proposed approach - Case (b).
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Figure 4: Singular mass matrix system (a) modeled as one system (b) separated into two
subsystems.

where q̄(t)T =
[
y1(t) y2(t)

]
and F (t) = cos t is the external force applied to

the mass m. In a similar manner as in the previous example, the response can
be computed using the closed form solution given by Eq. (71).

Although the mass matrix is singular, the inverse of the matrix P (s) =
s2M + sC +K is strictly proper, thus

(A∞, B∞, C∞) = (0, 0, 0). (92)

Furthermore, since P (s)−1 is strictly proper we can compute a minimal state
realization (using Mathematica), which satisfies

P (s)−1 = CF (sIn −AF )−1BF , (93)
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where

AF =

 0.214 0.977 0
−0.106 −0.246 0.549
−0.117 −0.0993 −2.97

 ,
BF =

 0 0
0 0.274

0.997 0.016

 ,
CF =

[
0.267 −0.0586 1
0.374 0 0

]
,

Notice that the dimension of the matrix AF , and hence the state of the system is
now three. Further, in this case the initial conditions vectors can be arbitrarily
chosen, since Eq. (70) vanishes. Assuming that the system is at rest at t = 0−,
yields

y1(0−) = y2(0−) = ẏ1(0−) = ẏ2(0−) = 0.

With this setup the response given by Eq. (71) is depicted in Figure 5. In order
to validate the response obtained by Eq. (71), the equations of motion (91)
have been also solved numerically using the standard Runge - Kutta method
(dashed lines).

10 20 30 40 50
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0.1
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t

y1(t)

ŷ1(t)

y2(t)

ŷ2(t)

Figure 5: The response of the constrained system using the classical approach - Case (a).
Responses y1(t), y2(t) obtained through Eq. (71) and ŷ1(t), ŷ2(t) using the Runge - Kutta
method.

Next, an alternative formulation [28] that considers the constituent sub-
systems separately as 2-DOF systems (see Figure 4.(b)) is utilized, where their
interaction is realized by imposing appropriate constraints. Specifically, the
equations of motion for both subsystems have the form

Miq̈i + Ciq̇i +Kiqi = f(t), i = 1, 2, (94)
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where qi(t)T =
[
xi(t) yi(t)

]
,

M1 =

[
0 0
0 0

]
, M2 =

[
0 0
0 m

]
, (95)

Ki =

[
ki −ki
−ki ki

]
,

for i = 1, 2 and

C1 =

[
c1 −c1
−c1 c1

]
, C2 =

[
0 0
0 0

]
. (96)

In view of the above, the overall equation of the two, still unconnected, subsys-
tems takes the form

Mq̈ + Cq̇ +Kq = f(t), (97)

where q(t)T =
[
q1(t) q2(t)

]
and

M =

[
M1 0
0 M2

]
, D =

[
C1 0
0 C2

]
, K =

[
K1 0
0 K2

]
, (98)

and f(t) = [0, 0, 0, F (t)]. Similarly as in Example 2, to model the composite
system we take into account the (ideal) constraints

y1(t) = x2(t), (99)
x1(t) = 0, (100)

Differentiating twice with respect to time the constraints Eqs. (99) and (100),
yields a matrix equation of the form of Eq. (65), that is[

0 1 −1 0
1 0 0 0

]
q̈(t) =

[
0
0

]
. (101)

Thus, with the notation of Eq. (65), A2 =

[
0 1 −1 0
1 0 0 0

]
, A0 = A1 = 0

and g(t)T =
[

0 ü(t)
]
. Next, to formulate the equations of the constrained

motion we compute a basis of the null space of A2. Such a basis can be easily
computed using Gaussian elimination on the columns of A2, which in our case
gives

V =


0 0
0 1
0 1
1 0

 . (102)

The equations of the constrained motion given by Eq. (66), take the form

M̄ q̈(t) + C̄q̇(t) + K̄q(t) = f̄(t), (103)
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where

M̄ =


0 0 0 m
0 0 0 0
0 1 −1 0
1 0 0 0

 , C̄ =


0 0 −c c
0 0 c −c
0 0 0 0
0 0 0 0

 , (104)

K̄ =


0 0 −k2 k2
−k1 k1 k2 −k2

0 0 0 0
0 0 0 0

 , f̄(t) =


0
0
0

F (t)

 . (105)

Despite the fact that the mass matrix M̄ is singular, the inverse of the matrix
P̄ (s) = s2M̄+sC̄+K̄ is strictly proper, hence as above the triple (A∞, B∞, C∞)
vanishes, and a minimal state space realization of P̄ (s)−1 (using Mathematica)
is given by

AF =



−0.335 1.33 0 0 0 0 0
0.671 −1.16 1.66 0 0 0 0
−0.667 0.931 −1.5 0 0 0 0
0.0112 −0.0183 0.025 −0.498 0.731 0 0
0.06 0.0387 −0.0419 −0.34 0.498 0 0
−0.107 0.176 −0.24 −0.0215 0.000446 −0.36 0.806
−0.501 −0.366 0.404 −0.0227 0.0194 −0.16 0.36


,

BF =



0 0.332 0 0
0 −0.665 0 0

0.03 0.601 0.3 −0.3
0.0191 0.00246 −0.201 −0.191
−0.0131 0.00163 0.138 0.131
−0.183 −0.0235 0.0291 −0.0646
0.145 −0.01 −0.0258 0.0568


,

CF =


−1.99 −1. 0.00299 1.24 1.81 0.337 0.425
1.02 −1. 0.00299 1.24 1.81 0.337 0.425

−0.969 −2. 0.00597 −0.0354 −0.0559 0.337 0.425
0.0332 0.00336 0.00597 −0.0354 −0.0559 0.337 0.425

 .

Note that the compound matrix
[
MT AT2

]T is rank deficient. Since P (s)−1

is strictly proper, Eq. (71) vanish and the initial conditions vector can be chosen
arbitrary to be

x1(0) = 0, y1(0) = 0, x2(0) = 0, y2(0) = 0,

ẋ1(0) = 0, ẏ1(0) = 0, ẋ2(0) = 0, ẏ2(0) = 0,

then the motion of the system can be uniquely determined using the proposed
approach. Note also that the above choice of initial conditions satisfies also
the constraints imposed by Eqs. (99) and (100) as well. With this setup q(t)
can be computed using Eq. (66) and the resulting response is shown in Figure
6. Comparing the plots in Figures 5 and 6, it is easy to see that the com-
ponents y1(t), y2(t) of the system described by Eq. (103), coincide with their
counterparts in Eq. (91)
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Figure 6: The response of the constrained system using the proposed approach - Case (b).

5. Conclusions

An approach has been developed based on polynomial matrix theory for
formulating the equations of motion and for determining the response of multi-
degree-of-freedom (MDOF) linear dynamical systems with singular matrices and
subject to linear constraints. The herein developed approach can be construed
as an alternative to the methodology proposed by Udwadia and coworkers [28],
and has the significant advantage that, under the same uniqueness conditions
as in [28], it circumvents the use of pseudoinverses in determining the system
response. In fact, based on the theoretical machinery of polynomial matrices,
a closed form analytical solution has been derived for the system response that
involves square and non-singular matrices, and relies on the use of a basis of
the null space of the constraints matrix. Several structural/mechanical systems
with singular matrices have been included as examples for demonstrating the va-
lidity of the developed framework and for elucidating certain numerical aspects.
Regarding potential future work, the approach can be extended to account for
stochastic excitations as well based on recent work by Fragkoulis et al. [5, 3, 4].
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