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Abstract

The work in this thesis is concerned with variational methods for two-phase segmen-

tation problems. We are interested in both the obtaining of numerical solutions to the

partial differential equations arising from the minimisation of a given functional, and

forming variational models that tackle some practical problem in segmentation (e.g.

incorporating prior knowledge, dealing with intensity inhomogeneity). With that in

mind we will discuss each aspect of the work as follows.

A seminal two-phase variational segmentation problem in the literature is that of

Active Contours Without Edges [33], introduced by Chan and Vese in 2001, based on the

piecewise-constant formulation of Mumford and Shah [89]. The idea is to partition an

image into two regions of homogeneous intensity. However, despite the extensive success

of this work its reliance on the level set method [95] means that it is nonconvex. Later

work on the convex reformulation of [33] by Chan, Esedoglu, and Nikolova [30] has led to

a burgeoning of related methods, known as the convex relaxation approach [78, 137, 25,

102]. In Chapter 4, we introduce a method to find global minimisers of a general two-

phase segmentation problem, which forms the basis for work in the rest of the thesis. We

introduce an improved additive operator splitting (AOS) method based on the work of

Weickert et al. [129] and Tai et al. [85]. AOS has been frequently used for segmentation

problems [105, 104, 9], but not in the convex relaxation setting. The adjustment made

accounts for how to impose the relaxed binary constraint, fundamental to this approach.

Our method is analogous to work such as Bresson et al. [18] and we quantitatively

compare our method against this by using a number of appropriate metrics.

Having dealt with globally convex segmentation (GCS) for the general case in Chap-

ter 4, we then bear in mind two important considerations. Firstly, we discuss the matter

of selective segmentation and how it relates to GCS. Many recent models have incor-

porated user input for two-phase formulations using piecewise-constant fitting terms

[105, 104]. In Chapter 5 we discuss the conditions for models of this type to be re-

formulated in a similar way to [30]. We then propose a new model compatible with

convex relaxation methods, and present results for challenging examples. Secondly, we

consider the incorporation of priors for GCS in Chapter 8. Here, the intention is to

select objects in an image of a similar shape to a given prior. We consider the most ap-

propriate way to represent shape priors in a variational formulation, and the potential

applications of our approach.

We also investigate the problem of segmentation where the observed data is chal-

lenging. We consider two cases in this thesis; in one there is significant intensity

vi



inhomogeneity, and in the other the image has been corrupted by unknown blur. The

first has been widely studied [82, 34, 100] and is closely related to the piecewise-smooth

formulation of Mumford and Shah [89]. In Chapter 6 we discuss a Variant Mumford-

Shah Model by D.Chen et al. [37] that uses the bias field framework [49, 2]. Our work

focuses on improving results for methods of this type. The second has been less widely

studied, but is more commonly considered when there is knowledge of the blur type

[69, 107]. We discuss the advantages of simultaneously reconstructing and segment-

ing the image, rather than treating each problem separately and compare our method

against comparable models [11].

The aim of this thesis is to develop new variational methods for two-phase image

segmentation, with potential applications in mind. We also consider new schemes

to compute numerical solutions for generalised segmentation problems. With both

approaches we focus on convex relaxation methods, and consider the challenges of

formulating segmentation problems in this manner. Where possible we compare our

ideas against current approaches to determine quantifiable improvements, particularly

with respect to accuracy and reliability.
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translation of up, and the boundary of the ground truth of z given by

ΓGT (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.10 Test Set 2 (Parameter Dependence). i) The result of Stage 1 of our

algorithm, where S(φ∗) is determined based on the minimisation of the

affine registration formulation (8.13). ii) In Stage 2 we construct a fitting

term based on the shape and intensity of the object, given by h(x) (8.18).

iii) The computed contour, Γ∗, from Stage 2 of our algorithm. iv) The

computed function u∗(x) from the minimisation in the convex relaxation

framework (8.19). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.11 Test Set 2 (Parameter Dependence). Results obtained using DSP for-
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the initial TC of ũ. Varying λ ∈ [0, 300] gives some improvement over

the initial TC. As θ increases, the range of λ that offers an improvement

gets larger. However, the extent of this improvement is also lessened as

θ increases for λ ∈ [0, 300]. This makes sense as the ψ(x) term favours
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Chapter 1

Introduction

1.1 Image Segmentation

The subject of this thesis is the development of effective variational models for two-

phase image segmentation, in the convex relaxation framework in particular. In brief,

segmentation is the partitioning of an image into multiple regions of shared character-

istics. The focus of this work is on the reliability of the result, and its robustness to

parameter variation and user input in general. We are also concerned with the time

taken to obtain a segmentation result, as minimising this is often essential in many

applications.

In imaging there are essentially two different approaches: the discrete setting and

the continuous setting. In the spatially discrete setting image pixels are assumed to be

entities that are distinct from each other, whilst in the continuous setting images are

defined as functions on a continuous domain. In relation to image segmentation, the

aim in the discrete setting is to find an optimal labeling of each node (representing a

pixel). Often the set of possible labels is binary (i.e. foreground/background), and a

conventional approach is that of graph cuts where a global minimiser can be computed

[62, 76]. This is a combinatorial method that can compute fast solutions, especially in

the two dimensional case, but can suffer from accuracy limitations and difficulties in

extending it to more challenging problems. A seminal approach in this setting is that

of Geman and Geman [55] in 1984, which is closely related to the later work of Blake

and Zisserman [14]. The continuous counterpart of Geman and Geman is the work of

Mumford and Shah [89] in 1989. Much of the work in this thesis is based, at least in

part, on this formulation of the segmentation problem [89], where the aim is to find a

piecewise-smooth approximation of the image. The piecewise-constant formulation of

Chan and Vese [33] is also of particular interest to this work.

In this thesis we concentrate on the continuous approach. Given an observed image,

made up of pixels, the problem setting is the continuous domain where the aim is to

determine a solution to an equation corresponding to the minimisation of a functional.

Analytic solutions are very rare in this context, and so a numerical solution where the

problem is discretised is required. This might seem counter-intuitive, but continuous

methods have proven very successful since the seminal work of Mumford and Shah.

Other significant developments since then include edge based methods and active con-
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tour models. Noteworthy examples include the Snakes approach of Kass, Witkin, and

Terzopoulos [72] and the Geodesic Active Contours model of Caselles, Kimmel, and

Sapiro [22]. Important to the success of these approaches was the development of level

set based methods [95, 143], which have been widely used over the last twenty years. It

was utilised by Chan and Vese in the influential Active Contours Without Edges [33], a

region based model based on the two-phase piecewise-constant Mumford-Shah formu-

lation. The common theme with this approach to segmentation is that the problems

are nonconvex, meaning that obtaining a global minimiser is often not possible.

Recent work addressing the issue of nonconvexity is based on the idea of convex

relaxation, which is essential to the work in this thesis and will be discussed throughout.

The original work in relation to segmentation in the continuous setting, is that of Chan,

Esedoglu, and Nikolova [30] in 2006. This method aims to find the global minimiser

of the two-phase piecewise-constant Mumford-Shah formulation, in the case of known

intensity constants. The theoretical basis of this work is based on the work of Strang

[119]. Related work since has included Bresson et al. [18] as well as many others

[78, 137, 120, 25]. In short, the convex relaxation method consists of representing the

regions within an image with a binary function, and relaxing this constraint such that

it can take intermediate values. The partition between the regions is then given by a

thresholding procedure. These approaches are generally formed of a fitting term, based

on the observed data, and a regularisation term, typically based on the total variation

seminorm.

We also concentrate on two-phase methods. That is, we want to partition the image

into some meaningful foreground/background representation. This idea simplifies the

segmentation problem significantly. Firstly, for the number of regions to be fixed is

an advantage. An unsupervised segmentation where this has to be optimised is a

challenging problem which has attracted attention recently, such as the work of Zhang

et al. [141]. Secondly, multiphase (i.e. greater than two regions) problems are difficult

in many respects, widely addressed in the literature. One notes as an aside that the

analogous problem in the discrete setting is the Potts Model [103]. Multilabel problems

of this type cannot be minimised globally with current discrete methods. Conventional

approaches involve approximations of the harder problem, such as reducing it to a

sequence of binary labeling problems [15]. Under certain conditions exact solutions

can be computed, based on the work of Ishikawa and Geiger [67, 68]. Returning to

the continuous setting; there have been a number of recent noteworthy developments

[10, 19, 78, 79, 25, 136]. These are important to the content of this thesis as they are

often generalisations of the two-phase methods we consider.

When partitioning an image into a foreground and background, we refer to a ’mean-

ingful representation’. We now discuss what is meant by this and conventional ap-

proaches for achieving this distinction. The definition of meaningful depends on the

problem setting, and the possible application. In a medical imaging context for ex-

ample, it could mean identifying the boundary of an organ or tumour, or selecting

a vessel. From a security perspective, it might mean selecting certain objects such
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as vehicles or people. More generally, it is possible to classify certain characteristics

that can determine the basis for the segmentation into categories: such as intensity

[33, 34, 100], texture [144], or shape [101, 36, 46]. In our work we tend to focus on

intensity, although we do address the inclusion of shape priors in Chapter 8. Within

intensity based methods, there are also many possible approaches depending on the

observed image. Broadly speaking, an image can be treated as piecewise-constant or

piecewise-smooth, depending on the levels of intensity inhomogeneity present. Each

type is closely related to the work of Mumford and Shah [89]. The former has proven

very popular [33, 30, 18, 105, 20] and is effective for certain types of image. The latter

has also attracted much attention recently [37, 122, 100, 34], and is applicable to a

wider class of images. However, it is also more challenging as a constant can often

be approximated without a priori knowledge of the image simplifying the piecewise-

constant case in practice. We address the first problem in Chapter 6, and problems

associated with a particular approach for images with intensity inhomogeneity.

It is important to note that image segmentation techniques can often fail based

on limitations in the observed data. Such limitations can make an accurate segmen-

tation difficult to determine without improving the quality of the data or providing

additional information about the target object. These difficulties can take the form

of poor image quality (i.e. the observed image contains significant levels of noise or

blur), where locating the edge reliably is problematic. A possible solution to this is

a pre-processing step where the quality of the image is improved before conventional

segmentation methods are applied. Numerous variational approaches exist designed to

improve the image quality; known as image restoration techniques. Noteworthy ex-

amples include the seminal work of Rudin, Osher, and Fatemi [109] in 1992 for total

variation denoising, and blind deconvolution methods [35]. The limitations in the data

can also take the form of incomplete data, either in the form of significant artefacts or

occlusions. Again, many variational methods exist to improve the image quality in this

case such as image inpainting [32]. A common practice is to incorporate prior knowl-

edge of the target object into the model such that limitations in the observed data can

be overcome. This can either be in the form of constraints [75], user input [92] and

interaction [101], or alternate regularisation [106], as well as many others. We address

these issues in Chapter 5 in relation to object selection, and Chapter 7 in relation to

joint image restoration and segmentation.

In the following section we will outline the main chapters of the thesis, and then out-

line our contribution explicitly. Chapters 2 and 3 concern mathematical preliminaries

and a background for variational methods in image processing. The remaining chapters

all consist of original work, some of which has been published or presented in a simi-

lar form. However, all chapters contain supplementary results and discussion beyond

previous versions of the work. In addition, the notation and nomenclature has been

standardised where possible to make the content of the thesis easily understandable to

the reader.

All of the work in this thesis is co-authored with my primary supervsior, Ke Chen.
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The main idea of Chapter 4 has been published in [112], and presented at a conference

last year [116], although all the results presented here are original. In Chapter 5 we

present work previously published in [112] and [114] and presented in part at [113, 115].

The work contained in Chapter 6 has recently been submitted for publication [118] and

an earlier version of it was published last year [111]. It has also been presented at two

conferences [116, 115]. In Chapter 7 we present work which has been submitted for

publication [131] in which I was not the primary author. It was joint work with Bryan

Williams, Yalin Zheng, and Simon Harding, but has been amended and improved in

order to be incorporated into the thesis. In Chapter 8 we present previously unpublished

work, much of which was presented at SIAM Imaging Science 2016 [117].

1.2 Thesis Outline

Subsequent chapters of the thesis are organised as follows.

Chapter 2

In Chapter 2 we introduce some relevant mathematical preliminaries that will be use-

ful in relation the content of the later chapters. Subsequent chapters will refer to this

review, and to the wider literature where necessary. This includes definitions and exam-

ples from mathematical areas such as normed linear spaces, convex sets and functions,

calculus of variations, and functions of bounded variations. In relation to variational

methods, we also discuss inverse problems and regularisation, discretising partial differ-

ential equations, interface representation, and solving equations iteratively. The level

of detail is necessarily low for brevity’s sake, but it provides an overview of the essential

details related to the subject of this thesis.

Chapter 3

Here, we provide a brief review of variational methods for image processing. We be-

gin with related methods that are particularly useful for the work in this thesis. We

introduce image denoising, and specifically the total variation (TV) model of Rudin,

Osher, and Fatemi (ROF) [109]. This is a seminal work in the field and is closely re-

lated to the segmentation problems discussed in this thesis, primarily through the TV

term. We also introduce ideas from image deblurring and registration which will be

required later in the thesis. We then turn to the central idea of this chapter, reviewing

segmentation methods essential to this work. We introduce convex relaxation methods

which are considered throughout the later chapters of the thesis. We then briefly dis-

cuss algorithms that are applicable to variational imaging methods, with an emphasis

on Chambolle’s dual formulation [23] which is of particular interest to our work.

Chapter 4

In this chapter we focus on two-phase globally convex segmentation (GCS), with a

generalised fitting function. We discuss recent work on convex relaxation methods in
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relation to the problem we consider. We introduce a new penalty function to impose the

relaxed binary constraint, u ∈ [0, 1]. Our main contribution is a new additive operator

splitting (AOS) scheme, based on applying the work of Tai et al. [85] and Weickert

et al. [128] to GCS. The methods we propose are intended to improve the quality

of the result in two senses; first, the reliability of the thresholding procedure defined

by Chan, Esedoglu, and Nikolova [30], and second, the accuracy of the final result

in relation to a ground truth. We also aim to obtain improved results in relation to

the computation time. Chapter 4 contains quantitative comparisons to an established

method by Chambolle [23], where we examine the performance of these two methods

with varied parameters. This chapter forms the basis for the rest of the work as it

relates to the framework we use throughout the thesis.

Chapter 5

Having established a new approach for finding global minimisers for GCS, in Chapter

5 we address how fitting functions are determined in practice. We first introduce the

concept of selective segmentation, where the intention is to select an image from within

the foreground of a general two-phase approach. Conventionally, selective segmentation

models tend to be level set based and thus finding global minimisers is problematic.

We discuss the necessary conditions for selective segmentation models to be reformu-

lated in a similar way to [30], discussed in detail in Chapters 3 and 4. With these in

mind, we propose a new model and demonstrate its convex reformulation. We present

experimental results intended to demonstrate the robustness of our approach to user

input, both in the sense that minimal information is required and it can vary signif-

icantly. This is crucial for the potential applications of selective segmentation. We

present results for difficult examples from medical imaging.

Chapter 6

In Chapter 6 we consider segmentation of images with significant intensity inhomogene-

ity. This requires a fitting function in GCS that goes beyond the piecewise-constant

assumption of Chan-Vese [33]. This area has been widely studied in recent years

[82, 100, 34, 3], particularly with relation to the piecewise-smooth formulation of Mum-

ford and Shah [89]. A recent approach, based on the bias field framework, has proven

an effective approach to approximating minimisers of the piecewise-smooth formulation

[89]. Recent work by D. Chen et al [37], known as a Variant Mumford-Shah Model,

is an example of segmentation model using bias field correction. We demonstrate con-

tradictions in the formulation that prevent the convergence of the intensity constants,

and introduce an additional constraint to improve the results. We discuss observed im-

provements with our stabilising method, and extend the idea to selective segmentation

by incorporating the work from Chapter 5.
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Chapter 7

In this chapter we consider the case where forming a fitting function based on the

observed image data, as in Chapters 5 and 6, is not possible due to the image being

corrupted by blur. Here, the image must be reconstructed before conventional seg-

mentation methods can be applied. Many recent methods combine the ideas of image

segmentation and deconvolution in the case where information about the blur is known

[11, 28, 69]. However, the case where the blur is unknown has not seen many advances

in recent years. We propose a joint model to simultaneously reconstruct and segment

images corrupted by unknown blur, which we call blind image segmentation. Here, we

combine implicitly constrained blind deconvolution and GCS. We also propose a re-

laxed method for accelerated convergence. We present results for a range of examples

and compare our proposed methods to alternative approaches such as Bar et al. [11]

and analogous two-stage approaches.

Chapter 8

In Chapter 8 we discuss the incorporation of shape priors for variational segmentation

models. Specifically, we consider the most effective methods for including shape infor-

mation in two-phase GCS. We review recent work in relation to this idea, and propose

a new method to represent shapes based on the correspondence between the fitting

functions of the prior and the observed image. We propose a two-stage model, incor-

porating affine registration, to segment objects of a similar shape to the prior. The

results presented demonstrate the effectiveness of the proposed method in comparison

to an analogous method using conventional shape representation techniques. We also

consider the extension of our idea to 3D segmentation, with a sequential application of

our algorithm.

1.3 Contribution

We conclude this section by discussing how our work contributes to the understanding of

variational methods for image segmentation, and try to explain how each chapter is con-

nected. In Chapter 4, we introduce a new method to compute minimisers of two-phase

GCS problems and demonstrate practical and theoretical advantages over comparable

methods. Firstly, in terms of the thresholding procedure inherent to convex relaxation

methods, we present results that match the theoretical basis for the work more closely

than the original work of Chan, Esedoglu, and Nikolova [30] and Bresson et al. [18].

In particular, our results are consistently closer to a binary result than in [30, 17, 18].

Whilst not offering an advantage in practice, it is a noteworthy improvement in relation

to the underlying ideas of GCS. However, we also present results that demonstrate a

quantifiable advantage over comparable methods in terms of performance. Specifically,

the computation time and the parameter dependence is significantly improved with

our approach to GCS with an improved AOS scheme compared to Chambolle’s dual

formulation [23, 18]. We also highlight the importance of initialisation and discuss the
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optimal choice in the context of GCS, which is often unaddressed in the literature.

In the later chapters we focus on some applications of the GCS framework, dealing

with separate but related problems. The first is how to deal with challenging observed

data, such as significant intensity inhomogeneity or blur. We deal with each problem

in Chapters 6 and 7 respectively, proposing improvements in a theoretical and prac-

tical sense. In our work involving images with intensity inhomogeneity we address a

contradiction in the widely used bias field framework [37, 49, 2]. Our proposed method

allows us to reliably compute a result that is consistent with the observed image, and

ensure that all variables involved converge. We also observe a reduction in the param-

eter dependence with our modification, offering an important advantage over existing

methods. In Chapter 7, where we address images corrupted by blur, we discuss the

benefits of reconstructing and segmenting the image simultaneously in the context of

GCS. We compare our results against comparable two-stage methods, as well as existing

methods [11], and conclude that this approach is effective.

Another important consideration in relation to the subject of the thesis is the incor-

poration of prior knowledge into GCS problems, which we address in Chapters 5 and

8. We consider two different problems; incorporating user input and data priors. Our

approach to each is different based on the challenges involved in each area. In relation

to segmentation with user input, which is generally referred to as selective segmentation

[105, 104, 8], we consider how to improve the reliability of the models. Specifically, we

discuss the conditions required to compute the global minimisers of such models by

relating the problem to GCS. Previous approaches rely on local minima which often

makes the quality of results unpredictable. We also demonstrate that our method is

not sensitive to user input, which is vital for this type of model. In Chapter 8, we con-

sider prior knowledge of a different form. Our contribution here consists of formulating

the shape term by comparing data fitting terms rather than distance or binary based

priors. Our results demonstrate that the segmentation quality is improved, as well as

being less dependent on parameter choice over alternatives. We also consider extending

this idea to 3D problems by treating the problem as a sequence of images, presenting

some results for organ selection.

The work in Chapter 4 is applicable to any general two-phase GCS problem, in-

cluding the problems presented in subsequent chapters, and we incorporate the ideas

presented here throughout the thesis. It is worth noting that the problems discussed

in Chapters 5-8 are also closely related. This is highlighted in Chapter 6, where we

combine the considerations of the previous chapter to propose a selective segmentation

model in the presence of intensity inhomogeneity. However, it is possible to consider

problems that include aspects of each chapter and this work attempts to make these

connections clearer. The methods proposed are applicable in a wide range of examples,

and often address the principle underlying the problem of interest. We also focus on

the practical advantages of our methods over established approaches, demonstrating

significant quantifiable improvements.

7



Chapter 2

Mathematical Preliminaries

In this chapter we provide a brief summary of relevant mathematical preliminaries.

Further to the discussion in Chapter 1 we introduce some concepts form linear vector

spaces and some background for functions of bounded variation. We then discuss the

setting for many image processing tasks, where we consider inverse problems requiring

regularisation and the derivation of the corresponding partial differential equations us-

ing the theory of calculus of variations. We discuss the discretisation of these equations,

such that a numerical solution to the original problem can be found. With respect to

segmentation we discuss how an interface, corresponding with the unknown edge Γ,

can be represented in a manner consistent with the discrete form of partial differential

equations. Finally, we provide an overview of conventional methods for iteratively solv-

ing equations, both in the linear and nonlinear case. Further details can be found in

the literature referenced throughout, and will also be addressed in later chapters. This

chapter is intended to provide a brief summary of important mathematical theory that

is essential to the work in this thesis.

2.1 Linear Vector Spaces

We begin by introducing the concept of a vector space, a basic mathematical structure

formed by a collection of elements

u = (u1, . . . , un),

called vectors. We then provide definitions that allow us to introduce normed linear

spaces. Further detail can be found in the literature, such as [6].

Definition 2.1.1 (Linear Vector Space). Let V be an arbitrary nonempty set of
elements on which two operations, addition and scalar multiplication, have been defined.
For u, v ∈ V , the sum of u and v is denoted by u + v, and if c is a scalar, the scalar
multiple of u by c is denoted by cu. If the following axioms hold for all u, v, w ∈ V and
for all scalars b, c, then V is called a vector space and its elements are called vectors.

1. If u, v ∈ V, then u+ v ∈ V

2. u+ v = v + u

3. (u+ v) + w = u+ (v + w)
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4. There exists an element 0 ∈ V , such that u+ 0 = u for all u ∈ V

5. There exists an element −u ∈ V , such that u+ (−u) = 0

6. For a scalar c, cu ∈ V

7. c(u+ v) = cu+ cv

8. (b+ c)u = bu+ cu

9. b(cu) = (bc)u

10. There exists an element 1 ∈ V , such that 1u = u for all u ∈ V

Example 2.1.2 Examples of linear vector spaces include

• The space C l(Ω) of all functions on the domain Ω ⊂ Rd whose partial derivatives
of order up to l are continuous.

• The space Rd for all d ∈ N.

2.1.1 Normed Linear Spaces

Definition 2.1.3 (Norm). Let N : V ⊆ Rn −→ R be a real valued function. Then N
is a norm on V if it satisfies the following properties for all u, v ∈ V :

1. N(u) = 0⇒ u = 0,

2. N(αu) = |α|N(u) ∀α ∈ R,

3. N(u+ v) ≤ N(u) +N(v).

Remark 2.1.4 By the positive homogeneity axiom, we have N(u) = N(−u). Along
with the triangle inequality axiom we have positivity of the norm, i.e. N(u) ≥ 0. When
the first axiom does not hold, N is a seminorm on V .

A norm induces a metric on V by

d(u, v) := N(u− v),

which is homogeneous and invariant under translations:

d(αu, αv) = |α|d(u, v), d(u+ v, v + w) = d(u,w).

The norm of a vector u on the set of real numbers R is usually represented by ‖u‖.

Example 2.1.5 Some important examples of norms:

• p-norm:
Consider u ∈ Rn, then for any real number p ≥ 1 the p-norm of u is defined as

‖u‖p =

(
n∑
i=1

|ui|p
)1/p

.

Note that for p = 2 we have the Euclidean norm. The infinity norm is defined as

‖u‖∞ = max(|u1|, |u2|, . . . , |un|).
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• Lp-norm:
Consider a continuous function f defined on a domain Ω such that∫

Ω
|f(x)|p dx <∞,

with 1 ≤ p ≤ ∞. Then the Lp-norm of f on Ω is defined as

‖f(x)‖Lp =

(∫
Ω
|f(x)|p dx

)1/p

.

The special case of p =∞ is defined as

‖f(x)‖∞ = sup
x
|f(x)|.

Definition 2.1.6 (Inner Product). An inner product on a linear vector space V is a
function 〈·, ·〉V , defined on V × V , which satisfies the following conditions (with scalar
λ):

1. 〈u, u〉V > 0, ∀ u 6= 0

2. 〈u, v〉V = 〈u, v〉V , ∀ u, v ∈ V

3. 〈λu, v〉V = λ〈u, v〉V , ∀ u, v ∈ V and ∀ λ

4. 〈u+ v, w〉V = 〈u,w〉V + 〈v, w〉V , ∀ u, v, w ∈ V

Definition 2.1.7 (Normed Linear Space). If a vector space, V , is equipped with a
norm ‖.‖ defined on it, then V is called a normed linear space.

Remark 2.1.8 A relevant example is Euclidean n-space (or Cartesian space), where
the space of all n-tuples of real numbers x ∈ Rn is equipped with the Euclidean metric.
A linear vector space with an inner product defined on it, is a special type of normed
space. When a space is equipped with a seminorm, then it is called a seminormed linear
space.

Definition 2.1.9 (Cauchy Sequence). Let {ui} be a sequence in a normed linear
space V . This is a Cauchy sequence if for every ε > 0, there exists an N ∈ N such that

‖ui − uj‖ < ε, ∀i, j ≥ N.

Definition 2.1.10 (Banach Space). A normed linear space V is said to be a Banach
space if it is complete. That is, if every Cauchy sequence {ui} ⊂ V converges to an
element u ∈ V .

Example 2.1.11 The space of all continuous functions, f , in an interval [a, b], denoted
C([a, b],R), is a Banach space if we define the supremum norm of such functions as

‖f‖ = sup{|f(x)| : x ∈ [a, b]}.

It is a well-defined norm since all continuous functions on a compact interval are
bounded.

Definition 2.1.12 (Hilbert Space). A space V with an inner product 〈u, v〉 such
that every Cauchy sequence converges to an element of V , is called a Hilbert Space.
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Definition 2.1.13 (Lipschitz Condition). If for all u, v ∈ S ⊂ R for some M ∈ R
the real function f : S → R satisfies the Lipschitz condition in S:

|f(u)− f(v)| ≤M |u− v|,

then f is called a Lipschitz continuous function.

The above definitions and examples cover some basic ideas essential to the vari-

ational methods discussed in this thesis. We will refer to this in later chapters, and

discuss its relevance to the subject.

2.1.2 Convex Sets and Functions

We now introduce some important definitions and examples relating to convexity. These

ideas are essential for understanding later chapters, as this is an important concept in

relation to optimisation.

Definition 2.1.14 (Convex Set). A set S in a vector space V is said to be convex
if, for all u, v ∈ S and all θ ∈ [0, 1], the point

(1− θ)u+ θv

is in S. In other words, every point on the line segment connecting u and v is in S.

Definition 2.1.15 (Convex Function). A function f : S → R defined on a convex
set S of some vector space is called convex if

f(θu+ (1− θ)v) ≤ θf(u) + (1− θ)f(v) (2.1)

for all u, v ∈ S and θ ∈ (0, 1). If the inequality is always strict for u 6= v, f is called
strictly convex.

Theorem 2.1.16 Let I = (a, b) be an interval on R. Then

1. A function f which is differentiable everywhere on I is convex on I if and only
if its derivative is monotonically non-decreasing on I.

2. A function f which is twice differentiable everywhere on I is convex on I if
and only if its second derivative is non-negative on I.

Example 2.1.17 The square of the L2-norm of a function u : Ω ⊆ R2 → R given by

||u||22 =

∫
Ω
|u|2dx

is convex. By introducing a function φ and parameter ε, we can calculate the second
derivative of a function F (u) by making the substitution v = u + εφ and finding the
second derivative with respect to ε:

d2F (v)

dε2
=

d

dε

(
dF (v)

dv

dv

dε

)
=

d

dε

(
dF (v)

dv
φ

)
=
d2F (v)

dv2

dv

dε
φ =

d2F (v)

dv2
φ2.

Extending this to the L2-norm defined above:
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d2

dε2
||u+ εφ||22 =

∫
Ω

d2

dε2
(u+ εφ)2dx =

∫
Ω

d

dε
2φ(u+ εφ)dx =

∫
Ω
φ2dx

we have demonstrated that the second derivative is non-negative. Then by the theorem,
the square of the L2-norm of u is convex

Remark 2.1.18 Several operations preserve convexity, such as:

• Weighted sums: Let f and g be convex functions on R. Then, the linear combi-
nation h = αf + βg is also convex for α, β ≥ 0.

• Affine substitutions: Let f be a convex function on Rn and A : Rm → Rn be an
affine mapping given by A(x) = Ax+ b. Then f(A(x)) is also convex.

The following definition is important to understanding many imaging models, es-

pecially in the context of functions of bounded variation which we will come to next.

We now define the subgradient of a function, with further detail found in the literature

[24, 51].

Definition 2.1.19 (Subgradient). A function f is convex and defined on a finite
dimensional space U . For u ∈ U ,

∂f(u) = {p ∈ U : f(v) ≥ f(u) + 〈p, v − u〉 ∀ v ∈ domf}

We note that dom ∂f = {u : ∂f(u) 6= ∅} ⊂ dom f , and if f is differentiable at u, then

∂f(u) = {∇f(u)}. It is also the case that u ∈ arg minU f if and only if 0 ∈ ∂f(u). This

is evident, as it is equivalent to f(v) ≥ f(u) + 〈0, v − u〉 ∀ v. This idea is important

to consider for the work in this thesis, as we are interested in convex functionals on a

space of functions that is not necessarily differentiable.

2.2 Functions of Bounded Variation

In this section we introduce the idea of functions of bounded variation (BV). Functions

of this type are important to many variational methods in imaging, due to total varia-

tion (TV) based regularisation which is common in many seminal works [109, 33, 30].

Further details can be found in the literature [57, 52, 53, 25, 1]. We begin by introducing

some important definitions.

Definition 2.2.1 (Compact support). If U ⊂ Rn is nonempty, we denote U as the
closure of U in Rn. We write U b Ω if U ⊂ Ω and U is a closed and bounded (i.e.
compact) subset of Rn. If f is a function defined on U , the support of f is defined as
the set

supp(f) = {x ∈ U : f(x) 6= 0}.

The function f has compact support in Ω if supp(f) b Ω. As an example of the notation
we use, the space of continuously differentiable functions, C1(Ω), with compact support
is denoted C1

0 (Ω).
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Definition 2.2.2 (Total Variation (TV) seminorm). Let Ω be a bounded open
subset of Rn and u ∈ L1(Ω). Define the total variation,

TV (u) =

∫
Ω
|Du| = sup

V

{∫
Ω
u divϕ dx

}
, (2.2)

where V is the set of the test functions

V = {ϕ = (ϕ1, ϕ2 . . . , ϕn) ∈ C1
0 (Ω;Rn) : |ϕ(x)|L∞(Ω) ≤ 1, ∀ x ∈ Ω},

and

divϕ =
n∑
i=1

∂ϕi
∂xi

.

A noteworthy example is when u ∈ C1(Ω), then

∫
Ω
u divϕ dx = −

∫
Ω

n∑
i=1

∂u

∂xi
ϕi dx

for every ϕ ∈ C1
0 (Ω;Rn) using integration by parts. Then,∫

Ω
|Du| =

∫
Ω
|∇u| dx. (2.3)

Remark 2.2.3 Using this definition, we can highlight an important property. Recalling
the total variation of u ∈ C1(Ω) as

TV (u) =

∫
Ω
|∇u|, (2.4)

we can show this is a convex function as follows. With u1 6= u2:

∫
Ω
|∇(αu1 + (1− α)u2)| =

∫
Ω
|α∇u1 + (1− α)∇u2|

≤ α
∫

Ω
|∇u1|+ (1− α)

∫
Ω
|∇u2|

Therefore,

TV (αu1 + (1− α)u2) ≤ αTV (u1) + (1− α)TV (u2)

which meets the definition from the previous section. This property of the TV seminorm
is particularly important, and we will return to it later.

Definition 2.2.4 (Bounded Variation (BV)). If for a function u ∈ L1(Ω) , TV (u) <
∞, then the function u is said to be of bounded variation. The notation BV(Ω) denotes
all functions in L1(Ω) that are of bounded variation.

Remark 2.2.5 Under the norm

‖u‖BV = ‖u‖L1 +

∫
Ω
|Du|,

BV (Ω) is a Banach space.
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2.2.1 Co-area Formula

A fundamental property of BV functions is the coarea formula of Federer and Fleming

[52, 53]. It states that for a real-valued Lipschitz function u(x) in an open set Ω in Rn,

the total variation of u(x) can be computed by summing the perimeters of all level sets

of u(x). Formally, for u(x) ∈ BV (Ω) defined in Ω we define the level domain in Rn, as

Eγ = {x ∈ Ω : u(x) ≤ γ}. (2.5)

Then, for any continuous and integrable function g(x) ∈ C1

∫
Rn
g(x) |∇u(x)|dx =

∫ +∞

−∞

(∫
Eγ

g(x) ds

)
dγ.

For the particular case when g(x) = 1 and the region of integration is a subset Ω ⊂ Rn

we have

∫
Ω
|∇u|dx =

∫ +∞

−∞

(∫
Eγ

ds

)
dγ =

∫ ∞
−∞

dγ

∫
Ω
|DχEγ |dx

Definition 2.2.6 (Perimeter). The perimeter of Eγ ∈ Ω is defined as

Per(Eγ) =

∫
Ω
|DχEγ | = sup

V

{∫
Eγ

divϕ dx

}
, (2.6)

where χE is a characteristic (or indicator) function of the set E, defined as

χE =

{
1 if x ∈ E
0 if x ∈ Ω− E.

Definition 2.2.7 (Coarea formula). Assume that u is Lipschitz continuous and that
for almost every γ ∈ R. Then

TV (u) =

∫
Ω
|Du| =

∫ ∞
−∞

Per(Eλ)dλ. (2.7)

The proof can be found in [57]. An interesting characterisation of functions of bounded

variation is as follows.

Example 2.2.8 The TV of a characteristic function, χE, is given as follows∫
Ω
χE divϕ dx =

∫
E

div ϕ dx =

∫
∂E
~n · ϕ ds,

where ~n is the outward unit normal to ∂E. The expression is maximised for any vector
field with ϕ|∂E = ~n, and hence

TV (χE) =

∫
∂E
ds = Hn−1 (2.8)

where Hn−1 is the (n− 1)-dimensional Haussdorff measure, i.e. length when n = 2.

This demonstrates that for u ∈ BV (Ω), the total variation of this function is the sum of

the length of its level sets. In the context of imaging, this means that the discontinuities

of the function and therefore the edges of the image are accounted for.
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2.2.2 Derivative of a BV Function

We now briefly deal with an important theoretical aspect of this section; the derivative

of functions of bounded variation. Further details can be found in Chambolle et al.

[24], and the related literature. First, let’s consider a simple case. For a function

u ∈ W 1,1(Ω), then Du = ∇u(x)dx, where ∇u is a vector-valued function in L1(Ω;Rn)

called the ”weak gradient”. Then, Du is said to be absolutely continuous with respect

to Lebesgue’s measure. However, for a general function u ∈ BV (Ω), we have

Du = ∇u(x)dx+Dsu,

where Dsu is the singular part of Du, which vanishes if and only if u ∈W 1,1(Ω). This

can be further decomposed into the ”jump set” and the ”Cantor part”, with further

details given in [24, 57, 51]. In the rest of the thesis, despite the fact that we consider

BV functions and cannot guarantee that Dsu vanishes, we approximate Du with the

weak gradient. Furthermore, in practice we deal with a discretised setting where we

compute the gradient numerically in a similar way to related work [30, 109, 18].

2.3 Inverse Problems

In forward modeling problems, the aim is to compute solutions (approximate or exact)

based on some known properties. An inverse problem begins with data that is the result

of a process, and the task is to find the unknown input. In other words, it is the inverse

of a forward problem. Inverse problems arise in many important fields, and improving

our understanding of them is essential in numerous practical applications. Of particular

interest to this work, we note important inverse problems in image processing, such

as denoising [109], deblurring [35], inpainting [32], and registration [66]. A common

consideration with inverse problems is that they are often ill-posed, which we will now

discuss.

2.3.1 Well and Ill-Posed Problems

The definition of well-posedness, based on Hadamard [63], is given as follows.

Definition 2.3.1 (Well-posed Problem). A problem is well-posed if the following
conditions hold:

- A solution exists,

- The solution is unique,

- The solution depends continuously on the data.

Typically, inverse problems are not well-posed and the stability condition above is

most often violated. However, with many problems in image processing the uniqueness

condition is not met. Problems that are not well-posed in the sense of Hadamard are

considered ill-posed. An example of same is given as follows.
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Example 2.3.2 Image restoration problems such as denoising are well known, and
this example highlights what is meant by an ill-posed problem in practice. Consider an
image u defined in Ω ⊂ R2, and an observed noisy image z that contains some additive
Gaussian noise, η, such that the relation z = u + η is satisfied. The inverse problem
of finding u given z can be approached using variational methods, where an estimate
of the standard deviation of the noise is assumed (σ2). The minimisation problem is
then:

min
u

{∫
Ω
|u− z|2dx = σ2

}
.

Here, there are many possible solutions, i.e. the solution is not unique. Therefore, this
inverse problem is ill-posed.

2.3.2 Regularisation

In 1963 Tikhonov [121] introduced a seminal approach to transform an ill-posed inverse

problem into a well-posed one, known as regularisation. This consists of introducing a

new constraint that imposes certain restrictions on the solution. Typically this takes

the form of penalising the complexity of the function, such as requiring smoothness.

We will illustrate this approach in relation to Example 2.3.2, which is regularised in

the following way:

min
u

{∫
Ω
|u− z|2dx+ α

∫
Ω
|∇u|2dx

}
. (2.9)

The first term is the fitting term, that stipulates that the solution must closely re-

semble the observed data. The second is the regularisation term that requires the

function u to have low gradient values, and α is a parameter that determines the level

of noise reduction. The balance between the fitting and regularisation terms is empiri-

cally determined based on the properties of the desired solution. The solution to this

minimisation problem is unique, and hence now it is well-posed.

In general, Tikhonov regularisation is defined as follows. Consider a given A :

D(A) ⊆ X → Y operator between the Hilbert spaces X and Y such that Au = b.

When a solution for u does not satisfy the conditions of well-posedness, Tikhonov [121]

proposed minimising the following functional:

min
u

{∫
Ω
||Au− b||22dx+ α

∫
Ω
||u||22dx

}
. (2.10)

This technique can be generalised by selecting alternate penalty functionals in the form

of norms or seminorms of the function.

2.4 Calculus of Variations

In this section we introduce some essential concepts of the calculus of variations. Fur-

ther detail can be found in the literature [54, 56, 7]. The idea is to find the optimal

curve or surface based on an optimality criterion given in the form of a functional,

which is a function of another function that assigns a real number to each function
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in some class. We cover how this functional is minimised, by introducing the Gâteux

derivative and Gauss’s Theorem, and provide an example of same of particular interest

to this work.

2.4.1 Variation of a Functional

The first variation of a functional deals with the problem of finding a function for

which the value of a certain integral is at its largest or smallest. Classical solutions

to minimisation problems in the calculus of variations are given by boundary value

problems involving certain types of differential equations. These are referred to as

Euler-Lagrange equations. Consider the general functional J (u) : Ω→ R

J (u) =

∫
Ω
F (x, u(x),∇u(x))dx

where Ω denotes some normed linear space that is a solution space of the unknown

function u, ∇u(x) denotes the gradient of u, and dx is the n-differential element defined

as dx = dx1 · · · dxn. We are concerned with the problem of minimising the functional

J (u) with respect to u:

min
u
J (u). (2.11)

The most important necessary condition to be satisfied by any minimiser of a variational

integral is the vanishing of its first variation δJ (u):

δJ (u) =
d

dε
J (u+ εϕ)

∣∣∣∣
ε=0

= 0 (2.12)

where ϕ ∈ Ω is a test function and ε is a real parameter (restricted to some interval

around 0). That is, if u is a minimiser of J (u) with respect to δu = ϕ, then (2.12)

must be satisfied for all ϕ with compact support in Ω. Then we call δJ (u0) the first

variation of J at u0 in the direction of ϕ, for some u0 ∈ Ω.

2.4.2 Gâteaux Derivative of a Functional

Definition 2.4.1 (Gâteux Derivative). Let J be a function on an open subset U of
a Banach space V , taking values in a second Banach space Y . Then we say J : U → Y
is Gâteux differentiable at u ∈ U in the direction of ϕ ∈ V , if the first directional
derivative J ′(u;ϕ) exists for each test function ϕ ∈V . That is,

δJ (u) = lim
ε→0

J (u+ εϕ)− J (u)

ε
.

Remark 2.4.2 In other words the Gâteaux derivative of J (u) is just the derivative of
J (u+ εϕ) with respect to ε, evaluated at ε = 0.

We now introduce some important definitions corresponding to the minimisation of a

functional. The distinctions described below are fundamental to many aspects of this

thesis, particularly in relation to Chapter 4.
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Definition 2.4.3 (Stationary Point). Let J : U → R be a function with solution
space U ⊂ V . For some ũ ∈ U , suppose J is Gâteaux-differentiable for all test functions
ϕ ∈ V . Then ũ ∈ U is said to be a stationary point of J if δJ (ũ) = 0 for all ϕ ∈ V .

Definition 2.4.4 (Local Minimiser). A real-valued functional J : U → R, defined
in the normed space V , is said to have a local minimiser at the point ũ, if there exists
some ε > 0 such that

J (ũ) ≤ J (u), ∀ u ∈ Bε(ũ)
⋂
U,

with Bε(ũ) := {u ∈ V : ‖u− ũ‖ < ε}.

Definition 2.4.5 (Global Minimiser). A real-valued functional J : U → R is said
to have a global minimiser at the point ũ, if J (ũ) ≤ J (u), ∀ u ∈ U .

Remark 2.4.6 The local and global maximisers of a functional J (u) can be defined in
a similar way, by adjusting the inequalities.

The equation δJ (u) = 0 is called the Euler-Lagrange equation of the original min-

imisation problem (2.11). If J (u) is a convex functional, and U is a convex set, then

every local minimiser of J (u) is also a global minimiser. This is a useful propoerty,

that we will return to later.

2.4.3 The Divergence Theorem

The Divergence Theorem, also known as Gauss’s theorem, is essential to obtaining the

Euler-Lagrange equation when minimising a functional. This idea will be referred to

throughout the thesis, and is given as follows.

Theorem 2.4.7 (Gauss’s Theorem). Let F be a continuously differentiable vector
field in a domain V ⊂ Rn. Let Ω ⊂ V be a closed, bounded region whose boundary, ∂Ω,
is smooth. The volume integral of the divergence of F over Ω and the surface integral
of F over the boundary ∂Ω are then related by∫

Ω
(∇ · F )dx =

∫
∂Ω
F · ~n ds.

where ∇ · F = ∂F
x1

+ . . .+ ∂F
xn

, dx = {dx1, . . . dxn}, ds indicates integration with respect
to surface area on ∂Ω, and ~n is the unit outward normal for each point x ∈ ∂Ω.

An important consequence of the Divergence Theorem can be seen by applying inte-

gration by parts to the product of a scalar function g and a vector field F . This gives

us the following relation:∫
Ω

(F · ∇g + g∇ · F ) dx =

∫
∂Ω
gF · ~n ds. (2.13)

We conclude this section by providing an illustrative example of the Divergence The-

orem, with a particular application to variational segmentation. The relation above

(2.13) will be referred to when determining the boundary conditions.
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Example 2.4.8 Consider the problem of finding the first variation of the functional

J (u) =

∫
Ω
|∇u| dx,

defined on a domain Ω ⊂ R2. Recall that εϕ consists of the parameter ε → 0 and the
continuously differentiable test function ϕ in Ω. Then we compute,

d

dε
J (u+ εϕ)

∣∣∣∣
ε=0

=
d

dε

∫
Ω
|∇(u+ εϕ)| dx

∣∣∣∣
ε=0

=

∫
Ω

∇(u+ εϕ)

|∇(u+ εϕ)|
· ∇ϕ dx

∣∣∣∣
ε=0

=

∫
Ω

∇u
|∇u|

· ∇ϕ dx.

Using the relation introduced above (2.13), based on Gauss’s Theorem and integration
by parts, we get∫

Ω

∇u
|∇u|

· ∇ϕ dx =

∫
∂Ω
ϕ
∇u
|∇u|

· ~n ds−
∫

Ω
∇ ·
(
∇u
|∇u|

)
ϕ dx.

We require

d

dε
J (u+ εϕ)

∣∣∣∣
ε=0

= 0,

for all test functions ϕ. This allows us to derive the following partial differential equa-
tion, known as the Euler-Lagrange equation:

∇ ·
(
∇u
|∇u|

)
= 0 in Ω,

with Neumann boundary conditions, ∇u · ~n = 0 on ∂Ω.

2.5 Discretisation of Partial Differential Equations

Solving a partial differential equation (PDE) analytically is often not possible. Typ-

ically the Euler-Lagrange equations arising from variational imaging models fall into

this category. As discussed in Chapter 1, we therefore attempt to obtain numerical

solutions by solving a discrete version of the continuous PDE. A number of approaches

exist to address this issue, such as the finite element method. However, in image pro-

cessing problems the domain Ω ⊂ R2 tends to be rectangular with uniformly distributed

points. As a result, it is natural to use the finite difference method to discretise the

domain. In this section, we will discuss some relevant details associated with problems

of interest in this thesis.

We consider the domain Ω = (a, b)× (c, d) ⊂ R2, on which we impose a (nx + 1)×
(ny+1) cartesian grid with spacing hx = (b−a)/nx and hy = (d−c)/ny for the x and y

directions respectively. In a cell-centered discretisation (as opposed to vertex-centered)

there are nx × ny grid points and the point (i, j) is located at

19



(xi, yj) =

(
a+

2i− 1

2
hx, c+

2j − 1

2
hy

)
, for 1 ≤ i ≤ nx and 1 ≤ j ≤ ny.

We call the interior of the discrete grid Ωh and the boundary ∂Ωh. Generally, we

assume hx = hy = h. Now, operators from the PDE in the continuous domain can be

approximated locally on Ωh using the Taylor expansions

u(x+ h, y) =
∞∑
i=0

hi

i!

∂iu(x, y)

∂xi
, u(x− h, y) =

∞∑
i=0

(−1)ihi

i!

∂iu(x, y)

∂xi
.

We now detail three possible approximations of the derivative ∂u/∂x at the grid point

(i, j). There is the forward difference operator

∇+
x (ui,j)

h
≈ u(x+ h, y)− u(x, y)

h
=
ui+1,j − ui,j

h
,

and the backward difference operator

∇−x (ui,j)

h
≈ u(x, y)− u(x− h, y)

h
=
ui,j − ui−1,j

h
,

where ui,j = u(xi, yj) is the value of u(x, y) at the point (i, j). These are both first

order methods. A second order approximation based on central differences can be given

as

∇cx(ui,j)

2h
≈ u(x+ h, y)− u(x− h, y)

2h
=
ui+1,j − ui−1,j

2h
.

We can also approximate higher order derivatives in a similar way. For example, a

second order approximation of ∂2u/∂x2 at (i, j) is given by

∆x(ui,j) = ∇x−(∇x+(ui,j)) =
ui+1,j − ui,j + ui−1,j

h2
.

Similar definitions can be given for partial derivatives with respect to y.

With this in mind, it is often possible to write a PDE in the continuous domain in

matrix form:

Ah(uh) = fh.

It is also important to consider how boundary conditions can be defined in the discrete

domain. For cell-centered grids there are no points on the boundary so the equation at

points near the boundary will involve ghost points. For example, to impose Neumann

boundary conditions on one side of the domain we can write

un+1,j − un,j
h

= fn+1/2,j .

Specific examples of discretisations of nonlinear PDEs related to imaging problems are

given in later chapters when relevant.
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2.6 Interface Representation

In variational segmentation the aim is to find an interface, Γ, that partitions the domain,

Ω, into distinct regions. With this in mind we breifly introduce some background of

how this interface is represented in the literature.

2.6.1 Curves in Euclidean Spaces

With respect to the segmentation of images, we are concerned with a domain Ω ⊆ R2.

These ideas generalise to higher dimensions, but will not be addressed here. As such we

limit this discussion to closed curves, with clearly defined interior and exterior regions.

In simple cases, such as the boundary of the unit disk, the corresponding curve can be

given analytically. However, typically it is necessary to parametrise the curve with a

function φ = (x1(t), x2(t)), for t ∈ [a, b]. To describe a closed curve implies φ(a) = φ(b).

The corresponding parametric equation for the boundary of the unit disk is then

φ(t) = (cos(t), sin(t)), for 0 ≤ t < 2π.

When the interface cannot be given analytically, or when it evolves from some simple

initialisation (which we will address in the following chapters) a parametric repre-

sentation is not practical. We now provide some important definitions of geometric

characteristics relating to the interface, and then introduce the Heaviside and Dirac

delta functions. This will be useful in subsequent chapters.

Definition 2.6.1 For a scalar function φ(x1, ..., xn) the gradient is denoted ∇φ and is
defined as

∇φ =

(
∂φ

∂x1
, ...,

∂φ

∂xn

)
.

The gradient of φ points in the direction of increasing φ, perpendicular to its isocon-

tours. The unit outward normal vector ~n points in the same direction as ∇φ for points

on the interface, and is defined

~n =
∇φ
|∇φ|

.

Definition 2.6.2 The curvature of the interface is defined as the divergence of the unit
normal ~n, and is denoted κ:

κ = div ~n = ∇ · ∇φ
|∇φ|

=
∂

∂x1

(
∇φ
|∇φ|

)
+ ...+

∂

∂xn

(
∇φ
|∇φ|

)
.

2.6.2 Heaviside and Dirac delta function

The Heaviside function, often called the unit step function, is useful when dealing with

piecewise continuous functions, i.e. functions containing sharp jumps. It is relevant

here as it allows us to represent the interface in an alternative way.
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Definition 2.6.3 The Heaviside function, is a discontinuous function whose value is
zero for negative arguments and one for positive arguments. For a given function φ(x),
x ∈ Rn:

H(φ) =

{
1 if φ ≥ 0,
0 if φ < 0.

In one dimensional space, the derivative of the Heaviside is called the delta function,

δ(φ) = H ′(φ), and is zero everywhere except at φ = 0. The characteristic function of

the interior and exterior regions, denoted by χ1 and χ2 respectively, can be expressed

in terms of the Heaviside as follows

χ1 = H(φ) and χ2 = 1−H(φ).

Definition 2.6.4 For a given function φ(x), x ∈ Rn, the directional derivative of the
Heaviside function H in the normal direction ~n is called Dirac delta function, denoted
δ̂(x):

δ̂(x) = H(φ)′ · ~n = H ′(φ) ∇φ ·
(
∇φ
|∇φ|

)
= H ′(φ)|∇φ| = δ(φ)|∇φ|.

With two-dimensional segmentation in mind we consider R2, and can determine

important properties of the closed curve as follows. Simple examples include the area

of the interior region Ω1, and exterior region Ω2, given by∫
Ω
H(φ)dx, and

∫
Ω

(1−H(φ))dx,

respectively. The length of the interface ∂Ω1 is∫
Ω
|∇H(φ)|dx =

∫
Ω
δ(φ)|∇φ|dx.

In the next section we will discuss how these ideas are incorporated into an alternative

method to curve parametrisation.

2.6.3 Level Set Method

The level set method is a numerical technique to track a moving interface or surface.

First introduced by Osher and Sethian [95] in 1988, it has been become an essential

method in many applications in computer vision and image processing. In relation to

our work it is noteworthy as it provided a formulation to efficiently track an evolving

contour, and is central to many important models [33, 34, 123]. In this section we

provide a brief overview of this work. We refer the reader to the original paper [95] and

other work [143, 83] for further detail. Whilst it is applicable in higher dimensions (i.e.

tracking surfaces) we concentrate on curve (or interface) evolution, as it is relevant to

two-dimensional imaging.

For a given interface Γ ∈ Ω, the level set method consists of implicitly representing

Γ with the zero level set of a Lipschitz function φ : Ω→ R, such that
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φ(x) > 0 inside Γ

φ(x) < 0 outside Γ

φ(x) = 0 on Γ.

This is illustrated in Fig. 2.1, where the interface for a corresponding level set function

is given.

i) φ(x) and φ = 0 ii) Corresponding interface, Γ

Figure 2.1: Illustration of the interface representation with the level set method. i)
shows a function φ (conventionally a distance function) and its intersection with φ = 0.
ii) shows the corresponding zero level set of φ, which implicitly defines the interface
based on the values of φ. The level set function is almost arbitrary (excepting possible
numerically difficult choices) in this context as long as Γ remains unchanged.

The interface evolves over time so it is necessary to define the level set as a function

of time: 
φ(x(t); t) > 0 inside Γ

φ(x(t); t) < 0 outside Γ

φ(x(t); t) = 0 on Γ.

Now, consider an evolving interface where the normal velocity v(x) is known for every

point x with φ(x) = 0. Then, the evolution can be found by solving the following

ordinary differential equation: {
dx(t)
dt = v(x)

Γ(t = 0) = Γ0,

for every point x on the interface Γ. This is the Lagrangian formulation of the interface

evolution equation. In order to overcome the difficulties associated with parametrising

this interface, Osher and Sethian proposed the level set formulation. In relation to the

ordinary differential equation above, the solution can be given by solving the following

PDE: {
∂φ(x)
∂t = −F (x)|∇φ(x)|)

φ(x, t = 0) = d(Γ0) = φ0(x),
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where d(·) is generally a signed distance function, whose zero level set is the initial

contour Γ0, and F is the speed in the outward normal direction, i.e. v(x) = F (x(t)) ·~n.

This alternate method of tracking interface evolution is much more effective than a

parametrisation approach, and can be applied in practice by selecting F accordingly.

For example, in imaging it is natural to consider a term based on an edge detector of

an observed image such that the interface defines object boundaries.

From the above we can make some observations about features of the level set

method, and why it has emerged as a useful tool for image segmentation. One of

the main difficulties with parametrising the interface Γ is that it relies on the object in

question being simple topologically. By defining the interface implicitly, in a parametri-

sation free formulation, topological changes of Γ are dealt with automatically. As the

function φ evolves, the interface Γ can split or merge without difficulty, as it is defined

by the zero level set of φ. With an explicit parametrisation, this would be challenging.

In the case of splitting, the algorithm would have to construct separate parametrisa-

tions that would then evolve further and potentially split or merge in other areas of the

domain. Also, the only points of φ of interest are those on the zero level set, i.e. the

interface. This means that the level set function is essentially arbitrary, as long as the

interface is consistent. This allows for adjustments to be made to φ for the purposes of

numerical stability, known as reinitialisation. We refer the reader to the work of Li et

al. [83] and the references therein, for further details.

2.7 Iterative Solutions to Equations

In this section we discuss how the equations that arise in later chapters are solved.

These are split into two classes, which require different approaches. The first is linear

systems, which are relatively straightforward to solve depending on the structure of

the system. We introduce fundamental methods such as the Jacobi Method, and the

Gauss Seidel Method. Other examples similar to these include Successive Over Re-

laxation [94], which we do not address here. This addresses the principle of iterative

methods with some initial approximation, that approaches the true solution. The sec-

ond is nonlinear equations. We introduce Newton’s Method, gradient descent and time

marching schemes, and finally additive operator splitting (AOS) [127, 128, 129, 85],

which splits an m-dimensional problem into a series of m one-dimensional problems,

and is related to a semi-implicit time marching scheme. These methods are more com-

monly necessary for the equations that arise in variational imaging problems, such that

they are essential to consider.

2.7.1 Basic Methods for Linear Systems

First, we introduce and review some basic iterative methods for finding solutions to

linear systems of equations of the form

Au = b, (2.14)
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where A is an n×n matrix, b is an n× 1 vector and u is the n× 1 vector of unknowns.

Finding the unknown u with direct methods, such as Gaussian elimination, requires the

calculation of the inverse of A such that we have a solution u = A−1b ∈ RN . Numer-

ically, direct methods are not suitable for many applications as they have substantial

computational costs. The methods introduced in the following use some initial approx-

imation u(0) to generate a sequence of approximations that approach the true solution

u. Such methods involve iterations of the form

u(k) = Tu(k−1) + c,

where k is the current iterative step, T is an update matrix, and c some vector, neither

of which is dependent on the iterative sequence. How these are defined depends on the

technique used, which we will now address. They have an advantage over alternatives in

terms of implementation and their cheap computation, such that they are an important

method to consider.

The Jacobi Method

The Jacobi method, named after Carl Gustav Jakob Jacobi, is a simple iterative scheme

that forms the basis of many other methods. For the original system of linear equations

(2.14), we can see that the ith equation is given by

n∑
j=1

aijuj = bi. (2.15)

Solving for ui is then given by the equation

ui =
bi
aii
−

n∑
j=1

j 6=i

(aijuj
aii

)
.

Generalising for the kth update, assuming that the previous iterations u(1), ..., u(k−1)

have been calculated, we then have the Jacobi update:

u
(k)
i =

1

aii

(
bi −

n∑
j=1

j 6=i

aiju
(k−1)
j

)
, for i = 1, . . . , n.

This method is consistent with a parallel implementation, which can provide significant

gains in speed. The next method modifies this idea in the sense that it uses the most

recent approximation of x to improve performance.

Gauss Seidel Method

The Gauss Seidel method, named after Carl Friedrich Gauss and Philipp von Seidel,

is closely related to the Jacobi method. Essentially, the method consists of Jacobi

iterations using the most recent values at each iteration. In particular, when calculating

u
(k)
i the values u

(k)
1 , . . . , u

(k)
i−1 are used. The idea is that these are better approximations
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of the solution than u
(k−1)
1 , . . . , u

(k−1)
i−1 , and so can provide some improvement. Gauss

Seidel iterations are defined as follows:

u
(k)
i =

1

aii

(
bi −

i−1∑
j=1

aiju
(k)
j −

n∑
j=i+1

aiju
(k−1)
j

)
for i = 1, . . . , n.

Each update is very dependent on previously updated entries, meaning the ordering

of the equations is vital. Convergence is quicker when aii is as large as possible. An

important advantage of Gauss Seidel is that only one storage vector is required, as

opposed to Jacobi which requires two arrays u(k−1) and u(k). Instead, each entry is

replaced as soon as it is not required. For large systems of equations this is particularly

beneficial, as the memory required can be significantly reduced. As with Jacobi, this

method can be implemented in parallel to speed up computation.

Convergence

Each of the iterative methods above define a sequence of the form

u(k) = Tu(k−1) + c,

for a particular iteration matrix, T . In order to discuss some basic concepts about the

convergence of such schemes, we introduce some relevant definitions.

Definition 2.7.1 (Symmetric Matrix). A square matrix A is called symmetric if it
is equal to its transpose, AT . That is, A = AT .

Definition 2.7.2 (Positive Definitive Matrix). A real symmetric matrix A is pos-
itive definite if uTAu > 0 for all non-zero vectors u. This is equivalent to saying that
all the eigenvalues of A are positive.

Remark 2.7.3 If the matrix A is positive definite then it can be shown that its inverse,
A−1, exists [94].

Definition 2.7.4 (Diagonally Dominant Matrix). A matrix A is said to be diago-
nally dominant if for each row the absolute value of the entry on the diagonal is greater
than or equal to the sum of the absolute values of the entries off the diagonal. Precisely:

|aii| ≥
∑
i 6=j
|aij |, ∀i.

A matrix A is called strictly diagonally dominant if

|aii| >
∑
i 6=j
|aij |, ∀i.

Remark 2.7.5 If A is strictly diagonally dominant then it is not singular, meaning
the original system Au = b has a unique solution. In this case, both methods always
converge and Gauss Seidel is faster than Jacobi iterations. It can also be shown that
Gauss Seidel will converge for any u(0) [94].

Generally speaking, variational formulations in imaging rarely lead to equations

that can be solved with the above methods. Instead a nonlinear system is produced,

and we will introduce some basic methods for that case next.
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2.7.2 Nonlinear Equations

We now introduce the problem of finding solutions to systems of nonlinear equations.

Generally, the equations that arise in variational imaging problems are nonlinear and

as such considering these methods is important. In this short section we introduce

some basic methods to solve nonlinear equations of this type. We begin by introduc-

ing descent methods for minimising an energy functional and then discuss the AOS

method, which is applicable to a certain class of nonlinear equations of interest. These

approaches have been used for some problems associated with imaging [105, 104, 9].

Finally, we provide a brief review of Newton’s Method which is referred to in a later

chapter in relation to affine registration. However, recently there have been significant

developments in algorithms associated with solving nonlinear equations derived from

minimising imaging formulations. We address this topic in Chapter 3 where we briefly

discuss the state-of-the-art in this area. However, in this section we address nonlinear

methods in general.

Gradient Descent Method

Descent methods are a common approach to computing a minimiser of nonlinear func-

tionals. Let F : Ω ⊂ Rn → R be a continuously differentiable function. Descent meth-

ods are similar in nature to Newton’s method, requiring an initial estimate u(0) ∈ Rn,

and an iteration scheme:

u(k) = u(k−1) − α(k−1)s(k−1), k = 1, 2, ... (2.16)

Here s(k−1) is a search direction (dependent on the choice of method), and α(k−1) > 0

is the step length. This procedure aims to successively move closer to the true solution,

u∗. A particular case of the descent method is gradient descent, where the search

direction is oppposite to the gradient of F , ∇F (u(k−1)). The idea is that the function

F decreases fastest in this direction, and hence this method is also known as Steepest

Descent. Therefore, the gradient descent scheme is given as follows:

u(k) = u(k−1) − α(k−1)∇F (u(k−1)), k = 1, 2, ... (2.17)

The main characteristic of descent methods is that the iteration scheme reduces the

value of the function for each k:

F (u(k)) ≤ F (u(k−1)). (2.18)

This condition is satisfied by selecting the step length α(k−1) appropriately, i.e. suffi-

ciently small.

A particular case of the gradient descent method is that of time marching. This is

when the step length is fixed for some time step, τ . This method is restricted in the

sense that the stability of the scheme is heavily dependent on choosing a small τ which

increases the number of iterations required for convergence to a steady state solution,

and hence ∇F (u) = 0. The explicit scheme time marching scheme is given as follows:
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u(k) = u(k−1) − τ∇F (u(k−1)), k = 1, 2, ... (2.19)

Despite its drawbacks in computational performance, its reliability and ease of imple-

mentation has made time marching very popular. Many seminal approaches in imaging

have employed time marching to obtain a solution, such as Rudin, Osher, and Fatemi

[109] and Chan, Esedoglu, and Nikolova [30]. It is possible to reduce the stability

restrictions on τ by employing a semi-implicit scheme, i.e. the gradient is dependent

on the current approximation of the solution: ∇F (u(k), u(k−1)). This means that at

each iteration a system of equations has to be solved to obtain u(k), which can possibly

be more problematic depending on the equation. In the following we examine such a

scheme for a nonlinear diffusion equation.

Additive Operator Splitting Scheme

Additive Operator Splitting (AOS) was first introduced by Tai et al. [85] in 1992 and

Weickert et al. [129] in 1998 as an m-dimensional semi-implicit scheme, based on a

discrete nonlinear diffusion scale-space framework. With a diffusivity function, W (u),

and reaction term, f , the diffusion equation is given as follows

ut = div(W (u)∇u) + f(x) = (W (u)ux1)x1 + . . .+ (W (u)uxm)xm + f(x), (2.20)

in [0, T ]× Ω ⊂ Rm, and with initial and boundary conditions

u(0, .) = u0 and
∂u

∂n
= 0 on ∂Ω,

where n denotes the normal to the boundaries ∂Ω. It is important to note that the

diffusivity function, W , is dependent on u. This is crucial as it relates to the PDEs

arising from imaging models, such as ROF or GCS, by partially lagging the mean cur-

vature term. We will return to this later. A discrete m-dimensional function u(x) can

be considered a vector where element i represents the location xi. We consider discrete

times tk := kτ (k ∈ N0), and τ is the time step size. We denote the approximations to

u(xi, tk) and W (u(xi, tk)) by uki and W k
i respectively. For comparison, we first consider

the conventional semi-implicit m-dimensional scheme. With a backward Euler implicit

step for the time discretisation and a spatial finite difference scheme, a semi-implicit

discretisation of the diffusion equation with reflecting boundary conditions is given by

uk+1 − uk

τ
= A(uk)uk+1 + f

(I − τA(uk)uk+1 = uk + τf

uk+1 =
(
I − τA(uk)

)−1
(uk + τf), k = 1, 2, . . . (2.21)

where uk is represented by a column vector of length Nm. For dimensions m ≥ 2,

the matrix A(uk) will have a large bandwith and applying direct algorithms lead to
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computational storage difficulties, or slow convergence due to large time steps increas-

ing the condition number of the system matrix [129] in the case of classical iterative

algorithms.

The AOS scheme is a splitting-based alternative method where the one-dimensional

Thomas algorithm can be used [129] m times at each iteration. With this in mind, a

discrete version of (2.20) is given by

∂u

∂t
=

m∑
j=1

∂

∂xi
(Wj(u)

∂u

∂xj
) + f (2.22)

In one spatial dimension, the semi-implicit scheme can be given as

uk+1
i − uki
τ

=
∑

j∈Nl(i)

W k
j +W k

i

2h2
(uk+1
j − uk+1

i ) + f, (2.23)

where Nl(i) consists of the two neighbours of element i along the l direction (boundary

elements may have only one neighbour). The AOS scheme treats each direction sep-

arately to exploit the advantages of solving one-dimensional problems. It is given as

follows:

uk+1 =
1

m

m∑
l=1

(
I −mτAl(uk)

)−1
(uk + τf), k = 1, 2, . . . (2.24)

where the operators Bl(u
k) := I − mτAl(uk) describe one-dimensional diffusion pro-

cesses along the xl axes. Each iteration step requires the previous iterate to be prop-

agated in each coordinate direction separately. The new iteration is then given by the

average of these intermediate solutions. For example, consider the case of most interest

for our problems (i.e. m = 2). The matrices A` are the diffusion quantity in the `

direction (` = 1, 2 for x and y directions respectively) and are given as follows, where

hl denotes the grid size:

(
A1(uk)uk+1

)
i,j

=
(
∂x
(
W (uk)∂xu

k+1
))

i,j

=
1

h1

(
W k
i+1/2,j

(
∂xu

k+1
)
i+1/2,j

−W k
i−1/2,j

(
∂xu

k+1
)
i−1/2,j

)
=

1

h1

(
W k
i+1,j +Wi,j

2

uk+1
i+1,j − u

k+1
i,j

h1
−
W k
i,j +W k

i−1,j

2

uk+1
i,j − u

k+1
i−1,j

h1

)
= uk+1

i+1,j

(
W k
i+1,j +W k

i,j

2h2
1

)
+ uk+1

i−1,j

(
W k
i−1,j +W k

i,j

2h2
1

)

− uk+1
i,j

(
W k
i+1,j +W k

i−1,j + 2W k
i,j

2h2
1

)

and similarly,
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(
A2(uk)uk+1

)
i,j

=
(
∂y
(
W (uk)∂yu

k+1
))

i,j

= uk+1
i,j+1

(
W k
i,j+1 +W k

i,j

2h2
2

)
+ uk+1

i,j−1

(
W k
i,j−1 +W k

i,j

2h2
2

)

− uk+1
i,j

(
W k
i,j+1 +W k

i,j−1 + 2W k
i,j

2h2
2

)
.

AOS is a semi-implicit scheme that requires m tridiagonal linear systems to be

solved at each iteration. Due to the structure of the discretisation of the operator the

Thomas algorithm can be used. For such systems, the solution can be obtained in O(n)

operations instead of O(n3) required by Gaussian elimination. To demonstrate the reli-

ability of the AOS scheme we will now briefly discuss the criteria for nonlinear diffusion

scale-spaces and the advantages of satisfying such conditions [127, 128]. Without loss

of generality we drop the reaction term f and we have. For a given discrete scheme of

type

u0 = f (2.25)

uk+1 = Q(uk)uk, ∀ k ∈ N0 (2.26)

the following criteria must hold:

(D1) Continuity in its argument:

Q ∈ C(RN ,RN×N )

(D2) Symmetry:

qij = qji, ∀ i, j ∈ J

(D3) Unit row sum: ∑
j∈J

qij = 1, ∀ i ∈ J

(D4) Nonnegativity:

qij ≥ 0, ∀ i, j ∈ J

(D5) Positive diagonal:

qii ≥ 0, ∀ i ∈ J

(D6) Irreducibility:

For ∀ i, j ∈ J there exist k0, . . . , kr ∈ J with k0 = i, and kr = j such that

qkpkp+1 6= 0 for p = 0, . . . , r − 1.

In Weickert et al. [129], the above criteria are demonstrated to have fulfilled a discrete
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scale space. This is important for a number of reasons, which we will not detail in full

here. In particular, there is convergence to a constant steady state:

lim
k→∞

uki = µ, ∀ i ∈ J. (2.27)

Additionally, there are no restrictions on the time step size as the scheme is un-

conditionally stable. This demonstrates clear advantages of AOS over explicit and

semi-implicit time marching schemes. This is especially true when m > 2. This scheme

forms the basis for a proposed scheme in Chapter 4, where we apply this method to

GCS.

Remark 2.7.6 The AOS scheme (2.24) with m=2 corresponding to the finite differ-
ence equation

(Fu)k :=
1

τ
uk+1 − 1

2τ

(
I − 2

τ

h2
A1

)−1
uk − 1

2τ

(
I − 2

τ

h2
A2

)−1
uk = 0,

k = 0, 1, . . . , is consistent in l∞-norm of first order in time and second order in space
with the PDE (2.22).

Newton’s Method

A typical representation of a nonlinear system of equations is F (u) = v, where v(x) ∈
Rn is fixed, u(x) ∈ Rn is unknown, and F : Ω ⊂ Rn → Rn is a continuously differen-

tiable, nonlinear operator. This can be rewritten in the form

F (u) = 0, (2.28)

where 0 represents the zero vector. The problem consists of obtaining a solution to

(2.28), u∗ ∈ Rn. Let J denote the Jacobian matrix (∂Fi/∂xj) of F , and assume that J

is Lipschitz continuous (see Definition 2.1.13). The method consists of beginning with

an initial approximation u(0) and carry out the following iterations:

u(k) = u(k−1) − J
(
u(k−1)

)−1
F
(
u(k−1)

)
, k = 1, 2, ...

With each iteration the aim is to find approximations that are closer to the solution

u∗. However, computing the inverse of the Jacobian can be avoided by rearranging the

equation as follows:

J
(
u(k−1)

)
r(k) = −F

(
u(k−1)

)
.

Then, a linear system has to be solved to give r(k) = u(k) − u(k−1). Then, the iterate

can be given explicitly:

u(k) = u(k−1) − r(k).

For Newton’s Method the Jacobian has to be calculated at each step, meaning that

it has a high computational cost. If J
(
u(k−1)

)
is ill conditioned obtaining r(k) can

be problematic as well. However, if the Jacobian is non-singular at the solution, local
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quadratic convergence can be proven [64]. The method is also heavily dependent on

the initial estimate. If u(0) is close enough to u∗ then Newton’s Method can offer fast

convergence [94].
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Chapter 3

Review of Variational Methods
for Imaging Processing

3.1 Introduction

In this chapter we briefly review variational methods for image segmentation, intro-

ducing relevant models in relation to our work. Further background can be found in

the work of Mitiche and Ben Ayed [87]. In relation to image processing, variational

methods involve treating the observed discrete image in the continuous domain, and

minimising a functional that leads to a corresponding equation. The solution of this

equation relates to the original image processing problem. Variational methods are

closely related to stochastic approaches, and many of the problems discussed below can

be formulated in an analogous way using Bayesian maximum a posteriori estimation.

However, in this work we concentrate on the variational approach which we will de-

fine more specifically in the following. For the link between variational and stochastic

methods, the work of Chan and Shen [31] can provide an overview.

Variational methods consist of minimising energy functionals that define some con-

straints on the objective function. Let us define the solution as

u∗ = arg min
u∈S

F (u),

where u∗ is an optimiser of the functional F (·), defined on an appropriate space S. If

F is continuous and differentiable, the first variation can be computed leading to the

Euler-Lagrange equation
∂F

∂u
= 0, (3.1)

which gives a necessary condition for u∗ to be an optimiser of F such that

δF

δu

∣∣∣
u∗

= 0.

Typically, a functional is formulated in the following way

F (u) = α

∫
Ω
J (u)dx︸ ︷︷ ︸

Regularisation

+

∫
Ω
f(u)dx︸ ︷︷ ︸
Fitting

,
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where f is a fitting function that stipulates the correspondence between the objective

function and the data, and J is a term that imposes regularity. These terms are

discussed in the context of inverse problems in Section 2.3, and further details can be

found in the literature [87, 32, 121, 124].

In this chapter we address some methods of particular interest to our work, and

important to the subject in general. In Section 3.1.1 we discuss image denoising. This is

a fundamental problem in image processing, and we discuss it in the context of Tikhonov

regularisation in Example 2.2.8. A seminal approach to this problem was introduced

by Rudin, Osher, and Fatemi (ROF) [109] with total variation (TV) regularisation.

This is important to our work, as it is closely related to conventional segmentation

methods that also involve TV terms [33, 30]. It is also relevant to the problem of image

deblurring (or deconvolution), which we introduce in Section 3.1.2. This is directly

related to our work in the sense that Chapter 7 addresses the problem of segmentation

for an image degraded with unknown blur. We discuss related work such as Chan and

Wong [35] and You and Kaveh [135]. We then introduce the idea of image registration

in Section 3.1.3. We briefly mention important variational approaches to introduce

this important concept in image processing, but detail a parametric method for affine

registration. This idea has relevance to our work in Chapter 8, where we incorporate

shape priors for variational segmentation.

In Section 3.2 we discuss the main focus of our work, in reviewing prominent varia-

tional segmentation methods in the literature. We begin with the work of Mumford and

Shah [89], which was first introduced in 1989. This work is closely linked to the seminal

work of Geman and Geman [55] in the discrete setting. We also consider a particular

case of this formulation, based on a piecewise-constant framework discussed by Chan

and Vese [33]. The most important aspect of this work in relation to this thesis is that

of convex relaxation methods, which we introduce in Section 3.2.4. Here we introduce

the framework of two-phase variational segmentation problems for which one can com-

pute global minimisers, which is the main subject of our work. We expand on this in

Chapter 4 and more detail can be found in the literature [17, 29, 30, 18, 25, 78]. Finally,

we offer some brief remarks on current algorithms applicable to imaging. Of particular

interest is Chambolle’s dual formulation [23], which was first applied to segmentation

by Bresson et al. [18] and will be referred to again in Chapters 4 and 6.

3.1.1 Denoising

Noise is present in almost any image, often introduced in the acquisition or storage of

data. There are many different types of noise, such as Gaussian which is additive and

independent of the signal intensity, and Poisson which is dependent on scene brightness.

Further details about types of noise can be found in [32], and understanding this is

essential to modeling its removal. In the variational framework, the seminal work of

ROF [109] was introduced in 1992 . It is important for its ability to remove noise whilst

preserving edges, as opposed to previous approaches that employed L2 regularisation of

the gradient (given in Example 2.3.2). This is achieved by employing TV regularisation,
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which has been detailed in the previous chapter. The formulation is given as follows:

min
u

{
α

∫
Ω
|∇u| dx+

1

2

∫
Ω
|u− z|2 dx

}
(3.2)

where α is a positive parameter controlling the level of noise removal. It is important to

note that (3.2) is well-posed, and thus we can guarantee the existence and uniqueness

of the minimiser (the functional is strictly convex.) The Euler-Lagrange equation is

given formally as follows:

u− z − α div

(
Du

|Du|

)
= 0. (3.3)

However, it is important to consider cases where Du = 0. This is especially important

when considering z ∈ L∞(Ω), and it is quite possible that u will exhibit staircasing

properties. With this in mind, we now derive the Euler-Lagrange equation with respect

to convex analysis. Necessary details are given in Chapter 2, Ekeland and Témam [51],

and we follow the work of Chambolle et al. [24]. We first introduce the set

K = {−div φ : φ ∈ C∞0 (Ω;Rn) : |φ(x)| ≤ 1 ∀x ∈ Ω}

and the closure K of K in L2(Ω), which is

K = {−div h : h ∈ L∞(Ω;Rn) : −div(hχΩ) ∈ L2(Rn) : |h(x)|∞ ≤ 1 ∀x ∈ Ω}.

Let us denote, following the definition in Chapter 2, J as

J(u) = TV (u) = sup
p∈K

∫
Ω
u(x)p(x)dx.

If u ∈ L2(Ω), then

J(u) = sup
p∈K

∫
Ω
u(x)p(x)dx. (3.4)

This leads to,

K =

{
p ∈ L2(Ω) :

∫
Ω
p(x)u(x)dx ≤ J(u) ∀ u ∈ L2(Ω)

}
,

i.e. K is the largest set in L2(Ω) such that (3.4) holds for any u ∈ L2(Ω). Therefore,

according to [24], for u ∈ L2(Ω):

∂J(u) =

{
p ∈ K :

∫
Ω
p(x)u(x)dx = J(u)

}
.

We can now derive the equation satisfied by u that minimises ROF (3.2), i.e. for any

v ∈ L2(Ω) we have

αJ(v) +
1

2

∫
Ω

(v − z)2dx ≥ αJ(u) +
1

2

∫
Ω

(u− z)2dx. (3.5)
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It is then straightforward to show that

αJ(v) ≥ αJ(u) +

∫
Ω

(v − u)(z − u)dx− 1

2

∫
Ω

(u− v)2dx.

Then, for any t ∈ R, according to [24]:

α(J(u+ t(v − u))− J(u))− t
∫

Ω
(v − u)(z − u)dx ≥ 0.

This demonstrates that

z − u
α
∈ ∂J(u).

It follows that the Euler-Lagrange equation for the ROF model is

u− z + α∂J(u) 3 0. (3.6)

Further details can be found in the work of Chambolle et al. [24], and related litera-

ture. In practice, we look for a solution in a discretised setting where the problem is

regularised and therefore considering subdifferentials is not necessary. In the rest of the

thesis, we do not consider the formal definition of the Euler-Lagrange equation for a

BV function as described above. We detail how we handle these equations numerically

in subsequent chapters. The Euler-Lagrange equation, as stated in [109], is given as

follows:

u− z − α div

(
∇u
|∇u|

)
= 0 in Ω, (3.7)

∇u · ~n = 0 on ∂Ω,

with ~n the unit outward normal. In ROF they use time marching to find a solu-

tion, although many methods have been applied over the years to obtain a solution

[26, 59]. Despite its success and continued importance in the literature, the results

demonstrate the so-called staircase effect where smooth regions are reconstructed as

piecewise-constant and thus limiting quality.

This work has attracted a lot of attention, particularly with respect to reducing the

staircase effect. In 2010, Bredies et al. [16] introduced Total Generalized Variation.

Here, they propose a regularisation functional with derivatives of order up to k of the

desired object and demonstrates improvements over lower order methods. The authors

state that it should advance a wider class of problems, beyond denoising.

3.1.2 Deblurring

It is important to consider another type of image degradation. Whereas the process

of denoising is incorporated into many current segmentation methods [33, 30], when

an image is blurred it is often beyond conventional segmentation methods. Blurring

of images is common in many areas, such as astronomical or medical imaging, such as

colour fundus angiography for retinal imaging. The process of image deblurring (or
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deconvolution) is the task of reconstructing the true image from the observed degraded

image, restoring important features. We consider the problem of segmenting blurred

images in Chapter 7, and therefore introduce some ideas relating to this problem and

summarise a seminal work [35] in the following.

Mathematically, convolution is an operation on two functions f and g, producing a

function that is considered the amount of overlap of one function as it is shifted over the

another function. In image processing a kernel consists of an image operator changing

the value of the image pixels x depending on the neighborhoods pixel values.

Definition 3.1.1 Let f(t) and w(t) be two functions. The convolution of f and w,
denoted by w ∗ f , is the function on t ≥ 0 given by

g(x) = w ∗ f(x) =

∫ x

0
w(s)f(x− s) ds.

This is a particular kind of integral transform:

w ∗ f(x) =

∫ ∞
−∞

w(s) f(x− s) ds, (3.8)

or more generally, if f and w are complex-valued functions on Rn :

w ∗ f(x) =

∫
Rn

w(s) f(x− s) ds. (3.9)

Since the image is stored as a collection of discrete pixels we need a discrete convolution

form. In discrete form the integral (3.9) is replaced by summation, for example for a

2-D function integral (3.9) can written as:

g(x, y) = w(x, y) ∗ f(x, y) =
∞∑

s=−∞

∞∑
t=−∞

w(s, t) f(x− s, y − t) ds.

An observed blurred image can be written as a convolution of the true image with

a point spread function or unknown kernel function. Letting z(x) denote the received

image, h(x) the blur function, η(x) the noise acquired during data collection, and u(x)

the true image to be recovered. We model the blurred image as

z(x) = [h ∗ u](x) + η(x).

There are three main deblurring problems.

1. Non-blind deconvolution: The point spread function is assumed known, despite

this being rare in real applications. The aim is to recover the true image, and has

been widely studied.

2. Semi-blind deconvolution: Information about the blur kernel is assumed or known.

The task is to estimate the correct blur parameters [12].

3. Blind image deconvolution: The image and blur kernel are both unknown, and

the task of recovering both is very challenging. [35, 38].
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I will briefly review a prominent model that tackles the third problem mentioned

above: Blind Image Deconvolution. This model was introduced by Chan and Wong

[35] in 1998, as an extension of a model by You and Kaveh [135]. The Chan-Wong

functional is given as

f(u, h) =
1

2
||h(x) ∗ u(x)− z(x)||2 + α1

∫
Ω
|∇u(x)|β + α2

∫
Ω
|∇h(x)|β,

where α1 and α2 are small, non-negative parameters. The regularisation on u and h is

a smooth approximation of the TV function:∫
Ω
|∇h(x)|β =

∫
Ω

√
|∇h(x)|2 + β2.

The functional f(u, h) is not jointly convex with respect to u and h. Accordingly, it is

minimised subject to the following constraints [35, 135]:

u(x) ≥ 0, h(x) ≥ 0,

∫
Ω
h(x)dx = 1, h(x) = h(−x). (3.10)

To minimise the functional the Euler-Lagrange equations are derived:

∂

∂u
f(u, h) : h†(x) ∗ (h(x) ∗ u(x)− z(x)) + α1∇ ·

(
u(x)

|u(x)|β

)
= 0,

∂

∂h
f(u, h) : u†(x) ∗ (u(x) ∗ h(x)− z(x)) + α2∇ ·

(
h(x)

|h(x)|β

)
= 0,

where h†(x) = h(−x) and u†(x) = u(−x) are the adjoints of h and u, respectively. A

scheme of alternate minimisation is described where the constraints introduced above

are imposed at each stage. Further details are found in [35]. We will cover these ideas

more thoroughly in Chapter 7, and introduce some models that address the task of

joint segmentation and deblurring.

3.1.3 Registration

Image registration is the challenging task of aligning two images to establish a corre-

spondence between the features within them. Modersitzki [88] classifies intensity based

registration methods by two definitions: non-parametric and parametric. The former

is based on the variational approach, where the aim is to find a deformation field based

on physical processes such as curvature. Examples include Ibrahim et al. [66] and

[138], where the dissimilarity functionals are based on intensity difference in the whole

image. Alternative approaches involve landmark based methods, such as Lui et al. [71],

where certain locations define the deformation field. It is possible to incorporate non-

linear registration methods into variational segmentation models, such as Cremers et

al. [39], but typically these approaches involve parametric methods (i.e. not variational

based). We will cover these methods in detail in Chapter 8, but some examples include

[130, 36]. Parametric image registration involves a rigid or affine transformation, which

are dependent on three and six parameters, respectively. As this method is of particular

interest we briefly discuss some details related to affine registration.
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The template and reference, T,R ∈ Ω, define the images to be compared. For

x ∈ Ω denote by φ(x) : Ω → Ω the unknown coordinate transformation that produces

the alignment between the reference, R(x) and the transformed template, T (φ(x)).

We address the problem where we assume the target object is approximately an affine

transformation of the shape prior, such that the segmentation closely favours shapes

given by the prior information. This means the transformation is linear and can be

defined as follows:

φ(x) =

[
a1 a2

a4 a5

][
x1

x2

]
+

[
a3

a6

]
, (3.11)

given six parameters a = {a1, a2, a3, a4, a5, a6}. The regularised affine registration

model [41] is as follows:

min
a

{
ηR(a) +

1

2

∫
Ω

(
T (φ(x))−R(x)

)2
dx

}
,

where η > 0 is a weighting parameter for the regularisation of a, and the sum of squared

differences (SSD) term determines the similarity between the reference and template.

In the following sections we detail how linear registration methods are incorporated into

variational segmentation models. A reasonable choice of regularisation for the affine

parameters a is:

R(a) =
1

2

(
(1− a1)2 + a2

2 + a2
3 + a2

4 + (1− a5)2 + a2
6

)
. (3.12)

Other choices of R are possible, and good results can also be attained with no regular-

isation for some examples. The similarity measure we use is the SSD, which we define

as follows:

D(a) =
1

2

∫
Ω

(
T (φ(x))−R(x)

)2
dx, (3.13)

The minimisation of the affine registration step is then given as

min
a∈R6

{
Jη(a) = ηR(a) +D(a)

}
. (3.14)

We solve this with the discretise-optimise approach, which we will briefly discuss in

general terms. Using the Gauss Newton method we can update a with a pertubation

δa(k),

a(k+1) = a(k) + δa(k), (3.15)

The Gauss Newton perturbation δa(k) is given by

H̃Jη(a(k))δa(k) = −gJη(a(k)) (3.16)

where

H̃Jη(a(k)) = J>(a(k))J(a(k)) + ηHR(a(k))
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and

gJη(a(k)) = ∇aD(a) + η∇aR(a(k))

are the approximated Hessian and the gradient of Jη at a(k) and HR(a(k)) are the

gradient and Hessian of R at a(k) respectively. An approximated Hessian is used to deal

with the nonlinearity of the problem. In this way computing higher order derivatives

is avoided. Further details can be found in [41], and we will return to these ideas in

Chapter 8.

3.2 Image Segmentation

Image segmentation is the partitioning of an image into multiple regions of shared char-

acteristics. Variational methods to this end consist of minimising an energy functional,

leading to a partial differential equation based on the Calculus of Variations. The so-

lution to this equation then corresponds to a meaningful representation of the image.

The aim is to find a closed contour Γ that partitions a domain Ω ∈ R2 into subregions

Ωi, i = 1, 2, ..., N . In this thesis we focus on two-phase methods. That is, we want

to partition the image into some meaningful foreground/background representation,

and N = 2. Much of the work in this thesis is based on the Mumford and Shah [89]

formulation, where the aim is to find either the piecewise-smooth or piecewise-constant

approximation of the image and the edge that defines the discontinuity.

Given an observed discrete image the problem setting is in the continuous domain

where the aim is to determine a solution to some equation derived from an energy

functional. It is unlikely that analytic solutions are available in this context, and a

numerical solution of a discretised system is required. This process might seem counter-

intuitive, but variational methods have proven very successful since the seminal work

of Mumford and Shah. Other noteworthy developments since then include edge based

methods, such as the Snakes approach of Kass, Witkin, and Terzopoulos [72] and the

Geodesic Active Contours model of Caselles, Kimmel, and Sapiro [22]. Crucial to the

success of these approaches was the development of level set based methods [95, 143],

which have been widely used over the last twenty years. It was utilised by Chan and Vese

in the influential Active Contours Without Edges [33], a region based model based on

the two-phase piecewise-constant formulation of the Mumford-Shah formulation. The

common theme with this approach to segmentation is that the problems are nonconvex,

meaning that obtaining a global minimiser is often not possible.

Recent work addressing the issue of nonconvexity involves convex relaxation meth-

ods, essential to the work in this thesis. The foundational work in relation to seg-

mentation in the continuous setting, is that of Chan, Esedoglu, and Nikolova [30] in

2006. This model aims to find the global minimiser of the two-phase piecewise-constant

Mumford-Shah formulation, in the case of known intensity constants. The theoretical

basis of this work is based on the work of Strang [119]. Related work since has included

Bresson et al. [18, 78, 25, 10, 102, 137, 120]. In short, the convex relaxation method
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consists of representing each phase with a binary function, u ∈ {0, 1}, and the interface

is implicitly represented by the location of the jump. This can be seen in Fig. 3.1, and

be compared to the level set based representation discussed in Chapter 2. The binary

constraint is then relaxed such that u ∈ [0, 1]. We will address this in further detail

in Section 3.2.4. Also of relevance to this work is Section 2.2 on functions of bounded

variation and references therein. In the following sections we introduce seminal works

from the subject that influence the content of this thesis.

i) u(x) ∈ {0, 1} ii) Corresponding interface, Γ

Figure 3.1: Illustration of the interface representation in the convex relaxation frame-
work. i) shows a binary function u. ii) shows the corresponding contour, which implic-
itly defines the interface. In the convex relaxation framework the binary constraint is
relaxed, and Γ is given by a thresholding procedure for a parameter γ ∈ (0, 1).

3.2.1 Mumford-Shah Approach

An important work in this area is that of Mumford and Shah [89] in 1989. It concerns

the piecewise smooth approximation of an input image z(x), by a pair (u,Γ). Let Ω

be a bounded domain in R2 and z(x) be a bounded measurable function defined on Ω.

The Mumford-Shah functional is defined as

E(u,Γ) = νHn−1(Γ) + µ2

∫
Ω

(u− z)2dx+

∫
Ω\Γ
|∇u|2dx, (3.17)

The functional contains a fidelity term on u ∈ C1, and two regularity terms. One

imposes smoothness on u, and the other imposes regularity on Γ in terms of its one-

dimensional Hausdorff measure. A related functional in a discrete setting rather than

on a continuous domain was first introduced by Geman and Geman [55], and studied

by Blake and Zisserman [14]. Theoretical results on the existence and regularity of

minimisers is discussed in [89], but computing minimisers is very challenging due to

the non-regularity of the edge term Γ. A very prominent approach was introduced in

1990 by Ambrosio and Tortorelli who approximated minimisers of (3.17) by a sequence

of simpler elliptic variational problems. There have been many other approaches since

then that have proposed methods to find the minimal pair (u,Γ), such as Pock et al.

[100] based on convex relaxation methods, or Tsai et al. [122] and Vese et al. [34] based

on level set approaches.
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Mumford and Shah also discuss the restriction of E to piecewise-constant functions

u. In other words, u = ck on each open set Ωk, where the values ck are simply the

average values of z in each region Ωk. The piecewise-constant Mumford-Shah functional

is given as

E0(u,Γ) = νHn−1(Γ) +

∫
Ωk

(u− ck)2dx. (3.18)

It can be proved that E0 is the natural limit functional of E as µ → 0. This

reduced case is also referred to as the minimal partition problem. One notes that this

is linked, in the discrete setting, to the Potts Model [103] which has been widely studied

[136]. We are particularly interested in the partitioning of images into foreground and

background, i.e. N = 2. This is known as the two-phase piecewise constant Mumford-

Shah functional and is given as follows:

E(Γ, c1, c2) = ν|Γ|+
∫

Ω1

(z − c1)2dx+

∫
Ω2

(z − c2)2dx. (3.19)

The above functional is the basis for a significant amount of important work in this

field, and forms the basis for much of the later chapters. I will discuss it in more detail

in terms of computing minimisers in relation to the Chan-Vese Model [33] and convex

relaxation [30] later in this chapter.

3.2.2 Geodesic Active Contours

An early PDE-based method to extract objects in an image is the active contour model

(also known as Snakes), proposed by Kass,Witkin and Terzopolous [72] in 1988. Similar

approaches have been very successful and have been important in a wide range of

applications, particularly in medical imaging [133, 73]. In 1997, Caselles, Kimmel, and

Sapiro [22] introduced the Geodesic Active Contours model

FGAC(C(s)) =

∫ L(C)

0
g(|∇z(C(s))|)ds, (3.20)

where

g(∇z) =
1

1 + γ|∇z|2
. (3.21)

An example of this edge function for a given image can be seen in Fig. 3.2. The idea

is that g is small near object boundaries, defined by jumps in intensities of z, and

controlled by the parameter γ. The Euler-Lagrange equation of the functional and

gradient descent give the following PDE:

∂C

∂t
= gκ~n− (∇g · ~n)~n, (3.22)

where κ is the Euclidean curvature, and ~n is the unit normal vector. A unique viscosity

solution associated with the evolution equation exists [22, 44]. As discussed in Chapter

2, an effective way to represent an interface is with the level set method, introduced by

Osher and Sethian [95]. With this is mind, equation (3.22) can be rewritten as follows:
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∂φ

∂t
= |∇φ|

(
∇ ·
(
g
∇φ
|∇φ|

)
+ νg

)
, (3.23)

where φ is a Lipschitz function representing C as a zero level set. Here the constant

ν is added to attract the curves towards the boundary and increase the speed of the

evolution.

Despite the success of Geodesic Active Contours it is limited in terms of applications

in two senses. Firstly, the model is dependent on the gradient of the image. This means

that images that either contain noise or have boundaries that are not well defined, are

not suitable for this method. Secondly, and of particular interest for the purposes

of this thesis, the energy functional is nonconvex and is therefore highly sensitive to

initialisation.

i) z(x) ii) g(x)

Figure 3.2: Edge detection function, g(x), from eqn. (3.2) for an image, z(x).

3.2.3 Active Contours Without Edges

Whilst previous active contour models relied on edge detection [22, 72], Chan and Vese

introduced a two-phase region based method in 2001, known as Active Contour Without

Edges [33]. The assumption behind the model is that an observed image, z, can be

treated as a piecewise-constant function. Denoting Γ as the boundary partitioning the

two regions of approximately constant intensity, the variational formulation is defined

as follows:

FCV = λ1

∫
in(Γ)

(z(x)− c1)2dx+ λ2

∫
out(Γ)

(z(x)− c2)2dx

+ µ · Length(Γ) + ν ·Area(in(Γ)), (3.24)

where µ ≥ 0, ν ≥ 0, λ1, λ2 > 0 are fixed parameters. Generally the area constraint

is ignored, i.e. ν = 0, and the fitting terms are evenly balanced, i.e. λ1 = λ2. The

’Length(Γ)’ term refers to the Hausdorff (n − 1)-dimensional measure Hn−1(Γ). One

notes that (3.24) is a particular case of the minimal partition problem, or the two-phase

piecewise-constant Mumford Shah formulation (3.19) introduced above. To recall, the
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idea is to find to find the best approximation, u, of the observed image z as a function

taking only two values:

u =

{
c1 (average z inside Γ)

c2 (average z outside Γ)

Then, the minimisation problem is given as the following:

min
c1,c2,Γ

FCV (c1, c2,Γ). (3.25)

The authors use the level set method of [95, 143], introduced in brief in Chapter 2, to

implicitly represent the contour Γ. This was a seminal approach with respect to image

segmentation methods, as it allowed a practical and reliable numerical implementation

of a particular case of the renowned Mumford-Shah formulation. We now recall some

essential details of the level set method, and then reformulate (3.24). The contour Γ

can be given in terms of a Lipschitz function φ as follows:
Γ = ∂Ω1 = {x ∈ Ω

∣∣∣ φ(x) = 0},

in(Γ) = Ω1 = {x ∈ Ω
∣∣∣ φ(x) > 0},

out(Γ) = Ω2 = {x ∈ Ω
∣∣∣ φ(x) < 0}.

To reformulate (3.24) we recall the definition of the Heaviside and Dirac delta function

from Chapter 2:

H(x) =

{
1 if x ≥ 0

0 if x < 0
and δ(x) = H ′(x).

Then, each term in the energy can be expressed in terms of φ:

Length(Γ) =

∫
Ω
|∇H(φ)|dx =

∫
Ω
δ(φ)|∇φ|dx,

Area(in(Γ)) =

∫
Ω
H(φ)dx,∫

in(Γ)
|z − c1|2dx =

∫
Ω
|z − c1|2H(φ)dx,∫

out(Γ)
|z − c2|2dx =

∫
Ω
|z − c2|2(1−H(φ))dx.

Then, F (Γ, c1, c2) can be reformulated as follows:

FLS = λ1

∫
Ω

(z(x)− c1)2H(φ)dx+ λ2

∫
Ω

(z(x)− c2)2(1−H(φ))dx

+ µ

∫
Ω
δ(φ)|∇φ|dx+ ν

∫
Ω
H(φ)dx. (3.26)

Again, from here we consider the case ν = 0, λ1 = λ2 = λ. To compute the Euler-

Lagrange equations of (3.26) the authors [33] introduce regularised version of H and
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δ, to deal with the fact that the above is not differentiable at φ = 0. The respective

choices are given as

To compute the Euler-Lagrange equation for the unknown function φ, as H is not

differentiable at 0, we consider regularised versions of H and δ functions, denoted by

Hε and δε respectively [33]:

Hε(x) =
1

2
(1 +

2

π
arctan(

x

ε
)), δε(x) = H ′ε(x) =

ε

π(ε2 + x2)
, (3.27)

where Hε → H when ε → 0. These are shown in Fig. 3.3. Then the regularised

functional is given by

FLSε = λ

∫
Ω

(z(x)− c1)2Hε(φ)dx+ λ

∫
Ω

(z(x)− c2)2(1−Hε(φ))dx

+ µ

∫
Ω
δε(φ)|∇φ|dx. (3.28)

The new minimisation problem is then given by

min
φ,c1,c2

FLSε (φ, c1, c2). (3.29)

The minimisers with respect to the intensity constants can be given explicitly (with φ

fixed) as follows:

c1(φ(x)) =

∫
Ω z(x)Hε(φ(x))dx∫

ΩHε(φ(x))dx
, c2(φ(x)) =

∫
Ω z(x)(1−Hε(φ(x)))dx∫

Ω(1−Hε(φ(x)))dx
. (3.30)

i) Hε(φ), ε = 0.1 ii) δε(φ), ε = 0.1

Figure 3.3: Approximation to the Heaviside and Delta functions with Hε and δε.

The authors derive the following Euler-Lagrange equation for φ (keeping c1 and c2

fixed):
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δε(φ)

[
µ∇ ·

(
∇φ
|∇φ|

)
− ν − λ1(z − c1)2 + λ2(z − c2)2

]
= 0 in Ω,

∂φ

∂n
= 0 on ∂Ω.

(3.31)

Details of deriving the Euler-Lagrange equation are given in Chapter 2, or in the original

paper [33]. The authors use a gradient descent scheme to solve the equation above. A

multiphase formulation of the Chan-Vese model can be found in [123] and an extension

to the piecewise-linear and piecewise-smooth formulations is given by [34].

The Chan-Vese functional is nonconvex with respect to φ, such that even if the

intensity constants are known a priori the model can sometimes fail to successfully

segment the image. This is dependent on the initialisation of the contour, Γ (or φ = 0).

We address methods that overcame this drawback next, introducing convex relaxation

methods.

3.2.4 Convex Relaxation Methods

Despite the success of the Chan-Vese model, avoiding the presence of local minima was

still a challenge. This problem is inherent to piecewise-constant segmentation in this

framework as it involves minimising functionals over characteristic functions of sets,

even when the intensity constants are known. In 2006 Chan, Esedoglu, and Nikolova

[30] introduced an algorithm to find the global minimum of the two-phase piecewise-

constant segmentation problem with fixed intensity constants. In this section, we will

briefly discuss the idea behind this work and present some of the important details

related to it.

First, we recall the Chan-Vese functional:

CV (φ) =

∫
Ω
|∇Hε(φ)|dx+ λ

∫
Ω

(z(x)− c1)2H(φ) + (z(x)− c2)2(1−H(φ))dx.

Minimising the functional with respect to φ and applying a gradient descent scheme

leads to
∂φ

∂t
= δε(φ)

[
∇ ·

(
∇φ
|∇φ|

)
− λr(x)

]
,

where r(x) = (z(x) − c1)2 − (z(x) − c2)2. The stationary solution of the above is the

same as for
∂φ

∂t
= ∇ ·

(
∇φ
|∇φ|

)
− λr(x),

because Hε(φ) is a noncompactly supported, smooth appoximation of the Heaviside

function. Crucially, this gradient descent scheme corresponds to the following energy:∫
Ω
|∇φ|dx+ λ

∫
Ω
r(x)φdx.

In general, this energy does not have a minimiser as it is homogeneous of degree 1 in φ.

By restricting the minimisation such that 0 ≤ φ(x) ≤ 1 for all x ∈ Ω, and following the
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work of Strang [119] Chan, Esedoglu, and Nikolova introduced the following theorem:

Theorem 3.2.1 For any given fixed c1, c2 ∈ R, a global minimiser for MS(·, c1, c2)
can be found by carrying out the following convex minimisation

min
0≤u(x)≤1

{∫
Ω
|∇u(x)|dx+ λ

∫
Ω
r(x)u(x)dx

}
and then setting Σ = {x : u(x) ≥ µ} for a.e. µ ∈ [0, 1].

A proof is provided in [30]. In Bresson et al. [18], the authors show that a global

minimiser can be found when considering a weighted TV regulariser.

It is important to clarify here that a global minimiser can only be found when c1

and c2 are fixed. A completely convex formulation has been addressed by Brown et

al. [20], which amounts to a convex relaxation of the K-means algorithm. However,

in practice, if an image can be considered piecewise-constant then sufficiently accurate

approximations of the intensity constants is trivial. Typically when the fitting function

contains parameters that have to be optimised the joint problem is nonconvex, which

can cause difficulties and is an area requiring further investigation. In this thesis we

consider both cases, i.e. known and unknown fitting functions. In the next chapter we

discuss new approaches for computing a global minimiser in the two-phase case. Here,

we assume that the fitting function is known.

Also assumed with the ideas introduced above is that there is a foreground and

background (i.e. two-phase). In this thesis, we consider segmentation problems of this

type, but convex relaxation methods are applicable in a wider context and are very

popular for multi-phase segmentation problems. Many approaches have been devel-

oped based on these methods [19, 78, 79, 25] or the analogous continuous max-flow

approach [10, 136]. However, this work tends to require one segmentation function

per region, which can be prohibitive for a large number of regions. Additionally, they

assume that the number of regions is known, which isn’t necessarily the case in many

applications. Zhang et al. [141] proposed a novel approach based on the four-colour

theorem [141], where the number of phases was globally optimised with only four seg-

mentation functions.

Globally convex segmentation has proven to be a very effective technique in the

past ten years. To summarise, in the context of two-phase segmentation where the

fitting function (which we will call f(x) from here) is known, we define the problem as

follows:

min
u

{∫
Ω
|∇u(x)|dx+ λ

∫
Ω
f(x)u(x)dx

}
, (3.32)

where u ∈ BV (Ω; [0, 1]) and f(x) is assumed to be some measurable function that takes

positive and negative values. In the next chapter we will discuss a new approach to

computing the global minimiser of this problem, which is applicable to the above and

a wide range of closely related problems which will be addressed later in the thesis.

In the following we will discuss some examples of approaches to find the compute the

minimiser to (3.32).
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3.3 Algorithms with Applications to Imaging

An important consideration in image processing problems is determining the most

efficient way to compute a solution. In the level set formulation the contour is initialised

as a distance function, that either needs to be periodically reinitialised [33] or have

additional constraints applied [83] in order to maintain numerical stability. This is often

time consuming. Furthermore, as discussed earlier in the chapter they are formulated

in a nonconvex way, such that the global minimiser of the problem may not be found

depending on initialisation. The introduction of the convex relaxation framework has

overcome this problem in the sense that a gradient descent scheme is used in [30]

to compute the global minimiser of the two-phase piecewise-constant Mumford-Shah

formulation. However, gradient descent can be limited in the sense that the stability

restrictions on the time step dictate that there is slow convergence. In recent years

alternative formulations have been developed that have reduced the computation time

for the main problem we consider (3.32). In this section we provide an overview of

related approaches, and detail one method in particular. That is, the dual formulation

of Chambolle [23] originally applied in this setting by Bresson et al. [18]. In Chapter

4 we propose a new method to minimise (3.32), based on a variation of an additive

operator splitting [128, 85] scheme, that performs comparably well compared to [23, 18].

An important method to consider is that of Split Bregman, first introduced by

Goldstein and Chan [59] for a general class of L1 regularised problems. In 2010, Gold-

stein, Bresson, and Osher [58] applied this method to a number of important models

in image processing including ROF denoising [109] and the Geodesic Active Contours

model [22]. Notably to our work they also applied it to globally convex segmentation

(3.32). Crucially, their method avoids the regularisation term by introducing an auxil-

iary variable ~d and a Bregman iteration, given by ~b, to strictly enforce the constraint
~d = u giving the following sequence of optimisation problems:

(uk+1, ~dk+1) = min
0≤u≤1,~d

{
|~d|+ λ

∫
Ω
f u dx+

µ

2
||~d−∇u||2

}
(3.33)

~bk+1 = ~bk +∇uk − ~dk. (3.34)

Their alternate minimisation scheme consists of computing an approximate solution

of (3.33) with respect to u. Further details on the theoretical justification for an

approximate solution at this stage can be found in [58] and [134]. The solution of

(3.33) with respect to ~d is given by a formula based on the shrink operator. The

bregman update is given explicitly by (3.34) as with similar methods [126, 142]. A full

description of the implementation of this approach and its algorithm can be found in

[59, 58]. Impressive results are observed in comparison to [33] and [18], both in terms

of computation time and dependence on the thresholding procedure discussed in the

previous section.

Another important algorithm applicable to our main problem (3.32) is that of

Chambolle-Pock [26], first introduced in 2011. It is a first order primal-dual algorithm
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that is applicable to a wide range of problems in imaging. In [26], it is applied to ROF

denoising [109], and related models in image deconvolution, inpainting, and motion es-

timation. Again, with our main problem (3.32) in mind we note that Chambolle-Pock

is also applicable to gloablly convex segmentation. Furthermore, it is also suitable

for multi-phase segmentation which offers a significant advantage. The problem (3.32)

is reformulated in a saddle-point structure with the introduction of a new variable,

analogous in some sense to the Split Bregman method discussed above. Details of the

reformulation can be found in [26] and subsequent work [25], but we will not go into

more depth here.

In the following section we summarise the details contained in [23] and [18], to

introduce Chambolle’s dual formulation of (3.32). Unlike Split-Bregman [58] and

Chambolle-Pock [26], the dual formulation [23, 18] retains a regularisation approach

similar to the original problem [30] whilst employing a splitting scheme. This approach

is more relevant to our work, which we address next.

3.3.1 Chambolle’s Dual Formulation

The dual formulation method of Chambolle [23] consists of introducing a new variable

v and alternating between minimising u and v. It was first applied to segmentation

problems of this type by Bresson et al. [18]. By splitting the variables in this way, the

minimisation of u concentrates on the TV term, and the minimisation of v satisifes the

fitting and constraint requirements:

min
u,v

{∫
Ω
|∇u(x)| dx+

1

2θ

∫
Ω

(u(x)− v(x))2 dx+

∫
Ω
λf(x)v(x) + αψ(v) dx

}
,

where ψ(v) = max{0, 2|v − 1
2 | − 1}. Two parameters are introduced here: θ > 0 is

a small parameter, and α > λ
2 ||r(x)||L∞(Ω) ensures the constraints on the indicator

function u(x) in (8.19) are met. The minimistion of u and v can be achieved iteratively

by the following steps. With fixed v:

min
u

{∫
Ω
|∇u(x)| dx+

1

2θ

∫
Ω

(u(x)− v(x))2 dx

}
which can be solved by [23]:

u(x) = v(x)− θ∇ · ρ(x), (3.35)

where ρ = (ρ1, ρ2) is the solution of

∇(θ∇ · ρ− v)− |∇(θ∇ · ρ− v)|ρ = 0, (3.36)

which can be solved by a fixed point method ρ0 = 0 and

ρn+1 =
ρn + τ∇(∇ · ρn − v/θ)

1 + τ |∇ρn − v/θ|
. (3.37)

With fixed u:
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min
v

{
1

2θ

∫
Ω

(u(x)− v(x))2 dx+

∫
Ω
λr(x)v(x) + αψ(v) dx

}
,

given, based on the work of Bresson et al. [18], by:

v(x) = min{max{u(x)− θλr(x), 0}, 1}. (3.38)

We use this approach in Chapter 4 for comparitive purposes, and in Chapter 6 following

the method of D. Chen et al. [37].
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Chapter 4

Additive Operator Splitting for
Globally Convex Segmentation

4.1 Introduction

In this chapter we introduce an additive operator splitting (AOS) scheme for a two-

phase segmentation problem in the convex relaxation framework. This builds on the

content of the previous chapter where the idea of convex relaxation methods was in-

troduced, and discussed in terms of its original application to imaging problems of

this type in the form of Chan-Vese [33]. However, since the work of Chan, Esedoglu,

and Nikolova [30] convex relaxation methods have been applied to a wide range of

segmentation problems; this includes shape priors [101], intensity inhomogeneity [37],

multi-phase [25, 10, 137, 102], and many more [92, 141, 75, 20]. Here we focus on a

two-phase formulation with a generalised fitting function. Two-phase problems have

the advantage of being widely applicable in a number of important fields, such as organ

selection in medical images, and the consideration of problems of this type will form

the basis of the rest of the work in this thesis.

Our work here consists of introducing a new penalty function to impose the relaxed

constraint, u ∈ [0, 1]. This is important as the final segmentation contour, Γ, is given

by a thresholding procedure that relies on the computed segmentation function being

approximately binary. If this relaxed binary constraint is imposed in an unreliable way,

then Γ is more parameter dependent. The intention is to have the implementation of

convex relaxation methods be consistent with the theory [30], especially with respect

to this binary consideration.

The main idea in this chapter is based on the introduction of an improved AOS

scheme for problems of this type. That is, in the case of two-phase segmentation prob-

lems with a generalised fitting function. AOS has been used for similar segmentation

problems [105, 104, 9], but this was in the level-set framework introduced in Chapter

2. Here, we apply it to globally convex segmentation (GCS) for the first time. The

main challenge consists of incorporating the penalty function in such a way that we

can achieve a stable convergence reliably. Additionally, reducing computation time

with this consideration is of particular interest.

In Section 4.2 we introduce the idea of GCS, and discuss the general problem we
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will consider in this chapter. We will then cover two methods to compute a solution

of this problem, in order to put our approach in context. The first is gradient descent

which was used in the original paper by Chan, Esedoglu, and Nikolova [30]. The second

is the dual formulation of Chambolle [23] which was used in the work of Bresson et al.

[18] and introduced in the previous chapter. We choose these as they both impose the

relaxed binary constraint with a penalty function, similarly to our approach, and the

dual formulation [23] is a very popular method, widely used in the literature [18, 37],

and is considered to be an effective scheme. In Section 4.3 we provide some relevant

details of finding global minimisers for the general GCS problem. Here, we introduce

our proposed penalty function to impose the relaxed binary constraint. We demonstrate

the convexity of this term for certain values of the regularisation parameter, such that

the functional is convex in practice. We also give some details of the derivation of the

corresponding Euler-Lagrange equation, before introducing our proposed AOS scheme

in Section 4.4. We propose two methods; the first is focused on reducing computation

time, and the second is based on ensuring a stable convergence. In Section 4.5, we

compare our proposed methods from Sections 4.3 and 4.4 to the Chambolle’s dual

formulation for GCS [18], and discuss its relation to gradient descent in [30]. The main

considerations in our tests will be their accuracy in terms of segmentation, how close to

binary the solutions are, and the computation time. We make some concluding remarks

in Section 4.6. The methods introduced in this chapter are applicable to a wide range

of problems and will be referred to throughout the thesis.

4.2 Globally Convex Segmentation

In this chapter we discuss the problem of finding global minimisers of segmentation

models in general. This area was first discussed in the context of two-phase piecewise-

constant segmentation by Chan, Esedoglu, and Nikolova [30] in 2006, which concerned

finding the global minimum of the Chan-Vese functional [33] for fixed intensity con-

stants. As discussed previously, this is a particular case of the Mumford-Shah functional

[89] and further details can be found in Chapter 3. This seminal work [30] has influ-

enced many important developments in this area, such as Bresson et al. [18] in 2007,

as well as many other [79, 10, 136, 19, 120]. We are concerned with the two-phase

segmentation problem, which in general is given as follows:

min
u∈{0,1}

{∫
Ω
|∇u(x)|dx+ λ

∫
Ω
f(x)u(x)dx

}
, (4.1)

where u(x) ∈ BV (Ω; {0, 1}) is a binary function that indicates the foreground and

background for u = 1 and u = 0, respectively. The fitting term f(x) ∈ L∞(Ω) defines

the boundary of the object in the sense that the zero level-set of this function is approx-

imately the desired boundary Γ. Generally, f(x) < 0 indicates foreground and f(x) > 0

indicates background, with this balanced by the regularisation term and the weighting

parameter, λ. The total variation (TV) of a binary function gives the length of the

boundary, Γ, such that TV (u) ≥ 0. We can then observe that the functional attains its
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minimum when positive values of f(x) are limited due to the indicator function going

to u = 0. The weighting parameter, λ, then determines the smoothness of Γ. In this

chapter we do not discuss how this fitting function, f(x), is found. Many methods deal

with what the best choice is in a number of problems, such as Mylona et al. [90].

In order to efficiently and reliably obtain the global minimum we need to minimise

a convex functional over a convex set, which we discuss in Chapter 2. The above

functional is convex with respect to u. However, the constraint set {0, 1} is clearly

nonconvex. The central idea here is that of convex relaxation, where the constraint is

relaxed such that the set is convex. The conventional relaxation here is to allow the

indicator function to take intermediate values, i.e. u(x) ∈ [0, 1]. We are now minimising

a convex functional over a convex set, and so can obtain a global minimum. The

advantage of formulating a segmentation model in this way is that success is determined

by the fitting function and parameter selection, as there is no risk of obtaining a local

minimum. This gives us the convex relaxation segmentation formulation:

min
u∈[0,1]

{∫
Ω
|∇u(x)|dx+ λ

∫
Ω
f(x)u(x)dx

}
. (4.2)

This minimisation problem is central to the work discussed in this chapter. It has many

possible applications, and understanding the background and seminal ideas surrounding

it are essential to variational segmentation models. In what follows we discuss conven-

tional methods to minimise this functional (4.2). Originally, Chan, Esedoglu, Nikolova

[30] used gradient descent to obtain a solution. Many recent methods have approached

this problem differently, as discussed in Section 3.3. Alternative minimisation methods

for this type of problem include Goldstein et al. [58], and Chambolle-Pock [26].

Once a solution for the segmentation function u has been obtained, which we refer

to throughout the thesis as u∗, the computed contour can be defined by the thresholding

procedure described in [30] and given as follows. The foreground, Ω1 is defined as

Ω1 = Σ(γ) = {x : u(x) > γ}. (4.3)

The final segmentation contour can then be defined as Γ∗ = ∂Ω1, and is a minimiser

for the corresponding nonconvex problem for γ ∈ (0, 1) [30].

4.2.1 Gradient Descent

In Chan, Esedoglu, and Nikolova [30] they impose the constraint in the functional (4.2)

by including a penalty function, ν(u) = max{0, 2|u−1/2|−1}. Then, the unconstrained

minimisation with respect to u is

min
u

{∫
Ω
|∇u(x)|dx+ λ

∫
Ω
f(x)u(x)dx+ α

∫
Ω
ν(u)dx

}
. (4.4)

Further details can be found in [29, 30], or by referring to the discussion in Chapter 3. In

order to smooth the kinks at u = 0 and u = 1 they introduce a regularised penalty func-

tion, such that the Euler-Lagrange equation can be derived. The regularised penalty

function, ψε(u) is defined as:

53



ψε(ζ) =



−ζ if ζ < −ε/
√

2

(1 +
√

2)ζ −
√

tan2(3π/8)ζ2 − (ζ − ε)2 if −ε/
√

2 ≤ ζ < ε

0 if ε ≤ ζ < 1− ε
(1 +

√
2)ζ −

√
tan2(3π/8)ζ2 − (ζ − 1 + ε)2 if 1− ε ≤ ζ < 1 + ε/

√
2

ζ − 1 if 1 + ε/
√

2 ≤ ζ

This was first introduced by Bresson [17] in 2005. This gives the new minimisation

problem:

min
u

{∫
Ω
|∇u(x)|dx+ λ

∫
Ω
f(x)u(x)dx+ α

∫
Ω
ψε(u)dx

}
. (4.5)

The following Euler-Lagrange equation with Neumann boundary conditions is derived:

∇ ·
(
∇u
|∇u|

)
− λf − αψ′ε(u) = 0,

∂u

∂~n
= 0. (4.6)

The details of this derivation will be discussed in Section 4.3.3, where we refer to the

mathematical preliminaries introuduced in Chapter 2. This nonlinear partial differen-

tial equation (PDE) (4.6) can be solved with an explicit gradient descent method by

introducing a time step:

∂u

∂t
= ∇ ·

(
∇u
|∇u|

)
− λf − αψ′ε(u),

∂u

∂~n
= 0. (4.7)

In [29, 30] they present results for this approach using gradient descent. As discussed

in Chapter 2 the restrictions on the time step can be limiting in terms of computation

time. For example, Bresson [17] uses a time step of τ = 0.00005. The converged results

for u(x) are close to binary for the results presented in [30], where the authors state

that ”the extreme values seem to be about 0.04 at the low end and 0.97 at the high

end”. We will consider these details in the introduction of our proposed methods, in

Sections 4.3 and 4.4.

4.2.2 Dual Formulation

The dual formulation of Chambolle [23] was first applied to this problem type by Bres-

son et al. [18] in 2007. We discuss it in Chapter 3 but recall the essential details here

in order to compare against our proposed method in Section 4.4. The Chambolle Algo-

rithm consists of introducing a new variable v(x) and alternating between minimising

u and v. By splitting in this way the minimisation of u concentrates on the TV term,

and the minimisation of v satisifes the fitting and constraint requirements. The original

functional (4.2) is adjusted as follows:

min
u,v

{∫
Ω
|∇u(x)|dx+

1

2θ

∫
Ω

(u(x)− v(x))2 dx+

∫
Ω
λf(x)v(x) + αν(v)dx

}
,
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where θ > 0 is a small weighting parameter. The minimistion of u and v is achieved by

alternating between minimising each and iterating. First, with a fixed v, the functional

is minimised with respect to u:

min
u

{∫
Ω
|∇u(x)|dx+

1

2θ

∫
Ω

(u(x)− v(x))2 dx

}
.

This can be solved for u according to [23], as detailed in the previous chapter. Secondly,

with fixed u, the functional is minimised with respect to v:

min
v

{
1

2θ

∫
Ω

(u(x)− v(x))2 dx+

∫
Ω
λf(x)v(x) + αν(v)dx

}
.

Based on the work of Bresson et al. [18], this can be solved by:

v(x) = min{max{u(x)− θλf(x), 0}, 1}.

Minimising with respect to u and v is iterated until convergence. The stopping criterion

given in [18] is max(|un+1 − un|, |vn+1 − vn|) ≤ δ, although a suitable value of δ is not

given. We will address this in our test sets in Section 4.5. Chambolle’s dual formulation

is widely used in the literature [37, 18] in relation to the original problem 4.2, and

is recognised as an effective approach both in terms of accuracy and computational

efficiency.

4.3 Finding the Global Minimum

Our approach to the two-phase GCS problem (4.2) is to follow the seminal work of [30],

where the relaxed binary constraint u ∈ [0, 1] is enforced with a penalty function. The

corresponding unconstrained minimisation problem is given as follows:

min
u∈[0,1]

{∫
Ω
|∇u(x)|dx+ λ

∫
Ω
f(x)u(x)dx+ α

∫
Ω
ν(u)dx

}
, (4.8)

where f(x) is a fitting term weighted by λ > 0, and ν(u) is an exact penalty term

weighted by α > 0. In [17, 29, 30] this function, shown in Fig. 4.1, is given as

ν(u) = max{0, 2|u− 1/2| − 1}. (4.9)

The choice of α is important to the imposing the constraint 0 ≤ u ≤ 1 in a robust way.

In the following we explore an alternative regularisation of the penalty function ν(u),

which we intend to improve results in the sense of how binary the converged result is

and how fast it is obtained.

4.3.1 Introducing a New Regularised Penalty Function

Whilst many recent methods have enforced the relaxation constraint on u in alternative

ways [25, 75, 26, 58], we return to the original approach where a penalty function is

used. As discussed in Chapter 3, ν(u) is an exact penalty term and enforces the

constraint provided that α > λ
2 ||f(x)||L∞ . The constrained and unconstrained energies,
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Figure 4.1: The penalty function ν(u) used in [17, 29, 30] to enforce the constraint
u ∈ BV (Ω; [0, 1]).

given in (4.2) and (4.8) respectively, agree for {u ∈ L∞(Ω) : 0 ≤ u(x) ≤ 1 ∀x}. If

α > λ
2 ||f(x)||L∞ , then

|λf(x)|max{|u(x)|, |u(x)− 1|} < αν(u(x)), whenever u(x) ∈ [0, 1],

meaning the transformation u → min{max{0, u}, 1} always decreases the energy of

the unconstrained problem. Therefore, any minimiser of the unconstrained problem

automatically satisfies the constraint 0 ≤ u ≤ 1. In [30] a regularised penalty function

is used, and they discuss the results using gradient descent regarding how close to

binary the solution for u is. They find that as the steady state approaches u becomes

approximately binary, despite taking a continuum of values during the evolution. The

”extreme values seem to be about 0.04 at the low end and 0.97 at the high end”, which

is as a result of the regularisation of the problem. The thresholding procedure works

in practice in this case, but clearly is not consistent with Σ(γ) = {x : u(x) > γ} for

γ ∈ (0, 1). Ideally, the regularisation of the functional should be as consistent with

the theoretical problem as possible and we now consider possible improvements to the

formulation in this sense. With this in mind, we introduce a new penalty function that

addresses this problem.

We introduce a new function, νε(u) that is based on an intuitive definition of the

penalty function based on its shape in Fig. 4.1. It is given as follows:

νε(u) = Hε

(√
(2u− 1)2 + ε− 1

)[√
(2u− 1)2 + ε− 1

]
,

where Hε(x) = 1
2

(
1 + 2

π arctan x
ε

)
. Examples for given choices of ε are shown in Fig.

4.2. This gives us a new unconstrained minimisation problem:

min
u(x)

{∫
Ω
|∇u(x)|dx+ λ

∫
Ω
f(x)u(x)dx+ α

∫
Ω
νε(u)dx

}
. (4.10)
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i) ν(u) ii) νε(u), ε = 1

iii) νε(u), ε = 0.1 iv) νε(u), ε = 0.01

Figure 4.2: The regularised penalty function νε(u) for ii) ε = 1, iii) ε = 0.1, and iv)
ε = 0.01. The original penalty function, ν(u), from [30] is shown in i). Visually, the
most appropriate choice is for ε = 0.01.

4.3.2 Convexity of the Proposed Functional

In introducing a new term, νε(u), to the original minimisation problem (4.2) it is impor-

tant to ensure that it does not violate the most important condition of the functional.

That is, the new functional must also be convex with respect to u otherwise finding the

global minimum cannot be guaranteed with convex relaxation. In order to establish

that this property is retained in (4.10) we briefly return to the mathematical prelimi-

naries discussed in Chapter 2. Let us consider the proposed functional as the sum of

two functions:

Fε(u) = J (u) + P(u),

where

J (u) =

∫
Ω
|∇u(x)|dx+ λ

∫
Ω
f(x)u(x)dx, P(u) = α

∫
Ω
νε(u)dx.

As the sum of two convex functions is also convex, we can demonstrate the convexity of

Fε(u) by treating of J (u) and P(u) separately. As discussed in Chapter 2, we require

the second order derivative to be non-negative in order to prove convexity. We will

not show this for J (u), as it is already well established [29, 30, 17, 18]. It is, however,

necessary to consider the second function, P(u), involving the proposed regularised
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penalty function. First we introduce an alternative definition of νε(u):

νε(u) = Hε(bε(u))bε(u),

where bε(u) =
√

(2u− 1)2 + ε − 1 and Hε(x) = 1
2 + 1

π arctan
(
x
ε

)
. Then, the second

derivative of P(u) is given as

P ′′ε (u) = α
∂2P(u)

∂u2
= α

∂2Hε(bε)

∂u2
bε(u) + 2α

∂Hε(bε)

∂u

∂bε(u)

∂u
+ α

∂2bε(u)

∂u2
Hε(bε), (4.11)

where

∂bε(u)

∂u
= (4u− 2)

[
(2u− 1)2 + ε

]−1/2
,

∂2bε(u)

∂u2
= 4

[
(2u− 1)2 + ε

]−1/2 − (4u− 2)2
[
(2u− 1)2 + ε

]−3/2
,

∂Hε(bε)

∂u
=

ε

π

(
(4u− 2)

[
(2u− 1)2 + ε

]−1/2

ε2 +
([

(2u− 1)2 + ε
]1/2 − 1

)2
)
,

∂2Hε(bε)

∂u2
=

ε

π

(
4
[
(2u− 1)2 + ε

]−1/2 − (4u− 2)2
[
(2u− 1)2 + ε

]−3/2

ε2 +
([

(2u− 1)2 + ε
]1/2 − 1

)2
)

− 2ε

π

(
(4u− 2)

[
(2u− 1)2 + ε

]−1/2

ε2 +
([

(2u− 1)2 + ε
]1/2 − 1

)2
)2

.

From this we can see that determining whether (4.11) is non-negative is not trivial and

currently we have not proved this for any ε > 0 in general. What this function, P ′′ε (u),

looks like is shown in Fig. 4.3 for ε = 1 and ε = 0.1, and we can observe the challenge

in proving its non-negativity. Intuitively, P(u) is convex but we leave the problem of

proving this for any ε > 0 open for future consideration. However, for fixed values of

ε we can observe that P ′′ε (u) is non-negative. This allows us to minimise (4.10) with

the knowledge that the functional is convex, and the global minimum can be found

accordingly.

4.3.3 Deriving the Euler-Lagrange Equation

We now discuss minimising (4.10) with respect to u(x) to derive the Euler-Lagrange

equation. From Chapter 2 we recall that Fε(u) is differentiable in the Gateaux sense

at u ∈ BV (Ω) if the limit

F ′ε(u;φ) =
d

dh

(
Fε(u+ hφ)

)∣∣∣∣
h=0

= lim
h→0

Fε(u+ hφ)−Fε(u)

h
,

is defined for a test function φ. With that in mind we can compute the first variation

of the functional Fε with respect to u such that

lim
h→0

Fε(u+ hφ)−Fε(u)

h
.
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i) P ′′ε (u), ε = 1 ii) P ′′ε (u), ε = 0.1

Figure 4.3: The second derivative of P(u), P ′′ε (u), given by (4.11). i) is for ε = 1 and ii)
is for ε = 0.1. Both are non-negative and therefore the corresponding Fε(u) is a convex
functional.

This is given as follows

d

dh

(∫
Ω
|∇(u+ hφ)|dx+

∫
Ω
f(x)(u+ hφ)dx+

∫
Ω
νε(u+ hφ)dx

) ∣∣∣∣
h=0

= 0∫
Ω

∇u
|∇u|

· ∇φ dx+ λ

∫
Ω
fφ dx+ α

∫
Ω
ν ′ε(u)φ dx = 0

where

ν ′ε(u) =
2ε(2u− 1)(

√
(2u− 1)2 + ε− 1)

π
√

(2u− 1)2 + ε((
√

(2u− 1)2 + ε− 1)2 + 1)

+
2Hε(

√
(2u− 1)2 + ε− 1)(

√
(2u− 1)2 + ε− 1)√

(2u− 1)2 + ε
,

Recall from Gauss’s Theorem in Chapter 2 the following relation:∫
Ω
φ∇ · ~w dx = −

∫
Ω
∇φ · ~w dx+

∫
∂Ω
φ~w · ~n ds.

We then have:

∫
Ω

∇u
|∇u|

· ∇φ dx+ λ

∫
Ω
fφ dx+ α

∫
Ω
ν ′ε(u)φ dx = 0∫

∂Ω
φ
∇u
|∇u|

· ~n ds−
∫

Ω
φ∇ · ∇u

|∇u|
dx+

∫
Ω

(
λf + αν ′ε(u)

)
φ dx = 0∫

∂Ω
φ
∇u
|∇u|

· ~n ds+

∫
Ω

(
λf + αν ′ε(u)−∇ · ∇u

|∇u|

)
φ dx = 0.

This holds for all test functions φ, giving us the following Euler-Lagrange equation with

Neumann boundary conditions:
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∇ ·
(
∇u
|∇u|

)
− λf − αν ′ε(u) = 0,

∂u

∂~n
= 0. (4.12)

This nonlinear PDE (4.13) can be solved with the gradient descent method by introduc-

ing a time step, as discussed in Section 4.2.1. However, in the next section we consider

potential improvements to this method in the form of an AOS scheme.

4.4 A New Additive Operator Splitting Scheme for GCS

We consider the following PDE, based on the derivation from the previous section. We

consider the 2D case, but it can be generalised to higher dimensions as discussed in

Chapter 2.

∂u

∂t
= ∇ ·

(
∇u
|∇u|β

)
− λf − αν ′ε(u), (4.13)

where |∇u|β =
√
u2
x + u2

y + β, to avoid singularities [109]. Denote W = 1
|∇u|β . Freezing

W linearises the equation and 4.13 can be rewritten in the form:

∂u

∂t
= ∂x(W∂xu) + ∂y(W∂yu)− λf − αν ′ε(u).

We apply the semi-implicit AOS scheme proposed by [85, 128], where the PDE (4.13)

is linearised. Below, A` are the diffusion quantities in the ` direction (` = 1, 2 for each

spatial dimension) and were derived using the finite difference method, and n denotes

the nth iteration. They are given explicitly in Chapter 5 and in our paper [112]. The

benefits of this method are that at each iteration the solution to two tridiagonal linear

systems is required, which can be computed efficiently with the Thomas algorithm [128,

pp.5-6]. We will demonstrate the adjustments made for our new method by first looking

at the important step of the original AOS scheme [128], that we call AOS0 from here:

un+1
` = (I − 2τA`(u

n))−1︸ ︷︷ ︸
Q0

(un−ταν ′ε(un)− τλf︸ ︷︷ ︸
f0

). (4.14)

Then, the update is given by averaging the update from each direction:

un+1 =
un+1

1 + un+1
2

2
. (4.15)

However, AOS0 generally assumes that f0 is not dependent on u. In this case, the term

ν ′ε(u) in f0 does depend on u, which can lead to stability problems in practice. This

prompted us to consider an extension of the original scheme, to improve performance

and ensure stability. The shape of ν ′ε(u) means that changes are problematic near u = 0

and u = 1, as small changes in u produce large changes in f0.

4.4.1 Method 1

In order to overcome this, we define an interval Iς , where we adjust the equation based

on the linear part of ν ′ε(u) and the difference in u between iterations. This minimises
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i) ν(u) ii) ν′ε(u), ε = 1

iii) ν′ε(u), ε = 0.1 iv) ν′ε(u), ε = 0.01

Figure 4.4: The function ν ′ε(u) for different choices of ε. The jumps at u = 0 and u = 1
aren’t as sharp for larger ε, but the constraint u ∈ [0, 1] is enforced less strictly in these
cases.

the changes in f0 from n to n + 1. We make an adjustment to the equation based

on the Taylor expansion of ν ′ε(u) at u = 0; ν ′ε(u) = a0 + bu + O(u2), and at u = 1;

ν ′ε(u) = a1 + bu+O(u2). This allows us to approximate ν ′ε(u) in an interval, Iς , with a

linear function, bu. We define this interval and a binary function, b̃n, as follows:

Iς := [0− ς, 0 + ς] ∪ [1− ς, 1 + ς], b̃n =

{
b, if un ∈ Iς
0, elsewhere.

(4.16)

Then, with B̃n = diag(ταb̃n), we can adjust (4.14):

un+1
` =

(
I + B̃n − 2τA`(u

n)
)−1

︸ ︷︷ ︸
Q1

(un +ταb̃un − ταν ′ε(un)− τλf)︸ ︷︷ ︸
f1

. (4.17)

This scheme improves the performance of AOS0 because the changes in f1 (4.17) be-

tween iterations is limited, compared to f0 (4.14). The addition of ταb̃nun1 − ταb̃nu
n+1
1

has the effect of approximating the change in ν ′ε(u) between n and n+ 1, in Iς . We call

the above scheme AOS1 (4.17) from here.

4.4.2 Method 2

In Weickert et al. [129] conditions on Q` for a discrete scale space were provided,

required for convergence. The matrix Q1 (4.17) does not fulfil this criteria and in order
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to satisfy these conditions, we must first make the following adjustment, compared to

(4.17):

un+1
` =

(
I − 2τ(I + B̃n)−1A`(u

n)
)−1

︸ ︷︷ ︸
Q2

(un−τ(I + B̃n)−1(αν ′ε(u
n) + λf))︸ ︷︷ ︸

f2

. (4.18)

By increasing ς, such that b̃ = b, AOS2 fulfils additional criteria from [129]. As u ∈ [0, 1],

ς = 0.5 is enough to ensure this. This adjustment consists of multiplying τ by a scalar,

dependent on b and α. This can be interpreted as automatically restricting the time

step, based on the prominence of the penalty function, dictated by the size of α, and

represented by b. Our results demonstrate a significant improvement in terms of speed

for AOS1, and stability for AOS2, over the original AOS scheme applied to this type

of problem (4.8).

The relevant conditions are listed in Chapter 2, and additional details can be found

in our paper [112] or in the literature [127, 128, 129]. This adjustment consists of mul-

tiplying τ by a scalar, dependent on b and α. This can be interpreted as automatically

setting the time step to τ̃ :

τ̃ =
τ

1 + ταb
. (4.19)

This restricts the size of time step based on the prominence of the penalty function,

dictated by the size of α, and represented by b.

4.5 Experimental Results

The test problems are given in Fig. 4.5 and show the image, z, the fitting function, f ,

and the zero contour of f (denoted Γf ). One notes that the fitting function is given,

which is not true in practice. We consider a generalised segmentation problem here,

and in later chapters address how the fitting functions are formed for difficult problems.

These tests are designed to compare our approach with Chambolle’s Dual Formulation,

which we call CDF from here. In the first set of tests we establish the parameters we

use in our AOS schemes, and demonstrate the advantages of our proposed schemes.

In the second test we compare AOS1 and AOS2 against CDF [23, 18]. In the third

we demonstrate how dependent results are on the initialisation of the segmentation

function, u0.

We use three measures to compare the two approaches. The accuracy of the seg-

mentation, given by the Tanimoto Coefficient [48]:

TC =
N(GT ∩ Ω∗1)

N(GT ∪ Ω∗1)
, (4.20)

where N(·) is the number of pixels in the enclosed region, GT is the ground truth, and

Ω∗1 is the result computed based on the thresholding procedure defined earlier and in

[30]. We also want to consider how close to binary the computed solution is. With that

in mind we define an interval, Iµ = [0, µ] ∪ [1− µ, 1] and then mb is the percentage of
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x : u∗(x) ∈ Iµ. Typically we select µ = 0.02, and also present histograms that use this

spacing as well. We are also interested in the computation time, which we denote cpu

(measured in seconds). Each approach has a stopping criterion, defined as δ, which will

be discussed in Test Set 2.

i) Image 1, z(x) ii) Image 2, z(x)

iii) Fitting 1, f(x) iv) Fitting 2, f(x)

v) Fitting 1, Γf (red) vi) Fitting 2, Γf (red)

Figure 4.5: Test Problems. Two examples are given for two-phase segmentation prob-
lems where the ground truth is known. Image 1 and 2 are on the left and right,
respectively. Row 1 is the observed image, row 2 is the fitting function f(x), and row
3 gives the zero contour, Γf , of f(x) in red.
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4.5.1 Test Set 1 (AOS Parameters)

In this set of tests we address the effectiveness of the ideas introduced in Sections

4.3 and 4.4, particularly with respect to parameter choices for the regularised penalty

function, νε(u), and the AOS interval, Iς (4.16). We will present results for the original

AOS scheme, and compare that against the proposed improved schemes: AOS1 and

AOS2.

First, in Fig. 4.6 we show the computed segmentation function, u∗(x), and its

histogram (H) for three cases: ε = 1, 0.1, 0.01. This will demonstrate how we select

the parameter for the regularised penalty function introduced in Section 4.3.1. It is

worth noting, as mentioned in Section 4.3.2, that for each choice of ε tested the second

derivative of the functional is non-negative and so we expect to compute the global

minimum for each example. Clearly the best result is for ε = 0.01, particularly in

terms of how binary the final result is. This is important as it means there is more

consistency with the theory discussed in [30, 18, 17, 102] and the thresholding procedure

to obtain the final contour is more reliable. This result is predictable based on the shape

of the regularisations in Fig. 4.2. However, it is important to point out that smaller

choices of ε are not as reliable, due to the discontinuity leading to numerical problems.

The limits of this parameter are worth considering in future work. The key point from

these tests is that we observe that for ε = 0.01 the computed segmentation function is

closer to binary than when the old penalty function is used in [30]. Chan et al. [30]

state that ”extreme values seem to be about 0.04 at the low end and 0.97 at the high

end”, whereas in our results the value of every pixel is in the interval Iµ, for µ = 0.02.

In Fig. 4.7 we present results for AOS0, for three different time steps (τ =

10−3, 10−2, 10−1). Residuals (R) are presented along with the computed segmenta-

tion function, u∗(x), for Image 1. We conclude that a small time step is required for

the smooth convergence of u(x) and for the result to be binary. Whilst this is a single

example we observe this behaviour in both examples, and throughout other testing

with this method.

In Table 4.1 we present results for our improved scheme, AOS1 (τ = 0.01), based

on selections of the interval parameter ς. The stopping criterion used was δ = 0.01. For

Image 1 (ς = 0, 0.001) and Image 2 (ς = 0, 0.001, 0.01) the residual did not reduce to this

level and the iterations were stopped at a maximum number. The results demonstrate

that the choice of ς is important for the speed of convergence and how close to binary

the computed segmentation function u∗(x) is. Clearly, we can use a higher time step

than in AOS0 (see Fig. 4.7) and this contributes to the improvements achieved in

the proposed scheme. The results in Fig. 4.8 support this conclusion. It illustrates

what we’ve consistently observed in testing AOS1, where we present residuals for four

choices of ς with τ = 0.01 (n.b. no stopping criterion was applied here). The optimal

selection of this parameter warrants further investigation, as it is capable of quantifiably

improving results.

In Fig. 4.9 we present results for the improved scheme, AOS2. We ran tests with

a time step of τ = 1, however these results have been replicated for higher values. We
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present residuals for three selections of the interval parameter (ς = 0.01, 0.05, 0.5) that

demonstrate the advantages of this method. For ς = 0.5 we consistently observe stable

convergence and a computed segmentation function that is close to binary. Experimen-

tally, the choice of τ is essentially arbitrary for AOS2 as mentioned in Section 4.4.2

(see eqn. (4.19)). However, the improvement is based on stability as increasing τ does

not noticeably speed up convergence.

i) u∗(x), ε = 100 ii) H, ε = 100 iii) νε(u), ε = 100

iv) u∗(x), ε = 10−1 v) H, ε = 10−1 vi) νε(u), ε = 10−1

vii) u∗(x), ε = 10−2 viii) H, ε = 10−2 ix) νε(u), ε = 10−2

Figure 4.6: Test Set 1. ε Results, Image 1. The left column is the segmentation
function, u∗(x), the central column is the histogram of u∗(x), and the right column is
the regularised penalty function, νε(u). Row 1 is for ε = 100, row 2 is for ε = 10−1, row
3 is for ε = 10−2. This demonstrates that a good choice for ε in the regularised penalty
function, νε(u), is 10−2. This is consistent throughout our tests, including for Image 2
which is not shown here.

4.5.2 Test Set 2 (Dual Formulation Comparison)

In this set of tests we compare the schemes proposed in Section 4.4, AOS1 and AOS2,

against CDF for the original problem (4.2). We measure the success of each method
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AOS1, Image 1 AOS1, Image 2

ς TC mb cpu ς TC mb cpu

0 1 69 318.3 0 0.96 58 1248.3

0.001 1 75 319.7 0.001 0.96 58 1254.4

0.01 1 100 1.4 0.01 0.96 95 1276.3

0.05 0.99 100 0.20 0.05 0.96 100 3.2

0.1 0.99 100 0.14 0.1 0.96 100 3.0

0.3 0.99 100 0.16 0.3 0.96 100 3.1

0.5 0.99 100 0.09 0.5 0.96 100 3.0

Table 4.1: Test Set 1. AOS1 ς Results for Images 1 (128x128) and 2 (256x256). In the
improved AOS scheme ς determines the width of the interval, Iς (4.16). We present
values as ς varies in terms of segmentation quality, TC, a measure of how binary u∗(x)
is, mb, and the time (in seconds) taken to reach the stopping criterion δ = 0.01, cpu
(n.b. for some results the iterations were stopped at the maximum iteration number).
Results demonstrate that smaller values of ς produce non-binary results and take longer
to converge, despite the accuracy of the thresholding procedure.

with respect to the three features introduced above; that is, the accuracy (TC), the

binary measurement (mb), and the computation time (cpu) in seconds. We note that

a precise stopping criterion, δ, is not provided by the authors [18] and so we test two

choices (δ = 0.1, 0.01) with results presented in Tables 4.2 and 4.3. Empirically, we

have found that a stopping criterion of δ = 0.01 is sufficient for the proposed AOS

schemes.

In Table 4.2 we present results for Image 1, which is of size 128x128, for a range of

values of λ. This parameter controls the smoothness of the contour Γ and determines

the accuracy of the model. Here, we compare AOS1 (ς = 0.05) against CDF. One

notes that a stopping criterion of δ = 0.1 is sufficient for CDF here, as the results

in terms of TC and mb do not improve for a lower threshold. We can observe that

AOS1 is consistently more accurate than CDF. In fact, for λ ∈ [5, 30] AOS1 achieves

an impressive result of TC = 0.99, whereas CDF peaks at TC = 0.97. Similarly,

AOS1 performs well in terms of mb for every value of λ. Conversely, the best result for

CDF is mb = 0.74, meaning the thresholding procedure defined earlier is less reliable.

Additionally, AOS1 performs better in terms of the computation time. AOS1 is less

than a second for every value of λ, whilst CDF takes around ten seconds. It is also

worth noting that the greatest cpu value for CDF (δ = 0.1) corresponds with the best

result in terms of accuracy. These conclusions are supported by Figs. 4.10 and 4.11

In Table 4.3 we present similar results for Image 2, which is of size 256x256. The

conclusions from Table 4.2 are supported in these results, such as an appropriate stop-

ping criterion for CDF being δ = 0.1. The proposed scheme, AOS1 (ς = 0.05), does

not perform as well here as the first case. However, it still outperforms the alternative

for λ ∈ [5, 30] and is consistently good with respect to the TC and mb measures. This

is supported, and demonstrated more clearly, by Figs. 4.12 and 4.13. We also note

that the computation time of AOS1 is better than that of CDF, particularly for λ = 5

which is the best result in terms of accuracy for CDF.
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i) u∗(x), τ = 10−3 ii) H, τ = 10−3 iii) R, τ = 10−3

iv) u∗(x), τ = 10−2 v) H, τ = 10−2 vi) R, τ = 10−2

vii) u∗(x), τ = 10−1 viii) H, τ = 10−1 ix) R, τ = 10−1

Figure 4.7: Test Set 1. AOS0 Results, Image 1. The left column is the segmentation
function, u∗(x), the central column is the histogram of u∗(x), and the right column is
the residual progression. Row 1 is for τ = 10−3, row 2 is for τ = 10−2, row 3 is for
τ = 10−1. This demonstrates that for AOS0 a small time step (τ = 10−3) is required
for a result that is close to binary, and a smooth convergence for u(x). There are similar
results for Image 2, which are not shown here.

4.5.3 Test Set 3 (Initialisation Dependence)

In this test set we address the significance of the initialisation of the segmentation

function, u0. In this chapter we have established that global minimisers can be com-

puted independently of initialisation, however, the choice of u0 can be very important

in terms of convergence speed. Here, we run the same tests as before for AOS1 with

the stopping criterion δ = 0.01

In Figs. 4.14 and 4.15 we introduce the initialisations for Images 1 and 2, respec-

tively. The intention is to test a variety of choices, of varying distances from the ground

truth, and observe the differences when varying ς. In Tables 4.4 and 4.5 we present

results in terms of mb and cpu. One notes that the TC value of each, based on the
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i) R, ς = 0 ii) R, ς = 0.01

iii) R, ς = 0.05 iv) R, ς = 0.5

Figure 4.8: Test Set 1. AOS1 ς Results, Image 1. In the improved AOS scheme
ς determines the width of the interval, Iς (4.16). Residuals are presented for AOS1
results for Image 1 with τ = 10−2, for four different choices of ς. They demonstrate
that the convergence for u(x) is dependent on the width of Iς , and it is possible to use
larger time steps with the improved scheme, AOS1.

AOS1, δ = 0.01 CDF, δ = 0.1 CDF, δ = 0.01

λ TC mb cpu λ TC mb cpu λ TC mb cpu

5 0.99 100 0.16 5 0.97 74 15.3 5 0.97 74 49.4

10 0.99 100 0.11 10 0.90 67 9.1 10 0.90 67 31.0

15 0.99 100 0.28 15 0.88 66 6.4 15 0.87 66 18.6

20 0.99 100 0.12 20 0.87 65 7.6 20 0.87 65 32.9

25 0.99 100 0.12 25 0.87 65 6.1 25 0.87 65 23.9

30 0.99 100 0.17 30 0.86 64 6.2 30 0.86 64 22.8

Table 4.2: Test Set 2. AOS1 and CDF Results for Image 1 (128x128). We present
values as λ (the fitting function parameter) varies in terms of segmentation quality,
TC, a measure of how binary u∗(x) is, mb, and the time (in seconds) taken to reach
the stopping criterion δ, cpu. For CDF we test two stopping criteria, δ = 0.1, 0.01, and
for AOS1 we test δ = 0.01. Results demonstrate that AOS1 (ς = 0.05) converges faster
than CDF, and produces better results in terms of TC and mb for a range of λ.
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i) u∗(x), ς = 0.01 ii) R, ς = 0.01

iii) u∗(x), ς = 0.05 iv) R, ς = 0.05

v) u∗(x), ς = 0.5 vi) R, ς = 0.5

Figure 4.9: Test Set 1. AOS2 ς Results, Image 1. In the improved AOS scheme ς
determines the width of the interval, Iς (4.16). Residuals are presented for AOS2 results
for Image 1 with τ = 1, for three different choices of ς. On the left is the segmentation
function, u∗(x), and on the right is the residual progression. They demonstrate that the
convergence for u(x) is dependent on the width of Iς , and it is possible to use arbitrary
time steps with the improved scheme, AOS2, when ς = 0.5.

thresholding procedure discussed earlier, does not change. This supports the idea that

we are computing global minimisers independently of initialisation. The results demon-

strate that I1 is the most suitable initialisation in terms of cpu. As u0 is initialised

further from the ground truth, the computation time can be significantly affected. This

drawback can be overcome by selecting ς such that cpu is optimal. It is important to
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i) Γ∗, AOS2 ii) Γ∗, CDF

iii) u∗(x), AOS2 iv) u∗(x), CDF

v) TC(λ)

Figure 4.10: Test Set 2. Accuracy Results, Image 1. Row 1 is the computed contour Γ∗

(given in red on z(x)), and the right is the segmentation function u∗(x). On the left are
AOS2 results, and the right are CDF results (both for λ = 5). The plot shows the TC
value when λ is varied for AOS2 and CDF. This demonstrates that whilst their best
results are similar, AOS2 is successful for a much larger range of the fitting parameter.
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i) u∗(x), AOS2 ii) u∗(x), CDF

iii) H, AOS2 iv) H, CDF

v) mb(λ)

Figure 4.11: Test Set 2. Binary Measurement, Image 1. Row 1 is the segmentation
function u∗(x), and row 2 is the histogram for u∗(x). On the left are AOS2 results,
and the right are CDF results (both for λ = 5). The plot shows the mb value when λ
is varied for AOS2 and CDF. This demonstrates that AOS2 is consistently closer to a
binary result than CDF.
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i) Γ∗, AOS2 ii) Γ∗, CDF

iii) u∗(x), AOS2 iv) u∗(x), CDF

v) TC(λ)

Figure 4.12: Test Set 2. Accuracy Results, Image 2. Row 1 is the computed contour Γ∗

(given in red on z(x)), and row 2 is the segmentation function u∗(x). On the left are
AOS2 results, and the right are CDF results (both for λ = 5). The plot shows the TC
value when λ is varied for AOS2 and CDF. This demonstrates that whilst their best
results are similar, AOS2 is successful for a much larger range of the fitting parameter.
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i) u∗(x), AOS2 ii) u∗(x), CDF

iii) H, AOS2 iv) H, CDF

v) mb(λ)

Figure 4.13: Test Set 2. Binary Measurement, Image 2. Row 1 is the segmentation
function u∗(x), and row 2 is the histogram for u∗(x). On the left are AOS2 results,
and the right are CDF results (both for λ = 5). The plot shows the mb value when λ
is varied for AOS2 and CDF. This demonstrates that AOS2 is consistently closer to a
binary result than CDF.
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AOS1, δ = 0.01 CDF, δ = 0.1 CDF, δ = 0.01

λ TC mb cpu λ TC mb cpu λ TC mb cpu

5 0.95 94.5 24.8 5 0.96 86 207.1 5 0.96 86 1004.4

10 0.96 96.8 21.1 10 0.94 34 89.9 10 0.94 34 434.2

15 0.96 97.4 21.4 15 0.84 34 52.5 15 0.84 34 261.7

20 0.96 97.6 24.2 20 0.79 34 40.8 20 0.78 34 157.3

25 0.96 97.8 29.5 25 0.76 34 33.6 25 0.76 34 131.5

30 0.96 99.4 29.0 30 0.75 34 33.6 30 0.75 34 137.8

Table 4.3: Test Set 2. AOS1 and CDF Results for Image 2 (256x256). We present
values as λ (the fitting function parameter) varies in terms of segmentation quality,
TC, a measure of how binary u∗(x) is, mb, and the time (in seconds) taken to reach
the stopping criterion δ, cpu. For CDF we test two stopping criteria, δ = 0.1, 0.01, and
for AOS1 we test δ = 0.01. Results demonstrate that AOS1 (ς = 0.05) converges faster
than CDF, and produces better results in terms of TC and mb for a range of λ.

clarify that we cannot provide guidance on the choice of ς, as the behaviour of the

scheme is not consistent enough. We tend to set the AOS interval with ς = 0.05 in

other tests, although for I4 in Table 4.5 we see that this is not appropriate. It is also

important to note that if the stopping criterion is removed, and the iterations are left

to run, the results for different initialisations converge to the same solution as we would

expect. However, in practice it is important to consider these aspects of the algorithm

in order to exploit the improvements in the method. An example of these results is

illustrated in Fig. 4.16.

AOS1, mb AOS1, cpu

ς I1 I2 I3 I4 ς I1 I2 I3 I4

0 74 68 70 71 0 319.7 300.1 300.4 301.2

0.001 76 76 74 77 0.001 321.0 304.6 301.9 302.7

0.005 100 99 99 100 0.005 309.1 303.0 303.2 301.4

0.01 100 100 100 100 0.01 1.7 2.2 3.8 4.5

0.05 100 100 100 100 0.05 0.2 3.9 4.5 7.6

0.1 100 99 100 100 0.1 0.08 5.6 6.4 11

0.3 100 99 99 99 0.3 0.2 14.4 14.4 26.7

0.5 100 99 98 99 0.5 0.1 19.2 25.1 43.0

Table 4.4: Test Set 3. Initialisation Results (AOS1), Image 1 (128x128). In the im-
proved AOS scheme ς determines the width of the interval, Iς (4.16). We present values
as ς varies in terms of a measure of how binary u∗(x) is, mb, and the time (in seconds)
taken to reach the stopping criterion δ = 0.01, cpu (n.b. for some results the iterations
were stopped at the maximum iteration number). Four initialisations are used (shown
in Fig. 4.14). Results demonstrate that varying ς affects the convergence time, depend-
ing on the choice of initialisation. One notes that whilst ς = 0.5 makes convergence
likely it can be slower than smaller values.
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i) u0(x), I1 ii) Γ0, I1

iii) u0(x), I2 iv) Γ0, I2

v) u0(x), I3 vi) Γ0, I3

vii) u0(x), I4 viii) Γ0, I4

Figure 4.14: Test Set 3. Initialisations, Image 1. Rows 1-4 are for initialisations I1-I4

respectively. On the left is the initial segmentation function u0(x), and on the right is
the initial contour Γ0 on u0(x) in red.

75



i) u0(x), I1 ii) Γ0, I1

iii) u0(x), I2 iv) Γ0, I2

v) u0(x), I3 vi) Γ0, I3

vii) u0(x), I4 viii) Γ0, I4

Figure 4.15: Test Set 3. Initialisations, Image 2. Rows 1-4 are for initialisations I1-I4

respectively. On the left is the initial segmentation function u0(x), and on the right is
the initial contour Γ0 on u0(x) in red.
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AOS1, mb AOS1, cpu

ς I1 I2 I3 I4 ς I1 I2 I3 I4

0 68 68 68 68 0 1187.7 1188.9 1187.6 1185.8

0.001 69 69 69 69 0.001 1192.5 1188.2 1184.6 1183.9

0.005 74 74 74 74 0.005 1194.9 1197.8 1199.6 1187.9

0.01 97 94 94 95 0.01 14.6 1180.0 1177.8 1184.4

0.05 99 94 98 98 0.05 3.3 28.8 1182.1 1180.9

0.1 99 92 92 95 0.1 3.4 59.5 73.6 144.5

0.3 99 87 87 87 0.3 3.5 99.5 27.8 370.1

0.5 99 85 85 85 0.5 3.3 98.4 52.9 615.8

Table 4.5: Test Set 3. Initialisation Results (AOS1), Image 2 (256x256). In the im-
proved AOS scheme ς determines the width of the interval, Iς (4.16). We present values
as ς varies in terms of a measure of how binary u∗(x) is, mb, and the time (in seconds)
taken to reach the stopping criterion δ = 0.01, cpu (n.b. for some results the iterations
were stopped at the maximum iteration number). Four initialisations are used (shown
in Fig. 4.15). Results demonstrate that varying ς affects the convergence time, depend-
ing on the choice of initialisation. One notes that the best choice of ς is not consistent
for different initialisations.

4.6 Remarks

In this chapter, we have proposed a new method to compute global minimisers of

two-phase segmentation problems with a generalised fitting function. We have tested

our approach against a well-known analogous method [23, 18], i.e. the relaxed binary

constraint is imposed with a penalty function, that is widely used in the literature

[29, 17, 30, 18]. Our approach compares favourably with this method, with encouraging

results in terms of accuracy, computation time, and how close to binary the solution is.

Crucially, we also demonstrate that our method appears to be less dependent on the

fitting parameter, λ. This is a significant finding in the sense that in practice it makes

our method more reliable.

Future work could consist of investigating how the AOS interval, Iς can be defined

in a consistent way. For our second scheme, AOS2, we advise selecting ς = 0.5 in

line with the theory of Weickert et al. [128] to ensure stable convergence. However,

this approach does not reduce computation time significantly in comparison to similar

methods. Improvements in this sense are available with AOS1 but depend on the choice

of ς. Our work suggests that the choice of initialisation and fitting function contribute

to this choice, but it is difficult to provide specific guidance. Further theoretical work

on the proposed AOS schemes could help resolve this problem. Also, proving the

convexity of the functional for any ε > 0 could be explored (as discussed in Section

4.3.2). Currently we can only assert that global minimisers can be computed in practice,

but extending this to the general case is desirable.
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i) ς = 0.5, I1 ii) ς = 0.5, I1

iii) ς = 0.5, I2 iv) ς = 0.5, I2

Figure 4.16: Test Set 3. Initialisation Results. AOS1 results from Table 4.5 with
δ = 0.01. The top row is different views of the segmentation function u∗(x) for ς = 0.5
and initialisation I1. Here mb = 99 and cpu = 3.3. The bottom row is similar for
initialisation I2. Here mb = 85 and cpu = 98.4. This demonstrates that initialising the
segmentation function as close to the final result as possible offers significant advan-
tages, both in terms of time it takes to reach the stopping criterion and how close to
binary the result is when that happens. This is an example of the observations that
can be made from Tables 4.4 and 4.5.
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Chapter 5

Global Minimisers of Selective
Segmentation Models

5.1 Introduction

We now look at how fitting functions are determined in practice, having introduced

globally convex segmentation (GCS) in general in the previous chapter. We will apply

these ideas in the context of selective segmentation. Previously, selective segmentation

models tended to be level set based and thus finding global minimisers is problematic

as discussed in chapters 3 and 4. In this chapter, we discuss the necessary conditions

for selective segmentation models to be reformulated in such a way that global min-

imisers can be found. First, we will clarify the distinction between global and selective

segmentation.

Global segmentation is the task of selecting all objects in an image based on a

certain characteristic, e.g. intensity, and has been widely studied over the last twenty

years [32, 87]. Selective segmentation is when only one object, from within all objects,

is selected [8, 104]. With variational segmentation techniques, two main ideas have

developed: edge-based methods and region-based methods. As discussed in chapter 3,

an important region-based method, where the idea is to achieve segmentation through

an approximation of the original image, is the Mumford-Shah functional minimisation

[89]; there exists a large literature extending this work [123, 34, 100, 30]. Edge-based

methods drive an evolving contour towards edges within an image using an edge detector

function. This method was originally proposed by Kass et al. [72]; further work by

Caselles et al. led to the Geodesic Active Contours model [22] which is discussed in

more depth in chapter 3. Recently, in order to incorporate the advantages of each idea,

there has been a tendency to combine edge-based and region-based approaches [83, 22].

The requirements for a selective segmentation model, due to the potential appli-

cations, are that solutions are computed quickly and they are reliable with minimal

user input. Much research has been done in recent years on developing this idea. In

2005, Gout, Le Guyader and Vese [61] introduced geometrical constraints to Geodesic

Active Contours similar to [22] in the form of a set of points on the contour of interest.

This idea was enhanced further by Badshah and Chen [8] in 2009, by combining this

work with the region-based idea of Mumford-Shah [89] and Chan-Vese [33]. In 2011, to
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increase model reliability, Rada et al. [104] introduced a novel Dual Level Set Model,

where a local level set incorporates geometrical constraints similar to [61] and [8], lo-

cating an object within a global level set. The selective model discussed in detail here

is the Rada-Chen model [105], introduced in 2012 to improve on [104] by using a single

level set function, where there is a constraint introduced on the area inside the contour.

This has proven to be the most effective model [114]. Another idea of improving [8],

that is not of the same type as [89], was proposed by Badshah and Chen [9] in 2012,

incorporating fitting based on coefficient of variation.

These models, either global or selective, are nonconvex, which can lead to problems

in the form of local minima. As previously covered, this means that finding the correct

solution is dependent on initialisation, which reduces their reliability. In recent years

work has been done to reformulate global segmentation models as convex minimisation

problems such that any local minimiser is a global minimiser. The focus of this chapter

is to apply the convex reformulation of nonconvex global models to selective segmen-

tation. We remark that related challenges include the idea of selective segmentation

based on user input of 3D images. Chan-Vese has been generalised to 3D by Zhang and

Chen [139], and user input of a similar type to [8, 105, 61] has been applied with active

contours in 3D by Le Guyader and Gout [60]. This involves the selection of points on

slices of the 3D data. Visualising objects in this way, allowing for efficient user input,

is a difficult problem. In relation to Rada-Chen [105], this input would generate a

polyhedron, with its volume providing a selection constraint.

The chapter is organised as follows. In Section 5.2 the idea of global segmentation

is discussed, including brief reviews of the work of Mumford-Shah [89], Chan-Vese

[33] and Chan, Esedoglu, and Nikolova [30]. We recall this work, first discussed in

Chapter 3, in order to provide the full context for the selective reformulation presented

later in the chapter. In Section 5.3 selective segmentation is discussed with a review

of the most effective model by Rada-Chen [105]. Why this model does not fit in

with the convex reformulation idea is explained, motivating the proposal of a new

model in Section 5.4. The details of this model are discussed in the nonconvex setting

and then reformulated as a convex minimisation problem. Details of the numerical

implementation are provided in Section 5.4.4, where we apply the methods introduced

for GCS in chapter 4 to this model. Brief details are given for the improved additive

operator splitting (AOS) schemes from the previous chapter, which are applicable to

this approach by design. Section 5.5 contains results for both the nonconvex and convex

models, and we offer some remarks about this work in Section 5.6.

5.2 Global Segmentation

In order to discuss the selective segmentation methods of interest, it is important to

introduce global variational image segmentation models. This is important for two

reasons; firstly, it will provide the foundation for the selective models introduced and

secondly, it provides the method for minimising the associated functionals with the

introduction of Active Contours Without Edges [33] by Chan and Vese in 2001.
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5.2.1 Piecewise-Constant Mumford-Shah

One of the most important variational image segmentation models is by Mumford and

Shah [89], introduced in 1989, and forms the basis for this work as well as many others.

Let Ω be a bounded domain in Rn and z be a bounded measurable function defined

on Ω. Here we consider the case where n = 2. In the piecewise-constant case, the

image, z, is reconstructed as a cartoon of the original where each region, Ωi, consists of

homogeneous intensity (with i = 1, . . . , N), separated by an edge set Γ, a closed subset

of Ω.

In 2001, Chan and Vese [33] introduced a particular case of the piecewise-constant

Mumford-Shah functional. This was the two-phase example (N = 2), with Ω1 = in(Γ)

and Ω2 = out(Γ), which looks for the best approximation of an image z by a function

u taking only 2 values,

u =

{
c1 = average of z inside Γ,

c2 = average of z outside Γ.

The length of the set Γ is given by

|Γ| =
∫

Γ
ds.

The piecewise-constant two-phase Mumford-Shah functional is given as follows:

PC(Γ, c1, c2) = |Γ|+ λ

∫
in(Γ)

(z − c1)2 dx + λ

∫
out(Γ)

(z − c2)2 dx. (5.1)

It consists of the regularisation term, |Γ|, forcing the boundary between homogeneous

regions to be as short and as smooth as possible, and the fitting terms which force the

boundary to find regions of homogeneous intensity. Theoretical existence and regularity

of minimisers of the piecewise-contant case (5.1), with respect to Γ, are discussed in

[89]. However, minimising PC (5.1) is problematic due to the difficulty of tracking the

movement of Γ and the model was not implemented directly until the work of [33], as

discussed in Chapter 3.

5.2.2 Two-Phase Chan-Vese

Active Contours Without Edges [33], by Chan and Vese, is an important milestone

in variational image segmentation. They applied the level set method to minimise

the two-phase piecewise-constant Mumford-Shah functional, eqn. (5.1), and overcame

the problematic tracking of Γ. Chan and Vese proposed to replace the unknown 1-D

variable with a higher dimensional variable, counterintuitively simplifying the problem.

They applied the level set method [95], introduced by Osher and Sethian in 1988, to

(5.1). By tracking a variable of a higher dimension, where the boundary is represented

by a level set of this variable, topological changes in the boundary, such as splitting

into two or merging into one, are dealt with automatically. Formally, the boundary Γ

is represented by the zero level set of the Lipschitz function φ such that
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Γ = {(x) ∈ Ω

∣∣ φ(x) = 0},
in(Γ) = {(x) ∈ Ω

∣∣ φ(x) > 0},
out(Γ) = {(x) ∈ Ω

∣∣ φ(x) < 0}.

The PC functional (5.1) is reformulated using the Heaviside function H and the Dirac

delta δ defined by

H(φ(x)) =

{
1, if φ(x) ≥ 0

0, if φ(x) < 0,
δ(φ(x)) = H ′(φ(x)).

In order to compute the associated Euler-Lagrange equation for φ we consider regu-

larised versions of H and δ, given as

Hε(φ) =
1

2

(
1 +

2

π
arctan

φ

ε

)
, δε(φ) =

1

επ(1 + φ2/ε2)
.

The PC functional (5.1) is then reformulated as follows:

CV (φ, c1, c2) =

∫
Ω
δ(φ)|∇Hε(φ)| dx + λ

∫
Ω

(z − c1)2Hε(φ) dx

+ λ

∫
Ω

(z − c2)2(1−Hε(φ)) dx, (5.2)

where φ(x) has been replaced with φ for simplicity; this notation will be continued from

here. Minimising (5.2) with respect to the intensity constants c1 and c2 is given by:

c1(φ) =

∫
ΩHε(φ)z dx∫
ΩHε(φ) dx

, c2(φ) =

∫
Ω(1−Hε(φ))z dx∫
Ω(1−Hε(φ)) dx

. (5.3)

Then, given these constants, (5.2) is minimised with respect to φ:

min
φ
CV (φ, c1, c2) (5.4)

This leads to the Euler-Lagrange equation{
δε(φ)∇ ·

(
∇φ
|∇φ|

)
− λδε(φ)

(
(z − c1)2 − (z − c2)2

)
= 0 in Ω,

∂φ
∂~n = 0 on ∂Ω.

The work of Chan and Vese is important to the consideration of selective segmentation

as it provides the method to tackle segmentation problems of this type in an efficient

way. It does however have a drawback in that it involves minimising a nonconvex

functional (5.2) over characteristic functions. This means that there are local minima

and a computed solution may not be correct unless the initial guess is sufficiently close

to the true solution. Fortunately, by reformulating as the minimisation of a convex

functional, global minimisers of the nonconvex problem (5.4) can be found. This idea

has not yet been applied to selective segmentation models, which also have local minima.
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5.2.3 A Global Convex Reformulation

Important to the idea of reformulating a model to be convex is why this improves

the reliability of a solution. With that in mind, the fundamental idea behind convex

minimisation is now discussed briefly in a general sense. Consider the problem of

minimising f(x) subject to x ∈ S, given a non-empty set S. A point x ∈ S is called a

feasible solution to the problem. If x̄ ∈ S and f(x) ≥ f(x̄) for each x ∈ S, then x̄ is a

global minimum. If x̄ ∈ S and there exists an ε-neighbourhood Nε(x̄) around x̄ such

that f(x) ≥ f(x̄) for each x ∈ S ∩Nε(x̄), then x̄ is called a local minimum.

The advantage of convex minimisation is that supposing x̄ is a local minimum, if f

is convex and S is a convex set, then x̄ is a global minimum. It has been shown that

minimising the two-phase piecewise-constant Mumford-Shah functional with respect to

Γ can be reformulated as a convex problem, by relaxation of the label set. We now

introduce the theory behind reformulating the functional (5.1), which we shall later

apply to selective segmentation.

We consider the minimisation of the two-phase piecewise-constant Mumford-Shah

functional from (5.1) with respect to Γ; reformulated to the minimisation problem (5.4)

by Chan and Vese [33]. Observe that

CV (φ, c1, c2) =

∫
Ω
δ(φ)|∇H(φ)| dx + λ

∫
Ω

( (z − c1)2H(φ) + (z − c2)2(1−H(φ)) ) dx

is nonconvex due to the presence of H(φ). In 2006, Chan, Esedoglu and Nikolova [30]

proposed replacing H(φ) with u ∈ [0, 1] in (5.2), and obtained the following equivalent,

convex, and constrained minimisation problem:

min
0≤u≤1

{∫
Ω
|∇u| dx+ λ

∫
Ω

(
(z − c1)2 − (z − c2)2

)
u dx

}
. (5.5)

For any fixed c1, c2 ∈ R+, a global minimiser for CV (·, c1, c2) can be found by carrying

out the convex minimisation (5.5) [30]. Once the solution u is obtained, set Σ(γ) = {x :

u(x) > γ} for γ ∈ (0, 1) and then in terms of piecewise-constant two-phase Mumford-

Shah, Γ = ∂Σ. As remarked, the convex problem (5.5) will find a global minimiser

independently of the initial guess for u.

5.3 The Selective Segmentation Problem and Recent Mod-
els

The task of extracting only one object from an image is a challenging problem within

segmentation with applications in a number of areas, such as automated object detec-

tion in security monitoring and feature selection in medical imaging. Within medical

applications, advances in this subject can improve quantitative diagnosis, help monitor

treatment over time and improve pre-operative planning.

Here, on image z, we assume the availability of n1(≥ 3) points inside the target

object that form a set A = {xi ∈ Ω, 1 ≤ i ≤ n1} that defines a polygon. A common

misconception is that if A is available any global, nonconvex model (such as [33]) can
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solve the selective segmentation problem if one places the initial contour of φ near A.

Indeed, this is true for some simple and designed images where features in an image

are distinct, but in general this idea does not lead to a useful method for selective

segmentation. We also remark that our problem setting is not the same as that of

using seeds for fuzzy membership approaches [91, 144]. One model recently proposed

by Nguyen et al. [92] attempts another kind of selective segmentation in a similar way

and works with a marker set A and another ‘anti-marker’ set B which contains points

not within the object to be extracted. It uses an edge detector and a probability map,

based on user input, but its results tend to be too dependent on user input [114].

In order for a selective method to be suitable in this context, it is imperative that a

model requires minimal user input and is reliable. Recent developments in the subject

include Gout et al. [61], Badshah-Chen [8] and Rada et al. [104], which include region,

edge and geometrical constraints. The geometrical constraints are used to modify the

regularisation term by a distance function, d(x), such as the choice used in [8]. It is

also possible to alter the regularisation term with the addition of an edge detector (as

in [22]), where the strength of detection is adjusted by a parameter, β:

g(|∇z|) =
1

1 + β|∇z|2
. (5.6)

These additions modify the regularisation term [104, 8] to be:∫
Γ
d · g ds.

Of the selective models studied, two effective models capable of segmenting a wide

range of examples in a robust way are by Rada-Chen [105] (based on area constraints)

and Badshah-Chen [9] (based on non-L2 fitting). Here ”robust” means that correct

segmentations have been obtained as long as the initial contour is strictly inside the

object to be extracted.

As with Chan-Vese, these selective models are nonconvex. This means that the

models can find local minima, depending on the initialisation of the contour (which are

associated with initial contours not strictly within the object to be extracted). This

lack of convexity is problematic for a selective segmentation model as reliability and

consistency are key in possible applications.

Our intention is to introduce a new nonconvex selective model and reformulate it

as a convex minimisation problem, in order to compute the original model’s global

minimiser. Our candidates are Rada-Chen [105] and Badshah-Chen [9]. The fitting

terms of [9] are based on the coefficient of variation rather than the mean intensity,

used in [89, 33]. The convex reformulation idea from Chan et al. [30] was applied to

mean intensity fitting terms, so we intend to focus on Rada-Chen [105] (which also

uses mean intensity). Also, the geometrical constraints used in [9] can sometimes be

too weak based on simple user input, whereas Rada-Chen [105] is less sensitive to the

choice of A. The area constraint of Rada-Chen [105] is an addition to Chan-Vese [33],

but is also unsuitable for the convex reformulation. We intend to discuss the reasons
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for the lack of suitability in further detail. We provide important details of Rada-Chen

[105] below, to demonstrate why the convex reformulation fails here.

From the polygon formed by the marker set A, denote by A1 and A2 respectively the

area inside and outside the polygon. The Rada-Chen model [105] makes use of A1 and

A2 to achieve selective segmentation. The initial contour starts from a polygon inside

the object and the additional terms restrict the area inside Γ from growing larger than

the target object (and therefore outside the object boundary). It also incorporates the

edge detector (5.6) into the regularisation term. We denote the weighted regularisation

term as

|Γ|g =

∫
Γ
g(|∇z|) ds.

These additions to the two-phase piecewise-constant Mumford-Shah functional (5.1)

give us the following energy for selective segmentation:

RC(Γ, c1, c2) =|Γ|g + λ

∫
in(Γ)

(z − c1)2 dx+ λ

∫
out(Γ)

(z − c2)2 dx

+
θ

2

[(∫
in(Γ)

dξ −A1

)2

+

(∫
out(Γ)

dξ −A2

)2]
. (5.7)

Using the level set formulation, this energy (5.7) becomes [105]:

RC(φ, c1, c2) =

∫
Ω
g(|∇z|)δ(φ)|∇H(φ)| dx

+ λ

∫
Ω

(z − c1)2H(φ) dx + λ

∫
Ω

(z − c2)2
(
1−H(φ)

)
dx

+
θ

2

[(∫
Ω
H(φ) dξ −A1

)2

+

(∫
Ω

(
1−H(φ)

)
dξ −A2

)2]
. (5.8)

The energy is minimised successively with respect to the intensity constants, c1 and c2

given by (5.3), and φ. The nonconvex problem of minimising (5.8) with respect to φ,

min
φ
RC(φ, c1, c2) (5.9)

leads to the Euler-Lagrange equation, where g = g(|∇z|),{
δε(φ)∇ ·

(
g ∇φ|∇φ|

)
+ f = 0 in Ω,

∂φ
∂~n = 0 on ∂Ω,

(5.10)

and

f =− λδε(φ)

{
(z − c1)2 − (z − c2)2

}
− θδε(φ

{(∫
Ω
Hε(φ) dx −A1

)
−
(∫

Ω
(1−Hε(φ) dx−A2

)}
.
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Solving (5.10) can be done with the introduction of an artificial time step and using

the gradient descent method, as discussed in Chapter 2:

∂φ

∂t
= δε(φ)∇ ·

(
g
∇φ
|∇φ|

)
+ f.

We now discuss the possibility of reformulating (5.9) into a convex minimisation

problem. There are two reasons which mean this is not possible, which have to be con-

sidered for the proposal of an appropriate model. Firstly, the additional terms, based

on A1 and A2, only incorporate the area of the object into the functional (5.8). This

means that information about the location of the object is provided by the initialisa-

tion. Clearly, convex reformulation where a global minimiser is found independently of

initialisation is not feasible in this case. Secondly, the method of convex reformulation

of Chan et al. [30] introduced above requires linearity in H(φ), in the fitting term of

(5.8). The area constraint of Rada-Chen [105] violates this condition. This provides

the two main considerations in proposing a new selective model, suitable for convex

reformulation, which we detail next.

5.4 Proposed Distance Selective Segmentation Model

In the following is the introduction of our new model that fits in with the idea of being

reformulated as a convex minimisation problem and is broadly speaking analogous to

Rada-Chen [105]. It uses the same user input as [105], whilst instead of penalising the

area inside the contour from growing too much, it penalises the contour from moving

further away from the polygon, a set of points denoted by P, formed by the user input

set, A. The new constraint is linear in the indicator function and includes locational

information of the target object, consistent with the idea of convex reformulation.

5.4.1 A New Nonconvex Selective Model

The proposed nonconvex model, to be called Distance Selective Segmentation (DSS),

has a different area fitting term than Rada-Chen [105]. Here, P0(x) is Euclidean dis-

tance of each point x ∈ Ω from its nearest point in the polygon, made up of (xp) ∈ P,

constructed from the user input set, A. Then the function Pd(x) is given as:

Pd(x) =
P0(x)

||P0||L∞
. (5.11)

The DSS functional is then defined as:

DSS(Γ, c1, c2) = |Γ|g + θ

∫
in(Γ)

Pd(x) dx

+ λ

∫
in(Γ)

(z − c1)2 dx+ λ

∫
out(Γ)

(z − c2)2 dx. (5.12)

Here, we have the regularisation and fitting terms from the two-phase piecewise-constant

Mumford-Shah functional (5.1) with the addition of a new distance fitting term, nor-
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malised so that Pd(x, y) ∈ [0, 1]. For x ∈ P, Pd(x) = 0 and (5.12) reduces to (5.1),

except the regularisation term is weighted by an edge detector function (5.6) as in

[18, 105]. Introducing the level set formulation, (5.12) reduces to the following model:

min
φ,c1,c2

{
DSSLS(φ, c1, c2) =

∫
Ω
δε(φ)g|∇φ| dx+ θ

∫
Ω
Hε(φ)Pd dx

+λ

∫
Ω
Hε(φ)(z − c1)2 dx+ λ

∫
Ω

(1−Hε(φ))(z − c2)2 dx

}
, (5.13)

Here, if the area parameter, θ, is too strong the final result will just be the polygon

P which of course is undesirable. The idea behind the Pd term is that it encourages

H(φ) ∈ Ω \ P to be 0, enforced more strictly the further from the object of interest a

point is. The motivation behind this new model is that it fits in with the idea of convex

reformulation.

But it is important to clarify whether the idea behind this segmentation model,

i.e. the distance constraint, works as it is. The answer is yes. Comparisons of (5.13)

with Rada-Chen [105] are made for three examples and shown in Figures 5.1-5.2 of

Section 5.5.1. There, one clearly observes that the two sets of segmentation results are

successful. That is, (5.13) is a valid selective segmentation in its own right. In the

third example, where the initial guess is altered, both results are unsuccessful as local

minima have been found. We look to correct this fault in DSS (5.13) by convexification

of the model.

5.4.2 A Selective Convex Reformulation

We now present details for the convex reformulation of (5.13). As in [30], this energy

can be made convex by making the adjustment Hε(φ)→ u ∈ [0, 1] to give the Convex

Distance Selective Segmentation (CDSS) functional:

CDSS(u, c1, c2) =

∫
Ω
|∇u|g dx + λ

∫
Ω
ru dx + θ

∫
Ω
Pdu dx (5.14)

where r = (z− c1)2− (z− c2)2 and |∇u|g = g(|∇z|)|∇u|. Given initial values for c1 and

c2, based on the set A, our model consists of the following constrained minimisation

problem:

min
0≤u≤1

CDSS(u, c1, c2). (5.15)

Define Σ(γ) = {x : u(x) ≥ γ} for γ ∈ (0, 1). Following the work of Chan et al. [30], we

can demonstrate that a minimiser for DSS (5.13) is given by (5.15). Using the Coarea

formula [57], for the first term, the weighted total variation (TV) norm, in (5.12), we

get
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∫
Ω
|∇u|g dx =

∫ 1

0
g(|∇z|)Per

(
{(x, y) : u(x, y) ≥ γ}; Ω

)
dγ

=

∫ 1

0
g(|∇z|)Per

(
Σ(γ); Ω

)
dγ =

∫ 1

0
|Γ|g dγ. (5.16)

For the remaining terms in (5.12) we first need to recall a definition from Chapter

2. Let u be a non-negative, real-valued, measurable function on Ω. Then with χ a

characteristic function,

u(x) =

∫ ∞
0

χu(x)>t dt.

For the first fitting term, as u ∈ [0, 1], we have

∫
Ω

(z − c1)2u dx =

∫
Ω

(z − c1)2

∫ 1

0
χΣ(γ) dγ dx =

∫ 1

0

∫
Ω

(z − c1)2χΣ(γ) dx dγ

=

∫ 1

0

∫
Σ(γ)

(z − c1)2 dx dγ, (5.17)

and for the other two terms, similarly, we have

∫
Ω

(z − c2)2u dx =

∫ 1

0

∫
Σ(γ)

(z − c2)2 dx dγ = C −
∫ 1

0

∫
Ω\Σ(γ)

(z − c2)2 dx dγ, (5.18)∫
Ω
Pdu dx =

∫ 1

0

∫
Σ(γ)

Pd dx dγ, (5.19)

where C =
∫

Ω(z − c2)2 dx and is independent of u. Combining equations (5.16)-(5.19):

CDSS(u, c1, c2) =

∫ 1

0

{
|Γ|g + λ

∫
Σ(γ)

(z − c1)2 dx

+ λ

∫
Ω\Σ(γ)

(z − c2)2 dx + θ

∫
Σ(γ)

Pd dx

}
dγ − C

=

∫ 1

0
DSS(Γ, c1, c2) dγ − C.

Since C is independent of u, it follows that if u is a minimiser of CDSS(·, c1, c2) then

for γ ∈ (0, 1) the set Γ = Σ(γ) is a minimiser of DSS(·, c1, c2). However, the convex

minimisation problem (5.15) will provide us with the ability to find a global minimiser,

independently of initialisation.

5.4.3 Unconstrained Minimisation

The constrained minimisation problem (5.15) can be replaced by an unconstrained one:

min
u

{
CDSS(u, c1, c2) =

∫
Ω
|∇u|g dx +

∫
Ω
ru dx + θ

∫
Ω
Pdu dx + α

∫
Ω
ν(u) dx

}
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where ν(u) = max{0, 2|u− 1/2| − 1} is an exact penalty term [65], provided that

α > 1
2 ||λr + θPd||L∞ (see a proof in [30] for a related problem). In order to compute

the associated Euler-Lagrange equation for u we recall the regularised version of the

penalty function, ν(u), introduced in Chapter 4:

νε(u) = Hε

(√
(2u− 1)2 + ε− 1

)[√
(2u− 1)2 + ε− 1

]
,

where Hε(x) = 1
2

(
1 + 2

π arctan x
ε

)
. Then we get the following Euler-Lagrange equation

for u: {
∇ ·
(
g ∇u|∇u|

)
− λr − θPd − αν ′ε1 = 0 in Ω,

∂u
∂~n = 0 on ∂Ω.

(5.20)

To minimise for the intensity values, we use the following equations:

c1(u) =

∫
Ω uz dx∫
Ω u dx

, c2(u) =

∫
Ω(1− u)z dx∫
Ω(1− u) dx

. (5.21)

5.4.4 Numerical Implementation

Equation (5.20) can be solved by the gradient descent method by solving the following:

∂u

∂t
= ∇ ·

(
g∇u
|∇u|

)
− λr − θPd − αν ′ε. (5.22)

It is possible to use an explicit or semi-implicit time marching scheme, which we dis-

count based on our discussion in Chapters 2 and 4. As with Chapter 4 we apply the

semi-implicit AOS scheme proposed by [85, 129]. Again, to avoid singularities we re-

place |∇u| with |∇u|β =
√
u2
x + u2

y + β for small β, and denote W = g
|∇u|β . Freezing

W linearises the equation and (5.22) can be rewritten in the form:

∂u

∂t
= ∂x(W∂xu) + ∂y(W∂yu)− λr − θPd − αν ′ε

We treat the equation in a similar way to Chapter 4 and [112], which we will recall

now. In the implementation of this method, we use the improved AOS schemes, AOS1

and AOS2. In terms of the penalty function, based on the results from Chapter 4, we

set the regularisation parameter at ε = 0.01. Typically, when computation time is a

priority we use AOS1 (τ = 0.01, ς = 0.1) and otherwise we use AOS2 (τ = 1, ς = 0.5).

In Test Set 3 we vary these parameters to observe the advantages of these schemes

where the fitting function is not fixed. We recall the essential details from Chapter 4,

for the improved AOS schemes. First we summarise the original scheme, AOS0:

un+1
` = (I − 2τA`(u

n))−1︸ ︷︷ ︸
Q0

(un−ταν ′ε(un)− τλf)︸ ︷︷ ︸
f0

.

The AOS interval, controlled by ς, is
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Iς := [0− ς, 0 + ς] ∪ [1− ς, 1 + ς], b̃n =

{
b, if un ∈ Iς
0, elsewhere.

The first proposed AOS scheme from Chapter 4 is summarised as

un+1
` =

(
I + B̃n − 2τA`(u

n)
)−1

︸ ︷︷ ︸
Q1

(un +ταb̃un − ταν ′ε(un)− τλf)︸ ︷︷ ︸
f1

.

The second proposed AOS scheme from Chapter 4 is summarised as

un+1
` =

(
I − 2τ(I + B̃n)−1A`(u

n)
)−1

︸ ︷︷ ︸
Q2

(un−τ(I + B̃n)−1(αν ′ε(u
n) + λf))︸ ︷︷ ︸

f2

.

Here, A` is the diffusion quantity in the ` direction (` = 1, 2 for x and y directions

respectively) and was derived using the finite difference method, τ is the time step size

and n denotes the nth iteration. Details and background associated with this are given

in Chapter 2. The matrices A` are given as follows, where Wn
ij = W (unij), and hx and

hy are the grid sizes in the x and y directions respectively:

(
A1(un)un+1

)
i,j

=
(
∂x
(
Wn∂xu

n+1
))

i,j

=
1

hx

(
Wn
i+1/2,j

(
∂xu

n+1
)
i+1/2,j

−Wn
i−1/2,j

(
∂xu

n+1
)
i−1/2,j

)
=

1

hx

(
Wn
i+1,j +Wn

i,j

2

un+1
i+1,j − u

n+1
i,j

hx
−
Wn
i,j +Wn

i−1,j

2

un+1
i,j − u

n+1
i−1,j

hx

)
=un+1

i+1,j

(
Wn
i+1,j +Wn

i,j

2h2
x

)
+ un+1

i−1,j

(
Wn
i−1,j +Wn

i,j

2h2
x

)
− un+1

i,j

(
Wn
i+1,j +Wn

i−1,j + 2Wn
i,j

2h2
x

)
and similarly,

(
A2(un)un+1

)
i,j

=
(
∂y
(
Wn∂yu

n+1
))

i,j
= un+1

i,j+1

Wn
i,j+1 +Wn

i,j

2h2
y

+ un+1
i,j−1

Wn
i,j−1 +Wn

i,j

2h2
y

− un+1
i,j

(
Wn
i,j+1 +Wn

i,j−1 + 2Wn
i,j

2h2
y

)
.

As before the update is given as

un+1 =
un+1

1 + un+1
2

2
.

Full details can are given in Chapter 4. Each method (AOS1 and AOS2) demonstrate

quantifiable advantages over the original AOS scheme [85, 129] for GCS, and over

Chambolle’s dual formulation [23, 18].
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The New Algorithm

The algorithm computes a solution for a sequence of alternating minimisation problems.

For each fixed c1 and c2 we have a new minimisation problem, which is solved using

AOS0, AOS1, or AOS2. The final solution, when c1 and c2 have converged, is denoted

u∗. It is worth noting that alternative algorithms can be obtained by fixing c1 and/or

c2 depending on the problem. If the image is not quite piecewise-constant, varying

at least one is advisable. If both are fixed then we can guarantee finding the global

minimiser of the functional.

Algorithm 1 AOS method for CDSS

1: Set θ. Calculate g and Pd using (5.6) and (5.11) respectively.
2: Initialise u(0) such that Γ is the boundary of P.
3: for k ← 1 : maxit do
4: Calculate c

(k)
1 (u(k−1)) and c

(k)
2 (u(k−1)) using (5.21)

5: Calculate r
(k)
p = λ

(
(z − c(k)

1 )2 − (z − c(k)
2 )2

)
+ θPd.

6: Set α(k) = ||r(k)
p ||L∞ .

7: u(k) ← minuCDSS
(
c

(k)
1 , c

(k)
2 , α(k)

)
using AOS scheme.

8: end for
9: u∗ ← u(k).

5.5 Experimental Results

This section will show three sets of experiments to test the effectiveness of our new

algorithms and to compare them with the existing model. In the following we select

the parameters as follows. We have found that setting ε = 10−2 produces a tight

approximation of ν(u). We fix the penalty parameter at α = ||λr + θPd||L∞ , which is

enough to enforce the constraint [30]. We set the time step at τ = 10−2 and ς = 0.1,

except in Test Set 3, where they are varied to demonstrate the benefits of the improved

AOS method. The only restriction on β is that it is small; we select it as β = 10−6 [109].

We have to consider the balance between the regularisation and fitting term, which will

change for each problem. We vary λ for each problem, depending on the shape and

smoothness of the boundary of the desired object. It might be worth considering the

work of Mylona et al. [90] who automatically optimise these parameters based on image

information. The following tests use only three points input by the user, i.e. n1 = 3.

The model is capable of achieving the desired result with a simple shape within the

target, even for awkwardly shaped targets as seen in Figs. 5.3 and 5.4. The resilience to

these selections is discussed further in 5.5.2. This leaves the main choice for a successful

segmentation as the distance selection parameter, θ. In these tests, it varies between 1

and 4.5. The basis for this choice is the size of the target object and its proximity to

other image features of similar intensity, and can be intuitively selected quite reliably.

In Test Set 1 results are presented for the proposed nonconvex Distance Selective

Segmentation (DSS) model and compared to the successful Rada-Chen model [105],
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demonstrating its robustness in difficult cases, whilst underlining the need for the con-

vex reformulation. In Test Set 2, results are presented for the Convex Distance Selective

Segmentation (CDSS) model, demonstrating its success in segmentation of a range of

examples independently of initialisation and its robustness to user input. Test Set 3

demonstrates quantitative improvement of the new AOS method, in relation to one

example. All images tested are of size 128x128.

Figure 5.1: Test Set 1. Results for Rada-Chen [105], for three test problems (given
by rows 1-3). From left to right: initialisation (with user input set A), final contour,
object selected

5.5.1 Test Set 1 (Nonconvex Model Comparisons)

In Fig. 5.1 results are presented for three examples for Rada-Chen [105] and in Fig. 5.2

the same examples are presented for DSS. Results demonstrate that the new model can

also produce the successful results of Rada-Chen [105], whilst both models are sensitive

to initialisation, as evident in row 3 of each figure. The nature of the failure in each

case is due to finding a local minimum, as is possible for the nonconvex formulation.

This is evident from the fact that the user input set, A, is the same for rows 2 and 3

whilst the initialisations are different, and one case fails where as the other succeeds.

This provides the motivation for convexifying the energy in the DSS case, as this cause

of failure is removed.
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Figure 5.2: Test Set 1. Results for DSS, for three test problems (given by rows 1-3).
From left to right: initialisation (with user input set A), final contour, object selected

5.5.2 Test Set 2 (Robustness to User Selection)

In Fig. 5.3 results for CDSS are presented for three examples. The function is initialised

as the given image, with successful segmentation in each case. In Figs. 5.4 and 5.5 the

same object is selected, with different user input for each. The solution (ground truth)

is given by an ideal user input set, A∗, which is the shape of the target object and

would require n1 to be large. This is not feasible in practice, as it essentially consists of

a manual segmentation. We intend to demonstrate that an acceptable approximation

of the solution can be achieved with only three points (n1 = 3), even when segmenting

a difficult shape. We have two choices of user input, A4 from Fig. 5.4 and A5 from

Figure 5.5. Whilst A5 is close to the boundary of the target (and closer to the ideal user

input, A∗), A4 is a more interior selection. These produce slightly different results, but

both are acceptable. This demonstrates that even with a simple user input far from

the ideal, such as A4, we get an acceptable result. A more appropriate user input (i.e.

closer to the ideal), such as A5, produces a better result, but still only requires three

points. One observes that the initialisations were deliberately chosen to be not within

the object intended (which would fail with all other nonconvex models) and yet CDSS

is capable of locating the boundary of the target object. These examples demonstrate

the robustness of the model; successful segmentation is possible for a wide range of user

input.
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Figure 5.3: Test Set 2. Results for CDSS, for three test problems (given by rows 1-3).
From left to right: initialisation (with user input set A), final contour, object selected.

5.5.3 Test Set 3 (Improved AOS Method)

In these tests we recall the improved AOS methods introduced in Chapter 4. In Fig. 5.6

we present results for AOS1 with a time step of τ = 0.01, and varying the paramter ς

in the AOS interval Iς . This demonstrates that for larger time steps, varying the width

of the interval Iς can improve the convergence of the scheme, such that a stopping

criterion can be applied. One notes here that the contour (Γ∗) shown is accurate for

both, due to the thresholding procedure, but the segmentation function u∗ is closer to

binary and stable as the iterations progress for ς = 0.1.

In Fig. 5.7 we present results for AOS2 with a time step of τ = 1, and varying

the parameter ς. This demonstrates that varying the width of the interval Iς can

improve convergence, such that a stopping criterion can be applied. For the smaller

interval, with ς = 0.1, the segmentation function u∗ is noisy such that the thresholding

procedure does not produce an accurate result for Γ∗. Here, the selection of τ = 1 is

almost arbitrary, and we see similar results for larger time steps.

These results underline the findings in Chapter 4, where the improved AOS schemes,

AOS1 and AOS2, can improve the convergence behaviour of u∗ such that a reasonable

stopping criterion can be applied and a final contour Γ∗ can be computed in good time.

Here, we demonstrate their proficiency in a setting where the fitting term is unknown.

The spikes in the residuals in Figs. 5.6 and 5.7 correspond with updates of the intensity

constants, c1 and c2. It is important to note that their initial values are close to their
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i) Γ0, A4 ii) Pd(x), A4

iii) Γ∗ iv) u∗(x)

Figure 5.4: Test Set 2. User input set 1 for CDSS. From left to right, top to bottom:
initialisation, Pd function (with user input set A4), final contour, object selected.

converged values, due to the user input, and thus the problem is not completely convex.

This can be considered in the future following work such as Brown et al. [20].

5.5.4 Test Set 4 (Medical Applications)

Finally, we present results demonstrating the ability of the model to accurately par-

tition a foreground object of similar intensity to other objects in the image. In Figs.

5.8 and 5.9 we present results for two medical images. Based on minimal user input

(three or four markers), objects can be selected for challenging examples with poten-

tial applications. We can see from ii) and iv) that the converged results for u∗(x) are

consistent with the ideas introduced in Chapter 4, in the sense that the result is close

to binary. This is vital to the accuracy and reliability of the thresholding procedure,

such that Γ∗ is very close to the true boundary of the object. We can also observe the

edge function, g(x), in the weighted TV term, and the distance selection term, Pd(x),

based on the user input set.

5.6 Remarks

In this chapter we discussed the drawbacks of current selective segmentation models

and proposed a new model where a global minimiser can be found independently of

initialisation. One notes here that, like with the global case of Chan, Esedoglu, and
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i) Γ0, A4 ii) Pd(x), A4

iii) Γ∗ iv) u∗(x)

Figure 5.5: Test Set 2. User input set 2 for CDSS. From left to right, top to bottom:
initialisation, Pd function (with user input set A5), final contour, object selected.

Nikolova [30], in theory this relies on the fitting function being fixed. In other words,

the intensity constants must be known. However, in practice superior results can be

achieved if at least one of c1 or c2 is minimised. Given that the user input set provides

a reasonable approximation of the intensity of the target object it is natural to expect

this to be reasonably close to the true value, and thus local minima for these variables is

unlikely. We refer the reader to Brown et al. [20] for a completely convex formulation,

and related considerations.

The work of [30] and [105] motivated a proposed nonconvex selective model, and

we detail its convex reformulation. In the nonconvex case, our model performs well in

comparison to Rada-Chen [105], and we demonstrate that global minimisers of the cor-

responding nonconvex formulation can be found. Vital to the success of our proposed

model, is its lack of dependence on the user input. In potential applications of selec-

tive segmentation models an over-reliance on comprehensive and specific user input is

prohibitive. In our results we show that simple user input (i.e. three or four markers)

can produce a good result in a difficult example and, crucially, a similar result can be

obtained for a very different marker set.

We also provide results which support the conclusions about the improved AOS

method introduced in chapter 4, and demonstrate its applicability in practice. The ad-

ditional results we provide demonstrate the potential applications of selective segmen-

tation. Here, no knowledge of the object is known a priori and yet we can achieve sat-
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i) Γ∗, ς = 0.01 ii) R, ς = 0.01

iii) Γ∗, ς = 0.1 iv) R, ς = 0.1

Figure 5.6: Test Set 3. Results for AOS1, τ = 10−2 for CDSS. Row 1 is for ς = 0.01,
row 2 is for ς = 0.1. From left to right: final contour and residual for u (with number
of iterations).

isfactory results for difficult examples from medical imaging using a piecewise-constant

assumption. Later in the thesis, we consider the case of intensity inhomogeneity and

the challenge of incorporating prior knowedge in the model. This expands the scope of

what can be achieved with image segmentation methods.
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i) Γ∗, ς = 0.1 ii) R, ς = 0.1

iii) Γ∗, ς = 0.5 iv) R, ς = 0.5

Figure 5.7: Test Set 3. Results for AOS2, τ = 1 for CDSS. Row 1 is for ς = 0.1, row
2 is for ς = 0.5. From left to right: final contour and residual for u (with number of
iterations).
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i) z(x)

ii) u∗(x)

iii) g(x) iv) u∗(x)

v) Pd(x) vi) Γ∗

Figure 5.8: Test Set 4, Image 1. Results for CDSS. i) Observed Image, z(x). ii) The
converged segmentation function, u∗(x). iii) The edge detection function, g(x), for the
weighted TV term. iv) An alternative view of the segmentation function, u∗(x). v)
The distance selection term, Pd(x), based on the user input set A. vi) The thresholded
contour, Γ∗, demonstrating an accurate result for the object of interest.
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i) z(x)

ii) u∗(x)

iii) g(x) iv) u∗(x)

v) Pd(x) vi) Γ∗

Figure 5.9: Test Set 4, Image 2. Results for CDSS. i) Observed Image, z(x). ii) The
converged segmentation function, u∗(x). iii) The edge detection function, g(x), for the
weighted TV term. iv) An alternative view of the segmentation function, u∗(x). v)
The distance selection term, Pd(x), based on the user input set A. vi) The thresholded
contour, Γ∗, demonstrating an accurate result for the object of interest.
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Chapter 6

Segmentation with Intensity
Inhomogeneity

6.1 Introduction

Selecting objects in an image based on intensity similarity has been widely studied over

the last twenty years [30, 33, 89] and is particularly challenging in cases of intensity

inhomogeneity, which we will address in this chapter. In Chapter 3 we discuss the

two-phase piecewise-constant case of the Mumford-Shah formulation, which is most

suitable for images with simple and homogeneous features where the intensity variation

is limited. However, it has been applied to many different types of synthetic and

real images after some adjustments to the formulation. Recent work has incorporated

bias field estimation to allow for intensity inhomogeneity, with great success in terms

of segmentation quality. However, the framework and assumptions involved lead to

inconsistencies in the method that can adversely affect results. This chapter focuses

on our approach to segmentation with intensity inhomogeneity, where we introduce an

additional constraint to the bias field framework in the context of the convex relaxation

method.

We first introduce the concept of the bias field framework for two-phase segmen-

tation. In the following we discuss generalising the piecewise-constant formulation,

to approximate minimisers of the original Mumford-Shah formulation. We now re-

call some familiar definitions from previous chapters, to make the introduction of our

method clearer. There are also differences in notation here with earlier chapters, and

wider conventional usage. For example, in the Mumford-Shah functional [89] we replace

u with w in order to avoid confusion between the piecewise-smooth approximation of

the image and the segmentation function in globally convex segmentation (GCS) re-

ferred to in previous chapters. Given an image z(x) in a bounded domain Ω ⊂ R2, we

look for an edge Γ that partitions Ω into regions {Ωi, i = 1, 2, ..., N} in Ω\Γ. We recall

the Mumford-Shah functional [89], first introduced in Chapter 3:

EMS(Γ, w) = |Γ|+ λ

∫
Ω

(z − w)2dx+ µ

∫
Ω\Γ
|∇w|dx, (6.1)

where µ, λ > 0 are weighting parameters, and |Γ| denotes the length of the edge curve
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Γ, the boundary between regions Ωi. Mumford and Shah [89] demonstrated that, the-

oretically, the existence and regularity of minimisers of this functional can be achieved,

and Tsai et al. [122] and Vese and Chan [123] used the variational level set method of

Osher et al. [95] and Zhao et al. [143] to minimise (6.1). Chan and Vese [33] consid-

ered a functional that was a particular case of (6.1), the two-phase piecewise-constant

example, i.e. |∇w| = 0 in each region, and N = 2 in (6.1).

ECV (Γ, c1, c2) = |Γ|+ λ

(∫
Ω1

(z − c1)2dx+

∫
Ω2

(z − c2)2dx

)
. (6.2)

The Chan-Vese framework has been generalised by the introduction of new fitting

terms to incorporate extensive intensity inhomogeneity, such as Li et al. [82, 81] who

introduced a region scalable fitting energy and local cluster method. Jung et al. [70] in-

troduced a nonlocal active contour model utilising distance funtions. Brox and Cremers

[21] and Lanktona and Tannenbaum [77] introduced new local models, incorporating

Gaussian kernel functions. Recent work related to this area includes the work of Ali et

al. [3], who form fitting terms using multiplicative and difference image data, and L0

regularisation for simultaneous bias correction and segmentation by Duan et al. [49].

As discussed in previous chapters the drawback of the Chan-Vese approach is its

lack of convexity, and there are advantages of considering GCS instead. A recent

model that combines this convex relaxation framework and segmentation with intensity

inhomogeneity is D. Chen et al. [37], and our work focuses on aiming to improve their

formulation in order to achieve more robust results in difficult examples. The authors

[37] assume the ’true’ image data is formulated [2, 84] as

T =
∑
i

ciχi, i = 1, 2, ..., N, (6.3)

where ci are intensity constants, and χi are characteristic functions of the regions Ωi.

It is based on the idea that the image can be modelled as

z(x) = B(x)T + η, x ∈ Ωi, i = 1, 2, ..., N, (6.4)

where η is additive noise. Here, as with the rest of the work in this thesis, we consider

the two-phase case, i.e. N = 2. D. Chen et al. [37] aim to estimate the bias field B

and recover the ’true’ image T . However, a lack of convergence of the bias field and the

intensity constants, means that recovering an accurate T is not possible. We propose

introducing a constraint on these variables to correct this inconsistency.

This chapter is organised as follows. In Section 6.2 we detail the Variant Mumford-

Shah Model [37], briefly introduced above, and discuss the problems with recovering

the ’true’ image, in particular the lack of convergence of c1 and c2 due to the for-

mulation. In Section 6.3 we detail the introduction of a constraint to the work of D.

Chen et al. [37] in order to automatically establish feasible intensity constants, and

ensure the convergence of all variables being minimised. We discuss how this alters

the minimisation of the bias field, how the functional is iteratively minimised, and de-

tails of the numerical implementation. We also highlight the link the proposed method
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provides between Mumford-Shah [89] and Chan-Vese [33]. In Section 6.3.4 we include

experimental results that measure the accuracy of the proposed method compared to

Variant Mumford-Shah, and demonstrate the convergence of the intensity constants

for examples used in [37]. We extend this idea to selective segmentation in Section

6.4 by incorporating the distance selection term introduced in Chapter 5, and include

experimental results for one challenging case. We discuss the benefits of the proposed

method, and make some concluding remarks in Section 6.5.

6.2 Variant Mumford-Shah Model

The Variant Mumford-Shah Model (VMS) by D. Chen et al. [37] is formulated as

follows:

EVMS(Γ, c1, c2, B) = |Γ|+ λ

∫
Ω

(
(z −Bc1)2χ1 + (z −Bc2)2χ2

)
dx+ µ

∫
Ω
|∇B|2dx,

(6.5)

where λ and µ are weighting parameters. The idea is that the intensity constants

represent the ’true’ image, and the bias field B varies such that their combination

gives a piecewise-smooth approximation of z (with respect to the Mumford-Shah [89]

formulation (6.1)), given by

wVMS = Bc1χ1 +Bc2χ2. (6.6)

The functional (6.5) is minimised iteratively by the following steps. Step (1): For fixed

characteristic functions χ1 and χ2, and intensity constants c1 and c2, minimise (6.5)

with respect to bias field estimator B. Based on the work of Nielsen et al. [93] and

Brox and Cremers [21], the exact minimiser can be well approximated. Step (2): For

fixed characteristic functions χ1 and χ2, and bias field estimator B, minimise (6.5) with

respect to intensity constants c1 and c2. These can be computed precisely. Step (3):

For fixed intensity constants c1 and c2, and bias field estimator B, minimise (6.5) with

respect to χ1, χ2. Based on the work of Chan, Esedoglu, and Nikolova [30] minimising

two characteristic functions can be achieved by with the familiar convex relaxation

methods discussed in detail in Chapters 3 and 4.

6.2.1 Convergence Behaviour of VMS

In Fig. 6.1, we demonstrate a result for VMS that is also used in [37], and is of compara-

ble quality. However, the question remains: based on the image model described above

(6.3), what is the ’true’ image? Whilst the joint minimisation of (6.5) with respect to

c1, c2, B and Γ is nonconvex, and therefore we cannot determine the correct c1 and c2

precisely, there is a problem with the current framework, which we will now discuss.

In Fig. 6.1 (after 1000 iterations), we show that the values of the intensity constants

continually rise, such that c1 = 9.1×104 and c2 = 6.4×104. The convergence of wVMS

(6.6) comes from the reduction in scale of B. To demonstrate this, after the same

number of iterations ||B||F = 4.7 × 10−4 (where || · ||F is the Frobenius norm). This
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motivates our proposal for modifying VMS, in the form of an additional constraint,

that can automatically control the scale of c1, c2 and B.

To explain this phenomenon let’s examine the VMS functional (6.5). The smooth-

ness penalty included, which we denote EB, is similar to the penalty enforced in the

Mumford-Shah functional (6.1), except that it applies throughout the domain. We de-

note the fitting energy EF , and it is again similar to the Mumford-Shah fitting energy:

EB =

∫
Ω
|∇B|2dx, EF =

∫
Ω

(
(z −Bc1)2χ1 + (z −Bc2)2χ2

)
dx. (6.7)

However, crucially, the Mumford-Shah fitting term only involves one variable, w. The

VMS fitting term involves the products Bc1 and Bc2. This means that a change in

one variable doesn’t necessarily alter the energy, as long as the other variable changes

accordingly. In practice that means that the minimum of the VMS functional is attained

when EB → 0, despite the convergence of EF . This is due to the lack of convergence

of the intensity constants c1 and c2, but this contradicts the assumptions of recovering

the ’true’ image (6.3) discussed in Section 6.1. This is demonstrated in Fig. 6.1.

6.3 Stabilised Bias Field

VMS produces a piecewise-smooth approximation of the image (in the Mumford-Shah

sense [89]), given by wVMS (6.6). However, it does not give values for c1, and c2 that

are consistent with the observed image. It is possible to manually rescale these without

changing wVMS , but this is not a sensible approach as these values are unknown by

definition. The immediate question is: is it possible to incorporate constraints into the

formulation in a reliable way, i.e. can we use information in the image to automatically

restrict the scale of B, c1 and c2? There are two obvious approaches. The first is to

constrain the values of c1 or c2. The situation when the optimal intensity constants

are not known a priori has been studied by Brown et al. [20] in the piecewise-constant

case, but not in cases of intensity inhomogeneity. It is worth considering how this

method could be incorporated in the presence of a bias field function, however we do

not discuss this here. The second is to control the scale of the bias field, B. We therefore

consider how to introduce a constraint in such a way that it provides a link between

the piecewise-constant and piecewsie-smooth approximations of z that are consistent

with the image, which we will return to later.

With VMS, B is encouraged to be close to 0, which leads to the lack of convergence

for c1 and c2. To prevent this we propose a new model we call Stabilised Bias Field

(SBF), with the introduction of an additional constraint that encourages B to be close

to a positive constant. However, this alters the minimisation step for the bias field

from [37]. We now consider how to obtain this with the addition of this constraint. To

distinguish between the two methods we refer to the bias field in SBF as B̃. The new
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(a) c1 Progression (b) c2 Progression

(c) Bias Field, B(x) (d) z(x) ∈ [0, 1], Γ∗

(e) EB Progression (f) Ef Progression

Figure 6.1: VMS Results. Convergence Behaviour. The first row shows the lack of
convergence for the intensity constants, giving c1 = 9.1× 104 and c2 = 6.4× 104 after
1000 iterations. The second row shows the scale of the bias field, B(x), on the left and
the image, z(x), and computed contour, Γ∗, on the right. The bottom row shows the
progression of the energies EB and EF (6.7) (iterations on horizontal axis).
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formulation is given as follows:

ESBF (Γ, c1, c2, B̃) = |Γ|+ λ

∫
Ω

(
(z − B̃c1)2χ1 + (z − B̃c2)2χ2

)
dx

+ µ

∫
Ω
|∇B̃|2dx+ γ

∫
Ω

(B̃ − s)2dx, (6.8)

where s, γ are positive parameters. We intend to use the framework of VMS to approx-

imate the exact minimiser of (6.8) for B̃. With this in mind, the previous formulation

is equivalent to

ESBF (Γ, c1, c2, B̃) = λ

∫
Ω

[
(z − B̃c1)2 + γ

λ(B − s)2
]
χ1 dx

+ λ

∫
Ω

[
(z − B̃c2)2 + γ

λ(B̃ − s)2
]
χ2 dx

|Γ|+ µ

∫
Ω
|∇B̃|2 dx,

where the new constraint has been incorporated into the fitting term. We can refor-

mulate this as follows, first looking at the χ1 term:[
(z − B̃c1)2 + γ2

λ (B̃ − s)2
]

= B̃2
(
c2

1 + γ̃
)
− 2B̃ (c1z + γ̃s) +

(
z2 + γ̃s2

)
=
(
c2

1 + γ̃
) [
B̃ − c1z + γ̃s

c2
1 + γ̃

]2

+ f1(z, c1, s, γ̃)

=

[
c1z + γ̃s√
c2

1 + γ̃
− B̃

√
c2

1 + γ̃

]2

+ f1(z, c1, s, γ̃),

where γ̃ = γ
λ and f1(z, c1, s, γ̃) = z2+γ̃s2

c21+γ̃
. In a similar way, for the χ2 term:

[
(z − B̃c2)2 + γ2

λ (B̃ − s)2
]

=

[
c2z + γ̃s√
c2

2 + γ̃
− B̃

√
c2

2 + γ̃

]2

+ f2(z, c2, s, γ̃),

where f2(z, c2, s, γ̃) = z2+γ̃s2

c22+γ̃
. Therefore (6.8) is equivalent to

ESBF (Γ, c1, c2, B̃) = λ

∫
Ω

[
c1z + γ̃s√
c2

1 + γ̃
− B̃

√
c2

1 + γ̃

]2

χ1 dx

+ λ

∫
Ω

[
c2z + γ̃s√
c2

2 + γ̃
− B̃

√
c2

2 + γ̃

]2

χ2 dx

+

∫
Ω
f1(z, c1, s, γ̃)χ1dx+

∫
Ω
f2(z, c2, s, γ̃)χ2dx

+ |Γ|+ µ

∫
Ω
|∇B̃|2dx.

Minimising ESBF (Γ, c1, c2, B̃) with respect to B̃ is given by

min
B̃

{
λ

∫
Ω

([
z1 − B̃c̃1

]2
χ1 +

[
z2 − B̃c̃2

]2
χ2

)
dx+ µ

∫
Ω
|∇B̃|2dx

}
, (6.9)
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since f1(z, c1, s, γ̃), f2(z, c2, s, γ̃), and |Γ| are not dependent on B̃. Here

z1 =
c1z + γ̃s√
c2

1 + γ̃
, c̃1 =

√
c2

1 + γ̃, z2 =
c2z + γ̃s√
c2

2 + γ̃
, and c̃2 =

√
c2

2 + γ̃. (6.10)

In the same way as VMS [37], we can approximate the exact minimiser of (6.9) with a

Gaussian Gσ:

B̃ =
c̃1z1χ1 + c̃2z2χ2

c̃2
1χ1 + c̃2

2χ2
∗Gσ. (6.11)

6.3.1 Relationship to Chan-Vese and Mumford-Shah

We now discuss how the proposed model relates to the two important works discussed

earlier in Section 6.1, and Chapter 3. The SBF functional is given as

ESBF (Γ, c1, c2, B̃) = |Γ|+ λ

∫
Ω

(
(z − B̃c1)2χ1 + (z − B̃c2)2χ2

)
dx

+ µ

∫
Ω
|∇B̃|2dx+ γ

∫
Ω

(B̃ − s)2dx. (6.12)

It relates to Mumford-Shah in the same sense that VMS does. That is, we can compute

a piecewise-smooth approximation of the image,

wSBF = B̃c1χ1 + B̃c2χ2, (6.13)

except that the values computed correspond to the observed image z ∈ [0, 1], and the

variables converge reliably. However, it also relates to the Chan-Vese functional. If

s = 1, and γ →∞ we have the Chan-Vese formulation (6.2):

ECV (Γ, c1, c2) = |Γ|+ λ

∫
Ω

(
(z − c1)2χ1 + (z − c2)2χ2

)
dx.

6.3.2 Iterative Minimisation of SBF Formulation

We now detail how to minimise the functional (6.8), in line with the method of D. Chen

et al. [37], in order to effectively compare our proposed method against VMS. The SBF

Model is given as follows:

min
Γ,c1,c2,B̃

{
ESBF (Γ, c1, c2, B̃) = |Γ|+ λ

∫
Ω

(
(z − B̃c1)2χ1 + (z − B̃c2)2χ2

)
dx

+ µ

∫
Ω
|∇B̃|2dx+ γ

∫
Ω

(B̃ − s)2dx

}
.

This is minimised iteratively (e.g. the iterative process method, Li et al. [81]) by the

following steps:

(1) For fixed characteristic functions χ1 and χ2, and intensity constants c1 and c2,

minimise (6.12) with respect to bias field estimator B̃.

(2) For fixed characteristic functions χ1 and χ2, and bias field estimator B̃, minimise

(6.12) with respect to intensity constants c1 and c2.
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(3) For fixed intensity constants c1 and c2, and bias field estimator B̃, minimise (6.12)

with respect to characteristic functions χ1 and χ2.

We provide a summary of how each step is minimised in the following:

Step (1): detailed in the previous section. It can be approximated, according to the

work of Nielsen et al. [93] and Brox and Cremers [21] and as discussed by D. Chen et

al. [37], by:

B̃ =
c̃1z1χ1 + c̃2z2χ2

c̃2
1χ1 + c̃2

2χ2
∗Gσ.

Step (2): minimising with respect to c1 and c2 gives

c1 =

∫
Ω z(x)B̃(x)χ1dx∫

Ω B̃
2(x)χ1dx

, c2 =

∫
Ω z(x)B̃(x)χ2dx∫

Ω B̃
2(x)χ2dx

. (6.14)

Step (3): achieved by the following minimisation:

min
χ1,χ2

{
|Γ|+ λ

∫
Ω

(
(z − B̃c1)2χ1 + (z − B̃c2)2χ2

)
dx

}
(6.15)

Minimising two characteristic functions can be achieved with convex relaxation meth-

ods, such as the method introduced in Chapter 4:

min
0≤u≤1

{∫
Ω
|∇u(x)|dx+ λ

∫
Ω

(
(z − B̃c1)2 − (z − B̃c2)2

)
u(x)dx

}
, (6.16)

In [37] the authors use the dual formulation of Chambolle [23, 18], as detailed in previous

chapters. We use the dual formulation here in order to fairly compare between VMS

and SBF.

6.3.3 Numerical Implementation

We now provide details of implementing the three steps above. We follow the work of D.

Chen at al. [37], who use slight variations on the formulation, in order to be consistent

with VMS. The intensity constants are computed using smooth region descriptors H
(1)
ς

and H
(2)
ς = 1 − H(1)

ς instead of characteristic functions χ1 and χ2 respectively. This

descriptor is defined as follows:

H(1)
ς (ϕ(x)) =

1

2

(
1 +

2

π
arctan(ϕ ∗Gς)

)
, x ∈ Ω.

The variable ϕ(x) is given by

ϕ(x) =

{
c, for x ∈ Ω : u(x) > ε,

−c, for x ∈ Ω : u(x) ≤ ε,

where ε ∈ [0, 1], c = 2 and ς = 1. This adjusts the computation of the intensity

constants (6.14) to
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c1 =

∫
Ω z(x)B̃(x)H

(1)
ς dx∫

Ω B̃
2(x)H

(1)
ς dx

, c2 =

∫
Ω z(x)B̃(x)H

(2)
ς dx∫

Ω B̃
2(x)H

(2)
ς dx

. (6.17)

The Gaussian kernel, Gσ, is truncated as a % × % mask, where % is the smallest odd

number greater than 4σ + 1 (σ is the standard deviation of the Gaussian kernel [81]).

Other parameters mentioned in Section 6.3.2 are set as follows: τ = 1/8, θ = 1/3, ε =

1/2.

The primary motivation of this model is to have convergence of the intensity con-

stants c1 and c2. The value of s determines the size of these values; as s→ 0, c1, c2 →∞,

as discussed in Section 6.2.1. For consistency, it is desirable that c1, c2 ∈ [0, 1] given

z ∈ [0, 1]. With that in mind, a natural selection is s = 1 given that the intensity

constants are then related to the average value of z(x) inside and outside the contour.

Additionally, SBF is then clearly related to Chan-Vese [33] as detailed in Section 6.3.1.

It can be seen from (6.10) that the update for the bias field, B̃ (given by (6.11)), is

dependent on the parameters σ, s, and γ, whereas the updates for c1 and c2 (given

by (6.17)) are not directly dependent on these parameters. In order to complete Step

(3), given by (6.15) and dependent on λ, we follow Chambolle’s dual formulation as

introduced by Bresson et al. [18] and Chambolle [23], and discussed in Section 3.3.1.

In Chapter 4 we conclude that an appropriate stopping criterion, δ, can be chosen as

0.1. This is discussed in detail in Section 4.5.2, and supported by Figs. 4.10 and 4.11.

We set the maximum number of iterations, denoted by maxit, at 1000. It is worth

noting that in Figs. 6.3, 6.5, and 6.7 we present the convergence behaviour for c1 and

c2 where the stopping criterion has been removed so we can observe this aspect of the

results in full. However, in general we use δ in a similar way to Chapter 4 as presented

in Algorithm 2.

Algorithm 2 Stabilised Bias Field: Ω∗1 ← SBF (z,maxit, δ, λ, σ, s, γ)

1: Initialise u(0), estimate c
(1)
1 , c

(1)
2 , B̃(1).

2: for `← 1 : maxit do
3: if mod (`, 2) = 0 then
4: Calculate B̃(`) (using (6.11)), dependent on σ, s and γ.

5: Calculate c
(`)
1 , c

(`)
2 (using (6.17)).

6: B̃(`+1)=B̃(`), c
(`+1)
1 = c

(`)
1 , c

(`+1)
2 = c

(`)
2 .

7: end if
8: while max{||u(`) − u(`−1)||, ||v(`) − v(`−1)||} > δ do

9: Set fitting term as λf(x) = λ

((
z − B̃(`)c

(`)
1

)2
−
(
z − B̃(`)c

(`)
2

)2
)

.

10: Compute ρ(`), (using (3.37)), as discussed in Section 3.3.1 and [18].
11: Compute u(`) (using (3.35)) and v(`) (using (3.38)).
12: end while
13: end for
14: B̃∗ = B̃(`), c∗1 = c

(`)
1 , c∗2 = c

(`)
2 , Ω∗1 = u(`) > ε, Γ∗ = ∂Ω∗1.
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6.3.4 Experimental Results

This section is in two parts. First we will test SBF using images from the VMS

tests in D. Chen et al. [37], intending to show that the proposed method retains the

segmentation quality of VMS, whilst demonstrating the convergence of the intensity

constants. Another aspect of the success of SBF is what c∗1 and c∗2 are; we can check

whether the computed values are feasible, i.e. c1, c2 ∈ [0, 1], whilst maintaining the

quality of the segmentation. Secondly, we investigate other advantages of SBF over

VMS. In particular, we look at the segmentation accuracy depending on the fitting

parameter λ, and how the piecewise-smooth approximations wSBF and wVMS compare

for a model example.

In Test Set 1 we select σ as the value used by D. Chen et al. [37] which is given

for the following examples: Image 1 (σ = 3), Image 2 (σ = 3), Image 3 (σ = 4), and

Image 4 (σ = 3). The choice of λ is also related to each example in the same way as

other segmentation problems of a similar type [30, 33]. One notes that the selections

of λ here do not agree with [37] due to the range of the image intensities, and their

size. The values used in the experiments are given as follows: Image 1 (λ = 8), Image

2 (λ = 40), Image 3 (λ = 10), and Image 4 (λ = 5). In Test Set 2 we vary the fitting

parameter λ ∈ [0, 300] and fix σ = 5, as demonstrated in Figs. 6.5 and 6.6. Further

details about parameter selection are discussed in the following section.

Test Set 1: Convergence Behaviour

i) Image 1 ii) Image 2

iii) Image 3 iv) Image 4

Figure 6.2: Images tested with SBF and compared to results of D. Chen et al. [37].
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We test four examples (Images 1-4) in Fig. 6.2, all used in D. Chen et al. [37]. In

Fig. 6.3, we present the results for each case. We set s = 1, and vary the constraint

parameter for each case. Below we give the ||B̃||F value computed for each example

tested, in order to ascertain to what extent the bias field is stabilised. Given this

value for s we expect ||B̃||F ≈ 128 (for a 128 × 128 image) with the addition of the

constraint. We also provide the computed intensity constants, c∗1 and c∗2, which should

be in [0, 1] in order to be consistent with the image. By providing these values, we

hope to contextualise the results in relation to the image model and the proposed

formulation. It is worth noting that in some sense the value of s is arbitrary as the

constraint is also dependent on γ. Experimentally, similar results as presented below

can be attained for different values of s, if γ is adjusted accordingly. However, setting

s = 1 and varying γ is the most intuitive approach to take.

For Image 1 γ = 0.1, and the intensity constants converge to c∗1 = 0.352, c∗2 = 0.240.

The bias field, B̃, also converges and we compute ||B̃||F = 129.8. This result is of a

similar quality to VMS, shown in Fig. 1 of [37]. For Image 2 γ = 0.2, and the intensity

constants converge to c∗1 = 0.807, c∗2 = 0.660. The bias field, B̃, also converges and we

compute ||B̃||F = 67.0. However, row 2 of Fig. 6.3 demonstrates that the convergence

of c1 and c2 is quite slow, taking over 500 iterations which is much more than for the

convergence of wVMS in VMS. Image 3 is an ultrasound image, containing intensity

variation in the background. For this example γ = 0.1, and the intensity constants

converge to c∗1 = 0.446, c∗2 = 0.383. The bias field, B̃, also converges and we compute

||B̃||F = 120.9. Image 4 is another example of vessel segmentation, where intensity

varies smoothly throughout the vessel. For this example γ = 0.1, and the intensity

constants converge to c∗1 = 0.352, c∗2 = 0.239. The bias field, B, also converges and

we compute ||B̃||F = 122.2. We see results of comparable quality to rows 3 and 4 in

Fig. 6.3, in Figs. 9 and 4 of [37] respectively, except that there is no convergence

for c1 and c2. This demonstrates a clear improvement for these examples. Despite

the slow convergence of SBF in the case of Image 2, we have fast convergence in

the other examples, meaning the additional constraint generally doesn’t slow down

the computation of a solution. Also, the results are not sensitive to the constraint

parameter, γ. For Image 2, it was adjusted to 0.2, but for all other cases it was set

at 0.1, and for all examples, c∗1, c
∗
2 ∈ [0, 1], showing that the method produces results

consistent with the image.

In Fig. 6.4 we see the piecewise-smooth Mumford-Shah approximations of Images

1-4, using the SBF formulation. Visually these are similar to the corresponding VMS

approximations (not shown here). This is to be expected as the advantages of SBF

are primarily expected to be in the convergence of the intensity constants c1 and c2.

The images tested (particularly 1,2, and 4) have considerable amounts of intensity

inhomogeneity, such that they are clearly beyond the piecewise-constant framework

of Chan-Vese [33]. The converged intensity constants are very close to one another,

such that without a bias field function (or alternative consideration [82, 34, 100]), an

accurate segmentation would not be possible. In the next set of results we compare
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SBF and VMS explicitly to consider additional advantages of the proposed formulation.

Test Set 2: Comparison to VMS

With Test Set 1, we have successfully demonstrated that SBF achieves the intended

goal: the convergence of the intensity constants within a feasible range, and the com-

putation of a stabilised bias field. However, we now intend to examine the success of

the proposed method in another way: how does the method affect the accuracy of the

final segmentation. With this in mind, we can quantifiably measure the solution of each

model (VMS and SBF) against this using the Tanimoto Coefficient [48] as in Chapter

4:

TC =
N(GT ∩ Ω∗1)

N(GT ∪ Ω∗1)
, (6.18)

where N(·) is the number of pixels in the enclosed region, GT is the ground truth, and

Ω∗1 is the result computed with VMS or SBF. However, without the ground truth data

for Images 1-4 (Fig. 6.2) we cannot measure this for the examples used by D. Chen et

al. [37]. Instead, we test one model example shown in Fig. 6.5 where the ground truth

is known precisely. We observe two things with this example. Firstly, how wVMS and

wSBF compare visually with each other. In Fig. 6.5 we can see that around Γ∗ there

are significant differences between the two approximations. SBF appears to produce

a sharper approximation of the image, dealing with the discontinuity in the intensity

more effectively. Secondly, we have tested each model with a large range of the fitting

parameter λ. Our results are promising in the sense that an optimal result can be

computed for a wider range of λ with SBF over VMS, as highlighted in Fig. 6.6. It

is worth noting that we have not observed such pronounced results with Images 1-4,

although an advantage is still present.

6.4 Selective Segmentation with SBF

As discussed in Chapter 5 and the references therein, selective segmentation is the task

of extracting one particular object of interest, from a foreground with similar char-

acteristics. We now consider the problem of selecting objects in images that contain

significant intensity inhomogeneity, which is beyond recent work on selective segmen-

tation [105, 140]. By incorporating the proposed SBF idea into a current selective

segmentation model we aim to demonstrate the flexibility of SBF as a fitting term. We

now reintroduce the selective term from the previous chapter and apply it to SBF. The

formulation is given as follows:

ECDSS(Γ, c1, c2) = |Γ|+λ

∫
Ω

(
(z − c1)2χ1 + (z − c2)2χ2

)
dx+θ

∫
Ω
Pd(x)χ1dx, (6.19)

where Pd(x) is the normalised Euclidean distance of each point x ∈ Ω from its nearest

point in the user-defined polygon. Further details are also given in [112]. Whilst results

demonstrate this approach is robust, even in quite difficult cases, it is limited by the
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Figure 6.3: SBF Set 1 Results. SBF convergence behaviour (see Section 6.3.4.) Rows
1-4 are for Images 1-4 respectively. From left to right: z(x) and Γ∗ computed with
SBF, bias field B̃(x), and the progression of c1 values (vertical axis) against iterations
(horizontal axis.) Similar behaviour for c2 values is also observed.

113



i) Image 1, z(x) ii) Image 1, wSBF (x)

ii) Image 2, z(x) ii) Image 2, wSBF (x)

iii) Image 3, z(x) ii) Image 3, wSBF (x)

iv) Image 4, z(x) ii) Image 4, wSBF (x)

Figure 6.4: SBF Set 1 Results. Piecewise-smooth Mumford-Shah approximation of
Images 1-4, given from top to bottom. On the left is z, and on the right is the SBF
piecewise-smooth Mumford-Shah approximation, given by wSBF (6.13).
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i) z(x) ∈ [0, 1], Γ∗ ii) B̃(x) ∈ [0.215, 1.578] iii) c∗1 = 0.53

iv) wSBF ∈ [0.092, 0.836] v) wVMS ∈ [0.038, 0.848] vi) |wSBF − wVMS | ∈ [0, 0.05]

vii) TC(λ ∈ [0, 300])

Figure 6.5: SBF Set 2 Results. SBF compared to VMS (see Section 6.3.4.) i) Successful
segmentation of the image, z(x), given by contour Γ∗. ii) Computed stabilised bias
field, B̃(x). iii) Convergence of c1 values (50 iterations.) Similar behaviour for c2

values is also observed. iv) Piecewise-smooth approximation of z(x) with SBF. v)
Piecewise-smooth approximation of z(x) with VMS. vi) Difference between SBF and
VMS approximations, demonstrating significant differences around Γ∗. vii) The TC
measure for VMS (dotted red) and SBF (blue), demonstrating the segmentation quality
falls away for VMS with large values of λ.

115



Figure 6.6: SBF Set 2 Results. SBF compared to VMS (see Section 6.3.4.) The TC
measure for λ ∈ [5, 100] shows that an optimal Γ∗ can be computed for a larger range
of λ with SBF than VMS.

piecewise-constant assumption it relies on. We therefore extend this idea to incorporate

bias field estimation, which we call Selective SBF:

ESSBF (Γ, c1, c2, B̃) = |Γ|+ λ

∫
Ω

(
(z − B̃c1)2χ1 + (z − B̃c2)2χ2

)
dx

+ µ

∫
Ω
|∇B̃|2dx+ γ

∫
Ω

(B̃ − s)2dx+ θ

∫
Ω
Pd(x)χ1dx. (6.20)

We minimise this functional (6.20) as outlined in Sections 6.3.2 and 6.3.3 above, except

that for Step (3) we use the improved additive operator splitting method from Chapter

4, as we are no longer comparing our results to VMS.

6.4.1 Experimental Results

For Selective SBF we test one image that involves significant intenisty inhomogeneity

in the foreground and background, shown in Fig. 6.7. The foreground consists of a

series of distinct objects that could conceivably be of interest, and was chosen as it is

clearly beyond the scope of the piecewise-constant framework of CDSS used in Chapter

5 and [112]. By using just four markers to loosely define the shape of the target object,

as well as its location and size, we define a distance selection term Pd that is capable of

excluding unwanted artefacts. We demonstrate that we get a successful result for this

example, both in terms of the computed contour Γ∗, and the convergence of the intensity

constants c1 and c2. A particularly challenging aspect of this type of problem can be

highlighted by noting that the intensity constants computed are very close: c∗1 = 0.35,

and c∗2 = 0.33. The role of the stabilised bias field, B̃, is particularly important here.

It is worth considering two alternatives for this example, that we now briefly discuss.
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Firstly, what would the performance of CDSS be like for the image in Fig. 6.7? For

brevity, we do not include those results here. As might be expected for a model that

relies on a piecewise-constant framework, the results for this image are inadequate as

the segmentation favours exterior artefacts to the target object that are of a similar

intensity value. Secondly, what does SBF contribute here, i.e. what would Selective

VMS (γ = 0 in (6.20)) results be like? Again, we do not include results here, but

Selective VMS is capable of achieving a successful segmentation, although as expected

c1 and c2 do not converge. However, we observe a similar effect as observed in Results

Set 2 given by Fig. 6.5. That is, with all other parameters fixed and varying the

selection parameter θ, there is a successful result for a wider range of values. We do

not know the ground truth for this case, which makes quantifying differences between

methods difficult, but we aim to further investigate this phenomenon with different

examples.

6.5 Remarks

We have proposed the introduction of a constraint to the Variant Mumford-Shah Model

[37], although it applies to any model using bias field correction in this way. It is a

framework that provides a link between the Mumford-Shah functional [89] and the

piecewise-constant functional of Chan and Vese [33], as discussed in Section 6.3.1.

This constraint does not affect the computation time as we have shown how the exact

minimiser can be well approximated in a similar way to D. Chen et al. [37]. It is

an improvement over current methods in the sense that the intensity constants reli-

ably converge and are feasible in relation to the image. This allows for a meaningful

representation of the data by the definition of the image model (6.3). We also observe

possible advantages with this framework in terms of the quality of the piecewsie-smooth

approximation of the image, and a model less reliant on the fitting parameter. We have

successfully extended the proposed method to a selective segmentation model, incorpo-

rating the distance selection term from the previous chapter, to allow for selection in

the presence of intensity inhomogeneity, and have again observed an improvement in

terms of parameter dependence. This is a potentially important finding, as this ’stabil-

isation’ of the bias field appears to allow for more parameter variation thus improving

the reliability of the models. We will investigate this idea further in the future, and

attempt to accurately quantify an improvement.

It is important to note here that in the numerical implementation of SBF, detailed

in Section 6.3.3, we were consistent with the method of D. Chen et al. [37]. In particu-

lar, we used the dual formulation of Chambolle [23, 18] rather than the AOS methods

proposed in Chapter 4. Whilst we observed improvements with AOS for GCS over the

dual formulation, we wanted a fair comparison between SBF and VMS. This involved

obtaining a solution for the VMS case in a way faithful to the approach in [37]. Ad-

ditionally, it seemed appropriate to repeat this when obtaining a solution in the SBF

case. In this way the conclusions drawn from the proposed method are well founded.
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i) z(x) ∈ [0, 1], Γ∗ ii) Pd(x) ∈ [0, 1]

iii) c∗1 = 0.35 iv) c∗2 = 0.33

v) B̃(x) ∈ [0.546, 1.458] vi) u(x) ∈ [0, 1]

Figure 6.7: Selective SBF Results (see Section 6.4.1.) i) Successful selective segmen-
tation of the image, z(x), given by contour Γ∗. ii) Distance selection function, Pd(x),
with user markers. iii) Convergence of c1 values (200 iterations.) iv) Convergence
of c2 values (200 iterations.) v) Computed stabilised bias field, B̃(x). vi) Computed
indicator function, u(x).
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Chapter 7

Simultaneous Reconstruction and
Segmentation

7.1 Introduction

In this chapter we consider the situation when forming a fitting function based on

the observed image is not possible due to insufficient quality of the data. Specifically,

we aim to segment images that contain blur. In this case the observed image must

be reconstructed in order to segment it accurately. Several recent methods to combine

image segmentation and deconvolution in the case where the blur function k is known or

of known type have been proposed, but in the case where the blur function is unknown

there have not been many significant advances. Here, we propose two variational models

for the simultaneous reconstruction and segmentation of blurred images with spatially

invariant blur in the blind case (i.e. the blur type is unknown).

Variational segmentation models based on intensity similarity often employ edge

detection techniques to aid the segmentation and some can handle fuzzy boundaries

[13, 106]. Generally these approaches can deal with the presence of noise, but blur

is more problematic and most variational models are incapable of obtaining accurate

results, particularly in cases where there is a reliance on the edge detector. Work in

the segmentation of blurred images is at an early stage but there exist methods, such

as those presented in [11, 28, 107, 69], which use the framework of Mumford-Shah

[33, 5, 74] or Chan-Vese [43, 42] and TV image restoration [109, 124].

The main contribution of this chapter is the proposal of two models that incorporate

blind deconvolution (with implicitly constrained image reconstruction) and globally

convex segmentation (GCS). The former offers advantages over hard constraints such

as scaling or truncation, whilst the latter enables us to compute global minimisers

for two-phase segmentation models with a fixed fitting function. In a similar way to

Bar et al. [11], we form a joint functional and minimise it alternately in order to

simultaneously reconstruct and segment the image. We also present a relaxed method

for improved accelerated convergence. Our tests demonstrate that related models that

do not impose constraints for the restoration (and the restored blur kernel in the blind

case) do not perform as well as our proposed method, especially for heavy blur.

This chapter is organised as follows. In Section 7.2, we review existing approaches
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to segmenting blurred images and introduce relevant image reconstruction methods.

In Section 7.3.1, we introduce two new two-stage models for the cases of images in

the presence of Gaussian noise and Poisson noise incorporating implicitly constrained

deblurring and GCS. The primary purpose of these models is to examine the advantages

of reconstructing and segmenting simultaneously and in Section 7.3 we introduce our

main contribution; a joint model for the segmentation of blurred images. In Section

7.4, we introduce our relaxed model using alternate direction methods for accelerated

convergence. In Section 7.5, we present experimental results. Finally, in Section 7.6 we

offer some concluding remarks on this work. We note here that we make an adjustment

to the conventional notation. In the following we will refer to the image function as

v(x), as opposed to u(x) (as it is most commonly in the literature). This is in order

to avoid confusion between the reconstructed image function, and the segmentation

function as defined in previous chapters.

7.2 Existing Methods

Approaches to the problem of segmenting blurred images can be split into two cat-

egories: two-stage and joint. In the first the aim is to reconstruct the true image,

followed by a segmentation step [28, 107]. For joint approaches, reconstruction and

segmentation is carried out simultaneously by minimising a joint functional [11, 69]. In

this section, we review some relevant examples of each approach.

Throughout this work we assume that the blur is spatially invariant, such that the

observed image, z, may be modeled as the convolution of the true image v with a point

spread function k, with the possibility of some additive noise:

z(x) = (k ∗ v)(x) + η(x), (7.1)

where the operation of convolution is denoted by ∗ and is defined in Chapter 3.

7.2.1 Segmentation of Blurred Images

In 2004, Bar et al. [11] coupled the segmentation and reconstruction processes into a

joint functional, considering both non-blind and semi-blind deconvolution (where σ is

to be found, for Gaussian blur). They minimised the joint functional

fBSK(v, kσ, g) =
1

2

∫
Ω

(kσ ∗ v − z)2 dx+ β

∫
Ω
g2|∇v|2 dx

+ α

∫
Ω
ε|∇g|2 +

(g − 1)2

4ε
dx+ γ

∫
Ω
|∇kσ|2 dx, (7.2)

which is dependent on the image v, the edge integration map g and the kernel function

parameter σ. A special case exists in the case of known blur where minimisation

with respect to the kernel width is not necessary, and neither is the final term of the

functional. Minimising with respect to the arguments simultaneously reconstructs and

segments the observed image in either the non-blind or semi-blind case.
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In 2009 Jung et al. [69] introduced a model for two-phase segmentation of blurred

images by incorporating the Chan-Vese [33] formulation into a deblurring term as fol-

lows:

fJCSV (c1, c2, φ) =

∫
Ω
|z − k ∗ (c1H(φ) + c2(1−H(φ)))|2dx+ µ

∫
Ω
|∇H(φ)|dx

They also extended this idea to multi-phase segmentation and denoising, but this form

is of particular interest to our work. In [97], the authors address formulating this

model in a convex relaxation framework. The authors minimise the functional above

alternately with H1 gradient descent.

Another approach, this time in the blind case, is from Reddy et al. [107]. They

incorporate the unknown restored image in the Chan-Vese formulation as follows:

fRCR = µ|Γ|+ νArea(in(Γ))

+ λ1

∫
in(Γ)
|v(x)− c1|2 dx+ λ2

∫
out(Γ)

|v(x)− c2|2 dx,

where v(x) = |k(x) ∗ z(x)|2 is the square of the convolution of the observed data z and

a Gaussian kernel. The c1, c2 and Γ terms and the parameters are consistent with the

original Chan-Vese functional [33], as detailed in Chapter 3. The authors employ a

two-stage approach, that amounts to segmenting the reconstructed image.

In 2014 Chan et al. [28] proposed a two-stage convex method for the segmentation

of blurred images, corrupted by either Poisson or multiplicative Gaussian noise. Their

approach is to extract a smooth image v from the observed image z and threshold v in

such a way that the segmentation regions are defined. Given the blurring operator A,

the functional is given as

fCY Z(v) =

∫
Ω
|∇v|dx+

µ

2

∫
Ω
|∇v|2 dx+ λ

∫
Ω
Av − f logAvdx.

Minimising with respect to v has a unique solution and can be solved by Split Bregman

[59] or Chambolle-Pock [26].

In the following sections of this chapter we consider both the joint and two-stage

approaches using GCS and implicitly constrained deblurring in an attempt to improve

the accuracy of the results. First, we review the relevant image reconstruction and

segmentation techniques in the non-blind case, i.e. the blur is known.

7.2.2 Two-Stage Approach for Images with Known Blur

We now discuss the details of applying two basic methods to this problem, in a simple

two-stage approach. Specifically, we consider segmentation for blurred images in the

non-blind case. We first briefly review how to restore an image in this case, and then

applying a nonconvex segmentation method to the result. The first stage is to restore

the image, employing a ROF-type minimisation problem [109]:
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min
v(x)

{∫
Ω

([k ∗ v](x)− z(x))2dx+ α

∫
Ω
|∇v(x)|dx

}
, (7.3)

where k(x) is the known point spread function describing the blur degradation of the

true image, z(x) is the observed blurred and noisy image, v(x) is the unknown image

which is to be restored, and α is a parameter which balances between data fitting and

regularisation. The function v(x) which minimises the functional of (7.3) is the restored

image, in which a segmentation step such as Chan-Vese [33] is then applied. Further

details of the Chan-Vese step can be found in Chapter 3. This technique may achieve

a good result, however, the blur function must be already known and the segmentation

result of the nonconvex Chan-Vese problem is heavily dependent on the restored image,

v.

In the next section we extend this approach to the blind case, where the blur function

is unknown. We incorporate transformations which allow for the image intensities to

be constrained implicitly, which will be discussed in the next section, and formulate it

in a GCS framework introduced in previous chapters.

7.3 Segmentation of Images Corrupted By Unknown Blur

This section concerns segmenting images with unknown blur, which we call blind image

segmentation. First, we discuss a two-stage approach that aims to improve on the

method described in the previous section and the existing methods in the literature

[11, 69]. We then introduce a model which simultaneously restores and segments the

image, by proposing a joint functional.

7.3.1 Two-Stage Approach

Based on the existing methods reviewed in the previous section, we propose a two-stage

model for segmentation with blind deconvolution. That is, we first restore the sharp

image from the corrupted observed data without knowledge of the blur function and

then segment the result. This is a conventional approach, with examples including

work by Reddy et al. [107] and Chan et al. [28].

Beginning with blind deconvolution, we attempt to restore the image and blur

function simultaneously. Following similar approaches [135, 35] we deblur the observed

image by solving the regularised joint minimisation problem

arg min

{
fCW (v, k) =

∫
Ω

([k ∗ v](x)− z(x))2dx+R1(v(x)) +R2(k(x))

}
, (7.4)

where R1 and R2 are regularisation terms that enforce the smoothness constraints on

the image and blur function respectively. The minimisation of (7.4) is subject to the

constraints

k(x) ≥ 0, v(x) ≥ 0,

∫
Ω
k(x)dx = 1, k(x) = k(−x), (7.5)
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and are imposed explicitly at each outer iteration of an alternate minimisation scheme.

These are imposed in order to find a unique solution of this jointly nonconvex problem.

Chen et al. [38] proposed an improved method, enforcing the non-negative constraints

implicitly. Alternative approaches, where the intensity values are projected back onto

the correct range, can lead to a significant reduction in the quality of the recovered

image [27]. We now briefly discuss a transform τa(ψ) where τa : Rm×n → C, C ⊆ Rm×n

is a function with a range constrained in C, and ψ : Ω→ Rm×n is a function such that

τa(ψ) is equal to the image v. The proposed bounded transform is given in [27] by

τa(ψ) =
a1 + 2a4

1 + a2e
− 2ψ
a3

− a4, (7.6)

where the parameters a1, a2, a3, a4 are problem dependent. Further details about this

method can be found in [38] and related literature. The inverse transform ψ : C → Rm×n

is given such that ψ = ξa(v). To avoid introducing non-linearity in the fitting term,

the augmented Lagrangian method [50, 132] is employed through the term Aa. The

point spread function is treated in a similar way with a transform τa(k), for parameters

b1, b2, b3, b4, and a Lagrangian term Ab.

With these considerations in mind, the authors [38] introduced the following non-

negative implicitly constrained functional:

fCHWZ(v, k, ψ, ω) =

∫
Ω

(k ∗ v − z)2dx+R1(τa(ψ)) +R2(τb(ω))

+Aa(v, ψ;ϕ1, γ1) +Ab(k, ω;ϕ2, γ2). (7.7)

Here R1 and R2 denote the TV regularisation for the image and blur function respec-

tively:

R1(τa(ψ)) =

∫
Ω
|∇τa(ψ)|dx, R2(τb(ω)) =

∫
Ω
|∇τb(ω)|dx,

and A penalises the distance between the image (blur) function and transformed ψ (ω)

functions respectively, which are given by

Aa(v, ψ;ϕ1, γ1) = γ1

∫
Ω

(v − τa(ψ))2 dx+ < ϕ1, v − τa(ψ) >, (7.8)

Ab(k, ω;ϕ2, γ2) = γ2

∫
Ω

(k − τb(ω))2 dx+ < ϕ2, k − τb(ω) > . (7.9)

Alternate minimisation of the functional (7.7) is achieved by solving the resulting Euler-

Lagrange equations

E1
CHWZ(v, k, ψ, ϕ1) = 0, E2

CHWZ(v, ψ) = 0,

E1
CHWZ(k, v, ω, ϕ2) = 0, E2

CHWZ(k, ω) = 0,

where the functions E1
CHWZ and E2

CHWZ are given by
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E1
CHWZ(v, k, ψ, ϕ1) = k† ∗ (k ∗ v − z) + γ1 (v − τa(ψ)) + ϕ1, (7.10)

E2
CHWZ(v, ψ) = α1

∂τa
∂ψ
∇ ·
(
∇τa(ψ)

|∇τa(ψ)|

)
+ γ1 (τa(ψ)− v)

∂τa
∂ψ

+ ϕ1 (τa(ψ)− v)
∂τa
∂ψ
− ϕ1

∂τa
∂ψ

, (7.11)

where k†(x) = k(−x). We can solve (7.10) efficiently with Fourier transforms and (7.11)

using gradient descent methods. Solutions for k and ω can be found in a similar way.

We restore the image by alternately minimising (7.7) until an acceptable tolerance is

reached, solving (7.10) and (7.11) to restore the image (v and ψ), followed by updating

the dual function ϕ1. A similar procedure is then followed for the blur function (k and

ω) and the dual function ϕ2.

Once a solution for v has been computed, we then segment the restored image as

opposed to the observed image. We use the convex relaxation framework, discussed in

Chapter 4, where a segmentation function u ∈ [0, 1] is thresholded to produce the final

contour. As in Chapter 5 we assume that the true intensity constants are unknown

such that the joint segmentation problem is as follows:

min
u

{
µ

∫
Ω
|∇u|dx+ λ

∫
Ω

[
|v − c1|2u+ |v − c2|2(1− u)

]
dx+ α

∫
Ω
νε(u)dx

}
. (7.12)

It is possible to adjust the approach slightly to be more consistent with Chapter 4 if

reasonable approximations of the intensity constants are available, by fixing c1 or c2.

We can derive the Euler-Lagrange equation with respect to u in a similar way as to

presented in Chapter 2, giving

0 = µ∇ ·
(
∇u
|∇u|

)
− λ

(
(v − c1)2 − (v − c2)2

)
− αν ′ε(u). (7.13)

As before this equation can be solved using AOS [85, 129] with the following update,

after discretisation and rewriting in the matrix-vector form:

un+1 =
1

2

2∑
`=1

(
I − 2τµA`(u

n)
)−1

(un + τfn), (7.14)

where f = −λ
(
(v − c1)2 − (v − c2)2

)
− αν ′ε(u). One notes that we are using AOS0

from Chapter 4, and improved results could be obtained by considering AOS1. Here,

A` is the diffusion quantity in the ` direction (` = 1, 2 for first and second dimensions

respectively). Minimising with respect to c1 and c2 (keeping other arguments fixed),

we get the following equations:

c1(v, u) =

∫
Ω v udx∫
Ω udx

, c2(v, u) =

∫
Ω v(1− u)dx∫
Ω (1− u)dx

. (7.15)

We summarise these details in Algorithm 3. An initial estimate of the image is given

by the observed image, from which the restored image, v, is found. Then, we segment
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this new image using the methods discussed in earlier chapters. This method is in two

distinct stages, where the blur is assumed to be Gaussian. We refer to this model as

Two-Stage Gaussian (or 2SG), from here.

Algorithm 3 Segmentation of blurred images: u(`) ← 2SG
(
u(0), z,maxit

)
1: v(0) ← z, ψ(0) ← ξa

(
v(0)
)

2: ϕ
(0)
1 ← 1

3: for `← 1 : maxit do
4: Update v(`) by solving (7.10)
5: Update ψ(`) by solving (7.11)

6: Update ϕ
(`)
1 ← ϕ

(`−1)
1 + γ1

(
u(`) − τa

(
ψ(`)

))
7: Update k(`)

8: Update ω(`)

9: Update ϕ
(`)
2 ← ϕ

(`−1)
2 + γ2

(
k(`) − τb

(
ω(`)

))
10: end for
11: v ← τa

(
ψ`
)

12: for `← 1 : maxit do
13: Calculate c

(`)
1 ← c1

(
v, u(`−1)

)
, c

(`)
2 ← c2

(
v, u(`−1)

)
using (7.15)

14: Update u(`) by solving Ecs(u(`−1)) = 0 using (7.13)
15: end for

We now consider the case of Poisson noise being present in the image, and make

an adjustment to our two-stage algorithm. We thus attempt to restore the true image

from the corrupted image by solving the Robust Richardson Lucy problem, employing

the function Φ(s) = 2
√
s+ β [98]. Solving this problem, we obtain an approximation of

the true image. In this two-stage setting, once we have obtained the approximation of

the image, we proceed with the segmentation as described in the Gaussian case above.

This is outlined in Algorithm 4 below. It can be noted that while this restoration

method provides a restriction on the lower bound of the restored image v, it does not

provide an upper limit. We may obtain this by a projection P of the restored data

onto the ideal range at each iteration. We refer to this model as Two-Stage Poisson (or

2SP), from here.

Algorithm 4 Segmentation of blurred images: u(`) ← 2SP
(
u(0), z,maxit

)
1: v(0) ← z
2: for `← 1 : maxit do
3: Update the image v(`)

4: Update the blur function k(`)

5: Update transformed blur function ω(`)

6: Update ϕ
(`)
2 ← ϕ

(`−1)
2 + γ2

(
k(`) − τb

(
ω(`)

))
7: end for
8: v ← v`

9: for `← 1 : maxit do
10: Calculate c

(`)
1 ← c1

(
v, u(`−1)

)
, c

(`)
2 ← c2

(
v, u(`−1)

)
using (7.15)

11: Update u(`) by solving Ecs(u(`−1)) = 0 using (7.13)
12: end for
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We will demonstrate in Test Set 1 in Section 7.5 that deblurring considerations

are important for obtaining an accurate segmentation of a blurred image. We also

demonstrate that the advanced techniques described here offer improvements compared

to similar techniques.

7.3.2 A Joint Model for Blind Image Segmentation

We now consider the simultaneous restoration and segmentation of a blurred image,

by constructing a joint variational model. Broadly speaking, there are two approaches

for this type of problem in the literature. Firstly, we may replace the image in the

deblurring problem with the segmentation function and attempt to restore this while

recovering the average intensities. While this may provide good results, [97] has shown

that this may not be robust as it is no longer compatible with the convex relaxation

framework, and the thresholding procedure cannot obtain an accurate contour reliably.

The second approach is to replace the received data term z(x) in the segmentation

functional (7.12) by the restored image function v(x) and add the constraint that this

function should satisfy the deconvolution minimisation problem (7.4) and associated

constraints (7.5). Imposing this constraint by incorporating the terms into the existing

functional, we form the new joint minimisation model.

f(v, u, c1, c2, k) =µ

∫
Ω
|∇u|dx+ α

∫
Ω
νε(u)dx

+ λ

∫
Ω

[
|v − c1|2u+ |v − c2|2(1− u)

]
dx

+
1

2
||k ∗ v − z||2L2(Ω) + α1

∫
Ω
|∇v|dx+ α2

∫
Ω
|∇k|dx, (7.16)

subject to the constraints (7.5). Here, the restored image v provides the intensity and

spatial information for the segmentation terms. Based on the approach of implicitly

constrained deconvolution discussed in the previous section, we introduce the functions

ψ, ω in order to apply constraints on the intensity values of the image and blur functions.

We incorporate the transform functions τa(ψ), τb(ω) into the functional with terms

penalising the distance of the image and blur functions from these terms, giving the

following minimisation problem:

fJ1(u, v, ψ, k, ω;ϕ1, ϕ2) =µ

∫
Ω
|∇u|dx+ α

∫
Ω
νε(u)dx+

1

2
||k ∗ v − z||2L2(Ω)

+ λ

∫
Ω

[
|τa(ψ)− c1|2u+ |τa(ψ)− c2|2(1− u)

]
dx

+ α1

∫
Ω
|∇τa(ψ)|dx+Aa(v, ψ;ϕ1, γ1)

+ α2

∫
Ω
|∇τb(ω)|dx+Ab(k, ω;ϕ2, γ2),

subject to unit integral and symmetry constraints on the blur function and where Aa

and Ab are given by (7.8) and (7.9). Next, we will take each of the arguments in turn
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for minimising the joint functional.

Segmentation Step, u, c1, c2:

The model is formulated such that it is consistent with the convex relaxation framework

introduced in Chapter 4. As a result, the segmentation step is similar to before using

an AOS scheme with

f = −λ((τa(ψ)− c1)2 − (τa(ψ)− c2)2)− αν ′ε(u).

The update for u is then given as:

un+1 =
1

2

2∑
`=1

(
I − 2τµA`(u

n)
)−1

(un + τfn). (7.17)

The minimisation of the intensity constants is also analogous to previous work:

c1(ψ, u) =

∫
Ω τa(ψ)udx∫

Ω udx
, c2(ψ, u) =

∫
Ω τa(ψ)(1− u)dx∫

Ω (1− u)dx
. (7.18)

Image function v:

Minimising with respect to v gives the equation

k† ∗ (k ∗ v − z) + γ1(v − τa(ψ)) + ϕ1 = 0, (7.19)

which contains the main deconvolution component. This can be rewritten with the left

hand side as a convolution of u as

[k† ∗ k + δγ1] ∗ v = k† ∗ z + γ1τa(ψ)− ϕ1.

It is important to note that after the discretisation of this equation, the term k† ∗ k
along with the operation of convolution defines a symmetric positive definite matrix.

Put briefly, if k and v are the discretised k and v respectively, then we have

k̄ ◦ k ◦ v = Hv

for a symmetric positive definite matrix H where ◦ denotes the operation of discrete

convolution. We can solve this problem using the preconditioned conjugate gradient

method with a preconditioner, following the idea of [125], given by

P = (k̃ ∗ k̃ + χI)
1
2 (χI + (γ1 + ϕ1))(k̃ ∗ k̃ + χI)

1
2 , (7.20)

where k̃ is a circulant approximation to k.

Transformed image function ψ:

Minimising with respect to the function ψ, we obtain:
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Eψ(ψ) = 2λ1(τa(ψ)− c1)ν
∂τa(ψ)

ψ
+ 2λ2(τa(ψ)− c2)(1− ν)

∂τa(ψ)

ψ

+ α1
∂τa(ψ)

ψ
∇ ·
(
∇τa(ψ)

|∇τa(ψ)|

)
− γ1(v − τa(ψ))

∂τa(ψ)

ψ
− ϕ1

∂τa(ψ)

∂ψ
. (7.21)

Applying gradient descent, letting ψ = ψ(x; t), we solve the problem

ψt(x, t) = −Eψ(ψ(x, t)) s.t. ψt(x, t)|t=0 = ψ(0)(x).

Discretising this equation by forward differences in terms of time t and rearranging, we

have

ψ(x, t+ 1) = ψ(x, t)− τEψ(ψ(x, t)).

Beginning with the initial estimate of ψ at t = 0 which is determined by the inverse

transform of the received data z in the first instance and the latest approximation

in subsequent alternate minimisation iterations, we evolve in time until the stopping

criteria is met:

‖ψ(x, t+ 1)− ψ(x, t)‖L2 = τ‖Eψ(ψ(x, t))‖L2 < ψtol.

Point spread function k:

Minimising with respect to the blur function k, we have the equation for the blur

function

v† ∗ (v ∗ k − z) + γ2(k − τb(ω)) + ϕ2 = 0, (7.22)

which may be solved for k in a similar manner to (7.19)

Transformed point spread function ω:

Finally, minimising with respect to ω, we obtain:

α2
∂τb(ω)

ω
∇ ·
(
∇τb(ω)

|∇τb(ω)|

)
− γ2(k − τb(ω))

∂τb(ω)

∂ω
− ϕ2

∂τb(ω)

∂ω
= 0, (7.23)

which may be solved using a gradient descent scheme in a similar way to solving for ψ

above.

Algorithm:

To begin, we use the observed data as the initial estimate for v. We also make an

estimate of the point spread function based on visual observation of the received image.

Using this information, we obtain the initial estimates of ψ and ω, and compute c1 and

c2. We then update the image, v, ψ, the point spread function, k, ω, the segmentation

function u, ϕ1 and ϕ2, and iterate until we reach an acceptable tolerance. Our algorithm

is presented in Algorithm 5. We refer to this model as the Joint Reconstruction and

Segmentation (or JRS) model from here.
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Algorithm 5 Segmentation of blurred images: u(`) ← J
(
u(0), k(0), z,maxit

)
1: v(0) ← z, ψ(0) ← ξa

(
v(0)
)
, ω(0) ← ξb

(
k(0)

)
2: ϕ

(0)
1 ← 1, ϕ

(0)
2 ← 1

3: for `← 1 : maxit do
4: Calculate c

(`)
1 ← c1

(
ψ(`−1), u(`−1)

)
, c

(`)
2 ← c2

(
ψ(`−1), u(`−1)

)
using (7.18)

5: Update v(`) by solving (7.19)
6: Update ψ(`) by solving (7.21)
7: Update k(`) by solving (7.22)
8: Update ω(`) by solving (7.23)
9: Update u(`) by solving (7.17)

10: Update ϕ
(`)
1 ← ϕ

(`−1)
1 + γ1

(
v(`) − τa

(
ψ(`)

))
11: Update ϕ

(`)
2 ← ϕ

(`−1)
2 + γ2

(
k(`) − τb

(
ω(`)

))
12: end for

We demonstrate in Test Set 2 of Section 7.5 that segmenting a blurred image with

the JRS model can offer improved results over the corresponding two-stage method.

Furthermore, in Test Set 3, we show that our method offers improved results over other

comparable methods. In the following section, we consider an alternative joint method

which aims to improve the speed of obtaining a solution.

7.4 A Relaxed Model for Blind Image Segmentation

In the joint functional introduced in the previous section, solving for the transformed

image function, ψ, is the most time consuming aspect of the minimisation procedure. In

this section we consider a way to simplify the equation for ψ by relaxing the functional,

aiming to speed up the restored segmentation. To do this we introduce a new variable

$(x), which should be equal to the reconstructed image at convergence. In order to

do this we include distance measures that drive v and $ close together, as well as

penalisation parameters to control their influence on the solution. The new problem is

given as follows:

max
ϕ1,ϕ2,ζ

min
u,c1,c2,$,v,ψ,k,ω

{
fJ2(u, c1, c2, $, v, ψ, k, ω;ϕ1, ϕ2, ζ) = µ

∫
Ω
|∇u|dx

+ λ

∫
Ω

[
|$ − c1|2u+ |$ − c2|2(1− u)

]
dx+ α

∫
Ω
νε(u)dx

+
1

2
||k ∗ v − z||2L2(Ω) +

υ

2
||$ − τa(ψ)||2L2(Ω)+ < ζ,$ − τa(ψ) >

+ α1

∫
Ω
|∇τa(ψ)|dx+

γ1

2
||v − τa(ψ)||2L2(Ω)+ < ϕ1, v − τa(ψ) >

+α2

∫
Ω
|∇τb(ω)|dx+

γ2

2
||k − τb(ω)||2L2(Ω)+ < ϕ2, k − τb(ω) >

}
. (7.24)

In order to solve this model, we derive the partial differential equations defined by

the first order optimality conditions. However, the only step that is not identical or

closely analogous to the corresponding variable in the previous section is for ψ. We
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also briefly present the details of minimising fJ2 with respect to the new variable $.

First, minimising fJ2 with respect to ψ, we obtain the equation

E2(ψ) = αR(ψ)− τ ′a(ψ)(γ1 + ϕ1)(u− τa(ψ)) + τ ′a(ψ)(υ($− τa(ψ)))− ζ†τa(ψ)) (7.25)

where R(ψ) is the derivative of the regularisation term
∫

Ω |∇τa(ψ)|dx. We can solve

E2(ψ) = 0 using semi-implicit time marching, ψt = −E2(ψ) by discretising the time

step. Now, minimising fJ2 with respect to $, we obtain

E3($) = 2λ($ − c1)ν + 2λ($ − c2)(1− ν) + u($ − τa(ψ)) + ζ†($ − τa(ψ)).

Note that we can solve the sub-problem E3($) = 0 directly with the solution of

(
2λ1ν + 2λ2(1− ν) + u+ ζ†

)
$ = 2λ1c1ν + 2λ2c2(1− ν) +

(
u+ ζ†

)
τa(ψ). (7.26)

In order to solve the model (7.24), we make an initial estimate of the image based on

the observed data. We then calculate the initial estimate of ψ as the inverse transform

of the initial image. Similarly, in the blind case, we make an initial estimate of the point

spread function based on visual observation and compute its inverse transform function.

We then proceed to solve the model (7.24), alternately minimising with respect to the

arguments. The final segmentation is then given by the contour Γ∗, by thresholding

the segmentation function u∗. We present this algorithm in Algorithm 6 below. This is

the Relaxed Joint Restoration and Segmentation model, and we refer to it as the RRS

model from here.

Algorithm 6 Segmentation of blurred images: u(`) ← RRS
(
u(0), k(0), z,maxit

)
1: v(0) ← z, $(0) ← v(0), ψ(0) ← ξa

(
v(0)
)
, ω(0) ← ξb

(
k(0)

)
2: ϕ

(0)
1 ← 1, ϕ

(0)
2 ← 1, ζ(0) ← 1

3: for `← 1 : maxit do
4: Calculate c

(`)
1 ← c1

(
$(`−1), ν(`−1)

)
, c

(`)
2 ← c2

(
$(`−1), ν(`−1)

)
5: Update v(`) and ψ(`) using (7.25)
6: Update k(`) and ω(`)

7: Update u(`) and $(`) using (7.26)

8: Update ϕ
(`)
1 ← ϕ

(`−1)
1 + γ1

(
u(`) − τa

(
ψ(`)

))
9: Update ϕ

(`)
2 ← ϕ

(`−1)
2 + γ2

(
u(`) − τb

(
ω(`)

))
10: Update ζ(`) ← ζ(`−1) + υ

(
τa
(
ψ(`)

)
− w(`)

)
11: end for

7.5 Experimental Results

Segmenting a blurred image with a conventional technique (such as Chan-Vese [33]) is

sometimes sufficient if the degradation is not strong. However, as the level of corruption
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i) Image 1 ii) Image 2 iii) Image 3

iv) Image 4 v) Image 5 vi) Image 6

Figure 7.1: Images used for test examples.

increases it is very unlikely to obtain a good result as it is beyond the scope of the

formulation. The work of Bar, Sochen and Kiriyati [11], described in Section 7.2, is

capable of segmenting blurred images where the corruption is small but is not robust

to significant levels of blur degradation or noise.

In this section, we present results of segmenting eight images, and Images 1-6 are

shown in Fig. 7.1. In this section, we demonstrate that Algorithms 1 and 2 offer

improvements over competitive models for segmenting blurred images. We also show

that Algorithm 5 is capable of obtaining an accurate result with the possibility of slow

convergence while Algorithm 6 converges faster to a similar, if slightly lower quality

result. In order to compare our results with alternative approaches, we define the

following models to be tested in this section:

CV: The Chan-Vese segmentation model [33].

GCV: A two-stage model by standard TV deblurring followed by CV segmentation.

PCV: A two-stage model by standard deblurring for Poisson noise followed by CV

segmentation.

BSK: The Bar et al. model [11] – without constraints on kσ, v.

The following are the proposed models we introduced in Sections 7.3 and 7.4:

2SG: Algorithm 3 – Two-Stage Gaussian – implicitly constrained blind deblurring

for Gaussian noise followed by GCS (7.12).

2SP: Algorithm 4 – Two-Stage Poisson – Algorithm 3 adapted for Poisson noise.
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JRS: Algorithm 5 – Joint Reconstruction and Segmentation model for blind deblur-

ring and GCS with implicit constraints on k, v, from Section 7.3.2.

RRS: Algorithm 6 – Relaxed Reconstruction and Segmentation model from Section

7.4.

In order to quantify the accuracy of our proposed methods we use three measures,

that we will now introduce briefly. For artificial images we know the ground truth (GT )

for the segmentation result, i.e. the true indicator function of the object. For images

that we do not have the ground truth we assume that the segmentation of the true

image (i.e. uncorrupted by blur or noise) is correct. As in previous chapters we use the

Tanimoto Coefficient [48] to measure the accuracy of the model:

TC =
N (Ω∗1 ∩GT )

N (Ω∗1 ∪GT )
,

where Ω∗1 =
{

(x) ∈ Ω|u∗(x) > 10−1
}

, where N(·) is the number of pixels in the en-

closed region. As the restored segmentation approaches the ground truth, TC tends

towards one. Additionally, as a measure of the accuracy of the restored segmentation

we also measure the L2 norm of the difference between the computed function, u∗ and

the ground truth, GT . In other words, this not only measures the accuracy of the

thresholded contour, but indicates how close to binary the result is in keeping with the

ideas discussed in Chapter 4. We denote this measure L2A:

L2A = ||u∗ −GT ||22.

The time taken to compute the restored segmentation is also of interest, particularly

in relation to the RRS model. As before, we measure the computation time in seconds

and denote it in the following by cpu.

7.5.1 Test Set 1 (Two-Stage Comparisons)

This set of results consists of images corrupted by blur with the assumption that Gaus-

sian noise is present. We illustrate the performance of CV to segment the image and

consider it against the performance of GCV and 2SG. We see in Table 7.1 and Fig-

ure 7.2 that while CV can give a reasonable result, it is not reliable for segmenting

blurred images. We also demonstrate in Table 7.1 that the result can be improved by

using the two-stage model, GCV, and further enhanced by the proposed constrained

model, 2SG. We also demonstrate in Table 7.2 that this idea carries over to the case of

Poisson noise corruption in the image. It can be seen that 2SP offers an improvement

over the two-stage Poisson model PCV.

We also consider the comparison between the results obtained by solving the two-

stage model, 2SG, with those obtained as the solutions of the joint models JRS and

RRS. We can see in Table 7.3 that there is little advantage in considering the problems

of deblurring and segmentation separately. In most cases, the joint models achieve

better results than the two-stage model.
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Model
σ = 9 σ = 19

L2A TC L2A TC

Image 1

Initial 101.16 0.13 101.16 0.13
CV 101.86 0.37 141.48 0.22

GCV 15.32 0.96 44.82 0.85
2SG 13.09 0.97 17.24 0.95

Image 2

Initial 104.31 0.23 104.31 0.23
CV 32.27 0.89 63.59 0.67

GCV 18.99 0.97 14.73 0.89
2SG 7.27 0.99 10.50 0.99

Image 3

Initial 109.65 0.42 109.65 0.42
CV 16.79 0.99 32.10 0.95

GCV 1.62 1.00 1.71 1.00
2SG 1.57 1.00 1.56 1.00

Image 4

Initial 138.19 0.19 138.19 0.19
CV 81.87 0.74 142.16 0.45

GCV 21.69 0.89 48.71 0.88
2SG 17.94 0.98 20.29 0.98

Image 5

Initial 109.07 0.29 109.07 0.29
CV 120.87 0.49 134.30 0.42

GCV 44.96 0.87 46.33 0.86
2SG 16.11 0.98 27.18 0.95

Image 6

Initial 145.97 0.27 145.97 0.27
CV 69.01 0.85 84.28 0.79

GCV 46.22 0.88 35.91 0.95
2SG 18.01 0.99 27.74 0.97

Table 7.1: Test Set 1. Error values for Images 1-6 corrupted by Gaussian blur and
segmented by CV. In many cases, the competition is close but 2SG obtains the same
or improved error values over competing models in all cases.

7.5.2 Test Set 2 (Significant Blur)

These results consist of images corrupted by small and large amounts of blur and noise.

We demonstrate in Table 7.6 and Figures 7.2–7.5 that CV is sometimes sufficient to

obtain a fairly close result but misses a considerable amount of detail while BSK [11]

can give an improvement over this. We also demonstrate that the new joint models JRS

and RRS are capable of segmenting these examples and offer further enhancement over

BSK. Further to this, we demonstrate in Table 7.4 and Figure 7.3 that, when the level

of blur is larger, JRS offers further improvements over BSK. Finally, we demonstrate

in Table 7.5 and Figure 7.4 that, as the level of noise is increased, JRS continues to

perform well.

7.5.3 Test Set 3 (Joint Model Comparisons)

Test Set 4 demonstrates the ability of RRS and compares the performance of this model

with JRS. We can see in Tables 7.5–7.6 and Figure 7.7 that it is generally the case that

RRS is faster than JRS while JRS obtains better results.
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Model
σ = 9 σ = 19

L2A TC L2A TC

Image 1
CV 101.86 0.37 141.48 0.22

PCV 72.97 0.54 96.44 0.39
2SP 67.52 0.57 90.31 0.43

Image 2
CV 32.27 0.89 63.59 0.67

PCV 11.74 0.98 25.72 0.92
2SP 11.74 0.98 25.50 0.92

Image 3
CV 16.79 0.99 32.10 0.95

PCV 12.29 0.99 12.49 0.99
2SP 11.97 0.99 12.28 0.99

Image 4
CV 81.87 0.74 142.16 0.45

PCV 57.22 0.86 110.57 0.61
2SP 55.51 0.86 110.51 0.61

Image 5
CV 120.87 0.49 134.30 0.42

PCV 102.98 0.57 104.25 0.56
2SP 102.95 0.57 104.21 0.56

Image 6
CV 69.01 0.85 84.29 0.79

PCV 50.96 0.91 57.27 0.89
2SP 50.96 0.91 57.27 0.89

Table 7.2: Test Set 1. Error values for Images 1-6 corrupted by Gaussian blur and
segmented by PCV and 2SP. The competition is close for most examples, but overall
2SP outperforms PCV.

Initial 2SG JRS RRS

Image 1 101.16 13.09 15.34 16.59

Image 2 104.31 7.27 5.82 6.92

Image 3 109.65 1.57 1.09 1.52

Image 4 138.19 17.94 14.36 17.63

Table 7.3: Test Set 1. Error values given by L2A for Images 1-4 corrupted by Gaussian
blur and segmented by 2SG, JRS and RRS. For Image 1, 2SG outperforms the other
models but in the remaining cases JRS and RRS obtain improved results.

7.6 Remarks

In this chapter we have proposed a new model for the joint reconstruction and segmen-

tation of blurred images where the blur function is unknown, which we call blind image

segmentation (JRS model). The results presented in Section 7.5 demonstrate strong

performance for images where the edges are unclear visually, and beyond conventional

segmentation methods discussed in Chapters 5 and 6, and in [33, 30, 18, 37]. We have

also presented an accelerated model (RRS model) which is capable of achieving results

of a similar standard to JRS. Crucially, both joint models offer an improvement over

analogous two-stage methods (2SG and 2SP) demonstrating the effectiveness of this

formulation over alternative methods [97], and another model from Bar et al. [11]

(BSK) that was tested here. The proposed model can be extended to the semi-blind

case [4, 12, 86, 96, 99, 110] which can offer speed improvements, and examples involv-
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i) Initial Contour ii) CV, Γ∗

iii) JRS, Γ∗ iv) JRS, u∗

Figure 7.2: Test Sets 1 and 2. Illustration of the performance of CV for Image 1
corrupted by Gaussian blur: i) Initial contour. ii) Segmentation given by CV. iii)-iv)
segmentation given by JRS. CV gives a rough segmentation while the spaces between
the letters which are hidden by the blur are successfully segmented using JRS.

ing multi-channel images. For the purposes of speeding up the segmentation step, it is

possible to use the improved AOS schemes introduced in Chapter 4, or apply methods

such as Split Bregman [58] and Chambolle-Pock [26].
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Model L2A TC cpu L2A TC cpu

Image 1 Image 5

Initial 101.16 0.13 109.07 0.29
CV 141.48 0.22 520 134.30 0.42 523

BSK 151.08 0.21 1479 126.19 0.46 937
JRS 35.68 0.80 557 74.10 0.71 564
RRS 44.93 0.75 549 74.77 0.69 334

Image 2 Image 6

Initial 104.31 0.23 145.97 0.27
CV 63.59 0.67 522 84.29 0.79 520

BSK 47.17 0.79 950 76.36 0.82 940
JRS 6.79 0.99 566 40.19 0.94 574
RRS 10.17 0.99 434 42.54 0.94 539

Image 3 Image 7

Initial 109.65 0.42 65.21 0.69
CV 32.10 0.95 418 114.90 0.47 525

BSK 28.31 0.96 730 124.12 0.44 1364
JRS 11.96 0.99 552 26.29 0.93 543
RRS 12.08 0.99 232 24.81 0.95 430

Image 4 Image 8

Initial 138.19 0.19 120.54 0.32
CV 142.16 0.45 525 89.11 0.70 522

BSK 140.11 0.49 1477 87.84 0.72 1148
JRS 25.03 0.96 589 47.29 0.89 548
RRS 30.42 0.95 444 43.29 0.90 539

Table 7.4: Test Set 2. Error values and cpu times (in seconds) for images Images 1-8
corrupted by strong Gaussian blur. In all cases, JRS and RRS achieve improved results
and competition is close between JRS and RRS. For most cases, the cpu time is lower
for RRS with the exception of three examples which have slightly lower cpu time for
CV with deteriorated results.

Model L2A TC cpu L2A TC cpu

Image 1 Image 4

Initial 101.16 0.13 138.19 0.19
CV 101.84 0.37 319 81.91 0.74 530

BSK 94.93 0.40 1899 65.71 0.82 958
JRS 13.86 0.97 607 26.84 0.96 640
RRS 14.90 0.96 452 23.90 0.97 342

Image 3 Image 5

Initial 109.65 0.42 109.07 0.29
CV 16.86 0.99 317 120.86 0.49 547

BSK 14.32 0.99 633 113.25 0.52 877
JRS 1.75 1 512 41.61 0.87 600
RRS 2.18 1 242 45.32 0.86 575

Table 7.5: Test Set 2. Error values and cpu times (in seconds) for Images 1, 3-5
corrupted by Gaussian blur and noise. In all cases, JRS and RRS achieve improved
results. cpu time is lower for RRS in two cases. In the remaining cases, it is lower for
CV and closely followed by RRS which achieved significantly improved results.
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i) Image 1, z ii) JRS, Γ∗ iii) JRS, u∗

iv) Image 2, z v) JRS, Γ∗ vi) JRS, u∗

vii) Image 4, z viii) JRS, Γ∗ ix) JRS, u∗

x) Image 6, z xi) JRS, Γ∗ xii) JRS ,u∗

Figure 7.3: Test Set 2. Illustration of the performance of the JRS for (top-bottom)
Image 1, 2, 4, and 6 corrupted by strong Gaussian blur. JRS is capable of segmenting
edges in these challenging cases which cannot be segmented by CV.

137



i) Image 1, z ii) JRS, Γ∗ iii) JRS, u∗

iv) Image 3, z v) JRS, Γ∗ vi) JRS, u∗

vii) Image 4, z viii) JRS, Γ∗ ix) JRS, u∗

x) Image 5, z xi) JRS, Γ∗ xii) JRS, u∗

Figure 7.4: Test Set 2. Illustration of the performance of the JRS for (top-bottom)
Image 1,3,4, and 5 corrupted by Gaussian blur and noise. The edges hidden by blur
are successfully segmented by JRS which cannot be segmented by CV.
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Model L2A TC cpu L2A TC cpu

Image 1 Image 5

Initial 101.16 0.13 109.07 0.29
CV 101.86 0.37 317 120.87 0.49 524

BSK 94.94 0.40 1362 113.26 0.52 835
JRS 15.34 0.96 559 28.43 0.93 568
RRS 16.59 0.95 443 38.05 0.90 543

Image 2 Image 6

Initial 104.31 0.23 145.97 0.27
CV 32.27 0.89 527 69.01 0.85 525

BSK 23.02 0.94 861 61.13 0.88 836
JRS 5.82 0.99 546 32.41 0.96 562
RRS 6.92 0.99 427 35.34 0.95 537

Image 3 Image 7

Initial 109.65 0.42 65.21 0.69
CV 16.79 0.99 319 37.52 0.89 423

BSK 13.64 0.99 634 33.10 0.91 731
JRS 1.09 1 550 18.63 0.97 330
RRS 1.52 1 228 18.59 0.97 320

Image 4 Image 8

Initial 138.19 0.19 120.54 0.32
CV 81.87 0.74 527 78.07 0.76 538

BSK 65.75 0.82 942 72.55 0.78 1166
JRS 14.36 0.99 586 34.13 0.93 561
RRS 17.63 0.98 331 32.36 0.94 542

Table 7.6: Test Sets 2 and 3. Error values and cpu times (in seconds) for images Images
1-8 corrupted by small Gaussian blur. In all cases, JRS and RRS achieve improved
results with JRS typically achieving better results. For many examples, the cpu time is
lower for CV but it is closely followed by RRS which gives considerably better results.
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i) Image 3, z ii) CV, Γ∗ iii) JRS, Γ∗ iv) JRS, u∗

v) Image 4, z vi) CV, Γ∗ vii) JRS, Γ∗ viii) JRS, u∗

ix) Image 5, z x) CV, Γ∗ xi) JRS, Γ∗ xii) JRS, u∗

xiii) Image 6, z xiv) CV, Γ∗ xv) JRS, Γ∗ xvi) JRS, u∗

Figure 7.5: Test Sets 2 and 3. Illustration of the performance of JRS for (top-bottom)
Image 3,4,5, and 6 corrupted by Gaussian blur. The edges hidden by blur are success-
fully segmented by JRS which cannot be segmented by CV.
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i) Image 2, z ii) JRS, Γ∗

iii) JRS, u∗ iv) CV/JRS Difference

Figure 7.6: Test Sets 2 and 3. Illustration of the performance of the JRS for Image
2 corrupted by Gaussian blur: i) Received data. ii)-iii) Segmentation using JRS. iv)
the difference between the segmentation using JRS and using CV. The segmentation is
closer to the true edge using JRS while CV also captures the blurred edge.
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i) Image 1 iv) Image 2 ii) Image 3

iii) Image 4 v) Image 5 vi) Image 6

Figure 7.7: Test Set 3. Images corrupted by Gaussian blur segmented using RRS.
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Chapter 8

Incorporating Shape Priors in
Variational Segmentation

8.1 Introduction

In Chapter 4 we introduced a general approach to compute global minimisers of GCS

models, with a generalised fitting function. In previous chapters we have mainly dis-

cussed two-phase segmentation problems where the foreground and background are

primarily distinguished based on the intensity of the observed data. In practice, infor-

mation about the target object is often known a priori and incorporating this infor-

mation into a model has clear advantages. This enables us to increase the robustness

of our approach in terms of accuracy, speed, and reliability, and it can also improve

the quality of results in the case of challenging data that are beyond the scope of con-

ventional intensity based approaches [89, 33, 37]. In this chapter, we address the task

of identifying objects in an image based on their similarity to a shape prior, i.e. we

formulate the fitting function in GCS based on a shape prior.

Previous approaches have incorporated shape information into variational segmen-

tation models, such as the seminal work of Cremers et al. [46] known as ’Diffusion

Snakes’ where statistical shape information was combined with the piecewise-constant

formulation of Chan-Vese [33]. Other important early work includes Leventon et al.

[80], which was based on using shape priors with the Geodesic Active Contours model

of Caselles et al. [22]. Closely related is the approach of Chen et al. [40] and Rousson

and Paragios [108], both introduced in 2002.

The work of particular importance to our approach is that of Cremers et al. [47],

who introduced a labelling function to indicate which regions in an image the shape

prior should be enforced. Based on this work, Chan and Zhu [36] introduced a similar

method where the prior was permitted to be scaled, rotated, and translated, increasing

the effectiveness of the approach. Here, the shape is represented as a signed distance

function and the segmentation is in the level set framework similar to [33, 105]. A more

recent approach is that of Pock et al. [130], who use a convex formulation of Geodesic

Active Contours [22], similar to Bresson et al. [18]. The shape prior is also defined as

a distance function that is again permitted to be scaled, rotated, and translated.

This chapter is organised as follows. In Section 2, we will discuss the background
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behind incorporating shape information into a segmentation model. Particularly, we

will provide some details about the registration step where the shape prior is trans-

formed to match the observed data. We will also briefly review two important models

mentioned above: Chan and Zhu [36] and Pock et al. [130]. Additionally, we will

highlight how each model represents shape and establish a basis for a new approach.

In Section 3, we will discuss the motivation behind our method where the shape can be

approximated based on intensity fitting terms and the challenges associated with this

idea. In Section 4, we propose a two-stage shape prior model and detail the registration

and segmentation steps. Finally, in Section 5, we present results for a range of examples

and make some concluding remarks in Section 6.

8.2 Background and Related Models

Incorporating a shape prior into a segmentation model involves transforming a given

shape prior to fit the observed data, which involves image registration. Typically, this

involves parametric methods where the transformation is rigid or affine [36, 130]. This

is because it ensures the final segmentation result is closely related to the prior infor-

mation. Alternative registration methods that allow deformations are non-parametric

methods such as [66, 138] and some segmentation methods methods incorporate similar

nonlinear registration steps, such as Cremers et al. [39].

We now briefly discuss parametric registration methods, also discussed in Chapter

3. The template and reference, T,R ∈ Ω, define the images to be compared. For

x ∈ Ω denote by φ(x) : Ω → Ω the unknown coordinate transformation that produces

the alignment between the reference, R(x) and the transformed template, T (φ(x)).

We address the problem where we assume the target object is approximately an affine

transformation of the shape prior, such that the segmentation closely favours shapes

given by the prior information. This means the transformation is linear and can be

defined as follows:

φ(x) =

[
a1 a2

a4 a5

][
x1

x2

]
+

[
a3

a6

]
, (8.1)

given six parameters a = {a1, a2, a3, a4, a5, a6}. The regularised affine registration

model [41] is as follows:

min
a

{
ηR(a) +

1

2

∫
Ω

(
T (φ)−R(x)

)2
dx

}
,

where η > 0 is a weighting parameter for the regularisation of a, and the sum of squared

differences (SSD) term determines the similarity between the reference and template.

In the following sections we detail how linear registration methods are incorporated

into variational segmentation models.
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8.2.1 Level Set Based Shape Prior Segmentation

In 2005, Chan and Zhu [36] introduced a shape prior model in the level set framework. It

is based on the work of Cremers et al. [47], who introduced a dynamic labelling function,

L, that automatically indicates which region the shape prior should be applied. The

shape prior is in the form of a distance function, similar to the level set function ϕ used

in many segmentation methods [33, 112]. This is a natural choice due to the framework

used for the segmentation step. The following are relevant terms from the Chan and

Zhu functional:∫
Ω

(H(ϕ)H(L)−H(ψ))2dx+

∫
Ω

[
λ1f(x)H(ϕ) + λ2f(x)H(ψ)

]
dx,

where f(x) = (z− c1)2− (z− c2)2, assuming fixed c1 and c2. Additional terms provide

regularisation for L, and details of how the shape prior is translated, scaled, and rotated

can be found in [36]. These terms are interesting as they demonstrate the approach

for this model. The shape matching and intensity fitting are treated separately, with

parameters providing the balance between the two. The approach of Chan and Zhu

demonstrates positive results, especially in the case of occlusions, which are common in

real images and prevent an accurate segmentation being found. However, they discuss

its dependence on the initialisation as being a drawback.

8.2.2 Interactive Shape Prior Segmentation

In 2009, Pock et al. [130] introduced a semi-automated method based on the Geodesic

Active Contours energy [22, 18] incorporating a shape prior. The shape prior is given

by ψ(x), which must be positive outside the shape and negative inside the shape. In

Cremers et al. [47], they use a binary function with ψ(x) = 1 and ψ(x) = −1 outside and

inside the shape respectively. Pock et al. [130] discuss the drawbacks of representing a

shape with a binary function, and instead opt to use a distance function to implicitly

represent the shape prior. They introduce parameters to define the translation, scaling,

and rotation of the prior, such that the prior is given by ψ(φ) (n.b. affine registration

can be restricted to scaling, rotation, and translation easily. We use the notation of

(8.1) for convenience). The joint minimisation problem is given as:

min
u,a

{∫
Ω
g(x)|∇u(x)|dx+ λ

∫
Ω
ψ(φ)u(x)dx

}
(8.2)

Pock et al. [130] approached the above problem (8.2) with a semi-automated alternate

minimisation scheme. The first step was to complete the segmentation step, with fixed

transformation parameters, in which they use a primal-dual formulation. For the shape

alignment stage it is possible to do a complete search over the whole parameters space

of a, as discussed by Cremers et al. [45]. However, due to time restrictions they

opt to restrict the domain of a such that the minimisation can be achieved in real

time. The user can position the shape in a suitable way, and gets an opportunity to

interact with the algorithm. The optimal parameters are determined by the position

the energy attains its minimum within this domain. This procedure is then iterated
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until convergence. Based on the results presented, this method is capable of achieving

impressive results for a wide range of examples.

8.2.3 Shape Representation

Both of the previous models discussed, as well as many others [80, 108, 40, 47], rep-

resent a given shape implicitly by a distance function (see Fig. 8.1). This term is

incorporated into the functional in different ways in [36, 130] (i.e. Chan-Vese fitting

and edge detection) but the premise is similar in the sense that the shape and intensity

terms are distinct and are balanced by a weighting parameter. We have observed two

problems with this approach. First, the representation of a given shape with a level

set function is not unique so if similar shapes are defined in an inconsistent manner

aligning them can be problematic. Secondly, we have found that constructing a prior

in this way can create a sensitive parameter dependence, which we will discuss further

in Section 8.5.2. Our method combines the intensity information in the observed data

and the shape prior in a reliable way, and we discuss the motivation behind this idea

in the next section.

Figure 8.1: Chan and Zhu [36] and Pock et al. [130] represent shapes as distance
functions, ψ(x). The shape is implicitly defined as the zero level set of ψ(x) (given in
red).

8.3 Motivation

In this section, we discuss the main ideas considered in formulating our shape prior

approach. The three main considerations from Section 8.2 are as follows, based on

previous approaches to this problem such as Chan and Zhu [36] and Pock et al. [130].

Firstly, what is the most appropriate representation for a given shape? Secondly, how

should the shape prior term interact with additional fitting terms? Thirdly, what is

the most effective method to discriminate between similar shapes in an image?

We’ll start by recalling what constitutes a successful fitting term for a simple two-

phase image that is approximately piecewise-constant. Fig. 8.2 demonstrates the fol-

lowing fitting function:
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f(z) = (z − c1)2 − (z − c2)2, (8.3)

where c1 and c2 are the known constants of average intensity inside and outside the

object respectively. If an image z(x) can be approximated by a piecewise-constant

function then the fitting term f(z) will closely describe the boundary of the object.

When included in the following convex relaxation framework, we can observe important

characteristics of this fitting function:

min
u

{∫
Ω
|∇u(x)|dx+ λ

∫
Ω
f(z)u(x)dx

}
for u ∈ BV (Ω; [0, 1]) and Γ is the boundary of Σ(γ) = {x : u(x) > γ}, as defined in

Chapter 4. This is based on the work of Chan, Esedoglu, and Nikolova [30], Bresson et

al. [18], and many others as discussed in previous chapters [102, 79, 25]. Here, where

f(z) is negative it is likely that u(x) = 1, and where f(x) is positive u(x) = 0. The

regularisation term, TV (u), penalises the length of the contour Γ and is balanced by

the fitting parameter λ > 0. For a small λ, Γ will be smooth, and as λ increases Γ will

resemble the zero level set of f(z).

i) z(x) ii) f(z) iii) f(z) with Γf

Figure 8.2: The fitting term, f(z), for a given image, z, based on known intensity
constants c1 and c2. Here, Γf = {x : f(z) = 0} is given in red in iii) and approximates
the shape of the object in z.

With this is mind, we can formulate a shape prior using an approximation of the

shape from the fitting function. We assume that our prior information consists of an

image, zp(x), and its ground truth segmentation, which we denote up(x). With this an

optimal choice of c1 and c2 can be computed and used in the fitting term (8.3). In an

affine registration framework there is a reference and a template. In this context the

template should be a shape prior that is transformed based on the parameters a (8.1),

fitting a reference that corresponds to the observed image data, z. We define the shape

prior function, which acts as a template in the registration step:

S(x) = −H(−f(zp))f(zp). (8.4)

The reference is based on the observed data and is constructed in a similar way:

F (z) = −H(−f(z))f(z), (8.5)
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where H is the Heaviside function as defined in Chapter 2. An example of the function

S(x) can be seen in Fig. 8.3. The restrictions on this term are that the prior data,

zp, should be similar to the observed data, z. Specifically, their similarity should be

in the sense that their fitting functions f should be comparable such that an affine

registration between the two is feasible.

i) f(zp) ii) H(−f(zp))

iii) S(x) = −H(−f(zp))f(zp) iv) S(x) with ΓS

Figure 8.3: The shape prior term, S(x), based on the prior image zp. Here, ΓS = {x :
S(x) > ω} is given in red (for small ω) in iv) and approximates the shape of the object
in zp. The template is formed in this way such that S(x) ∈ [0, 1].

This gives us a new shape representation for a prior, S(x), that is based on simi-

larities between the observed and prior data. This helps avoid some of the problems

discussed in Section 8.2 with respect to shape representation. When transformed by

the parameters a, S(x) should match the fitting function of the observed data. This

gives us a registration step in our proposed model:

min
a

{
ηR(a) +

1

2

∫
Ω

(
S(φ)− F (z)

)2
dx

}
,

where R(a) is a regularisation term. The shape term, S(φ), defines the fitting term

for the interior of the object and the fitting term for the exterior of the object can be

constructed from the observed data, to form a complete fitting term:

αH(f(z))f(z)− S(φ), (8.6)

where α is a positive weighting parameter between the interior and exterior fitting. In

this way the shape term and the intensity fitting terms are intertwined, in contrast to

the framework of Chan and Zhu [36], and Pock et al. [130]. This just leaves the consid-

eration of how to distinguish between similar shapes in the observed data. As discussed
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in the previous section, Chan and Zhu use a dynamic labelling function L, where as

Pock et al. use semi-automated positioning, and interaction with the algorithm. We

propose a proximity function P (u) that is incorporated into the registration term. It

should be analagous to the labelling function of Chan and Zhu in that it indicates

where the shape fitting should take place. I will not discuss the specifics of this term

at this stage, for reasons that will become clear, but will return to it later. With the

above considerations in mind the joint formulation we initially propose is as follows:

E(u,a) =

∫
Ω
|∇u(x)|dx+ λ

∫
Ω

[αH(f)f − S(φ)]u(x)dx

+ ηR(a) +
1

2

∫
Ω

(
S(φ)− P (u)F (z)

)2
dx. (8.7)

The idea is to minimise this functional alternately for the affine parameters a and the

segmentation function u:

min
u,a

E(u,a).

The problem with minimising the above functional with respect to u and a are that

both the registration and segmentation steps are complicated by the proposed terms

and the way they interact. For the registration step, there are contradictory fitting

terms with one acting in a restricted domain. For the segmentation step, the convex

relaxation framework is contradicted and the choice of P (u) must satisfy additional

conditions which makes its selection difficult. However, it is possible to retain the ideas

behind this formulation whilst simplifying the minimisation. This leads us to the idea

of splitting the functional into a two-stage model. We describe this in the following

section.

8.4 Proposed Two-Stage Shape Prior Model

Splitting the process into two stages simplifies it significantly, and we have found that

we can retain the advantages discussed in the previous section whilst doing so. The

first stage concerns the affine registration of the interior fitting terms, and the second

stage deals with the segmentation. By separating each step in this way it simplifies

the registration stage, such that a result can be reliably acheived with conventional

methods quickly. Also, we want to retain the convex relaxation framework due to its

reliability in finding the global minimum independently of initialisation [18, 30, 112].

To acheive this we choose to fix P (u) in the SSD term, such that it is not involved in

the minimisation of u but still influences the registration stage. With this adjustment,

the choice of this proximity function is much more straightforward and is dependent on

a fixed function related to the binary prior up. We define a translation of the binary

prior, that we call ũ, that is based on user input ã = {1, 0, ã3, 0, 1, ã6}. The idea is for

the user to position up such that it is centred on the target object in z:
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ũ(x) = up(φ̃), where φ̃ =

[
1 0

0 1

][
x1

x2

]
+

[
ã3

ã6

]
. (8.8)

The selection of ã is important when the location of the prior, up, is not close to the

target object in the domain and when there are multiple objects in z, particularly of

a similar shape. This kind of interaction is analagous to the alignment step of Pock

et al. [130], as discussed in Section 8.2.2. However, it is simplified in the sense that it

is a single act that does not need periodic corrections to ensure an accurate result. It

is worth noting here that there are many possible alternatives to incorporating simple

user interaction to influence the location of the template; examples include landmark

based registration methods such as Lui et al. [71]. It is also possible to use centroid

constraints as discussed in Klodt and Cremers [75], which would be applied at the

segmentation stage.

The principle behind the proximity function, P (u), is that it should favourably

weight the fitting term, F (z), close to where ũ = 1. An obvious choice is

Pβ(ũ) = 1− 1
β min{β, d(ũ)}, (8.9)

where d(ũ) is the normalised Euclidean distance from the translated object prior, ũ.

The parameter β > 0 has been included to make the influence of the fitting term, F (z),

vary based on the intensity of the image. In images that contain a single object, β = 1

is appropriate. For more difficult examples, a smaller value of β is necessary and is

based on the distance between objects. The function, Pβ(ũ), is defined in this way to

impose some consistency on the function such that its influence is easier to predict and

parameter selection is more reasonable. Some examples of what this function looks like

for different choices of β is shown in Fig. 8.4.

It can then be seen from the SSD term in the joint formulation (8.7) that with this

choice of proximity function, Pβ(ũ)F (z) has the effect of approximating the fitting term

of the target object. This gives us a new SSD term for our proposed model:

1

2

∫
Ω

(
S(φ)− Pβ(ũ)F (z)

)2
dx.

We denote the result of minimising this functional as S(φ∗), which we will define pre-

cisely in Section 8.4.1. As before, the background fitting can be constructed, again

weighted by a parameter α > 0. Our proposed combined fitting term is:

h(x) = αH(f)f − S(φ∗),

In the following we discuss the details of our two-stage algorithm, beginning with the

affine registration step.

8.4.1 Stage 1: Affine Registration

First, let’s summarise the registration step, where a template based on the fitting

function of a prior image is transformed to match a reference given by a localised
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i) ũ(x) ii) P1(ũ)

iii) P0.5(ũ) iv) P0.1(ũ)

Figure 8.4: The choice of proximity function: Pβ = 1 − 1
β min{β, d(ũ)}, where d(ũ) is

the normalised Euclidean distance from the object prior. This forms the reference for
Stage 1 (Affine registration), Pβ(ũ)F (z). i) The translated binary prior, ũ, given by
(8.8). ii)-iv) The function Pβ(ũ) for β = 1, 0.5 and 0.1 respectively.

fitting function of the observed data. The functional associated with this idea is given

as follows:

ηR(a) +
1

2

∫
Ω

(
S(φ)− Pβ(ũ)F (z)

)2
dx. (8.10)

Our choice of regularisation for the affine parameters a is:

R(a) =
1

2

(
(1− a1)2 + a2

2 + a2
3 + a2

4 + (1− a5)2 + a2
6

)
. (8.11)

Other choices of R are possible, and good results can also be attained with no regular-

isation for some examples. In particular, alternative regularisation on a3 and a6 based

on user input is reasonable. Our method to some extent relies on a sensible placement

of the initial template, especially in the case of multiple objects of a similar shape. The

similarity measure we use is SSD, which we define as follows:

D(a) =
1

2

∫
Ω

(
S(φ)− Pβ(ũ)F (z)

)2
dx, (8.12)

The minimisation of the affine registration step is then given as

min
a∈R6

{
Jη(a) = ηR(a) +D(a)

}
. (8.13)

We solve this with the discretise-optimise approach, which we will briefly discuss in

general terms. Using the Gauss Newton method we can update a with a pertubation

δa(k),
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a(k+1) = a(k) + δa(k), (8.14)

The Gauss Newton perturbation δa(k) is given by

H̃Jη(a(k))δa(k) = −gJη(a(k)) (8.15)

where

H̃Jη(a(k)) = J>(a(k))J(a(k)) + ηHR(a(k)) (8.16)

and

gJη(a(k)) = ∇aD(a) + η∇aR(a(k)) (8.17)

are the approximated Hessian and the gradient of Jη at a(k) and HR(a(k)) are the

gradient and Hessian of R at a(k) respectively. An approximated Hessian is used to deal

with the nonlinearity of the problem. In this way computing higher order derivatives is

avoided. Further details can be found in [41]. On convergence of this scheme we obtain

a∗ = {a∗1, a∗2, a∗3, a∗4, a∗5, a∗6}. Then we define

φ∗(x) =

[
a∗1 a∗2
a∗4 a∗5

][
x1

x2

]
+

[
a∗3
a∗6

]
.

This allows us to define a new interior fitting term, given by S(φ∗).

8.4.2 Stage 2: Segmentation

The second stage involves using the result of the affine registration step to provide an

accurate segmentation based on the relation between the shape prior and the observed

data. Given the interior fitting term (i.e. h < 0) obtained from Stage 1, S(φ∗), we can

construct an exterior fitting term (i.e. h > 0) from the observed data as discussed in

the previous section. The complete fitting term is defined as follows:

h(x) = αH(f)f − S(φ∗), (8.18)

where α > 0 is a parameter that controls to what extent the shape prior should be

balanced against the observed data. We will address the model’s dependence on this

choice in Section 8.5.2. This gives us a segmentation problem in the conventional convex

relaxation framework, as opposed to the joint formulation (8.7) discussed earlier. This

has the advantage of being a well understood problem due to the breadth of work that

has addressed problems of this type [30, 18, 137, 25, 75]. Many algorithms have been

proposed to solve this problem, as discussed in Chapter 3, such that finding the global

minimum can be found quickly and reliably, independently of initialisation. Examples

include the dual formulation [23, 18], Split Bregman [58], Chambolle-Pock [26], and

Additive Operator Splitting (AOS) [85, 112, 129]. Here, we use an adjusted AOS

scheme from [112], which we recall in brief from Chapter 4 next.
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In the convex relaxation framework the segmentation function is constrained such

that u ∈ BV (Ω; [0, 1]). To enforce this constraint we introduce a new functional with

the introduction of a regularised penalty term as discussed in [112] and earlier in the

thesis, and the minimisation problem is as follows:

min
u

{∫
Ω
|∇u(x)|dx+ λ

∫
Ω
h(x)u(x)dx+ µ

∫
Ω
νε(u)

}
, (8.19)

where

νε(u) = Hε

(√
(2u− 1)2 + ε− 1

)[√
(2u− 1)2 + ε− 1

]
,

and Hε(x) = 1
2

(
1 + 2

π arctan x
ε

)
. Deriving the associated Euler-Lagrange equation and

introducing a time variable gives us the following PDE, in split operator form:

∂u

∂t
= ∂x(W∂xu) + ∂y(W∂yu)− λh− µν ′ε(u), (8.20)

where W = (|∇u|ρ)−1 and is lagged to linearise the equation. Here, |∇u|ρ = (u2
x+u2

y +

ρ)1/2 and is introduced to avoid singularities. A challenge of using AOS in the convex

relaxation framework is the nonlinearity of the ν ′ε(u) term. In order to overcome this,

recalling from Chapter 4, we define an interval Iς , where we adjust the equation based

on the linear part of ν ′ε(u) and the difference in u between iterations. This allows us to

approximate ν ′ε(u) in an interval, Iς , with a linear function, bu. We define this interval

and a binary function, b̃n, as follows:

Iς := [0− ς, 0 + ς] ∪ [1− ς, 1 + ς], b̃n =

{
b, if un ∈ Iς
0, elsewhere.

Additionally, in Weickert et al. [129] conditions on the scheme for a discrete scale space

were provided, required for convergence. The following scheme is designed to fulfil such

conditions, and further details can be found in [112]. In the following the equation is

rewritten in matrix-vector form after discretisation, A` is the diffusion quantity in the

` direction (` = 1, 2 for x and y directions respectively) and was derived using the finite

difference method (see Chapter 5 for further details), τ is the time step size, n denotes

the nth iteration, and B̃n = diag(τµb̃n). The update in each direction is given by:

un+1
` =

(
I − 2τ(I + B̃n)−1A`(u

n)
)−1

(un − τ(I + B̃n)−1(µν ′ε(u
n) + λf)). (8.21)

By increasing ς, such that b̃ = b, this scheme fulfils additional criteria from [129]. As u ∈
[0, 1], setting ς = 0.5 is enough to ensure this. This adjustment consists of multiplying τ

by a scalar, dependent on b and µ. This can be interpreted as automatically restricting

the time step, based on the prominence of the penalty function, dictated by the size of

µ, and represented by b. Finally, the update at each iteration for u is given by

un+1 =
un+1

1 + un+1
2

2
. (8.22)
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Next, we briefly discuss the two-stage algorithm in full by reviewing aspects from

Sections 8.4.1 and 8.4.2.

8.4.3 Two-Stage Algorithm

In this section we provide the algorithm for our two-stage fitting shape prior model,

which we refer to as the FSP model from here. The observed image, which we want to

segment, is denoted by z. The basis for the shape prior is a similar image (in the fitting

sense) denoted by zp, and the binary prior, up. The user input consists of ã which

ideally is the centroid of the target object in z. There are also three parameter choices:

λ, α and β. Further details can be found in Sections 8.4.1 and 8.4.2. The algorithm is

as follows:

Algorithm 7 Two-Stage Fitting Shape Prior Segmentation: Γ∗ ←
FSP (z, zp, up, ã, λ, α, β)

1: Translate binary prior based on ã: ũ = up(ν̃)
2: Form shape prior: S(x) = −H(−f(zp))f(zp)
3: Set Proximity function: Pβ(ũ) = 1− 1

β min{β, d(ũ)}
4: Determine reference for Stage 1: F (z) = −H(−f(z))f(z)
5: Stage 1:
6: while ||a(k) − a(k−1)|| > δ1 do
7: Determine Gauss Newton perturbation δa(k) using (8.15)
8: Update ak using (8.14), k = k + 1.
9: end while

10: Determine interior fitting: S(φ∗).
11: Stage 2:
12: Set fitting function, h(x) = αH(−f(z))f(z)− S(φ∗).
13: Initialise u(0) = H(−h). Set µ > ||λh(x)||L∞ as in [30].
14: while ||u(k) − u(k−1)|| > δ2 do
15: Calculate uk1 and uk2 using AOS (8.21)
16: Update uk using (8.22), k = k + 1.
17: end while
18: Σ∗(γ) = u(`) > γ, Γ∗ = ∂Σ∗.

8.5 Experimental Results

In this section, we present three example problems and discuss results that demonstrate

the advantages of our method in a number of ways. Our three test sets concern different

aspects of our two-stage shape prior algorithm.

The first, Test Set 1, deals with occlusions as shown in Fig. 8.5. That is, we want to

segment an object with missing or incomplete data. We present results for two different

examples. The first is when boundary information of the object has been lost, and the

second where the interior data is occluded. Figs. 8.6 and 8.7 demonstrate stages 1 and

2 of our algorithm respectively for the first problem, and Fig. 8.8 presents the results

in full for the second problem.

The second, Test Set 2, concerns the parameter dependence of our algorithm. We
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present results for a difficult medical image, shown in Fig. 8.9. We introduce an

alternative formulation which has a functional analogous to the methods of [36, 130],

in that its shape prior is a distance function, and its intensity fitting is a separate term.

Results for our two-stage algorithm and this alternative method are given in Figs. 8.10

and 8.11 respectively. We also present a comparison of the accuracy of each method

whilst varying parameters in Figs. 8.12 and 8.13.

The third, Test Set 3, is in relation to the extension of this idea to 3D. We apply

our two-stage algorithm in a sequential manner, using the result on each slice as the

prior for the next. We discuss the details of this approach and present some results

in the context of medical imaging. The problem is defined precisely in Fig. 8.14, and

results are presented for four sample slices in Figs. 8.15 and 8.16. Developing this idea,

and establishing an efficient and effective way to treat 3D data involving a single 2D

prior will be a direction of future work.

8.5.1 Test Set 1 (Occlusions)

In the first set of test problems, we have an image with artificial occlusions. The aim

is to segment the object including the missing data, based on the shape of the prior.

Here the choice of affine registration is important to preserve the desired shape. In Fig.

8.5, we have two images with different types of occlusions, and a given shape prior,

S(x), based on prior information zp and up. We can also see the difference between the

binary prior (ũ) and the boundary of the ground truth of z. These examples are similar

to problems presented in [36, 130]. As these images involve single objects that can be

reduced to foreground and background, we can set β = 1 for the proximity function

Pβ(ũ).

In Fig. 8.6, we see Stage 1 of our algorithm for Occlusion 1. We show the template

and reference defined in Section 8.4.1 for the affine registration step, and the registered

prior, S(φ∗). In Fig. 8.7, we see Stage 2 of our algorithm for Occlusion 2. Here, it

is clear how the shape prior, S(x), is related to the proposed fitting term h(x). We

demonstrate results of the convex relaxation stage, showing the computed contour Γ∗

and the function u∗, which is approximately binary such that thresholding for γ ∈ (0, 1)

is legitimate. This is consistent with the ideas presented in [30, 18, 112], and discussed

in Chapter 4. In Fig. 8.8 we present results for the second occlusion test problem,

detailing both stages of our proposed algorithm. We can see the final result is similar

to that of Occlusion 1, despite a different type of occlusion being present. We have

tested other examples, varying the type and size of the occlusion, and found the method

to be robust to these variations. We also note that the results are not too sensitive to

the choice of parameters α and λ, which we will demonstrate in Test Set 2.

8.5.2 Test Set 2 (Parameter Dependence)

In our second set of problems we attempt to demonstrate to what extent our method is

dependent on the parameters α and λ. The example we use is a medical image shown

in Fig. 8.9, where we have similar images; the prior image, zp, and the observed image,
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i) Occlusion 1, z ii) Occlusion 2, z

iii) Shape Prior, S(x) iv) ũ with ΓGT

Figure 8.5: Test Set 1 (Occlusions). i) An image with an artificial occlusion. We refer to
this example as Occlusion 1. ii) The same image with a different artificial occlusion. We
refer to this example as Occlusion 2. iii) Shape prior term, S(x) = −H(−f(zp)f(zp),
based on our method of using the fitting term of a similar image to construct an
approximate shape representation. iv) A comparison between ũ, a translation of up,
and the boundary of the ground truth of z given by ΓGT (red).

z. We can see the shape prior, S(x), and how close the binary prior, ũ, is to the ground

truth of z. In Fig. 8.10, we present results for our two-stage algorithm (FSP) with a

shape prior for the brain. We show the result of Stage 1, the registered prior, S(φ∗),

and the fitting function h(x) used in Stage 2. We present the final result of FSP in the

form of u∗ ∈ [0, 1] and Γ∗, which demonstrate a visually good result. However, in order

to demonstrate our method’s robustness to varying parameters we define the Tanimoto

Coefficient [48], as in previous chapters:

TC =
N(GT ∩ Σ(γ))

N(GT ∪ Σ(γ))
,

where GT is the ground truth, and Σ(γ) = {x : u(x) > γ}. By quantifying the quality

of the results in this way we can clearly demonstrate how dependent our model is on

parameter choice. In order to demonstrate the advantages of our method we propose

comparing it to a method similar to that used by [36, 130], where a shape prior in the

form of a distance function, ψ(ũ), is used:
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i) Template, S(x) ii) Reference, Pβ(ũ)F (z)

iii) Occlusion 1, z iv) Registered Prior, S(φ∗)

Figure 8.6: Test Set 1 (Occlusions). Stage 1: affine registration from Section 8.4.1. i)
In the affine registration framework the shape prior, S(x), forms the template. ii) The
fitting term from the observed data, Pβ(ũ)F (z), forms the reference. iii) The image, z,
for Occlusion 1. iv) The result of Stage 1, where the parameters a∗ have been found,
giving S(φ∗). This forms the basis for Stage 2.

min
u

{∫
Ω
|∇u(x)|dx+ λ

∫
Ω
f(x)u(x)dx+ θ

∫
Ω
ψ(ũ)u(x)dx

}
. (8.23)

This minimisation can be achieved in the same way as discussed in Section 8.4.2, and

we measure this method’s accuracy based on the TC when varying λ and θ. From here

we will refer to (8.23) as the Distance Shape Prior (DSP) formulation. In Fig. 8.11 we

present results for DSP where we show the translated binary prior, ũ, which forms the

basis of the alternative shape prior, ψ(ũ). The final result shows u∗ ∈ [0, 1] and Γ∗,

which demonstrate a visually adequate result.

We now address the comparison of DSP with FSP, for different parameter selections.

First, we show results for DSP, varying θ and λ, in Fig. 8.12. We show the shape prior,

ψ(ũ), and three plots of TC(λ) for θ = 100, 200 and 300. In each plot the dashed line

represents the TC of ũ (which we will refer to as the Initial TC), i.e. for the algorithm

to be effective it must improve on the prior information and the TC must be higher.

For θ = 100, we can see that in a narrow range of λ there is a minor gain in terms

of accuracy. As θ increases the width of the range where an improvement is possible

widens, however, the amount of gain decreases slightly for λ ∈ [0, 300]. This makes
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i) Shape Prior, S(x) ii) Fitting, h(x)

iii) Contour, Γ∗ iv) u(x) ∈ [0, 1]

Figure 8.7: Test Set 1 (Occlusions). Stage 2: segmentation from Section 8.4.2. i) Shape
prior term, S(x), based on our method of using the fitting term of a similar image to
construct an approximate shape representation. ii) The fitting term constructed from
the registered prior, S(φ∗), given by h(x) (8.18). iii) The computed contour, Γ∗, from
Stage 2 of our algorithm. iv) The computed function u∗(x) from the minimisation in
the convex relaxation framework (8.19).

sense as if the shape term is favoured you would expect the peak TC to be closer to

the Initial TC. In Fig. 8.13 we compare these results against our method, FSP. We

show the shape prior, S(x), where the shape approximation is given in red. For the

three plots, we include the result for DSP (with θ = 300) and the Initial TC, given by

the dotted and dashed lines respectively. We vary α in (8.18), which controls to what

extent the shape prior is favoured. A smaller α corresponds to favouring the result

from Stage 1 of the algorithm. In Fig. 8.13, for α = 1 we see a peak in TC that

means a slight gain over DSP, but the accuracy does not drop off as significantly as λ

increases. For α = 0.5, we see a similar effect, with a slight improvement. However,

for α = 0.1 we see a very good result. The TC peaks significantly above that of DSP,

and only drops slightly as λ increases. The TC for α = 0.1 falls below the Initial TC

for a much larger λ. this demonstrates that the selection of λ is not very sensitive, and

an accurate result can be achieved for a wide range of parameters. Furthermore, we

assert that the selection of α in FSP is more intuitive than θ in DSP. Our reasoning

is that for FSP it is based on how visually similar the shape prior is to the observed
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i) Occlusion 2, z ii) Shape Prior, S(x)

iii) Registered Prior, S(φ∗) iv) Fitting, h(x)

v) Contour, Γ∗ vi) u∗(x) ∈ [0, 1]

Figure 8.8: Test Set 1 (Occlusions). Stages 1 and 2 for Occlusion 2. i) The image, z, for
Occlusion 2. ii) Shape prior term, S(x), based on our method of using the fitting term of
a similar image to construct an approximate shape representation. iii) Stage 1, where
the parameters a∗ have been found, giving S(φ∗). iv) The fitting term constructed
from S(φ∗), given by h(x) (8.18). v) The computed contour, Γ∗, from Stage 2. vi) The
computed function u∗(x) (8.19).
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data. If they are close, α should be small, and the choice of λ is not very sensitive. For

DSP, the choice of θ is based on the distance of the object from others in the image,

and then a difficult choice of λ.

i) Prior Image, zp ii) Observed Image, z

iii) Shape Prior, S(x) iv) ũ with ΓGT

Figure 8.9: Test Set 2 (Parameter Dependence). i) The prior image, zp, from which
we know up. ii) The target image, z, which we want to segment based on the shape of
up. iii) Shape prior term, S(x) = −H(−f(zp)f(zp), based on our method of using the
fitting term of a similar image to construct an approximate shape representation. iv)
A comparison between ũ, a translation of up, and the boundary of the ground truth of
z given by ΓGT (red).

8.5.3 Test Set 3 (Sequential Selection)

In this set of test problems we consider incorporating shape priors for a medical 3D

data set, i.e. given a shape prior as defined previously on one slice can we segment

the corresponding object on different slices? It is natural to consider applying our

two-stage algorithm in a sequential manner in this setting. In Fig. 8.14 we present

the problem we consider here. The difference between the prior image and the target

image is significant, such that without using intermediate slices a result is not viable.

The details of the sequential algorithm we use is given by Algorithm 8, and is simply

an intuitive extension of the previous algorithm, where the priors and images used are

redefined at each stage. One notes that we only provide one set of parameters (α, β, λ)

and they are not refined at each slice. This is a desirable property, as the process is
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i) Stage 1, S(φ∗) ii) Stage 2, h(x)

iii) Contour, Γ∗ iv) u∗(x) ∈ [0, 1]

Figure 8.10: Test Set 2 (Parameter Dependence). i) The result of Stage 1 of our algo-
rithm, where S(φ∗) is determined based on the minimisation of the affine registration
formulation (8.13). ii) In Stage 2 we construct a fitting term based on the shape and
intensity of the object, given by h(x) (8.18). iii) The computed contour, Γ∗, from Stage
2 of our algorithm. iv) The computed function u∗(x) from the minimisation in the
convex relaxation framework (8.19).

therefore fully automated.

The results in Figs. 8.15 and 8.16 demonstrate impressive results in the sense that

the problem presented in Fig. 8.14 was challenging. Without treating the slices in

a sequential manner, this result would be beyond most conventional techniques. One

notes that not every intermediate slice was used between the prior (Slice 103) and

the target (Slice 123), as this would have been prohibitive from a computational time

perspective. One challenge is how the slice sequence is selected. When the target object

changes topology significantly it might be necessary to use more slices, and defining

this precisely is challenging. Considering alternatives to this sequential method is a

priority for future work. With partial information on one slice of a 3D data set, our

shape representation framework (given in Section 8.2.3) should allow us to incorporate

partial prior knowledge in a robust way.
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i) Binary Shape, ũ ii) DSP Prior, ψ(ũ) with Γψ

iii) Contour, Γ∗ iv) u∗(x) ∈ [0, 1]

Figure 8.11: Test Set 2 (Parameter Dependence). Results obtained using DSP formu-
lation. i) The binary shape, ũ, which is the ground truth of zp. ii) An alternative prior,
ψ(ũ), based on the Euclidean distance from the boundary of the translated prior. This
term is similar to shape representations in [36, 130]. Here, Γψ = {x : ψ(x) = 0} and is
shown in red. The computed contour, Γ∗, using DSP. iv) The computed function u∗(x)
from the minimisation problem of DSP (8.23).

8.6 Remarks

In this chapter we have provided a brief review of shape prior segmentation methods,

and discussed the motivation for a new two-stage algorithm for incorporating shape

priors in variational segmentation. The central idea is based on approximating shapes

with intensity fitting functions and using affine registration to compare similar images.

An improved fitting term is constructed based on the shape prior, where the intensity

information is implicitly enforced. This approach is demonstrated to be robust to

parameter changes compared to conventional methods, and is capable of achieving good

results for a range of examples, including significant occlusions. Finally, we present an

object selection example for medical images and discuss its potential application to 3D

segmentation.
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i) DSP Prior, ψ(ũ) with Γψ ii) θ = 100

iii) θ = 200 iv) θ = 300

Figure 8.12: Test Set 2 (Parameter Dependence). DSP compared against initial TC of
ũ. i) Shape prior, ψ(x), used in (8.23). Here, Γψ = {x : ψ(x) = 0} and is shown in
red. ii) - iv) TC(λ) for different choices of θ in DSP, and the initial TC of ũ. Varying
λ ∈ [0, 300] gives some improvement over the initial TC. As θ increases, the range of
λ that offers an improvement gets larger. However, the extent of this improvement is
also lessened as θ increases for λ ∈ [0, 300]. This makes sense as the ψ(x) term favours
ũ. Balancing λ and θ with DSP can be challenging, and offers limited improvements
over the given prior.
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i) Prior, S(x) ii) α = 1

iii) α = 0.5 iv) α = 0.1

Figure 8.13: Test Set 2 (Parameter Dependence). Two-Stage Fitting Shape Prior Model
(FSP) compared against alternative DSP and the initial TC of ũ. i) Shape prior, S(x),
used in (8.10). ii) - iv) TC(λ) for different choices of α in FSP against DSP (with
θ = 300), and TC of ũ. For α < 1, TC is consistently above the initial TC, and
peaks higher than DSP does for any λ, θ pair. For α = 0.1, we can see that we have a
substantial gain over DSP, both in terms of the optimal choice and the dependence on
the parameters selection.

Algorithm 8 Sequential FSP: Γ∗ ← SFSP
(
z(1,...,n), zp, up, ã, λ, α, β

)
1: Translate binary prior based on ã: ũ = up(ν̃)
2: for ` = 1 : n
3: Form shape prior: S(x) = −H(−f(zp))f(zp)
4: Set Proximity function: Pβ(ũ) = 1− 1

β min{β, d(ũ)}
5: Determine reference for Stage 1: F (z) = −H(−f(z))f(z)
6: Stage 1:
7: Determine interior fitting: S(φ∗).
8: Stage 2:
9: Set fitting function, h(x) = αH(−f(z))f(z)− S(φ∗).

10: Initialise u(0) = H(−h). Set µ > ||λh(x)||L∞ as in [30].
11: while ||u(k) − u(k−1)|| > δ2 do
12: Update uk using (8.22), k = k + 1.
13: end while
14: zp = z, ũ = uk, z = z(`+1)

15: end for
16: Σ∗(γ) = u(k) > γ, Γ∗ = ∂Σ∗.
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i) Prior Image, zp(x) ii) Shape Prior, S(x)

iii) Target Image, z(x) iv) Target Fitting, f(x)

Figure 8.14: Test Set 3 (Sequential Selection). Problem Definition: Given a prior image,
zp(x), and a corresponding shape prior, S(x), according to Section 8.4 given by i) and
ii) respectively, we aim to successfully segment the same object in a different slice of
a 3D data set. iii) gives the target image, z(x), and iv) gives the fitting term of z(x).
We can achieve a result by applying our proposed two-stage model to the intermediate
slices, which is defined in detail in Algorithm 8.
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i) Slice 107, z(x) ii) Slice 107, h(x)

iii) Slice 112, z(x) iv) Slice 112, h(x)

v) Slice 118, z(x) vi) Slice 118, h(x)

vii) Slice 123, z(x) viii) Slice 123, h(x)

Figure 8.15: Test Set 3 (Sequential Selection). Stage 1 Results. i) The image z(x)
at Slice 107 of the set. ii) The fitting function h(x) determined from Stage 1 of the
algorithm for Slice 107. Similar for iii)-iv) Slice 112, v)-vi) Slice 118, and vii)-viii) Slice
123.
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i) Slice 107, z(x), Γ∗ ii) Slice 107, u∗(x)

iii) Slice 112, z(x), Γ∗ iv) Slice 112, u∗(x)

v) Slice 118, z(x), Γ∗ vi) Slice 118, u∗(x)

vii) Slice 123, z(x), Γ∗ viii) Slice 123, u∗(x)

Figure 8.16: Test Set 3 (Sequential Selection). Stage 2 Results. i) The computed
contour Γ∗ for Slice 107. ii) The segmentation function, u∗(x), determined from Stage
2 of the algorithm. Similar for iii)-iv) Slice 112, v)-vi) Slice 118, and vii)-viii) Slice 123.
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Chapter 9

Conclusions and Future Work

The work in this thesis concerns variational methods for image segmentation. In early

chapters we briefly introduce some relevant mathematical preliminaries and related

variational methods for image processing. In particular we focus on important foun-

dational works in image segmentation, such as Mumford and Shah [89] and Active

Contours Without Edges [33]. We also highlight convex relaxation methods and dis-

cuss associated algorithms, as these ideas are central to our work. In Chapter 4 we

introduce a new method for computing global minimisers of two-phase segmentation

problems with a generalised fitting function. Our main contribution here is an addi-

tive operator splitting (AOS) scheme for globally convex segmentation, and our results

compare favourably to Chambolle’s dual formulation [23, 18] and is an improvement

on the original scheme [30, 17]. With this work as a foundation, in subsequent chapters

we introduce work aimed to address various areas within variational methods for image

segmentation. In brief, this includes work on intensity inhomogeneity, image reconstruc-

tion, and incorporating user input and priors. Our experimental results demonstrate

the effectiveness of our proposed methods, particularly with respect to reliability. In

Chapters 4, 6, and 8 we demonstrate a reduced dependence on the fitting parameter λ

compared to similar methods. This is significant as current approaches tend to require

this parameter to be selected empirically, and therefore results are often heavily reliant

on user selection. In the following, we offer some concluding remarks in relation to each

chapter and address areas for future work.

In Chapter 4 we tested our proposed AOS method against an analogous method

[23, 18], i.e. the relaxed binary constraint is imposed with a penalty function. Our

method performs well compared with this dual formulation, with encouraging results

in terms of accuracy, computation time, and how close to binary the solution is. The

results in relation to our improved AOS method are supported by additional results in

Chapter 5 . Importantly, we also demonstrate that our approach appears to be less

dependent on the fitting parameter, λ. This is a significant finding in the sense that in

practice it makes our method more reliable. Future work could consist of investigating

how the AOS interval can be defined in a consistent way, as discussed in Chapter 4.

Further theoretical work on the proposed AOS schemes could help resolve this matter.

There are clear advantages in extending this work to the 3D case, for a generalised
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fitting function. AOS extends to multiple dimensions easily, and potentially offers

advantages over current work [23, 18]. It is also worth comparing the proposed method

against alternatives, such as Split Bregman [58] or Chambolle-Pock [25].

In Chapter 5 we discussed the drawbacks of current selective segmentation models

and proposed a new model where a global minimiser can be found independently of

initialisation. The considerations of [30] and [105] motivated a proposed nonconvex

selective model, and we detail its convex reformulation. Our nonconvex model performs

well in comparison to Rada-Chen [105], and we demonstrate that global minimisers of

the corresponding nonconvex formulation can be found. In our results we show that

simple user input (i.e. three or four markers) can produce a good result in a difficult

example and, importantly, a similar result can be obtained for a very different marker

set. The results we provide here demonstrate the potential applications of selective

segmentation. No knowledge of the object is known a priori and yet we can achieve

satisfactory results for difficult examples from medical imaging. We extend this concept

to intensity inhomogeneity in Chapter 6, with positive results in this case as well.

Future work could involve employing alternative fitting functions, based on different

assumptions about the image intensity. Also important to consider is the selection

parameter θ. Currently, it is chosen empirically based on the difference between the

user input and the target object. Reducing any sensitivity is essential for possible

applications.

In Chapter 6 we introduced a constraint to the Variant Mumford-Shah Model [37],

although it applies to any model using the bias field framework for two-phase segmen-

tation. It is an improvement over existing methods in the sense that the intensity

constants reliably converge and are feasible in relation to the image. We also observe

possible advantages with this framework in terms of the quality of the piecewise-smooth

approximation of the image, and a model less reliant on the fitting parameter. This

is a potentially important finding, as this ’stabilisation’ of the bias field appears to

allow for more parameter variation thus improving the reliability of the models. We

will investigate this idea further in the future, and attempt to accurately quantify an

improvement. It is important to note that whilst the intensity constants converge to

values consistent with the image, the model is not jointly convex. This means that the

computed c1 and c2 are not necessarily the true values, and are dependent on intitiali-

sation. We could extend the work of Brown et al. [20] to the bias field framework and

address possible contradictions with these formulations.

In Chapter 7 we address the problem of segmentation with a low quality observed

image. We proposed a joint model for the reconstruction and segmentation of blurred

images where the blur function is unknown, which we call blind image segmentation.

The results presented demonstrate advantages for treating this problem simultaneously,

rather than in a two-stage manner. Also, we introduce a relaxed model that reduces

computation time based on alternating direction methods. In terms of future work, it

is possible to consider using the improved AOS methods introduced in Chapter 4 in

order to improve performance further. We compare our models to the work of Bar et al.
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[11], but future work could consider quantitative comparisons with alternative methods

[107, 28, 97]. This chapter addresses a fundamental problem in image segmentation, as

many observed images aren’t of sufficient quality to be treated in a conventional way

[30, 18]. Further refinements to the formulation could yield important results, with

many potential applications.

In the last chapter we incorporate shape priors in two-phase globally convex seg-

mentation. We review previous shape based segmentation methods, and discuss the

motivation for a new two-stage model which is shown to be robust to parameter vari-

ation compared to conventional approaches. Future work could consist of considering

ways to implement our method in a joint formulation, which could improve results.

The central idea is based on approximating shapes using intensity fitting functions,

and future work could consider extending this to alternative fitting functions such as

Nguyen et al. [92]. Also, alternatives to affine registration could be considered such

as Cremers et al. [39] who employ a template based formulation. One area we have

addressed in Chapter 8 is to do with extending these ideas to 3D segmentation, based

on a single 2D shape prior. In Section 8.5.3 we propose Algorithm 8 for sequential

segmentation. Future work could involve how to address 3D data more efficiently by

considering the entire sequence simultaneously.
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