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Abstract

Auction mechanisms are viewed as an efficient approach for resource allocation and

different types of auctions have been designed to allocate spectrum, determine positions

for advertisements on web pages, and sell products on the Internet, among others.

Online auctions can be implemented as an intermediary for both sellers and buyers in

agent-mediated e-commerce systems. This raises two concerns. Firstly, the automation

of online auction trading requires buyer agents to understand the auction protocol and

have the ability to communicate with the seller agents (i.e., the auctioneer). Secondly,

buyer agents need to automatically check desirable properties that are central to their

decision making.

To address both concerns, we have proposed a certification framework to enable soft-

ware agents automatically verify some desirable properties of a specific auction through

a formally designed communication protocol, and then make decisions according to

the result of the communication. Furthermore, we have extended the communication

mechanism to the area of Semantic Web Service composition and have explored the

verification of combinatorial auction mechanisms.

To demonstrate our approach, we have modelled online auctions as web services

and have applied the technique of Semantic Web Service to represent auction protocols.

Then we rely on computer-aided verification techniques to construct and check formal

proofs of desirable properties for specific auctions. Finally, dialogue games are proposed

to enable decision making and service compositions for software agents.
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Chapter 1

Introduction

1.1 Motivation

In the last few decades, electronic commerce (e-commerce) has rapidly developed and

widely spread which leads to faster and more efficient business process. E-commerce

systems are viewed as tools for efficient allocation of resources and automated elec-

tronic transactions. Multi-agent systems consist of autonomous software components

which have been introduced into e-commerce systems for the automation of electronic

transactions. With the growth of online transactions, there has been an increased de-

mand to develop advanced techniques to enhance agent-mediated e-commerce systems.

In these systems, software agents (both seller and buyer agents) are designed and de-

veloped by different organizations to automatically accomplish their tasks on behalf of

their owners. The automation of online transaction causes a variety of challenges. For

example, one challenge is that agents automatically make their decisions without cen-

tralized control and they are constrained with limited computational resources. This

implies that the trading mechanism of each e-commerce system should be represented

in a machine-understandable way, and those agents should make decisions on the basis

of the trading mechanism to maximize their payoffs. As a consequence, software agents

should be self-interested which means that they attempt to gain the maximum profit

for their owners. However, the behaviour of an agent may cause detrimental outcomes

for its owner. To avoid losing profit, buyer agents should ensure that some desirable

properties are held in the system. For instance, software agents may want to guarantee

that they will not lose profit caused by fictitious bids in an auction. Another challenge

is the lack of efficient communication protocol between agents. On one hand, redundant

or unnecessary communication can increase instability and chaos into the system. On

the other hand, well designed communication protocol can enhance coordination among

agents. This thesis illustrates the research that has been conducted to address some of

the challenges within agent-mediated e-commerce systems. We propose a certification

framework that relies on techniques of communication and verification. In this thesis,

certification is the procedure by which an agency assesses and verifies characteristics
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of a system according to its requirements specification. Verification is the process of

checking whether a specification satisfies certain properties. We are concerned with the

formal verification that relies on formal methods which model systems as mathemat-

ical entities, so that software agents do not need to manually check the paper proofs.

This research will benefit small and medium enterprises that develop software agents

to carry out online trading. It also can inspire the research of designing and verifying

new auction mechanisms in online settings.

1.2 Problem Statement

To enable buyer agents1 to automatically verify desirable properties of a trading pro-

tocol and communicate with the service provider2, we need to determine the following

requirements.

1. Representation of trading mechanisms. In an agent mediated e-commerce system,

the trading protocol should be represented in a machine understandable way, so

that agents can read and interpret the meaning of the protocols. For example,

the inputs of a system indicate the data should be provided to start a trading.

2. Proof of desirable properties. We need to use a language that is expressive enough

to describe desirable properties of a trading mechanism and provide formal proofs

of these properties, so that buyer agents can ensure these desirable properties of

the trading mechanism.

3. Automated verification of desirable properties. Given the proofs of desirable prop-

erties, we need to enable buyers to verify the correctness of the proof. Thus the

trustworthiness between buyer agents and seller agents can be promoted.

4. Automated communication between agents. The exchange of information between

buyers and sellers requires the design of automated interaction protocol. The

interaction between agents should not be limited to a client-server communication

mode. The interaction protocol should support different types of communication.

For instance, one participant can influence another to accept a proposition.

5. Automated service composition. As online transaction may require the combina-

tion of several services, automated service composition should be implemented to

fulfill the requirements of agents.

1In this thesis, buyer agents are the same as the service consumers.
2In this thesis, service providers are the same as the seller agents.
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1.3 Solution Outline

In this thesis, we focus on auctions which are important e-commerce protocols that

have been used to buy and sell goods. Auctions are designed to have certain desirable

properties, such as incentive compatibility which encourages agents to bid truthfully,

or efficient [31] which maximizes the surplus. We focus on models of rationality by

equilibrium concepts are well studied in game theory mechanism design. For example,

dominant strategy equilibrium can be used to achieve incentive compatibility.

Online trading mechanisms can be represented as Web services. Semantic Web Ser-

vices (SWS) [76] combine the technique of Web Services and Semantic Web [15]. Web

Services enable automated discovery, selection, composition and execution of services

while Semantic Web allows machine to interpret the meaning of ontologies. Therefore,

we rely on SWS to describe the trading protocols to fulfill the first requirement of

“Representation of trading mechanisms”. By using ontology, SWS provide a shared

knowledge base which defines the same interpretation of terms and operations for all

participants. Thus SWS can be treated as a solution to represent trading mechanisms in

heterogeneous environments where self-interested agents are designed and implemented.

Although SWS has the ability to represent the description of trading mechanisms,

the expressiveness and reasoning abilities of SWS languages are limited. Inspired by

the work of Tadjouddine et al. [97, 98] where model checking has been used to check the

strategy-proofness property of an auction. We have applied logic-based languages to

model and reason about systems to satisfy the second requirement of “Proof of desirable

properties”. Logic-based languages allow us to specify requirements of a system and for-

mulate desirable properties for the system. Besides, we have adopted the Foundational

Proof-Carrying Code (FPCC) [2] paradigm to enable software agents to automatically

check the properties (such as safety) of the system to accomplish the third requirement

of “Automated verification of desirable properties”. As we have defined the specifica-

tion of a trading mechanism using SWS, we need to translate the original specification

to the logical based program. In the work of Caminati et al. [23, 24], they have explored

the feasibility of applying formal proofs to verify properties of mechanisms. For exam-

ple, they prove that allocations of a mechanism are pairwise disjoint, and prices are

non-negative. Lapets et al. [60] have presented a typed language to define allocation

algorithms for auctions. The property of truthfulness of the algorithm is automatically

verified by analyzing the definition and keeping track of desirable characteristics. In

our study, we have verified mechanisms that are written in ontology languages. This

requires us to translate the ontology of a mechanism to a program that is expressed

within a theorem prover.

In addition, we use dialogue games to support the communication between buyer

agents and seller agents to satisfy the fourth requirement of “Automated communication

between agents”. In a dialogue game the seller provides Web services, and the buyer
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agent allowed asking desirable questions to the seller. In our work, an inquiry dialogue

game is designed as a bipartite communication protocol. In this protocol, buyer agents

can query questions to the seller and then make judgments according to the result of

a dialogue. Furthermore, we integrated the FPCC paradigm within the dialogue game

so that buyers can check whether some desirable properties are held in a system. This

design has been implemented in the agent development platform JADE [11]. Seller

agents (i.e., auctioneers) and buyer agents are different components in the platform

and they are integrated in a loosely coupled manner. To fulfill the fifth requirement of

“Automated service composition”, we propose dialogue service automata to integrate

dialogue games to composite Semantic Web Services. The advantage of using automata

based model is that the behaviors of services can be described as a sequence of states

and the transitions of states can be associated with messages or activities [95].

1.4 Contributions

The main focus of this thesis is to enable software agents capable of automatically verify

desirable properties of auction mechanisms. Furthermore, to make agents automatically

carry out service inquiry and service composition in the setting of agent-mediated e-

commerce systems. More specifically, this thesis addresses the research problems in

Section 1.2 and provides the following contributions:

• The development of ontologies of Web services for online auctions. We have

used OWL Web Ontology Language for Services (OWL-S) to describe single item

English auction service in Section 4.1.2 and other related services such as payment

and delivery in Section 6.2.2.

• We have translated the OWL-S specification into a program written using an

imperative language within the interactive theorem prover Coq. The proofs of

desirable properties such as dominant strategy have been developed based on

Hoare Logic is covered in Chapter 4.

• We have implemented the FPCC paradigm to enable auctioneers (service providers)

to publish the above proofs, then buyers (service consumers) to download these

proofs combine with the specification. Therefore, buyers can automatically check

the correctness of the proofs using the Coq proof checker [9].

• We have proposed an inquiry dialogue model [6] to enable buyer agents to auto-

matically ask desirable questions to the auctioneer. These questions could relate

to information such as QoS or properties which have formal proofs. Buyers can

make decisions according to the result of the answer.
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• We have developed information-seeking dialogue and persuasion dialogue to pass

information during the process of a service and enable service composition in an

online trading scenario which explained in Chapter 6.

• We have explored the verification of desirable properties for combinatorial auc-

tions at the end of the thesis. As the expressiveness limitation of SWS languages,

we have used Coq to formalize and prove desirable properties of a VCG auction

which detailed in Chapter 7.

These contributions have led to a number of peer-reviewed publications:

1. Bai W, Tadjouddine E, Payne T. A Dialectical Approach to Enable Decision

Making in Online Trading[M]//Multi-Agent Systems and Agreement Technolo-

gies. Springer International Publishing, 2015: 203-218.

2. Bai, W., Tadjouddine, E.M.: Automated program translation in certifying online

auctions. In: ETAPS/VPT 2015, 11-18 April, London, UK (2015).

3. Bai W, Tadjouddine E, Payne T. Dialogue Driven Semantic Web Services. Yue,

Y., Ariwa, E., IEEE International Conference on Computing and Technology

Innovation (CTI 2015), 27-28 May, Luton, United Kingdom, 2015.

4. Bai, W., E. M. Tadjouddine, and Y. Guo (2014). Enabling Automatic Certifica-

tion of Online Auctions. In: Proceedings 11th International Workshop on For-

mal Engineering Approaches to Software Components and Architectures.(EPTCS

147, Apr. 2, 2014). Ed. by J. K. B. Buhnova L. Happe, pp. 123-132. doi:

10.4204/EPTCS.147.9.

5. Bai W, Tadjouddine E M, Payne T R, et al. A proof-carrying code approach

to certificate auction mechanisms[M]//Formal Aspects of Component Software.

Springer International Publishing, 2013: 23-40.

1.5 Thesis Outline

Chapter 2 provides the literature that is related to agent-mediated e-commerce sys-

tems, including Multi-agent systems, Semantic Web, program verification, and agent

communication techniques.

Chapter 3 studies a pilot example that verifies some desirable properties of a single

item Vickrey auction, and then proposes a certification framework based on Semantic

Web Service, FPCC and dialogue games.

Chapter 4 presents a specification of an online auction in a Semantic Web Service
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language OWL-S, and then describes the translation of this specification from OWL-S

to an imperative program that is defined within Coq. Some desirable properties of

this auction have been stated and proved at the end of this chapter.

Chapter 5 proposes a dialogue game that integrates with FPCC paradigm to en-

able information inquiry and decision making in online auction services.

Chapter 6 introduces a dialogue driven approach to composite Semantic Web Services.

Chapter 7 provides the formalization and verification of desirable properties of com-

binatorial VCG auctions.

Chapter 8 summarizes the thesis and discusses the future research directions of this

work.
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Chapter 2

Background

This chapter provides an overview of the techniques and methodology that are relevant

to the research topic of this thesis.

The organization of this chapter is as follows: Section 2.1 introduces the basic model

of multi-agent systems, the knowledge of games and auctions which can be treated as a

type of games. Section 2.2 shows the concept of Semantic Web and its application. Sec-

tion 2.3 presents the introduction to the technique of program verification. Section 2.4

describes background knowledge of agent communication.

2.1 Distributed Computing/Artificial Intelligence

The network has linked billions of computers worldwide, which enables computers to

interact and collaborate with each other and to share resources among the system. This

leads to the development of distributed system that integrates multiple autonomous

components to communicate with each other by message passing. Besides, a branch of

artificial intelligence (AI) is centered on the concept of a rational agent. An agent is a

computer program that is situated in some environment and is capable of autonomous

actions to meet its design objectives [114]. An agent is called rational when it is

consistently tries to optimize its performance. As the development of AI, more and

more tasks are delegated to computers, such as unmanned aerial vehicles, cleaning

robots, and self-driving cars. These trends have led to the development of multi-agent

systems.

2.1.1 Multi-agent Systems

An agent is a computer system that can automatically carry out actions on behalf

of its owner to achieve design objectives. A single intelligent agent has four types of

properties [115]:

• Autonomy : this indicates how independently agents operate and control over

their initial state and actions.
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• Reactivity : agents should be able to perceive their environment, and respond to

changes in a short time.

• Pro-activeness: agents should be able to generate and attempt to achieve goals,

rather than simply act in response of external events.

• Social ability : agents have the ability to interact with each other to meet the

social characteristics of cooperation, coordination, and negotiation.

In a multi-agent system, multiple intelligent agents cooperate, coordinate, and negotiate

with each other to achieve their objectives in a common environment. Cooperation

means agents work with others when a goal cannot be achieved by a single agent or

it will gain better results. Coordination represents the problem of managing inter-

dependencies between activities of agents. Negotiation is used when agents need to

reach agreements on matters of mutual interest.

The realization of multi-agent systems requires the development of programming

languages and tools. JADE [12] is one platform that has been designed to develop multi-

agent applications in compliance with the FIPA specifications [38]. Our framework is

implemented using JADE. JADE is a distributed middleware system that is written in

Java, and it allows easily extended by users. JADE includes three core components [12]:

• a runtime environment where agents can be activated and executed;

• a library that can be used by programmer to develop agents;

• graphical tools that can be used to administrate and monitor agents’ activities.

One running instance of the JADE runtime environment is called a Container, and

each container can contain several agents. Agents are distinct from one another with

unique names. A collection of active containers is called a Platform. A very first

container is a single Main Container which starts a platform. Other containers

in the same platform follow the main container and they must register to the main

container as soon as they start. The difference between a main container and other

normal containers is the main container includes two special components which are not

in the normal containers. They are AMS (Agent Management System) which has the

authority to perform management actions and DF (Directory Facilitator) which allows

agents to publish and find services.

JADE agents carry out actual jobs by implementing Behaviour objects which

are used to specify the actions of agents. JADE provides two main classes to repre-

sent primitive and composite behaviours respectively. The components of these two

behaviours are as follows:

• Primitive Behaviours

8



– OneShotBehaviour models atomic behaviours only be executed once.

– CyclicBehaviour models atomic behaviours that are executed as long as

an agent is alive.

– TickerBehaviour models atomic behaviours that are executed periodically.

– WakerBehaviour models atomic behaviours only execute after a particular

time elapse.

• Composite Behaviours

– SequentialBehaviour models behaviours that execute its children behaviours

one by one until the final behaviour has ended.

– ParallelBehaviour models behaviours that execute its children behaviours

concurrently until reach the termination condition.

– FSMBehaviour models behaviours that execute its children behaviours on

the basis of a Finite State Machine.

2.1.2 Game Theory and Auctions

Game theory is the formal study of decision-making among intelligent rational agents

applied in economics, political science and computer science, etc. In game theory,

there are two premises: one is that all participating agents are rational; the other is

that agents take into account other agents’ decisions in their decision making. In this

thesis, we concentrate on noncooperative game theory where the basic modeling unit

is the individual [90]. Games can be represented in normal form, or strategic form,

where all players choose their strategies simultaneously. The normal form uses a triple

to define a game: a set of players N = {1, ..., n}, a set of strategies Si that are available

to player i, where i ∈ N , and a utility function ui(Si, S−i), which describes the utility

of player i if it uses strategy Si and other players use strategies S−i. Extensive form

games model the sequential decision making of agents, and they can be represented by

game trees.

A noncooperative game can be illustrated by the prisoner’s dilemma example. As-

sume that there are two prisoners R and C. They are interviewed separately so that

they cannot communicate with each other. Each of them has two strategies, called

“Confess” and “Deny”. They aim to minimize the year of imprisonment. Table 2.1

shows the payoff of this game. If both of them choose “Deny”, they will both serve 2

years in prison. If one of them chooses “Confess”, the confessor will serve 1 year and

the other will serve 5 years. If both of them choose “Confess”, both of them will serve

3 years. Under the setting of noncooperation, each prisoner is interested in their own

payoff. If prisoner R chooses “Confess”, the better response of prisoner C is “Confess”.
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HHH
HHHR

C
Confess Deny

Confess 3, 3 1, 5
Deny 5, 1 2, 2

Table 2.1: Prisoner’s dilemma

If prisoner R changed to choose “Deny”, the better choice for prisoner C is still “Con-

fess”. The case of prisoner R is symmetric. According to this reasoning, both of them

will choose “Confess”. In the game of prisoner’s dilemma, “Confess” is a dominant

strategy for each player to yield the best payoff.

An auction can be modeled as a noncooperative game where bidders can have

conflict of interests. Auctions have been exploited as a testing-ground for game theory

with incomplete information. Besides, a huge volume of goods has been sold through

auctions, and new auction mechanisms have been designed to sell different kinds of

products, such as the “Generalized Second Price Auction” which is used by Google to

sell Google Ads advertisement slots.

Auctions are composed of rules that describe the mechanisms of winner determina-

tions and payments. Four basic types of auctions for single item are widely used.

• English auctions, also called Ascending-bid auctions. In this auction format, a

single item is offered for sale interactively in real time. One auction starts from

a lowest bidding amount, and the seller gradually raises the price until only one

bidder remains. The last bidder wins and pays the last bidding amount. The

seller can set a reserve price for the item. If all the bids are less than the reserve

price, then this item is not sold. In other forms of English auctions, bidders can

shout out bids or submit them through the network.

• Dutch auctions, also called Descending-bid auctions. These auctions are also

interactive auctions in which the seller gradually decreases the price of the item

from a highest bidding amount. A Dutch auction ends when the first moment

a bidder accepts the offered bidding price. The payment of the winner is the

accepted price. These types of auctions are exhaustively used by flower merchant

in the Netherlands.

• First-price sealed-bid auctions. These are auctions in which bidders simultane-

ously submit their sealed bids to the seller, so that a bidder only knows his own

information. The bidder with the highest bid wins and the payment is the highest

bid.

• Vickrey auctions, also called Second-price sealed-bid auctions. In this kind of

auction, all bidders simultaneously submit their sealed bids to the seller. The
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winner is the bidder who has quoted the highest amount, but the winner only

pays the second highest quoted amount.

In an English auction, the dominant strategy for a bidder is rise from the reserve

price, and then dropout when the actual bidding amount is equal to its valuation. For

a Vickrey auction, the dominant strategy for each bidder is bid its valuation, which is

also called incentive compatible. An extended Vickrey auction that also satisfied the

property of incentive compatibility is called Vickrey-Clarke-Groves or VCG. A VCG

auction is a combinatorial auction in which bidders can place bids on combinations of

items. It is performed by finding the allocation that maximizes the social welfare and

the payment rule gives discount to each winner on the basis of his contribution to the

overall value for the auction.

2.2 Semantic Web

Normal Web is designed for application to human interactions. Semantic Web [15]

extends the normal Web by providing machine-readable data for computers. Semantic

Web techniques enable people to create and publish data on the Web in a machine

interpretable format so that computers can automatically query and reason on these

data. To achieve the goal of Semantic Web, meta-data are used to express the meaning

of data and can be exchanged among computers. The World Wide Web Consortium

(W3C) promotes the so-called “Semantic Layer Cake” framework for the development

of meta-data in Semantic Web.

2.2.1 Semantic Web Layer Cake

Semantic Web techniques are composed of markup languages, which are designed to

annotate documents or web pages, with a formal syntax and semantics. These lan-

guages are used to describe data in a standard concept and form the Semantic Web

hierarchy [93]. Figure 2.1 shows the hierarchy of the Semantic Web.

Identifiers: URI Character Set: UNICODE 

Syntax: XML 

Data interchange: RDF 

Taxonomies: RDFS 

Rules: RIF/SWRL Ontologies: OWL Querying: 
APARQL 

Unifying Logic 

Proof 

Trust 

C
ryp

to
grap

h
y 

User interface and applications 

Figure 2.1: Semantic Web Stack
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The bottom layer contains Unicode and Uniform Resource Identifiers (URI). Uni-

code is a character encoding system that provides a unique number for every character.

URIs are short strings that identify resources in the web that provide unique and unam-

biguous names for resources. The second layer is XML (eXtensible Markup Language)

which can be used to define the structure of data by adding tags. XML provides a

way to define the syntax of data, while the semantics of data cannot be expressed.

RDF (Resource Description Framework) provides an approach to describe resources

via meta-data. All the statements in RDF are expressed as triples (subject, predicate,

and object). RDF-S (RDF Schema) is an extension of RDF which allows describing

the taxonomies of classes and properties.

The OWL Web Ontology Language is a standard W3C Recommendation ontology

language. The term ontology represents the kinds of entities and their relations in the

world. OWL provides more vocabulary to describe classes and properties than RDF-

S. OWL is a Description Logic based ontology language and the details of Description

Logic can be found in [56]. OWL provides set operations (e.g. union, intersection, com-

plement), universal and existential quantifications, cardinality constraints, etc. Given

an OWL ontology, its logical consequences can be entailed on the basis of the OWL

formal semantics. W3C provides standardize OWL [75] in 2004 and its successor OWL

2 [78] in 2009. OWL provides three sub-languages based on their expressiveness and

computational complexity:

• OWL DL is a Description Logic based language with RDF syntax. It is computa-

tional complete which means that all conclusions are guaranteed to be computable

and decidable which means that all computations will finish in finite time.

• OWL Lite is a subset of OWL DL, a good choice for users to describe classifi-

cation hierarchy and simple constraint features.

• OWL Full combines OWL DL and RDF. Compared to OWL DL, OWL Full is

undecidable.

OWL 2 extends OWL by adding more functionality, such as property chains, qual-

ified cardinality restrictions, and enhanced annotation capabilities, etc. OWL 2 has

different variants.

• OWL 2 Full is an extension of RDFS, a very expressive language and it is fully

upward-compatible with RDF. However, OWL 2 Full is not decidable.

• OWL 2 Lite is a syntactically restriction version of OWL 2 Full and it offers

reasonably efficient reasoning support.

• OWL 2 QL, OWL 2 EL, OWL 2 RL are three subsets of OWL 2. They are

designed to guarantee scalable reasoning for different application scenarios.
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SWRL (Semantic Web Rule Language) [50] is a rule language that extends OWL to

provide more powerful deductive reasoning capabilities. SWRL is represented as an

implication between an antecedent and consequent. One of the powerful functionalities

of SWRL is that it provides the built-ins for comparisons and arithmetic operations.

Both SWRL and OWL obey the assumption of Open World Assumption where ab-

sence of information is interpreted as unknown information. RIF (Rule Interchange

Format) [53] is another W3C Recommendation rule language. SPARQL [45] is a query

language for RDF and it provides a standard format and a set of rules for writing and

processing queries. The above three layers which concern complex logics and proofs to

establish trustworthiness is still an ongoing research topic in the area of Semantic Web.

2.2.2 Semantic Web Services

Web services provide support for inter-operable machine-to-machine interaction over

networks. There are three major roles in Web services: the first one is the service

provider that provides the implementation of a particular Web service, the second is

the service requester that wishes to make use of a provider’s Web service, and the third

is the service registry that registers Web services. Web Services are built by using

different standard technologies. The exchanging messages are encoded in XML format

so that information can be interpreted by computers. SOAP (Simple Object Access

Protocol) is a standard messaging protocol for packaging and exchanging XML messages

and SOAP messages can be carried by variety of network protocols. The Web Service

Description Language (WSDL) is a language that used to define the public interface

of Web services. WSDL describes the operations of a specific Web service, the data

format to access the Web service, and the location of the Web service. Another protocol

UDDI (Universal Description, Discovery and Integration) is used to publish and locate

services in a repository.

Web Services provide standards to ensure interoperability across diverse platforms.

However, it is not sufficient for software agents to automatically use Web services. To

integrate Web Services with multi-agent systems, agents need to contain and reason

about the semantics of the Web Services. The technique of Semantic Web inspires the

development of Semantic Web Services (SWS). SWS address the challenge of automat-

ically discovery, composition and execution of Web services that involved in intelligent

software agents. OWL-S (Web Ontology Language for Services) is an ontology language

that is proposed to represent an upper ontology for the description of Semantic Web

Services expressed in OWL. OWL-S contains three interrelated parts: ServiceProfile

describes what the service does; ServiceModel describes how the service is used; and

ServiceGrounding describes how to interact with the service.

13



2.3 Program Verification

Program verification is a research area that studies formal methods for checking a

software program conforms to its specification. It concerns properties of codes, which

can be studied in many different methods such as logic, model checking and abstract

interpretation. In our work, we use the logic-based methods to verify the properties of

a specification.

2.3.1 Program Specification

A specification describes the desired behaviors of a program. There are three branches

in formal methods to describe a specification of a system. The first one is the model-

based specification which describes the internal states and the transition of states of

a system. The second is the algebraic approach that specifies a system in terms of

its operations and their relationships. The last is the declarative specifications which

describe systems using logic-based languages, functional languages and rewriting lan-

guages, etc. In our work, we use the declarative approach to describe the specification

of programs.

2.3.2 Hoare Logic

Hoare Logic [48] is introduced by C.A.R. Hoare in 1969 to reason about the correctness

of imperative programs. In our work, we used Hoare Logic to verify the desirable

properties of While programs which are written in a simple imperative language. The

specification of a While program consists of a precondition and a postcondition. The

inference system of Hoare Logic is used to construct a derivation to determine the

correctness of the specification. The imperative language includes a skip command,

assignment, sequential composition, if-then-else branches and a while loop.

In this work, we consider a WHILE-language composed of assignments, if, and

while statements, and in which expressions are formed using basic arithmetic or logical

operations. We denote V, a set of program variables that are integer or Boolean, E
the set of arithmetic expressions, B the set of Boolean expressions, and C the set of

commands or statements. This language can be described as:

x ∈ V
aop ∈ {+,−,×, /}
rop ∈ {<,>,==,≤, . . .}
lop ∈ {∧,∨,¬, . . .}
E 3 e ::= const | x | e aop e
B 3 b ::= true | false | e rop e | b lop b
C 3 c ::= skip | x := e | c; c | if b then c else c | while b do c

The states σ ∈ S = V → Z are defined as associations of values to variables, and

the evaluation of expressions remains standard in the natural (or big-step) semantics,
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see for example [61]. We denote σ � C � σ′ to mean a command c evaluated in a

pre-state σ leads to a post-state σ′. This allows us to reason on the program by using

Hoare Logic.

(|ψ[E/x]|)x = E(|ψ|)
Assignment

(|φ|)C1(|η|) (|η|)C2(|ψ|)
(|φ|)C1;C2(|ψ|)

Composition

(|φ ∧B|)C1(|ψ|) (|φ ∧ ¬B|)C2(|ψ|)
(|φ|)if B {C1} else {C2}(|ψ|)

If-statement

(|ψ ∧B|)C(|ψ|)
(|ψ|)whileB {C}(|ψ ∧ ¬B|)

Partial-while

` φ′ → φ (|φ|)C(|ψ|) ` ψ → ψ′

(
∣∣φ′∣∣)C(

∣∣ψ′∣∣) Implied

Figure 2.2: Proof rules for partial correctness of Hoare triples.

Hoare logic is a sound and complete formal system providing logical rules for rea-

soning about the correctness of computer programs. For a given statement S, the Hoare

triple {φ}S{ψ} means the execution of S in a state satisfying the pre-condition φ will

be in a state satisfying the post-condition ψ when it terminates. The conditions φ and

ψ are first order logical formulae called assertions. Hoare proofs are compositional in

the structure of the language in which the program is written. A judgment ` {φ}S{ψ}
is valid if the triple {φ}S{ψ} can be proven in the Hoare calculus. The proof rules for

partial correctness of Hoare triples are given in Figure 2.2. Partial correctness does

not require the program to terminate, whereas total correctness requires the program

terminates [51].

2.3.3 Proof-Carrying Code

Proof-Carrying Code (PCC) [79] is a technique used by a host computer system (the

code consumer) to automatically verify the safety properties of code that are provided

by untrusted agents (the code producer). PCC can be used in the environment of

distributed computing where mobile code is allowed. In this environment the code

producer on one side of the network produces a software program that is transmitted

to the code consumer on another side for execution. The code consumer can apply PCC

to verify that the code behaves correctly and satisfied a set of safety rules. The first

step of PCC is that the code consumer specified the safety policy which describes the

conditions for safe behavior of foreign program. Then the code producer generates a
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proof that the program adheres to the safety policy. This process is called certification

which is a form of verification with respect to the program specification. At last, the

code consumer uses a proof checker to check the validity of the program. If the proof is

valid, the code consumer will trust that the program is safe to execute. In the original

PCC framework, proofs are written in a logic extended with language-specific typing

rules which assumes that there is no bug in the typing rules. In the work of Appel [2],

Foundational Proof-Carrying Code (FPCC) has been proposed to use a foundational

mathematical logic to define the semantics of instructions and proof rules. In our work,

we use the Coq proof assistant which is a tool for the calculus of inductive construction

to implement the FPCC framework.

2.3.4 An Interactive Theorem Prover Coq

We have applied an interactive theorem prover Coq1, which is based on a logical frame-

work known as the Calculus of Inductive Construction, to formalize auction mechanisms

and prove interested properties. Coq allows users to define functions or predicates, to

state mathematical theorems and develop interactively formal proofs of theorems, to

describe software specifications and develop proofs for desirable properties of the spec-

ification. Besides, Coq contains a small certification “kernel” to check the correctness

of formal proofs.

Coq uses a specification language which is named Gallina to describe declarations

and definitions. Gallina can be used to represent programs as well as properties of

these programs. Coq also provides a proof engine to build proofs using tactics, which

are commands that are used to build proofs. In Coq, logical propositions are called

Prop, mathematical collections are called Set, and abstract types are named with Type.

Coq is also a functional programming language which offers a powerful mechanism

for defining new data types and writing programs. Inductive definitions can be used to

define data types and their members. For example, the basic data type boolean can be

defined as the following declaration bool. This definition shows that the type bool of

boolean has members true and false.

Inductive bool : Type :=

| true : bool

| false : bool.

Definitions in Coq can be used to define non-recursive functions. The function and

represents the ∧ operation of two boolean variables. In this definition, pattern-matching

is used over the term b1 to compare it with different branches.

Definition and (b1:bool)(b2:bool) : bool :=

1http://coq.inria.fr
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match b1 with

| true => b2

| false => false

end.

Recursive functions are defined using the command Fixpoint. For example, the

function beq nat is defined to determine the equivalence of two natural numbers.

Fixpoint beq_nat (n m : nat) : bool :=

match n with

| O => match m with

| O => true

| S m’ => false

end

| S n’ => match m with

| O => false

| S m’ => beq_nat n’ m’

end

end.

In Coq, an assertion states a proposition of which the proof is interactively built

using tactics. The basic assertion commands for a theorem and a lemma are:

Lemma ident : type

and

Theorem ident : type.

Table 2.2: Most Common Tactics

Tactic Effect

intro. Introduce one assumption

intros. Introduce as many assumptions as possible

apply H. Applies assumption H

induction t. Perform induction proof over term t

rewrite H. Rewrite assumption H

destruct t. Perform case analysis without recursion

omega. An automatic decision procedure for
Presburger arithmetic

After a statement has asserted, Coq needs a proof to validate the statement. A

tactic language which is called Ltac is used to code procedures of proofs in Coq. Ltac

offers a wide variety of tactics to build proofs of statements, including unfold definitions,

check equality, etc. The proof development in Coq is based on a goal-oriented approach.

The system keeps track of the current goal and the set of premises. Then, users insert
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tactics to adjust the proof state. The proof finishes when we match a state with the

conclusion. Table 2.2 illustrates some common used tactics in a proof.

In our work, we have used Coq as a proof assistant for higher order logic to formalize

and validate the properties of Vickrey and Combinatorial auctions, as a platform to

model imperative languages, and as a logical framework to develop the reasoning system

of Hoare Logic.

2.4 Agent Communication

One of the key properties of multi-agent systems is interoperability which requires

agents to communicate with each other to fulfill their goals. The communication mech-

anism among agents contains three aspects: the Syntax which shows how the symbols

of communication are combined to form grammatical sentences, the Semantics which

describes what the symbols denote, and the pragmatics which represents how the sym-

bols are interpreted. Most of the work of communication in multi-agent systems bor-

rows their inspiration from speech act theory, which describes how utterances are used

to achieve intensions. In the original work of speech act theory [4], communications

among participants are not only information transition, but also actions that change

the state of the world. The study of speech act focuses on the pragmatic aspect of

languages that is how language is used by people to achieve their goals and intentions

by communication. Austin [4] lists three aspects of speech acts: Locution which rep-

resents the act of making an utterance, Illocution which describes the intension of an

utterance, and Perlocution which represents the action that occurs as a result of an

illocution. In the work of Searle [89], five different types of speech acts are identified:

• Representatives: is an act commits the speaker to the truth of an expression.

• Directives: is an attempt to get the hearer to do something.

• Commissives: is an act commits the speaker to some course of action.

• Expressives: is an act expresses the mental state of a speaker.

• Declaratives: is an act effects the change of state.

In general, there are two components in a speech act: one is a performative verb (e.g.

“request”), while the other is the propositional content (e.g. “the desk is clean”). The

semantics of speech acts are defined using the precondition-delete-add list formalism of

planning research in [28]. Using this model, the mental states of agents are defined in

terms of beliefs and desires. Consider the semantics of the Request act where SPEAKER

requests HEARER to do action ACT in Table 2.3.

The first precondition states that a speaker doesn’t ask somebody to do something

unless he thinks they can do it. The second condition indicates that a speaker doesn’t
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Table 2.3: The Semantics of Request

Request(SPEAKER,HEARER,ACT)

precondition: (1) SPEAKER believes HEARER can do ACT;
(2) SPEAKER believes

HEARER believes HEARER can do ACT;
(3) SPEAKER believes SPEAKER wants ACT.

postcondition: (1) HEARER believes
SPEAKER believes SPEAKER wants ACT.

ask somebody unless he believes they can do it. The third condition shows that a

speaker doesn’t ask somebody unless the speaker wants it. The postcondition of this

act states that hearers are aware of the speaker’s desire.

Speech act theory inspires the development of Agent Communication Language

(ACL). An ACL contains three components: an ‘outer’ language (pragmatics) to ex-

press the primitives, an ‘inner’ language (syntax) to write the message, and vocabulary

(semantics) to describe the meaning of messages. A well-known ACL is “KQML” [25].

The Knowledge Query and Manipulation Language (KQML) is a high-level, message-

based communication language, which is developed in the project of Knowledge Sharing

Effort (KSE). There are three layers in a KQML message: the content layer, message

layer, and communication layer. The content layer contains the actual expression in

some languages. Sender and recipient can choose any languages they would like to share

knowledge. The message layer is used to encode a message which could contain the

type of content message or declaration message. A content message is used to describe

a speech act (e.g. query or assertion) that involves some sentences in a given content

language. A declaration message is used to provide information about the content mes-

sages that an agent will generate and would like to receive. The communication layer is

used by agents to exchange packages which are wrappers around messages that specify

communication attributes, such as the information of the sender and recipient.

KQML provides different kinds of performatives. For example, the performative ask-

if represents that a sender wants to know if the content is in the receiver’s knowledge

base. Those performatives in KQML are identified by reserved parameters. Table 2.4

summaries the reserved parameters and their meanings [57]. The semantics of each

performative can be defined in terms of preconditions which indicate the states for a

sender to send a performative and a receiver to receive and process it, postconditions

describe the states after the success of sending and processing messages, and completion

conditions indicate the final state of a conversation and the fulfillment of the original

intention of the performative [58].

Based on speech acts theory, the Foundation for Intelligent Physical Agents (FIPA)

has developed another standard language FIPA ACL. The message structure of FIPA
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Table 2.4: Reserved Parameters and Their Meanings in KQML

Keyword Meaning

:sender the actual sender of the performative
:receiveer the actual receiver of the performative
:from the origin of the performative in :content when for-

ward is used.
:to the final destination of the performative in :content

when forward is used.
:in-reply-to the expected label in a response to a previous message

(same as the value of the previous message).
:reply-with the expected label in a response to the current mes-

sage.
:language the name of the representation language of the :con-

tent.
:ontology the name of the ontology (e.g., set of term definitions)

assumed in the :content parameter.
:content the information about which the performative ex-

presses an attitude.

ACL is composed of a set of parameters, such as performative (Type of communicative

acts), sender (Initiator of the message), and content (Content of the message). FIPA

ACL has 22 performatives and the syntax of these performatives is similar to KQML.

The semantics of FIPA ACL are defined based on the mental attitudes of agents, such

as belief, desires and intensions, via the SL (Semantic Language). The meaning of

those performatives is given in terms of Feasibility Conditions (FPs) and Rational

Effects (REs). FPs represent the conditions that should be true when a sender can

send a message. REs describe the expected outcome of a performative. However, the

REs cannot be guaranteed from sending the message. The semantics of performative

request is defined as follows.

<i,request(j,A)>

FP: (and(B i (capable_of j A)))

(not (B i (I j (done A))))

RE: (done A)

The FP says i believes that j is capable of action A and does not believe that j intends

to do A. The RE describes that this performative is used to get A done. The details of

FIPA ACL can be found in [38]. The languages of KQML and FIPA ACL have been

widely applicable in multi-agent systems. However, agents participant in conversations

have too many choices to make an utterance by using these languages, and thus cause

the problem of state-space explosion for dialogues [73]. To avoid state-space explosion,

rule-governed interactions between two or more players has been studied and this led
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to the development of formal dialogue games.

2.4.1 Dialogue Games

Dialogue games are made up of a set of communicative acts and set of rules to determine

the sequence of different acts. In the well-known work of Walton and Krabbe [111], di-

alogues are categories into different types according to the initial situation of dialogues,

the personal aims of participants and the main goal of the dialogue. The six dialogue

types in this typology are: persuasion dialogues (where one participant persuades an-

other to resolve conflicts of opinion); inquiry dialogues (where participants collaborate

to find evidence or proof for specific knowledge); negotiation dialogues (where partici-

pants need to reach a deal that resolves their conflicting interests); information seeking

dialogues (where participants aim to acquire or provide knowledge); deliberation dia-

logues (where participants aim to make decisions about what actions to adopt); eristic

dialogues (where participants quarrel verbally to vent perceived grievances). The mix-

tures of different types of dialogues are called embedded dialogues. For example, in

an online trading scenario, the buyer needs to seek information from sellers, and then

the seller may need to persuade the buyer to buy a specific item by introducing some

features of this product.

The syntax of a dialogue games contains the utterances which agents can make and

the rules to determine the order of making utterances. The rules regarding of assertions

are also included in the syntax of a dialogue game, because these rules possibly influence

the order of utterances. These assertions given by participants are stored as a public

readable database which forms the commitment store of a dialogue game. An utterance

can be divided into two layers: the outer layer is made up based on the locutions and the

inner layer contains the topics of discussion. In the work of McBurrney and Parsons [71],

a framework has been proposed to represent the specification of a dialogue game.
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Chapter 3

Motivation Example and
Proposed Certification
Framework

Software agents are involved in buying and selling items or services in agent mediated e-

commerce systems. The success of an agent mediated e-commerce system relies on the

trustworthiness between agents. To meet the requirements of trustworthiness, game

theory mechanisms which guarantee desirable properties have been carried out. For

example, these mechanisms can guarantee that the e-commerce system is strategy-

proofness (which means that there is a dominant strategy for agents) or false-name-

proofness (which means that agents cannot benefit from submitting multiple bids under

false names). The next major challenge in agent mediated e-commerce systems is to

enable software agents to comprehend the rules and social norms which govern the

behavior of new institutions in open, heterogeneous environments. These facilitate

agents to be capable of making rational decisions in the marketplace. Existing work

has addressed interoperability at the communication level (with agent communication

languages such as FIPA-ACL [38], and RDF [55] to underpin recent developments

within the Semantic Web [15]) thus allowing agents to communicate, the decision of

whether or not the communication is meaningful is still an open challenge. Agents may

understand how to conduct their behavior in certain familiar scenarios, and strategically

bid in marketplaces that adhere to certain rules (e.g., an English or Dutch auction).

However, such strategies may not be applicable to other markets, such as those that

based on Vickrey auctions. Within an open and dynamic environment (such as e-

commerce), agents might encounter a variety of auction houses, which forms part of

an agent mediated e-commerce scenario. It is therefore necessary for the agent to be

able to acquire a deeper model of the marketplaces which agents engaged in (other

than simply relying in simple classifications). This enables agents rationally determine

whether or not they should engage in the marketplace.

Agents should be able to query and comprehend the rules that govern an auction
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house, and verify desirable properties such as privacy, security, and economics. This

research focuses on the economic properties, by looking at specifying and verifying

game-theoretic properties for the single item and multiple items online auctions. An

important game-theoretic property is strategy-proofness, which means the existence of

a dominant strategy for the players indicates a strategy that is optimal regardless of

the game configuration. For example, truthful bidding can be the dominant strategy

in certain auction settings. Section 3.1 introduces a verification example of Vickrey

auctions, and Section 3.2 describes a certification framework.

3.1 A Pilot Example: Verification in a Vickrey Auction

In a single item Vickrey auction, bidders simultaneously submit their bids to an auc-

tioneer. The winner of a Vickrey auction is the highest bidder and the payment is the

second-highest bid. In this section, the focus is expressing a mechanism (a Vickrey

auction) and game-theoretic proofs in a machine checkable formalism. We have used

Coq [105], an interactive theorem prover, to carry out the formalizations of a Vickrey

auction in Section 3.1.1. Then, different bidding strategies have been specified followed

by the proofs of a dominant strategy for each bidder in Section 3.1.2.

3.1.1 Formalization of a Vickrey Auction within Coq

Consider n bidders with values vi ≥ 0, i = 1, ..., n who are competing for one item. If

bidder i wins the item and pays p, then bidder i’s utility is vi − p. A formal definition

of a Vickrey auction is given here.

Definition 1. Given one item and n bidders, the rule of a Vickrey auction is as:

• Bidders make bids b = (b1, ..., bn) simultaneously and all these bids are stored in

a list.

• The highest bidder wins the item and pays the second highest bid.

• If there are more than one highest bidders, then the one that close to the head of

the list is selected as the winner and pays own bid.

To specify a single item auction, a type of Item is defined, with one member item

to indicate the item that was sold.

Inductive Item : Type := item.

The following objects are also defined as types: bidder ID, bid, valuation to represent

respectively the sets of agents, their bids, and their valuations. Note that both bid

and valuation are declared as natural number to restrict that each bidder should give

nonnegative values to bids and valuations in the auction.
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Definition bidder_ID := nat.

Definition bid := nat.

Definition valuation := nat.

We then describe an inductive relation HasBid binding agents with their bids and

provides one function getBid to return the bid for a given relation.

Inductive HasBid : Type :=

hasBid : bidder_ID -> bid -> HasBid.

Definition getBid (p : HasBid) : nat :=

match p with

| hasBid bidder bid => bid

end.

Another relation HasVal binding a valuation with an agent, and the function getVal

returns the value of a valuation for a given HasVal relation.

Inductive HasVal : Type :=

hasVal : bidder_ID -> valuation -> HasVal.

Definition getVal (p : HasVal) : nat :=

match p with

| hasVal bidder val => val

end.

In a Vickrey auction, each agent has three different strategies: bidding truthfully

(the bid given by an agent equals to its valuation), bidding beyond the valuation, and

bidding below the valuation. We define a strategy as a mapping from valuation to

bid.

Definition strategy := valuation -> bid.

The three bidding strategies are defined as propositions. The definition of truthful

bidding is strategy is truthful. In this definition, the input is a variable s with

type of strategy, while the output is a proposition that the bid of the strategy equals

to v.

Definition strategy_is_truthful (s: strategy) : Prop :=

forall v,

v = s v.

The definitions strategy is up bidding and strategy is below bidding defines the

strategies that bid beyond and below valuation, respectively.

24



Definition strategy_is_up_bidding (s: strategy) : Prop :=

forall v,

v < s v.

Definition strategy_is_below_bidding (s: strategy) : Prop :=

forall v,

v > s v.

Besides these three definitions for the bidding strategy in a Vickrey auction, we also

define a proposition strategy is not truthful represents non-truthful bidding.

Definition strategy_is_not_truthful (s: strategy) : Prop :=

forall v,

v <> s v.

In the following definition hasStrategy, the constructor has strategy has been ap-

plied to arguments bidder ID and strategy. This definition binds a bidder with a

specific strategy.

Inductive hasStrategy :Type :=

has_strategy : bidder_ID -> strategy -> hasStrategy.

To evaluate the payoffs of each agent in a Vickrey auction, we define the function

utility. This function has two inputs that represents the valuation and bid of an

agent and returns an integer. The approach to calculate the value of a utility will be

defined in another function eval utility.

Definition utility := valuation -> bid -> Z.

To compare the utility of each agent, we define a proposition utility better that

shows one utility u1 is better than the other utility u2.

Definition utility_better (u1 u2: utility) : Prop :=

forall v b,

u1 v b >= u2 v b.

One property that will be proved is that the utility of each agent is greater or equal

to zero in a Vickrey auction. The definition of utility nonnegative states that the

return value of this utility is nonnegative.

Definition utility_nonnegative (u1 : utility) : Prop :=

forall v b,

u1 v b >= 0.
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The winner of a Vickrey auction is the one with the highest bid, or if there is more

than one highest bidder, the one near the head of the bidding list will be the winner. We

define the recursive function get maximal bid to calculate the highest bid. The input

of this function is a list of strategy sl, which represents a list of bids that submitted

by every agents, and a variable v with type of valuation.

Fixpoint get_maximal_bid (sl: list strategy) (v: valuation): bid :=

match sl with

| nil => O

| cons s sl’ => let cb := s v in

let max_among_remains := (get_maximal_bid sl’ v) in

if (bge_nat cb max_among_remains)

then cb

else max_among_remains

end.

The function eval utility is defined to calculate the utility of an agent. In this

definition, s represents the strategy of an agent, while sl others contains all the

bidding strategies of other agents. If the bid given by this agent is greater than any

other bid, it will get the utility of vi − pi, where vi is the valuation of this agent, and

pi is the second highest bid. Otherwise, this agent will get utility of zero.

Definition eval_utility (s: strategy) (sl_others: list strategy) :

utility :=

fun (v: valuation) (b: bid)

=> let cb := s v in

let max_among_others := get_maximal_bid sl_others v in

if (bgt_nat cb max_among_others)

then ((Z.of_nat v) - (Z.of_nat max_among_others))

else 0.

3.1.2 Proof of Incentive Properties of a Vickrey Auction within Coq

The first property established in Coq is non-negative utility for all bidders.

Theorem 1. In a Vickrey auction, every truthtelling bidder is guaranteed non-negative

utility.

The related Coq formalization is as follows.

Theorem nonnegative_utility : forall (i : bidder_ID)

(s : strategy)(sl_others : list strategy),

s = truthful_strategy

-> utility_nonnegative (eval_utility s sl_others).
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Proof. In this theorem, s represents the strategy of a bidder, sl others is the strategy

of other bidders. Given s as the truthful bidding strategy in the premise, a bidder

will get non-negative utility. Function eval utility is used to calculate the utility of

a bidder. In this proof, each loser gets a utility of 0. If bidder i is the winner, then

its utility is vi − pi, where vi is the highest bid and pi is the second highest bid, thus

pi ≤ vi. Hence, vi − pi ≥ 0.

The second property established is that truthful bidding is a weakly dominant

strategy in a Vickrey auction.

Definition 2. In an auction, a strategy profile s∗i is weakly dominant strategy for

player i if

ui(s
∗
i , s−i) ≥ ui(si, s−i)∀si ∈ Si, s−i ∈ S−i

for some s−i ∈ S−i for any si 6= s∗i .

Definition 3. In an auction, s∗ ∈ S is a dominant strategy equilibrium if for

every player i ∈ N ,

ui(s
∗
i , s−i) ≥ ui(si, s−i)∀si ∈ Si, s−i ∈ S−i

.

Theorem 2. In a Vickrey auction, truthful bidding (bi = vi) is a weakly dominant

strategy.

The Coq formalization of this theorem is:

Theorem dominant_strategy:

forall (s1 s2: strategy) (bi vi : nat)

(sl_others : list strategy) (u1 u2: utility),

s1 = truthful_strategy

-> strategy_is_not_truthful s2

-> u1 = eval_utility s1 sl_others

-> u2 = eval_utility s2 sl_others

-> utility_better u1 u2.

In this theorem, we get two variables s1 and s2 with the type of strategy, two

natural number bi and vi represent the bidding and valuation of a bidder, the variable

sl others denotes a list of strategies while u1 and u2 are in the type of utility. We

have four premises in this theorem. First, s1 is a truthful bidding strategy. Second, s2

is not a truthful bidding strategy. Third, u1 is the utility with truthful bidding strategy

s1. The fourth premise means that u2 is the utility of untruthful bidding. Under these

premises, the theorem states that u1 is greater or equal to u2, i.e., the utility of truthful

bidding is better than untruthful bidding.
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Proof. The proof is implemented by case analysis. Suppose participant i bids in s1,

i.e. truthful bidding. There are two cases:

(1) i wins. This means that vi is the highest bid in the auction. As the definition of

eval utility, the value of u1 equals to vi subtracts the second highest bid. Suppose

i uses s2 to bid and gets utility of u2. There are two cases:

(a) i wins. Then u1 and u2 are equal.

(b) i loses. Then u2 becomes 0, which is less or equal to u1.

(2) i loses. This implies u1 equals to 0, and vi less than the highest bid. There are

also two cases for i to bid untruthfully:

(a) i loses. The value of u2 is 0, i.e. the same as u1.

(b) i wins. Bidder i submits a higher value and u2 becomes a non-positive value,

i.e. u2 less or equal to u1.

By applying to all bidders, truthful bidding constructs an equilibrium in weakly

dominant strategies.

Theorem 3. In a Vickrey auction, truthful bidding (bi = vi) is a weakly dominant

strategy. Hence b∗ = v is a dominant strategy equilibrium.

The Coq formalization of this theorem is:

Theorem dominant_strategy_equilibrium:

forall (i : bidder_ID)(v : nat)

(s1 s2: strategy)(sl_others : list strategy)

(u1 u2: utility) (h1 : hasStrategy)

(h2 : hasStrategy),

h1 = has_strategy i s1

-> h2 = has_strategy i s2

-> s1 = truthful_strategy

-> strategy_is_not_truthful s2

-> u1 = eval_utility s1 sl_others

-> u2 = eval_utility s2 sl_others

-> utility_better u1 u2.

The proof of this theorem is similar to the above theorem.

3.2 Certification Framework

In the above example, some desirable properties of a Vickrey auction within the proof

assistant Coq have been formalized and proved. This example illustrates the feasibility

of the idea that the economic properties of an auction can be constructed for future

certification by buyer agents. In order to effectively enable automatic checking of
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desirable properties, we need to take into account the fact that software agents have

limited computer resources and constrained in their reasoning. The main difficulty for

a software agent is to find the best possible or optimal bidding strategy on its own or

to optimize its utility out of various strategies in the same way as humans perform. To

address this difficulty, the specification of auction protocols and proofs are published

in a machine-readable formalism, and then automatic checking is facilitated by the

software agents which reduces the computational complexity. To achieve this, we rely

on the Proof-Carrying Code (PCC) idea as it allows us to shift the burden of proof

from the buyer agent to the auctioneer who can spend time to prove a claimed property

once for all. Thus it can be checked by any agent who is willing to join the auction

house.

The PCC is a paradigm that enables a computer system to automatically ensure

that a computer code provided by a foreign agent is safe for installation and execution.

A weakness of the original PCC was that the soundness of the verification condition

generator is not proved. To overcome this weakness, Foundational PCC (FPCC) [2]

provides us with stronger semantic foundations to PCC by generating verification con-

ditions directly from the operational semantics. Figure 3.1 illustrates our framework

that adapts FPCC to certify auction properties. At the producer or auctioneers side,

we have the specifications of the auction mechanism along with the proofs of desirable

properties in a machine-checkable formalism in the form of a Coq file. The certifica-

tion procedure works as follows. The buyer agent arriving at the auction house can

download its specification and the claimed proof of a desirable property. Then, the

buyer requests the proof checker coqhk, which is a standalone verifier for Coq proofs,

to the auctioneer. The auctioneer provides the address of the proof checker which is

stored by a trusted third party (e.g., the home page of Coq) to the buyer. After the

proof checker is installed to the consumer side, the buyer can perform all verifications

of claimed properties of the auction before deciding to join and with which bidding

strategy.

The objective of this work is to enable software agents in an open e-commerce system

to understand a published specification of a trading protocol, to request for a formal

or informal evidence of desirable properties, and automatically check those evidences.

Finally, agents decide whether or not to participate in the trading. Furthermore, agents

need to automatically composite web services to fulfill their requirements. To achieve

our research objective, the following issues should be addressed.

1. Machine understandable specifications of a set of trading protocols that related

to e-commerce systems. These trading protocols can be expressed as a format of

Web services.

2. Using a logical framework to formally specify trading protocols and provide proofs

of desirable properties of the trading protocols.
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Figure 3.1: The Adapted FPCC Certification Paradigm
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3. Mapping the original specification to the specification that expressed in the logical

framework.

4. An extension of the PCC paradigm that enables buyer agents to automatically

check the correctness of proofs that is constructed by the seller agents.

5. An interaction mechanism that supports automatically communication between

buyer agents and seller agents.

6. A mechanism that supports buyer agents to automatically composite Web services

that fulfill the requirements of a trading.

A certification framework which combines a series of techniques is proposed to

meet the above mentioned issues. The first issue is to use a machine-understandable

language, such as OWL-S, to describe the specification of auction mechanisms which

have been widely used in off-line and online trading. Secondly, the above specifica-

tion will be translated to another specification, which is formalized within Coq that

provides a meta-language to specify programs. The translation process preserves the

semantics of the given specification. Thirdly, we will construct the proofs of desirable

properties of the specification within the interactive theorem prover Coq. Fourthly,

we will build dialogue games using the agent development platform JADE to enable

automatic communication between buyer agents and auctioneer agents. The FPCC

paradigm will be integrated into the dialogue games to make buyer agents check the

correctness of proofs. At last, dialogue games will be applied to realize automatic

services composition in e-commerce systems.

3.3 Summary

In this chapter, some desirable properties of a Vickrey auction have been formalized

and proved within an interactive theorem prover Coq. This pivot example shows the

feasibility of verifying desirable properties of online trading mechanisms. Then the

certification framework has been proposed that combines a series of techniques such as

Semantic Web Services, Foundational Proof-Carrying Code (FPCC), interactive theo-

rem proving and dialogue games. It allows an auctioneer to publish the specification of

auction mechanisms using a machine-understandable language, and then the auctioneer

to translate the above specification to another specification which is formalized within

Coq; this translation preserves the semantics of the given specification. It allows the

auctioneer to construct proofs of desirable properties of a specification within Coq,

and to publish the auction mechanism along with the proofs of desirable properties. It

allows the potential buyer agent to read the published protocol, to make sense of it, and

at will, to check the proof of a given property by using a simple trusted checker, which

makes the automatic checking procedure computationally reasonable. The potential
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buyer makes its decision about whether or not to participate in the auction accord-

ing to the results of communication with the auctioneer. It allows the composition

of Semantic Web Services on the basis of communication between buyer agents and

auctioneers.

In the next chapter, the Semantic Web Service language OWL-S will be used to

describe a specification of an English auction, and then an imperative language that

preserve the semantics of OWL-S within Coq will be defined, followed by the trans-

lation of the specification from OWL-S to the imperative language, and the proof of

desirable properties of the specification.
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Chapter 4

Formal Specification and
Verification

A specification provides a high-level description of behaviors and properties of a system.

Compared to an informal specification which is represented in a non-mathematical

form, formal specifications provide a precise description of software systems by using

a language whose syntax and semantics are formally defined. The need of formal

definitions requires specification languages to express abstract and precise mathematical

concepts which can be drawn from set theory, logic and algebra. Formal specifications

provide an abstract view of systems which describes what a system should accomplish

and enable inferring interesting properties from the specification. The formal software

verification is to ensure a system behave according to its specification. One verification

approach is to use formal proofs to guarantee the properties of a specification. A sound

proof system can imply that a program meets its specification for all inputs. Another

advantage of formal verification is that the correctness of those proofs is machine-

checked.

We consider electronic markets based on single item auctions whose mechanisms

are described in machine readable formalism, e.g. OWL-S, so that software agents

can understand their rules. However, we would like to enable potential participants to

check that the auction house is trustworthy before entering it and bid for items on sale

by verifying desirable properties. To construct proofs, we have used the proof assistant

Coq. This implies that the auction mechanism needs to be transformed into Coq

descriptions in an automated fashion so that proofs can be developed from within Coq.

However, bugs in the transformation process may potentially invalidate the assurances

almost not gained by certifying certain desirable auction properties. Therefore it has

to be guaranteed that the transformed mechanism is semantically equivalent to the

original one.

There is already a large body of literature on certifying program transformations [61].

Leroy’s compositional approach in certifying a compiler is most relevant to this work:

certifying that all phases of the transformation are correct. In our case, we have de-
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fined the target language (a WHILE language) within Coq to mirror the input language

(OWL-S) and then have used a one to one mapping to establish the correctness of the

transformations. This is carried out through using natural semantics of computer pro-

grams to establish that the semantics of the target is equivalent to that of the source

program. Besides the requirement to have a semantics-preserving transformation, we

would like to show how to use the Hoare Logic to prove desirable auction properties

from within Coq. This approach is different from the pivot example in Chapter 3,

wherein we have relied upon Coq’s constructive approach to carry out the verification

of some game-theoretic properties of a Vickrey auction mechanism.

In terms of prototype implementation, we have used Antlr [84] to automatically

transform an OWL-S auction description into a specified Coq imperative language.

Antlr is a widely used tool to read, process, or translate structured data or texts

such as source computer programs. To fully certify the program translation step in

the verification approach, we can proceed as in Leroy’s paper [61] by implementing all

transformation phases within Coq and the Ocaml programming language. However,

we would like to point out at least an example of such a certifying compiler and focus

more on verifying auction properties. Structurally, our transformation is a one-to-one

mapping between two kinds of WHILE languages and the background information we

have described in Section 2.3.2 is enough to understand the semantics-preserving nature

of our transformation framework. Besides, note that Leroy’s approach [61] separates

the algorithmic and implementation issues in the certification framework.

In this chapter, the first to be introduced is an auction model and the related

machine readable description of this model using OWL-S (“OWL for Services”) in

Section 4.1. The translation of an OWL-S specification into a Coq specification will

be explained in Section 4.2. In Section 4.3, the certification of desirable properties will

be described. The related work is presented in Section 4.4 and the summary of this

chapter is in Section 4.5.

4.1 Auction Model and Description

This section will introduce the background information of game theoretic properties

in auctions, and provide the description of an English auction using a Semantic Web

Service description language OWL-S.

4.1.1 Auction Model and Incentive Properties

We consider single item online auctions that run over a fixed time period in which

the seller may have reserve revenue under which items cannot be sold. This reserve

revenue can typically be the reserve price for the item on sale. After a bid, the seller

waits for some time before accepting the bid if it yields a revenue that is greater or
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equal to the reserve one or waits for the expiry time before deciding whether to reject

or accept the bid. In this work, we aim at describing online auctions by using the

OWL-S specification language and then translate the resulting description into Coq

specifications in order to verify some desirable auction properties. These properties

are used to ensure trust in the auction house and therefore make it more attractive to

potential buyers or profitable for the seller. For example, an online buyer may want to

have a guarantee that the auction is always carried out as specified or that the auction

is free from collusion. Some of those properties can be formalized and proved using

theorem provers. Therefore, the focus will be on the following incentive properties.

• For a buyer participant, bidding up to its valuation is the optimal strategy.

• The highest bidder wins the auction.

• The payment is indeed the highest bid.

4.1.2 Machine Readable Description

Online auctions for software agents are a good application wherein data can be pro-

cessed by automated reasoning tools. Logic-based languages are useful tools to model

and reason about systems. They allow researchers to specify behavioral requirements

of components of a system and to formulate desirable properties for an individual com-

ponent or the entire system. The Semantic Web [15] enables us to describe and reason

about Web services by using ontologies. Ontologies are used to formally describe the

semantics of terms representing an area of knowledge and give explicit meaning to the

information, thus allowing for automated reasoning, semantic search and knowledge

management in a specific area of knowledge. OWL [78], a W3C standard, is a descrip-

tion logic-based language that enables researcher to describe ontologies by using basic

constructs such as concept definitions and relations between them. It has been used in

a wide range of areas including biology, medicine, or aerospace [10, 30]. In this work,

it is advocated to use Semantic Web for at least the following reasons.

• It is expressive enough so that a range of auction mechanisms can be described

in it.

• It provides us with a machine readable formalism enabling software agents to

understand auction mechanisms.

• There is a scope for semantics interoperability for heterogeneous software agents

engaging in an auction.

An auction is viewed as a Web service with enough logical attachments, enabling a

software agent to understand the auction rules and to carry out verifications of claimed

properties.
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Logic-based languages are usually chosen for their expressivity or on the fact that

their underlying logic is sound, complete or decidable. Expressivity provides powerful

constructs to describe things that may not be otherwise expressed. Soundness ensures

that if a property φ can be deduced from a system (a set of statements) Γ (Γ ` φ), then

φ is true as long as Γ is satisfied (Γ |= φ). Completeness states that any true statement

can be established by proof steps in the logic’s calculus. Formally Γ |= φ implies Γ ` φ.

A logic is decidable if we can construct a terminating algorithm that decides for any

well-formed formula if it is true or false.

To enable automated reasoning in the auction system, we have used the ontology

language OWL-S, which is corresponding to OWL, to build up the auction ontology.

See [8] for further details.

The OWL-S Description Language

In this section, we argue that we can describe online auction houses as Web services

by using the OWL-S language, which provides us with machine readable formalism

and logical reasoning capabilities for software agents. We will start by showing that

OWL-S is expressive enough to enable us to describe online auction mechanisms.

To describe online auctions, we may ask why not use XML (Extensible Markup

Language) as a description language for this task. XML provides a syntactic approach

but no logical basis for reasoning. The meaning of the relationships between XML ele-

ments cannot be encoded. A language that builds upon XML and allows for reasoning

is the OWL-DL (Web Ontology Language), which is based on DL (Description Logic).

Description logics are a family of logics that are decidable fragments of first-order logic.

OWL-DL is sound, complete, and decidable but with limited expressivity. For exam-

ple, we cannot express arithmetic statements that ‘The winner’s utility is the value of

valuation minus payment’.

ex
p

ressiven
ess

XML: Syntactic, No Logic
“Agent buyer has bid 100.”
OWL-DL: Description Logic
sound, complete, decidable
“Auction A has at least 2 buyers.”
SWRL: OWL-DL + RuleML (including
MathML and Horn rules)
sound, complete, undecidable
“Utility = Valuation - Payment”
OWL-S: SWRL + Programming Constructs
sound, complete, undecidable
“While newbid >currentbid Do ”

To extend OWL-DL, the SWRL (Semantic Web Rule Language) combines OWL-

DL with RuleML that includes among others, MathML and Horn rules. As a result,

SWRL is more expressive than OWL-DL but SWRL is not decidable [86]. However,
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in SWRL, we cannot express the statement that ‘while the newbid is greater than

the currentbid do’. Furthermore, auction mechanisms can be viewed as functions with

inputs, outputs, preconditions or post-conditions. They may contain complex program-

ming constructs such as branching or iterations. OWL-S enables us to describe online

auctions as Web Services.

An OWL-S description is mainly composed of a service profile for advertising and

discovering services; a process model, which describes the operation of a service; and

the grounding, which specifies how to access a service. In our case, the process contains

information about inputs, outputs, and a natural language description of the auction,

e.g., this is an English auction. The grounding contains information on the service

location so that an agent can run the service by using the OWL-S API. The process

model is described as follows.

define composite process Auction

(inputs: (...)

outputs: (...)

preconditions: (...)

results: (...)

)

{ // Process’s Body

WinDetermAlgo(...);

PayeAndUtil(...) }

<process:CompositeProcess rdf:ID="EnglishAuction">

<process:hasInput> ...

<process:hasOutput>

<process:hasPrecondition> ...

<process:hasResult> ...

...

<process:CompositeProcess rdf:ID="WinDetermAlgo"> ...

<process:CompositeProcess rdf:ID="PayeAndUtil"> ...

</process:CompositeProcess>

The auction process model is basically composed of inputs, outputs, preconditions,

results and a composition of two processes, which are the winner determination algo-

rithm WinDetermAlgo and PayeAndUtil that calculates the payments as well as the

utilities for the buyer agents. The following sample description provides a more detailed

example from WinDetermAlgo. It shows that is if CurrentBid is less than NewBid, then

the value of CurrentBid and CurrentWinner will be updated.

<process:If-Then-Else rdf:ID="If-Then-Else">

<process:ifCondition>

<expr:SWRL-Condition>

<expr:expressionObject>

<swrl:AtomList>

<rdf:first>

<swrl:BuiltinAtom>

<swrl:builtin rdf:resource="&swrlb;#lessThan"/>

<swrl:arguments>

<rdf:List>

<rdf:first rdf:resource="#CurrentBid"/>

<rdf:rest>

<rdf:List>

<rdf:first rdf:resource="#NewBid"/>

<rdf:rest rdf:resource="&rdf;#nil"/>

</rdf:List>

</rdf:rest>

</rdf:List>

</swrl:arguments>

</swrl:BuiltinAtom>

</rdf:first>

<rdf:rest rdf:resource="&rdf;#nil"/>

</swrl:AtomList>

</expr:expressionObject>

</expr:SWRL-Condition>

</process:ifCondition>

<process:then>
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<process:Sequence>

<process:components>

<process:ControlConstructList>

<list:first rdf:resource="#UpdateCurrentBid"/>

<rdf:rest>

<rdf:List>

<rdf:first rdf:resource="#UpdateCurrentWinner"/>

<rdf:rest rdf:resource="&rdf;#nil"/>

</rdf:List>

</rdf:rest>

</process:ControlConstructList>

</process:components>

</process:Sequence>

</process:then>

<process:else>

<process:Sequence>

<process:components>

<process:ControlConstructList>

<list:first rdf:resource="#Skip"/>

<list:rest rdf:resource="&list;#nil"/>

</process:ControlConstructList>

</process:components>

</process:Sequence>

</process:else>

</process:If-Then-Else>

4.2 Automated Program Translation

In Section 4.1.2, we have sketched how online auction mechanisms can be described

using the OWL-S description language in order to have machine-understandable proto-

cols by software agents. Furthermore, we have illustrated [9] that auction mechanisms

can be specified within Coq so as to develop machine-checkable proofs of desirable

mechanism properties that can be automatically verified by software agents [9]. To

bridge the gap between these two processes, we have used Antlr to systematically

transform OWL-S code into Coq specifications by

1. Identifying a subset of the OWL-S language formed by key constructs used in

our description of auction mechanisms; this basically mirrors a WHILE-language

for imperative programming.

2. Translating these OWL-S constructs into a tailored subset of Coq specifications

so that an OWL-S program or logical formula can be transformed into a Coq

one in an automated fashion.

This translation is semantics-preserving since it is a one-to-one mapping from the source

language (a subset of OWL-S) into the target language (a specialized Coq WHILE-

language).

4.2.1 Translation Architecture

The structure of the translator is an Antlr grammar file (owlsmall.g), a Java class

(Olws2Coq.java) that transforms an OWL-S parse tree into a valid Coq parse tree
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and a main program that launches the generated parser and the parse tree transformer

for an input OWL-S code.

Antlr [84] is a powerful tool that takes as input a formal language description or

EBNF grammar to generate a parser for that language along with tree-walkers that can

be used to visit the nodes of those trees and run application-specific code. For an input

code in the input language, it generates appropriate representations as parse trees that

can be transformed into parse trees for a target language and be unparsed or pretty-

printed. Antlr parsers use the alleged Adaptive LL(*) that performs a just-in-time

analysis of the input grammar in lieu of analyzing it statically before execution. It is a

widely used tool to read, process, or translate structured data or texts such as source

computer programs.

We have proceeded by translating an OWL-S process model, which includes vari-

able declarations, inputs, outputs, preconditions, results, and IF and WHILE con-

structs, into the target language. In the following diagram, we illustrate how the

transformation can preserve the semantics of the original mechanism: a mechanism M,

written in OWL-S, is translated into a COQ imperative language description and we

would like to ensure that the semantics of the target is equivalent to that of the source

code. In this way, true or false properties that are established from within Coq can be

inferred back into the OWL-S description.

MOWL-S

Semantics

��

Translation //MCoq

Semantics

��

JMOWL-SK JMCoqK

Syntax and Semantics of the Coq Imperative language

We have used Coq as a meta-language to define the syntax and semantics for the

simple imperative language described in Section 2.3.2. Let us start by defining few

basic variables to be used in future definitions. A bidder is defined as a type and the

relation bidderpair binds a bidder with a bid, which is a natural number.

Variable bidder : Type.

Inductive bidderpair : Type :=

bpair : bidder -> nat -> bidderpair.

Variables are represented by identifiers Id that are mapped into natural numbers in

an obvious and incremental way. For simplicity, we assume that all variables are global

and this does not conflict with the notion of variable scope in OWL-S.

Inductive id : Type :=

Id : nat -> id.
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The state of all variables at some point in the execution of a program is represented
as a mapping from identifiers to natural numbers.

Definition state := id -> nat.

After a variable and a state are defined, the arithmetic and Boolean expressions

are defined. Each definition is composed of two functions. One function is to define

the syntax and the other is to define the semantics. The syntax of the arithmetic

expressions contains basic data types (e.g. bidderpair (ABidderp), numbers (ANum) and

identifier (AId)), arithmetic expressions (e.g., addition (APlus), subtraction (AMinus)

and multiplication (AMult)) and operations on a List data structure (e.g., AHeadb,

ATail, ACons and ANil). The semantics of these mathematical operations are defined

as a relational function. For example, the operation AHeadb returns the bid of the first

bidder in a list.

The syntax of the Boolean expressions defines two basic types: True (BTrue) and

False (BFalse). It also contains the syntax of comparison operators, such as equality

(BEq), less than (BLt) and negation (BNot). Another term in this syntax is BIsCons,

which is used to check whether a list is empty or not. The semantics for the Boolean

expressions are also defined as a relational function. For readability, we do not show the

Coq code for these two expressions. We finally define the syntax of our mini-language as

in the Coq definition of com below for commands such as skip, assignment, conditional

statements, sequences, and loops. To ease up the presentation, we have introduced the

Notation declarations to abbreviate these commands.

Inductive com : Type :=

| CSkip : com

| CAsgn : id -> aexp -> com

| CSeq : com -> com -> com

| CIf : bexp -> com -> com -> com

| CWhile : bexp -> com -> com

| CRepeat : com -> bexp -> com.

Notation "’SKIP’" :=

CSkip.

Notation "c1 ; c2" :=

(CSeq c1 c2) (at level 80, right associativity).

Notation "X ’::=’ a" :=

(CAsgn X a) (at level 60).

Notation "’WHILE’ b ’DO’ c ’END’" :=

(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=

(CIf e1 e2 e3) (at level 80, right associativity).

Notation "’REPEAT’ e1 ’UNTIL’ b2 ’END’" :=

(CRepeat e1 b2) (at level 80, right associativity).

The following definition ceval defines the semantics of commands in our Coq

imperative language. For example, ESeq means that the state will change from st to

st’ after executing command c1, and after running command c2, the state moves to

st’’.
Inductive ceval : state -> com -> state -> Prop :=

| ESkip : forall st,

ceval st SKIP st

| EAss : forall st a1 n X,

aeval st a1 = n ->

ceval st (X ::= a1) (update st X n)

| ESeq : forall c1 c2 st st’ st’’,

ceval st c1 st’ ->

ceval st’ c2 st’’ ->

ceval st (c1 ; c2) st’’

...
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Since we have defined the syntax and semantics of all the components of our Coq

imperative language, we can proceed by showing how we have translated the OWL-S

into the Coq descriptions.

Translating Pre- and Post- conditions and Effect

Hoare Logic is used as a paradigm to implement program verification. On the one

hand, it provides a way to describe the pre/post conditions of programs by defining

Hoare triples. On the other hand, it provides compositional proof rules to prove the

validity of Hoare triples. To build up the Hoare triples, we need to make assertions

about properties that hold during the execution of a program. An Assertion is defined

as a proposition indexed by a state.

Definition Assertion := state -> Prop.

A Hoare triple is composed of three components: the precondition P, command c

and post-condition Q. As recalled in Section 2.3.2, a Hoare triple {P} c {Q} is valid iff

the claimed relation among P, c and Q is true. This means that if a command c starts

in a state where P is true, it will move to a state wherein Q is true when c terminates.

Definition hoare_triple (P:Assertion)

(c:com) (Q:Assertion) : Prop :=

forall st st’,

c / st || st’ ->

P st ->

Q st’.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q) (at level 90, c at next level).

The proof rules of Hoare logic provide a compositional way to prove the validity

of Hoare triples. For each command that was defined in com, we have constructed its

inference rule in the usual way. These inference rules are used to prove the desirable

property in Section 4.3. The precondition and effect in OWL-S is mapped to the

precondition and postcondition of Hoare triples, respectively.

Translating SWRL into our Coq Imperative Language

The Semantic Web Rule Language (SWRL) is a proposed language to express rules

in the Semantic Web. SWRL is used to represent the pre/post-conditions in OWL-S,

and it is also used to express comparison and arithmetic operations. In our project,

we have just selected a subset of the SWRL, which are used to build up the auction

mechanism. The translation of these operations into our Coq imperative language is

shown in Table 4.1.
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Table 4.1: The Mapping of SWRL and Coq definitions

SWRL Coq definitions

Comparison
swrlb:equal

swrlb:lessThan

BEq

BLt

Arithmetic Operations
swrlb:add

swrlb:subtract

swrlb:multiply

APlus

AMinus

AMult

List Operations
swrlb:listConcat

swrlb:rest

swrlb:empty

Acons

ATail

BIsCons

To illustrate this translation, let us consider the addition of 5 and 3. This operation

can be expressed as swrlb:add(?x,5,3) in SWRL, while the related Coq imperative

language formula should be X ::= (APlus (ANum 5) (ANum 3)).

Translating Variable Declarations

In OWL-S, variable declarations are part of Input, Output and Local. As mentioned

in the OWL-S standards document, the variables of input, output and local have the

same scope as the entire process they occur in. The grammar of these three elements

is defined as follows.

<!-- inputs -->

inputs ::= ’<process:hasInput>’

input ’</process:hasInput>’ inputs;

input ::= ’<process:Input

rdf:ID=’ quotedString ’>’

parameterType ’</process:Input>’;

<!-- outputs -->

outputs ::= ’<process:hasOutput>’

output ’</process:hasOutput>’ outputs;

output ::= ’<process:Output

rdf:ID=’ quotedString ’>’

parameterType ’</process:Output>’;

<!-- locals -->

locals ::= ’<process:hasOutput>’

local ’</process:hasOutput>’ locals;

local ::= ’<process:Loc

rdf:ID=’ quotedString ’>’

parameterType ’</process:Loc>’;

parameterType ::= ’<process:parameterType

rdf:datatype=’ xsdURI ’>’

type ’</process:parameterType>’;

The keyword type in the line of parameterType, could be any XML data type or

the type of objects that are defined as an OWL Class. The corresponding variable

declaration in our Coq imperative language is defined as:
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Definition VARIABLE : id := Id NUM.

In this declaration, VARIABLE is the variable name and NUM is a unique identifier for

this variable.

Translating an Assignment

The OWL-S assignment operation is defined as an element of data flow, output binding,

Set or Produce operations. Here, we give one example of how we map an output binding

to an assignment operation in our Coq imperative language. The grammar of an output

binding can be described as below.

<!-- OutputBinding -->

OutputBinding ::= ’<process:OutputBinding>’

toVar valueSource

’<process:OutputBinding>’ OutputBinding;

toVar ::= ’<process:toVar

rdf:resource=’ quotedString ’/>’;

valueSource ::= ’<process:ValueOf>’

fromProcess theVar’</process:ValueOf>’;

fromProcess ::= ’<process:fromProcess

rdf:resource="&process;#ThisPerform"/>’;

theVar ::= ’<process:theVar

rdf:resource=’ quotedString ’/>’;

The keyword quotedString in the line of theVar is defined as the combination of

characters. The related assignment operation in our Coq imperative language is in the

format of ‘‘X ’::=’ a’’. The pre- and post- conditions of an OWL-S description

are translated to comments in our Coq imperative language. Since we have defined

the Hoare Logic rules in Coq, when we develop a proof, we can introduce the related

pre- or post- conditions to this proof and verify their correctness for example.

Translating Control Constructs

Composite processes in OWL-S can be decomposed into atomic processes by us-

ing control constructs. OWL-S contains ten control constructs including Sequence,

Split, Choice, If-Then-Else and Repeat-While. To give an idea of the translation of

these complex structures, we describe how we have carried out the translation of the

If-Then-Else and Repeat-While control constructs. The grammar of the control

constructs If-Then-Else and Repeat-While is defined as follows.

<!-- If-Then-Else -->

ifthenelse ::= ’<process:composedOf>’
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’<process:If-Then-Else

rdf:ID=’ quotedString ’>’

if then else

’</process:If-Then-Else>’

’</process:composedOf>’;

if ::= ’<process:ifCondition>’

SWRL-Condition ’</process:ifCondition>’;

then ::= ’<process:then>’

ControlConstruct ’</process:then>’;

else ::= ’<process:else>’

ControlConstruct ’</process:else>’;

<!-- Repeat-While -->

repeatWhile ::= ’<process:Repeat-While

rdf:ID=’ quotedString ’>’

whileCondition whileProcess

’</process:Repeat-While>’ ;

whileCondition ::= ’<process:whileCondition>’

SWRL-Condition ’</process:whileCondition>’;

whileProcess ::= ’<process:whileProcess

rdf:resource=’ quotedString ’/>’;

The keyword SWRL-Condition is the condition that is written in SWRL, and

ControlConstruct represents the combination of control constructs. The related syn-

tax of the branching and while commands in our Coq imperative language are defined

respectively as follows.

’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’

’WHILE’ b ’DO’ c ’END’

4.3 Certifying Desirable Properties

In this section, we will present a sample code which is written using previously de-

fined imperative language for an English auction, and then provide the proofs of some

incentive properties.

4.3.1 Proof Development

A well-defined auction mechanism can be viewed as a function that maps a set of

typed agents into outcomes characterized by utilities usually defined as linear func-

tions. Not only, we need to specify rules and properties but we also need to carry out

some calculations. The constructive approach provided by Coq offers possibilities to

describe auctions along with desirable properties and prove them. To illustrate how

we can specify an auction within Coq, let us consider the English auction example. In

the sample code of Table 4.2, ListBP is a list of buyers with their own bid variable.

CurrentWinner and CurrentBid are two variables to store the information of buyers

and their bids. NewBuyer is the buyer and NewBid is the bid of this buyer in one round

of the auction. Function AHeadBuyer is used to find the first buyer in the bidding list,

44



while function AHeadBid is used to find the bid of the first buyer. The third function

ATail returns the tail of a list. The auction runs from the first bidder in the bidders’

list to the last bidder of the list. In each round, a bidder, who does not want to submit

a bid is supposed to have a lower bid for the round. This way, we can simulate the

English auction.

Table 4.2: The Sample Code of an English Auction

(1) Definition ListBP : id := Id 0.

(2) Definition CurrentBid : id := Id 1.

(3) Definition CurrentWinner : id := Id 2.

(4) Definition NewBuyer : id := Id 3.

(5) Definition NewBid : id := Id 4.

(6) Definition sample_englishAuction :=

(7) WHILE BIsCons (AId ListBP) DO

(8) NewBuyer ::= AHeadBuyer (AId ListBP);

(9) NewBid ::= AHeadBid (AId ListBP);

(10) IFB (BLt (AId CurrentBid )(AId NewBid)) THEN

(11) CurrentBid ::= (AId NewBid);

(12) CurrentWinner ::= (AId NewBuyer)

(13) ELSE

(14) SKIP

(15) FI;

(16) ListBP ::= ATail (AId ListBP)

(17) END.

Using this program, we have proved the following desirable properties: the payment

is equal to the highest bid, and the winner has the highest bid. To construct these

proofs, we need to define few functions and prove some lemmas. The function appe is

used to add an element to the end of a list:

Fixpoint appe {X:Type} (l:list X) (v:X) : (list X) :=

match l with

| nil => [v]

| cons h t => h :: (appe t v)

end.

We have proved the following lemma appe equation, which states that given a list

x, an element h and another list y; the result of the operation appe x h ++ y is equal

to x ++ h :: y, wherein ++ represents the traditional ‘append’ operation and :: the

usual ‘cons’ operation.

Lemma 1 (appe equation). forall (A:Type) (h:A) (x y : list A),

appe x h ++ y = x ++ h :: y.

Proof. The proof is by induction on list x. Firstly, we show the lemma is true when x

is nil, then we show it is true when x is not empty.

The function max is defined to find the maximum bid in a bidding list. Two lemmas

are proved for the function max. The lemma max one states the following: given the

highest bid cb in the current list p and a new bid whose value comes from a bidderpair
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h, if the value of the new bid is greater than cb, then it becomes the highest bid in the

resulting list (appe p h).

Lemma 2 (max one). forall (cb:nat) (p: list bidderpair) (h:bidderpair),

cb = max p, cb < getbid h -> getbid h = max (appe p h).

Proof. The proof uses the fact that cb is the maximum value in the list of p and h is

a new bid which is greater than cb, then h is the maximum value in the new list.

We also prove the following lemma max two, which states that given the highest bid

cb in the current list p and a new bid from h; if cb is not less than this bid, then cb is

the highest bid in the resulting list (appe p h).

Lemma 3 (max two). forall (cb:nat) (p: list bidderpair) (h:bidderpair),

cb = max p, ~cb < getbid h -> cb = max (appe p h).

Proof. The proof uses the fact that cb is the maximum value in the list of p and h is

a new bid which is less than cb, then cb is the maximum value in the new list.

We now explain our need of the predicate appear in, which is defined to state

whether a given element appears in a list. Two lemmas on the appear in were proved.

Lemma 4 shows that an element e appears in the resulting list (appe l e). Lemma 5

shows that if an element e appears in list l, then we can deduce that e appears in the

resulting list (appe l b).

Lemma 4 (appears in snoc1). forall e l, appear_in e (appe l e).

Proof. The proof follows from the definition of appear in.

Lemma 5 (appears in snoc2). forall e b l,

appear_in e l ->

appear_in e (appe l b).

Proof. The proof follows from the definition of appear in.

In the following section, we will provide the proofs of several theorems.

Theorem 4. In an English auction, the payment equals to the highest bid.

Theorem 5. In an English auction, the winner has the highest bid.

The proofs of these two theorems are carried out using Hoare-style calculus and are

shown in Table 4.3.

Table 4.3 illustrates a Coq proof that in the end of the English auction, the value of

CurrentBid is the highest bid and CurrentWinner has CurrentBid. By assigning the

value of CurrentBid to a payment variable and CurrentWinner to a variable, we can

46



Table 4.3: Proof Sketch of a Sample of an English Auction

(1) {{[(0,0)]::ListBP = l ∧ CurrentBid = 0 ∧ CurrentWinner = 0 ∧ NewBid = 0 ∧ NewBuyer = 0}}
(2) {{exists p, p++X=l ∧ CurrentBid = (max p) ∧ appear in (CurrentWinner,CurrentBid) p}}

WHILE BIsCons (AId ListBP) DO

(3) {{exists p, p++X=l ∧ CurrentBid = (max p) ∧ appear in (CurrentWinner,CurrentBid) p

∧ (BIsCons (AId ListBP))}}
(4) {{exists p, p++X=l ∧ CurrentBid = (max p) ∧ appear in (CurrentWinner,CurrentBid) p

∧ AHeadBuyer ListBP = AHeadBuyer ListBP ∧ AHeadBid ListBP = AHeadBid ListBP

∧ (BIsCons (AId ListBP))}}
NewBuyer ::= AHeadBuyer (AId ListBP);

(5) {{exists p, p++X=l ∧ CurrentBid = (max p) ∧ appear in (CurrentWinner,CurrentBid) p

∧ NewBuyer = AHeadBuyer ListBP ∧ AHeadBid ListBP = AHeadBid ListBP

∧ (BIsCons (AId ListBP))}}
NewBid ::= AHeadBid (AId ListBP);

(6) {{exists p, p++X=l ∧ CurrentBid = (max p) ∧ appear in (CurrentWinner,CurrentBid) p

∧ NewBuyer = AHeadBuyer ListBP ∧ NewBid = AHeadBid ListBP

∧ (BIsCons (AId ListBP))}}
IFB (BLt (AId CurrentBid) (AId newBid)) THEN

(7) {{exists p, p++X=l ∧ CurrentBid = (max p) ∧ appear in (CurrentWinner,CurrentBid) p

∧ NewBuyer = AHeadBuyer ListBP ∧ NewBid = AHeadBid ListBP

∧ (BIsCons (AId ListBP)) ∧ (BLt (AId CurrentBid) (AId newBid))}}
(8) {{exists p, p++tail X=l ∧ NewBid = (max p) ∧ appear in (NewBuyer,NewBid) p}}

CurrentBid ::= (AId NewBid)

(9) {{exists p, p++tail X=l ∧ CurrentBid = (max p) ∧ appear in (NewBuyer,CurrentBid) p}}
CurrentWinner ::= (AId NewBuyer)

(10) {{exists p, p++tail X=l ∧ CurrentBid = (max p) ∧ appear in (CurrentWinner,CurrentBid) p}}
ELSE

(11) {{exists p, p++X=l ∧ CurrentBid = (max p) ∧ appear in (CurrentWinner,CurrentBid) p

∧ NewBuyer = AHeadBuyer ListBP ∧ NewBid = AHeadBid ListBP

∧ (BIsCons (AId ListBP)) ∧ !(BLt (AId CurrentBid) (AId newBid))}}
(12) {{exists p, p++tail X=l ∧ CurrentBid = (max p) ∧ appear in (CurrentWinner,CurrentBid) p}}

SKIP

(13) {{exists p, p++tail X=l ∧ CurrentBid = (max p) ∧ appear in (CurrentWinner,CurrentBid) p}}
FI;

(14) {{exists p, p++tail X=l ∧ CurrentBid = (max p) ∧ appear in (CurrentWinner,CurrentBid) p}}
ListBP ::= ATail (AId ListBP)

(15) {{exists p, p++X=l ∧ CurrentBid = (max p) ∧ appear in (CurrentWinner,CurrentBid) p}}
END.

(16) {{exists p, p++X=l ∧ CurrentBid = (max p) ∧ appear in (CurrentWinner,CurrentBid) p

∧ !(BIsCons (AId ListBP))}}
(17) {{CurrentBid = (max l) ∧ appear in (CurrentWinner,CurrentBid) l}}
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establish Theorem 4 and Theorem 5. In the following paragraph, we have explained

the proof steps in Table 4.3.

The preconditions of this program, which is shown in line (1), are that ListBP

is a bidding list, and that all the values in ListBP are stored to another list l by

adding a default bidderpair (0,0) to the head of ListBP. All other variables in the

precondition have default value 0. The post conditions of this program are 1) the final

value of CurrentBid is the highest bid of the original list l, and 2) the bidderpair

(CurrentWinner, CurrentBid) appears in the original list l as in line (17). The

loop invariant in this proof is: exists p, p++ListBP=l ∧ CurrentBid = max p ∧
appear in (CurrentWinner,CurrentBid) p, which states that at each iteration of

the loop, the original list l is equal to the append of the current value of ListBP and

some other list p that keeps track of information from the original state. To satisfy

the loop invariant, a function named appe is defined to add the head of ListBP to the

end of p. The preconditions of the inner if-sentence in line (6), are the combinations

of loop invariant, the while guard and two equalities that are introduced from the two

assignments that are in line (8) and (9) of Table 4.2. The proof in the if-sentence is

branched as the guard holds in line (7) and not holds in line (11). Line (2) is implied

from line (1), while line (17) is implied from line (16). To indicate that the payment is

the highest bid, we just need to add an assignment Payment ::= (AId CurrentBid)

to set the value of Payment as CurrentBid. By adding another assignment Winner

::= (AId CurrentWinner), we can deduce that the winner has the highest bid. Note

that if a property is proven from within Coq, then this property holds in our OWL-S

specification since the translation from OWL-S to Coq is sound and complete.

Then, we have implemented the proof of a weakly dominant strategy in an English

auction. The definition of weakly dominant strategy is refer to Definition 2 in Sec-

tion 3.1.2. The utility of the winner in an English auction is defined as ui = vi − pi,
where pi is the payment, which is equal to the final bid of i. Other participants’ utility

is 0. There exists a dominant strategy in the English auction. The proof of this theorem

is constructed by different cases.

Theorem 6. In an English auction, bidding up to its valuation (bi ≤ vi) is a weakly

dominant strategy for an agent.

Proof. Suppose participant i’s valuation is vi and its bidding is bi. The second highest

bid in this auction is shb. There are two strategies for each participant: one is bidding

up to its valuation, i.e. bi ≤ vi; the other is bidding beyond its valuation, i.e. bi > vi.

There are two cases in this proof:

1. i wins. There are two cases in this condition.

(a) Participant i wins by using either strategy. However, the utility of bid beyond its
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valuation (bi > vi) is ui = vi− bi, which is a negative value, while the utility of the

other strategy (bi <= vi) is non-negative value.

(b) Participant i wins by using the strategy of bid beyond its valuation and its valuation

is less than the second highest bid, i.e. bi > shb > vi. The utility of i is negative

when it bids beyond its valuation, while the utility of bid up to its valuation is 0.

2. i loses. Participant i gets utility of 0 by using either strategy.

In the table of 4.4, we only display the proof sketch of case (a). It shows that if one

agent wins, the utility of bid up to its valuation is better than bid beyond its valuation,

i.e. U2 >= U1. The proof of other cases has been constructed in a similar way. In

this program, V represents the valuation, P is the payment of the winner and shb is

the second highest bid in an English auction. We start with the outer precondition in

(1) and (8). Following hoare if rule and adding the postcondition in (4) and (7), we

conjoin the precondition (1) with the guard of the conditional in the if construct to

obtain (2). Then, we conjoin (1) with the negated guard of the conditional to obtain

(5). Substitutions of U1 and U2 are used to generate (3) and (6). Finally, we deduce

(3) from (2), and deduce (6) from (5).

Table 4.4: Proof Sketch of dominant strategy in an English Auction

(1) {{fun st => True ∧ (st U1) = 0 ∧ (st U2) = 0 ∧ st V > st shb}}
IFB (BLt (AId V)(AId P)) THEN

(2) {{fun st => True ∧ (st U1) = 0 ∧ (st U2) = 0 ∧ st V > st shb ∧ st V < st P}}
(3) {{fun st => st U2 >= st (V-P)}}

(U1 ::= AMinus (AId V) (AId P))

(4) {{fun st => st U2 >= st U1}}
ELSE

(5) {{fun st => True ∧ (st U1) = 0 ∧ (st U2) = 0 ∧ st V > st shb ∧ !(st V < st P)}}
(6) {{fun st => st (V-P) >= st U1}}

(U2 ::= AMinus (AId V) (AId P))

(7) {{fun st => st U2 >= st U1}}
FI;

(8) {{fun st => st U2 >= st U1}}

In the proof shown in Table 4.4, we assume that we have already got the winner,

payment and second highest bid from an English auction. We can prove more game-

theoretic properties from within Coq. In the work [9], we have developed a Coq proof

of the well-known statement that bidding its true valuation is the dominant strategy

for each agent in a Vickrey auction. An important property that can be checked is

that the auction is a well-defined function and that it does implement its specifications

through certified code generation [23]. More challenging properties to be checked might

be that the auction mechanism is collusion-free or that it is free from fictitious bidding.
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4.4 Related Work

There is by now a large body of literature on program transformations and their ver-

ification. For example, the researcher may be interested in translating a C code into

a Java code or vice versa. More importantly, it may have to be guaranteed that the

correctness of all compilation phases and any optimization technique used to improve

code performance for safety-critical software. This implies the verification of program

transformations from one source into a target in a possibly different programming lan-

guage, see example [61] and the references therein. Usually, the verification of these

kinds of program transformations relies upon the concept of refinement; that is the set

of behaviors of the target program is a subset of the source program. In our work,

we have translated OWL-S specifications into specifications in a Coq imperative lan-

guage by using Antlr. Our transformation is merely a one-to-one mapping between

two WHILE languages and the semantic equivalence between the source and target

specifications can be established using the relational Hoare logic in [14].

In the context of specifications translation, the work reported in [77], OWL-S was

mapped into Frame logic for using first order logic based model checking to verify

certain properties of Semantic Web Service systems. In our work, we have automated

a syntactic translation scheme that preserves the semantics of the source code so that

properties that are shown to be true or false from within Coq will stay respectively

true or false in the OWL-S paradigm.

The idea of software agents automatically checking desirable properties has been

investigated in [100, 101] by using a model checking approach. The computational

complexity of such costly verification procedures are investigated in [99]. A typed lan-

guage which allows for automatic verification that an allocation algorithm is monotonic

and therefore truthful was introduced in [60]. More recently, a proof-carrying code ap-

proach [79, 2] relying on proofs development tools to enable automatic certification of

auction mechanisms have been investigated in [9, 23]. This work aimes at bridging the

gap between the need for a machine-readable formalism to specify online auction mech-

anisms and the ability of software agents to formally verify possibly complex auction

properties.

4.5 Summary

In this chapter, we have considered the problem of trust in a network of online auctions

by software agents. This requires software agents to understand auction protocols

and to prove some desirable properties whose correctness will give confidence in the

system. We have first discussed how OWL-S is expressive enough to be used as a

machine-readable formalism to describe these mechanisms. We have then shown how

such an OWL-S specification can be automatically translated into a Coq imperative
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program in order to enable us to develop proofs that are machine-checkable. Machine-

checkable proofs are required as we have used the proof-carrying code paradigm wherein

an auctioneer will have to provide proofs of claimed properties of its auction and buyer

agents will need to check the correctness of those proofs.

The translation from an OWL-S to a Coq imperative language code is carried

out using a one-to-one mapping between two WHILE languages and the correctness

of the transformation is based on semantics equivalence between the source and the

target codes. This semantics equivalence can be justified by using a relational Hoare

logic [14] that is sound and complete. This automatic transformation is implemented

using Antlr. Finally, we have illustrated the verification of auction properties by

developing a Coq proof of the fact that in an English auction, the highest bidder

wins the auction. In Chapter 7, we will work on the formalization and prove desirable

properties of combinatorial auctions. We cannot express combinatorial auctions in

OWL-S since those auctions involve quantification over valuation or bidding functions.

Therefore, we will rely on Coq to implement this task.

In the following chapter, we will introduce an inquiry dialogue game that integrated

FPCC to enable buyer agents to automatically communication with an auctioneer.

Buyer agents can ask questions which are properties that have been proved in this

chapter to the auctioneer, and then make their decisions whether or not to participate

in an auction according to the result of the dialogue.
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Chapter 5

A Dialogue Game Approach to
Enable Decision Making

5.1 Introduction

We consider e-commerce scenarios wherein software agents can buy or sell goods on

behalf of their owners. To enable software agents to participate in such online trading,

the trading mechanism should be presented in a machine understandable way. The

Semantic Web provides an approach to enable agents to read and interpret a trading

mechanism as an online service for which static and dynamic information can be ex-

plicitly described using ontology languages. For example, the Web Ontology Language

(OWL) [75], which is based on description logic, can be used to express classes and re-

lationships among them. The Semantic Markup for Web Services (OWL-S) [69], which

is focused on the process description of a service, can be used to describe the proce-

dures of the trading mechanism. However, the message exchange in the architecture of

Semantic Web Services is restricted as a client-server or request-response pattern. To

extend the interactivity of the Semantic Web Services, dialogue games are introduced

to support message exchanges. By using dialogue games, agents can assert, challenge

and justify their arguments according to their knowledge [109].

Dialogue games are rule-governed interactions among software agents [73], wherein

each agent presents its ideas by making “moves” based on a set of rules. Since the com-

mon agent communication languages, such as FIPA ACL [38], lack certain locutions to

express justifications for statements, additional locutions are proposed to extend the

FIPA ACL so that argumentation can be supported in a dialogue [72]. Dialogue games

permit agents to carry out various types of interactions, such as information seeking,

inquiry, persuasion or negotiation. Agents can construct a dialogue by dynamically

adjusting the content and a sequence of utterances as the discussion ensues. In our

framework, we have used an inquiry dialogue to make two agents take turns in assert-

ing, questioning, accepting, or rejecting statements. The goal of an inquiry dialogue

is to find out whether a statement is true or false or show that there is insufficient
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evidence to accept a statement [112]. In our work, evidence can be formal proof or an

informal statement (e.g., statistical evidence) for a desirable property of the trading

mechanism. An example of a desirable property of an auction mechanism could be

that the highest buyer wins or that bidding its true valuation is the optimal strategy

for a buyer. Formal proofs are constructed using the Coq [34] theorem prover within

the PCC (Proof-Carrying Code) paradigm [80]. In our online auction scenario, PCC

enables the auctioneer to develop proofs for properties of interest and the buyer to

check the correctness of a given proof [9]. By considering the set of evidences collected

in a dialogue for a set of desirable properties, a buyer agent as a service consumer can

evaluate the quality of a service and make decision as to whether to enter or leave a

service.

On the one hand, in the language architecture of Semantic Web [49], each language

in the above layer extends the capabilities of the layer below, as shown in Figure 2.1.

For example, OWL extends RDFS by providing more semantic features like cardinality,

union, intersection and more reasoning possibilities. The top two layers in this semantic

web stack are the Proof and Trust layers. In essence, proofs can be constructed so

as to increase trustworthiness in the system. However, the current system does not

support yet a proof construction or procedure for building up trust. On the other

hand, Interactive Theorem Proving provides an approach to develop formal proof by

man-machine collaboration. It is an important approach which using formal methods

to verify the correctness of a protocol or a mathematical statement. In an Interactive

Theorem Prover (ITP), human can create definitions, theorems and generate proofs

using an interactive proof editor. The ITP also supports automatic checking of proofs.

In our work, we use Coq [34], which is an ITP, to generate and check the proofs of

desirable properties of an online auction.

The contributions of this chapter are three-fold:

• We have integrated dialogue games within the PCC paradigm so as to increase

trust in an agents-mediated online auction. As a consequence, we have extended

the interactivity of agent communication wherein formal proofs can be used as

arguments in a dialogue.

• Since, not all desirable properties of an online auction mechanism will have asso-

ciated formal proofs, we have allowed for informal or empirical evidence related

to the QoS (Quality of Service). For example, an auctioneer may claim that it

does not have a proof that its mechanism is free from cheating, but 98% of its

consumers never complained about being cheated. We have designed a dialogue

game wherein formal and informal evidence can be used as arguments.

• We have constructed a decision model over the formal and empirical evidences

allowing a buyer agent, with predefined expectations, to decide whether to join
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or not an auction.

The proposed dialogue game framework is implemented in JADE [12], which is a widely

used tool to implement multi-agent systems. It provides mechanisms to create agents,

enable agents to execute tasks and make agents communicate with each other.

The remainder of this chapter is organized as follows: In section 5.2, we will intro-

duce the technique of Semantic Web Service and give an example of an English auction

which is written in the language of OWL-S. The proposed dialogue game framework

is presented in Section 5.3. In Section 5.4, we present an example that implements

our dialogue game framework, and is then evaluated in Section 5.5. Related work is

presented in Section 5.6, before summary in Section 5.7.

5.2 Ontologies for Services

The Semantic Web [15] not only enables greater access to content but also to services

on the Web. Semantic Web Service is a technology that combines Semantic Web and

Web services to develop new Web applications. Web services technology is based on a

set of standard protocols such as UDDI (Universal Description, Discovery and Integra-

tion), SOAP (Simple Object Access Protocol), and WSDL (Web Services Description

Language). However, these standards do not support automated Web services. To

improve the automatic properties of Web services, Semantic Web Services (SWS) are

created [26]. OWL-S [69] and WSMO [32] are two standards for the SWS technol-

ogy. OWL-S is composed of three main parts: the service profile for advertising and

discovering services; the process model, which gives a detailed description of a service

operation; and the grounding, which provides details on how to interoperate with a

service via messages. WSMO (Web Service Modeling Ontology) provides a concep-

tual framework for semantically describing all relevant aspects of Web services in order

to facilitate the automation of discovering, combining and invoking electronic services

over the Web. WSMO comprises four main elements: ontologies, which provide the

terminology used by other WSMO elements; Web service descriptions, which describe

the functional and behavioral aspects of a Web service; goals that represent the user’s

desires; and mediators, which aim at automatically handling interoperability problems

between different WSMO elements. Current SWS technique can help us build a system

that enables agents to publish, discover and invoke services in an open environment

(the Internet).

5.2.1 A Scenario: An English Auction

In our work, we use OWL-S to build up the Web service. OWL-S can be used together

with other Semantic Web languages, such as OWL DL [75] and SWRL [50], to describe

the properties and capabilities of a Web service in unambiguous, computer-interpretable
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Figure 5.1: A Fragment of the Auction Ontology
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form. To set up a Semantic Web Service, the first step is to build the ontology of

the specific area. The ontology can be used to formally describe the semantics of

terms representing an area of knowledge and give explicit meaning to the information.

This enables automated reasoning, semantic search and knowledge management of the

specific area. For example, the ontology of auction domain can contain the constructs

of classes, relations, axioms, individuals and assertions. We give a fragment of the

auction ontology in Figure 5.1. The auction domain ontology not only defines basic

information of an agent (e.g., bid, valuation, strategy); but also the preference of an

agent. These preferences can be used to help agents make decisions during a trading

dialogue. The following code illustrates the ontology about a question named Q1. Q1

has three object properties which are hasContent, hasPreference, hasType and one data

property with name hasWeight.

<ClassAssertion>

<Class IRI="#QuestionID"/>

<NamedIndividual IRI="#Q1"/>

</ClassAssertion>

<ObjectPropertyAssertion>

<ObjectProperty IRI="#hasContent"/>

<NamedIndividual IRI="#Q1"/>

<NamedIndividual IRI="#Can_you_prove_that_payment_is_the_highest_bid"/>

</ObjectPropertyAssertion>

<ObjectPropertyAssertion>

<ObjectProperty IRI="#hasPreference"/>

<NamedIndividual IRI="#Q1"/>

<NamedIndividual IRI="#strong"/>

</ObjectPropertyAssertion>

<ObjectPropertyAssertion>

<ObjectProperty IRI="#hasType"/>

<NamedIndividual IRI="#Q1"/>

<NamedIndividual IRI="#FormalProperty"/>

</ObjectPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="#hasWeight"/>

<NamedIndividual IRI="#Q1"/>

<Literal datatypeIRI="&xsd;double">0.5</Literal>

</DataPropertyAssertion>

After the construction of domain ontology, the auction mechanism should be de-

scribed using the OWL-S ontology. In such a trading mechanism, functional description

should be defined: inputs, outputs, preconditions and results (IOPEs). The inputs are

the objects that should be provided to invoke the service; the outputs are the objects

that the service produces; the preconditions are the propositions that should be true

prior to service invocation; and the results consist of effects and outputs. The following

code is an example showing that, the precondition for running an auction is that at

least one agent must have some bid.

<process:hasPrecondition>

<expr:SWRL-Condition>

<expr:expressionObject>

<swrl:AtomList>

<rdf:first>

<swrl:DatavaluedPropertyAtom>
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<swrl:propertyPredicate rdf:resource="&mybid;#hasBid"/>

<swrl:argument1 rdf:resource="&this;#agent"/>

<swrl:argument2 rdf:resource="&this;#abid"/>

</swrl:DatavaluedPropertyAtom>

</rdf:first>

<rdf:rest rdf:resource="&rdf;#nil"/>

</swrl:AtomList>

</expr:expressionObject>

</expr:SWRL-Condition>

</process:hasPrecondition>

In OWL-S, a process represents a specification of the means a buyer uses to interact

with a service. In our scenario, we use two kinds of processes: one is atomic process,

which corresponds to a single interchange of a request message and a response message;

the other is composite process, which consists of a series of processes linked together

by control flows and data flows. The control flow describes the relations between the

executions of different sub-processes. The control constructs include sequence, split,

if-then-else and iterate etc. Data flow specifies how information is transferred from one

process to another process. In our example of an English auction, we can define one

if-then-else branch to describe that when a new bid is greater than current bid (a local

variable), we update the value of current bid with the new bid. This process can be

simply described as follows.

<process:CompositeProcess>

<process:composedOf>

<process:If-Then-Else rdf:ID="CompareBid">

<process:ifCondition>

<expr:SWRL-Condition>

swrlb:lessThan(#currentBid,#newBid)

</expr:SWRL-Condition>

</process:ifCondition>

<process:then>

<!-- Update the value of #currentBid -->

...

</process:then>

<process:else>

<!-- Keep the value of #currentBid as usual-->

...

</process:else>

</process:If-Then-Else>

</process:composedOf>

</process:CompositeProcess>

In our setting, we consider the scenario that buyers communicate with the seller

to decide whether or not to join an online auction. Therefore, we do not need to

define the grounding of the service. OWL-S can be used to build complex business

solutions by describing the functional, non-functional properties of a service, so that

agents can perform automatic reasoning on these descriptions. Dialogue games, which

can help software agents interact rationally by providing support or counterexample

for a conclusion, make this reasoning more flexible for greater interaction between an

auctioneer and a buyer.
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5.3 Our Dialogue Game Framework

Online auction web sites, such as eBay, have attracted millions of users around the

world to sell, bid and buy goods. In our specific scenario, software agents are assumed

to be capable of buying or selling goods through online auction houses. In this scenario,

how can buyer agents choose the appropriate auction house? A buyer agent will have

properties of interest. These properties need to be kept in the auction mechanism for

the agent to join, bid, and buy items. Our framework is aimed at enabling a potential

buyer (e.g., software agent) to interact with the auctioneer before deciding whether

or not to join the auction. These interactions between the auctioneer and a buyer are

carried out within a dialogue game wherein the buyer agent can query whether desirable

properties hold and request associated evidences. To enable trust, the auctioneer uses

the PCC (Proof-Carrying code) paradigm to convince buyers that a service has some

desirable properties, as shown in our previous work [9, 8]. This enables the auctioneer to

specify and to develop formal proofs for those properties. Then, the buyer uses a proof

checker to check that a given proof of a well specified property of the auction is correct.

Besides, a buyer can object to the auctioneer under the condition that a counterexample

is found by the proof checker. Thus, trust can be established between an auctioneer and

a buyer. In our PCC implementation [9], we have used the theorem prover Coq [34]

to develop the proofs of desirable properties. This is achieved by translating OWL-S

descriptions into Coq specifications [7], and then uses Coq’s machinery to specify and

prove a property of interest. On the buyer side, we have used the Coq proof checker so

that a buyer can automatically check that a claimed property by the auctioneer holds

in the system. Figure 3.1 illustrates our PCC implementation in this setting.

We have integrated the PCC paradigm within our dialogue model as illustrated by

the framework in Figure 5.2. In this framework, both the auctioneer and the buyer

share the same question ontology for general online auction services. The auctioneer

holds an OWL-S ontology which provides a machine understandable description of the

auction mechanism. Evidence for a claimed property may have an informal or formal

justification. Informal justification relies upon data collected by the service. In the case

of properties with formal proofs, the related specification of the OWL-S description can

be translated into Coq specifications so that proofs of these properties can be developed

from within Coq. This kind of sound language translation is described in our previous

work [7]. The proof certificates for the established desirable properties are local to the

auctioneer. This strengthens the interactivity between a buyer and an auctioneer and

reduces knowledge disclosing. The proofs will be disclosed to a buyer when related

questions are proposed in a dialogue game. The dialogue game is used to enable a

buyer agent to find out about properties and certificates. This dialogue is a two-person

game, which means that only one buyer can communicate with the auctioneer at a

time.
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Figure 5.2: The dialectical approach framework. A buyer agent uses a dialogue to
communicate with the auctioneer and the checking of proofs of desirable properties can
be integrated within the dialogue using PCC paradigm.

5.3.1 The Formal Dialogue Model

The proposed inquiry dialogue consists of a number of locutions or moves, pre-conditions

that indicate the rules that must be satisfied before a move, and the post-conditions

that describe the actions that will occur after a move. We have restricted the number of

participants in the inquiry dialogue to two. Let P be the participants in the dialogue.

A participant is either a sender or a recipient.

A dialogue D is simply defined by a sequence of moves between the participants.

One move represents a message exchange made from one participant to the other. As

the dialogue progresses, each move is indexed by a timepoint, which is denoted by a

natural number, and only one move can be made at each timepoint. In our inquiry

dialogue model, seven types of moves are defined. They are open, assert, question,

justify, accept, reject and close, and the type of each legal move should be one of them.

Definition 4. A dialogue, denoted D, is a sequence of moves [mr, ...,mt], where

r, t ∈ N, r < t, involving two participants Pi ∈ P, i = {1, 2}, such that:

1. the first move of the dialogue, mr is of type open,

2. the last move of the dialogue, mt is of type close,

3. Sender(ms) ∈ P (r ≤ s ≤ t)

4. Sender(ms) 6= Sender(ms+1)(r ≤ s < t)

59



Figure 5.3: The state diagram of the dialogue. Nodes indicate the agent whose turn is
to utter a move. Moves uttered by the auctioneer are labeled with a dashed line, while
those uttered by the buyer are labelled with a solid line.

The first move of a dialogue D must always be an open move (condition 1), while

the last move should be a close move (condition 2). Each move of the dialogue must

be performed by a participant of the dialogue (condition 3). Finally, participants take

turns to make moves (condition 4).

The dialogue assumes that each participant holds a commitment store that records

its statements in a dialogue. The commitment store of participant Pi is defined as

a private-write, public-read record containing all the commitments incurred by Pi.

Both of the participants can read the commitment store of Pi, but the content of this

commitment store can only be written using the moves made by Pi.

Definition 5. A commitment store is a set of beliefs denoted as CSt
x, where x ∈ P

is an agent and t ∈ N is a timepoint.

The commitment store of Pi is created when the agent enters into a dialogue and

persists until the dialogue terminates.

Definition 6. A proof is an argument from hypotheses to a conclusion and each step

of the argument follows the laws of logic.

The state diagram of the dialogue is given in Figure 5.3. A buyer can open a

dialogue by using the open move. Then, the auctioneer can give an assertion to the

buyer. The buyer can choose to close the dialogue on the condition that he does not

have any issues to raise with the auctioneer. Otherwise, the buyer can give a move

of type question to query on the issues that he is concerned about. The auctioneer

must give a justification to the buyer for each specific question. There are three cases

in the justification process: 1) the auctioneer has a formal proof for the answer to
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the question at hand; 2) the auctioneer has an informal evidence for the answer; or

3) the auctioneer does not know the answer for the question. In the first case, the

buyer will use the PCC paradigm to check the correctness of the formal proof, if this

proof is certified, then the buyer gives an accept move, otherwise, the proof checker will

generate a counterexample and deny the property that related to the question, then the

buyer make the move of reject. In the second case, the buyer will compare the informal

evidence with a reasonable expected value for the issue of interest and will accept it

with some score. In the last case, the buyer will give a reject move to the auctioneer.

The auctioneer can give assertions to the buyer, so that the dialogue can carry on until

both participants agreed to close the dialogue.

The components of a dialogue include:

•
∑

: The knowledge base, or beliefs of each agent.

• CS ∈
∑

: an agent’s commitment store that refers to the statements that have

been made in the dialogue.

• a: auctioneer.

• b: buyer.

• x: either auctioneer or buyer.

• ρ: the last sender in the current dialogue.

The locutions used in the dialogue model are defined as follows.

Definition 7. open(b): buyer b opens a dialogue.

• Pre-conditions:

1. b /∈ P , where P is the set of dialogue participants.

• Post-conditions:

1. P ′ = P ∪ {b}

2. CSb = ∅

3. ρ = b

A buyer b can open a dialogue. The precondition of this locution is that the buyer

is not a participant of this dialogue. The postcondition is that buyer b becomes a

participant of the dialogue (post-condition 1) and his commitment store is created

(post-condition 2).

Definition 8. assert(a, b, φ): auctioneer a gives an assertion to the buyer.

• Pre-conditions:
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1. a 6= ρ

2. locutiontype(ls−1) ∈ {open, accept, reject}

3. φ ∈ Σa

• Post-conditions:

1. CSa′ = {φ} ∪ CSa

2. ρ = a

The auctioneer should not have uttered the previous move (pre-condition 1). The

assert move should be given under the conditions that a buyer has open a dialogue,

the justification is accepted or rejected by the buyer (pre-condition 2). A belief φ from

the beliefs store of the auctioneer will be asserted by the auctioneer to ask the buyer

to propose a question (pre-condition 3). Once the assert has been uttered, the belief φ

will be added to the commitment store of the auctioneer (post-condition 1).

Definition 9. question(b, a, φ): buyer b asks a question about property φ to the auc-

tioneer a.

• Pre-conditions:

1. b 6= ρ

2. locutiontype(ls−1) ∈ {assert}

3. φ /∈ Σb

4. φ /∈ CSb

• Post-conditions:

1. φ /∈ Σb

2. φ ∈ CSb

3. ρ = b

A buyer can ask questions to the auctioneer after the auctioneer has uttered an

assertion (pre-conditions 1 and 2). The property φ does not contain the knowledge base

of b (pre-condition 3) and the buyer has not proposed questions about this property

(pre-condition 4). Once b has uttered the question, the knowledge base of b does not

change (post-condition 1), and the commitment store of b has been updated (post-

condition 2).

Definition 10. justify(a, b, φ): auctioneer a justifies the property φ for buyer b.

• Pre-conditions:

1. a 6= ρ
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2. locutiontype(ls−1) ∈ {question}

3. φ ∈ CSb

4. φ /∈ Σb

• Post-conditions:

1. φ /∈ Σb

2. φ ∈ CSa

3. ρ = a

After receiving a question about property φ (pre-condition 2 & 3), the auctioneer

a should provide a justification to this property. The knowledge base of the buyer and

commitment store remains the same in this move (post-condition 1). The justification

of this property is added to the commitment store of the auctioneer (post-condition 2).

Definition 11. accept(b, a, φ): buyer b accepts the justification of property φ .

• Pre-conditions:

1. b 6= ρ

2. locutiontype(ls−1) ∈ {justify}

3. φ /∈ Σb

4. φ ∈ CSa

• Post-conditions:

1. φ ∈ Σb

2. φ ∈ CSa

3. ρ = b

The accept move is used to accept the justification for property φ in the preceding

justify move (pre-condition 2). The property φ is not contained in the knowledge base of

the buyer before the move of accept (pre-condition 3), and the auctioneer has provided

the justification for this property (pre-condition 4). Property φ becomes the element

of the knowledge base of b after this move (post-condition 1). The commitment store

of a does not change in the move of accept (post-condition 2).

Definition 12. reject(b, a, φatt, φ): buyer b rejects the property φ using φatt .

• Pre-conditions:

1. b 6= ρ

2. locutiontype(ls−1) ∈ {justify}
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3. attack(φatt, φ)

4. φ /∈ Σb

5. φ ∈ CSa

• Post-conditions:

1. φ /∈ Σb

2. φ ∈ CSa

3. ρ = b

Buyer can raise an rejection by giving an evidence φatt to previously declared prop-

erty φ in response to the move justify (pre-condition 2). There is an evidence φatt which

attacks φ (pre-condition 3). The knowledge base of b and commitment store of a does

not change (pre-condition 4 & 5 and post-condition 1 & 2).

Definition 13. close(p): participant p closes a dialogue.

• Pre-conditions:

1. p 6= ρ

2. locutiontype(ls−1) ∈ {assert, close}

3. ∀φ ∈ Σb, φ ∈ CSb

• Post-conditions:

1. if matched-close P = ∅

The participant can only close a dialogue after an assert or close (pre-condition 2).

The buyer chooses to close the dialogue when all the questions in his knowledge base

have been proposed (pre-condition 3). When both participants have agreed to close

the dialogue, they will be removed from the dialogue (post-condition 1).

5.3.2 Decision Model and Processes of the Dialogue

In our setting, both the auctioneer and the buyer agents share the same knowledge

base, which includes the ontologies of the online auction and related specifications.

Both agents can understand each other’s messages but have a private knowledge base.

The set of questions are private to the buyer and the set of answers associated to

the questions are private to the auctioneer. However, when a question or answer is

proposed, it becomes public to both participants. Each question is associated with a

preference level, which determines the order in which the questions are proposed by

the buyer. The preference level E = {strong, average, weak} is then used to drive the

dialogue forward.
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A Weighted Sum model is used in the dialogue game. The output of the Weighted

Sum model is a binary set of O, whose elements are {Y es,No}. Decision is made by

evaluating a bunch of properties, which are represented as the set of H. We assume

that every property is bind with a score si and a relative weight wi, which indicates the

importance of a property. The value of si is determined by a function which depends

on the type of evidence provided. If we have formal evidence, then the scoring function

will return either negative value in the case of the proof cannot be accepted by the

proof-checker or a full score otherwise. If the evidence is empirical, then the scoring

function is in the form of intervals, see Section 5.4 for more details. It is the usual

practice to set the summation of weights to 1 in the weighted sum model, such that∑n
i=1wi = 1 wherein n is the number of elements in H [33]. The final score fs is

calculated as follows:

fs =

n∑
i=1

wisi

, where n is also the number of elements in H.

The buyer has a reasonable expectation in the form of an admissibility threshold ε

beyond which the final score will lead the buyer to join the auction. In other words, if

fs ≥ ε, then the buyer will choose Y es to join the auction at hand. The threshold ε

may come from experience or be derived from historical data.

Algorithm 1 The processes of an inquiry dialogue

1: buyer opens an inquiry dialogue uses an open move
2: auctioneer gives an assert to ask buyer to propose a question
3: while buyer has question(s) that has(have) not been proposed do
4: buyer selects a question which with the highest preference level
5: buyer asks this question using the move whose type is question
6: auctioneer gives a justification using the move whose type is of justify
7: if the justification is unknown or has failed to be checked then
8: buyer gives a reject move
9: else

10: buyer gives an accept move
11: end if
12: auctioneer gives an assert to ask buyer to propose a question
13: end while
14: buyer gives a close move
15: auctioneer gives a close move to terminate the dialogue

The inquiry dialogue is described by Algorithm 1. A dialogue starts with a move

opening an inquiry dialogue, that has a matched-close to terminate the dialogue and

whose moves conform to the rules for each locution described in Section 5.3.1. The

buyer starts an inquiry dialogue by giving an open move, then the auctioneer propose

an assert move to ask buyer to propose questions. The buyer chooses an unproposed

question which with the highest preference level from his knowledge base and then uses
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the move of question to propose it. After receiving a question, the auctioneer should

respond by a justify move. If the content of a justification is unknown, or a formal proof

that is failed to be checked. The buyer will give a reject move, otherwise he should

accepts the justification use an accept move. The auctioneer should give an assertion

to ask buyer to propose a new question in the end of the loop. A dialogue can be closed

when both of the participants agree to terminate it. All of the proposed questions and

related justifications are stored in the commitment store of the dialogue. Besides, each

question can only be asked once.

5.4 Inquiry Dialogue Example

We have illustrated the proposed inquiry dialogue by means of an example where a

buyer talks to an auctioneer to decide whether or not to join an online auction service.

Table 5.1: Questions in the shared ontology

QuestionID hasType hasContent

Q1 FormalProperty Can you prove that the payment

is the highest bid?

Q2 FunctionalProperty What’s the payment method?

Q3 FunctionalProperty What’s the delivery company

for your product?

Q4 FunctionalProperty What’s the Input of the service?

Q5 nonFunctionalProperty What’s the Reputation of your service?

Q6 nonFunctionalProperty What’s the ResponseTime of your service?

Q7 FormalProperty Can you prove that the winner

has the highest bid?

The shared question ontology contains three types of questions: 1) questions about

those properties whose answers could be formal proofs of a service; 2) questions about

the functional properties (e.g. inner operation of a service) of a service; and 3) questions

about the non-functional properties (e.g. QoS) of a service. In this example, seven

questions are proposed as listed in Table 5.1.

In Table 5.1, each question is marked by an ID, and the related type and content of

each question are defined use the OWL objectProperty relationship. Users can extend

this ontology by adding questions as the classification of types.

The buyer holds a private knowledge base that contains the questions he wants to

inquire the dialogue. The preference level and weight of each question are shown in

Table 5.2. As mentioned above the buyer will choose the questions in order on the basis

of the preference level and calculate the scores of the justifications using the variable

of weight, w. The summation of all the weights in this table equals to one.

The auctioneer uses Table 5.3 to search for the answers for each query, a buyer can

not directly visit this table unless he queries the auctioneer. All the questions in the

shared ontology should be contained in this table, though there may exist questions
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Table 5.2: Questions in the knowledge base of the buyer

QuestionID Preference Weight hasContent

Level (w)

Q1 strong 0.3 Can you prove that the payment

is the highest bid?

Q2 average 0.15 What’s the payment method?

Q3 weak 0.1 What’s the delivery company

for your product?

Q5 strong 0.2 What’s the Reputation of your service?

Q6 average 0.15 What’s the ResponseTime of your service?

Q7 weak 0.1 Can you prove that the winner

has the highest bid?

Table 5.3: Justifications of questions hold by the auctioneer
QuestionID hasContent Justification

Q1 Can you prove that the payment
is the highest bid? FormalProof PEquHB

Q2 What’s the payment method? Visa DEBIT
Q3 What’s the delivery company

for your product? DHL
Q4 What’s the Input of the service? BuyerID & Bid
Q5 What’s the Reputation of your service? 0.85
Q6 What’s the ResponseTime of your service? unknown
Q7 Can you prove that the winner

has the highest bid? FormalProof WhasHB

that do not have related answers. Table 5.4 shows the grading standards of the buyer

for the justifications. The highest score for each question is 100, the lowest score for the

formal question is -50 when the proof provided by the auctioneer is failed to check, and

the lowest score other questions is 0. As this grading table is subjective, a buyer can

grade the justification based on his own preference. However, for the question whose

justification is a formal proof, the buyer should give full marks to it when the proof is

successfully checked.

An example dialogue between buyer and auctioneer is presented as in Figure 5.4.

The turn order in the above dialogue is deterministic, the buyer should open a dialogue

in Move 1. Then the auctioneer and buyer give assertions one by one.

Moves 2-5: The auctioneer asks buyer to ask a question. The buyer searches in his

knowledge base of questions and find out a question that with the highest preference,

which is Q1. Then the auctioneer searches the justification for the question from

Table 5.3. This justification is a formal proof, so the auctioneer should send the address

of a proof checker (in the case that the buyer does not have the proof checker) and

related proof files to the buyer. The buyer then downloads and uses the proof checker

to check the correctness of the proof, and gets positive feedback. Finally, the buyer

accepts the justification.

Moves 6-9: The auctioneer asks buyer to ask another question. The buyer finds

question Q5, which has the highest preference level within the remaining questions.
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Table 5.4: Grading Table of the buyer

QuestionID Justification Score

Q1 Formal Proof Successes 100

Formal Proof Fails -50

Do Not Have Formal Proof 0

Q2 Alipay 100

Visa DEBIT 80

Bank Cards 50

Others 0

Q3 SF EXPRESS 100

DHL 80

EMS 70

Others 0

Q5 [0.90,1.00] 100

[0.70,0.90) 80

[0.50,0.70) 50

[0.00,0.50) 0

unknown 0

Q6 (0.00ns,0.03ns) 100

[0.03ns,0.05ns) 80

[0.05ns,0.10ns) 50

[0.05ns,+∞) 0

unknown 0

Q7 Formal Proof Successes 100

Formal Proof Fails -50

Do Not Have Formal Proof 0
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(1) buyer → auctioneer : open(buyer)
(2) auctioneer → buyer : assert(auctioneer, buyer, You can ask a question.)
(3) buyer → auctioneer : question(buyer,auctioneer,Q1)
(4) auctioneer → buyer : justify(auctioneer,buyer,FormalProof PEquHB)
(In the justification process, the auctioneer sends the proof to the buyer and the proof is successfully
checked by using the COQ proof checker.)
(5) buyer → auctioneer : accept(buyer,auctioneer,FormalProof PEquHB)
(6) auctioneer → buyer : assert(auctioneer, buyer, You can ask a question.)
(7) buyer → auctioneer : question(buyer,auctioneer,Q5)
(8) auctioneer → buyer : justify(auctioneer,buyer,0.85)
(9) buyer → auctioneer : accept(buyer,auctioneer,0.85)
(10) auctioneer → buyer : assert(auctioneer, buyer, You can ask a question.)
(11) buyer → auctioneer : question(buyer,auctioneer,Q2)
(12) auctioneer → buyer : justify(auctioneer,buyer,Visa DEBIT)
(13) buyer → auctioneer : accept(buyer,auctioneer, Visa DEBIT)
(14) auctioneer → buyer : assert(auctioneer, buyer, You can ask a question.)
(15) buyer → auctioneer : question(buyer,auctioneer,Q6)
(16) auctioneer → buyer : justify(auctioneer,buyer, unknown)
(17) buyer → auctioneer : reject(buyer,auctioneer, unknown)
(18) auctioneer → buyer : assert(auctioneer, buyer, You can ask a question.)
(19) buyer → auctioneer : question(buyer,auctioneer,Q3)
(20) auctioneer → buyer : justify(auctioneer,buyer, DHL)
(21) buyer → auctioneer : accept(buyer,auctioneer,DHL)
(22) auctioneer → buyer : assert(auctioneer, buyer, You can ask a question.)
(23) buyer → auctioneer : question(buyer,auctioneer,Q7)
(24) auctioneer → buyer : justify(auctioneer,buyer,FormalProof WhasHB)
(In the justification process, the auctioneer sends the proof to the buyer. The buyer failed to checked
the proof by using the COQ proof checker, which means the proof provided by the auctioneer is wrong.
The buyer finds an attack to this property.)
(25) buyer → auctioneer : reject(buyer,auctioneer,FormalProof WhasHB)
(26) auctioneer → buyer : assert(auctioneer, buyer, You can ask a question.)
(27) buyer → auctioneer : close(buyer)
(28) auctioneer → buyer : close(auctioneer)

Figure 5.4: An example of the inquiry dialogue

The auctioneer gives the justification with value 0.85 and buyer accepts it.

Moves 10-13: After the auctioneer requests the buyer to ask a question. The

buyer proposes question Q2 and receives the justification with value of Visa DEBIT.

The buyer accepts the justification in this round.

Moves 14-17: In this round, the buyer raises question Q6, the auctioneer does

not have a justification for this question, so the content of this justification becomes

unknown. Then the buyer rejects this justification.

Moves 18-21: The buyer proposes another question in his knowledge base and

accepts the justification that is given by the auctioneer.

Moves 22-25: The auctioneer asks buyer to ask a question. The buyer proposes

the last question from his knowledge base, which is Q7. Then the auctioneer sends the

proof to the buyer. The buyer uses the proof checker to check the correctness of the

proof and gets a counterexample, which means the proof provided by the auctioneer

is wrong. In this case, the buyer finds an attack of this property. Finally, the buyer

rejects the justification.
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Moves 26-28: The auctioneer asks the buyer to propose a new question. However,

all the questions in the buyer ’s knowledge base have been raised. The buyer chooses

to close the dialogue and the auctioneer agrees to close the dialogue.

After the termination of the dialogue, the buyer calculates the scores for each jus-

tification. The final score fs is calculated as: fs = 0.3 ∗ 100 + 0.15 ∗ 80 + 0.1 ∗ 80 + 0.2 ∗
80 + 0.15 ∗ 0 + 0.1 ∗ (−50) = 61. We assume that the admissibility threshold, ε, of the

buyer is 70. As fs < ε, the buyer decides to not join the auction house.

5.5 Empirical Evaluation

We have implemented the proposed dialogue model in the JADE platform. We have

added the proposed locutions to the original FIPA ACL messages, so that the original

methods (e.g. addReceiver) can be called directly. The pre/postconditions of each locu-

tion are hard-coded in the program to detect the state of a dialogue. The combination

rules which are illustrated in Figure 5.3, are implemented using the behaviour control

mechanisms of JADE. When a buyer needs to check a proof, the program will use a

command to call the external software Coq and check the correctness of a proof. In

our dialogue model, only two participants are allowed.

Table 5.5: Decision making for different auction services

AuctioneerID Q1 Q2 Q3 Q5 Q6 Total Decision

(w = 0.35) (w = 0.15) (w = 0.1) (w = 0.25) (w = 0.15) Score (ε = 70)

A1 100 100 80 100 80 95 Y

A2 0 50 70 80 0 34.5 N

A3 100 50 80 80 100 85.5 Y

A4 -50 80 100 50 50 24.5 N

A5 100 50 70 50 50 69 N

In the experiment, there were five different auctioneers, from A1 to A5, which is

shown in the first column of Table 5.5. Each of the auctioneers holds an auction service.

A buyer dialogues with each of them based on the questions {Q1, Q2, Q3, Q5, Q6}. This

table shows the grades given for each questions as well as the total scores, the grading

is based on Table 5.4. For the auction hold by A1, because the value of the total score

is greater than the admissibility threshold, ε, whose value is 70, the buyer decides to

join this auction after the dialogue. For A4, the score for Q1 is -50 which means that

the result of the proof check failed. This table shows that a buyer can make decisions

for different auction services on the basis of the same questions and grading system

through dialogues.

Table 5.6 shows the result of our second experiment. We kept the value of final

scores (the second column) of each service the same as in Table 5.5. Then, by changing

the admissibility threshold from 60 to 100, the number of services that are rejected has

increased. The value of ε reflects the subjective belief of a buyer. If the buyer has
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Table 5.6: Decision making for different auction services with different admissibility
threshold

AuctioneerID Total Decision Decision Decision Decision Decision

Score (ε = 60) (ε = 70) (ε = 80) (ε = 90) (ε = 100)

A1 95 Y Y Y Y N

A2 34.5 N N N N N

A3 85.5 Y Y Y N N

A4 24.5 N N N N N

A5 69 Y N N N N

higher expectations from the service, then the value of ε will be higher.

In the third experiment, we assume that there is only one auctioneer and three

questions (Q1, Q2 and Q5). There are three buyers (B1, B2 and B3) whose weights for

each question are different. We use the same grading Table 5.4 to score each question

as in the previous experiments. The admissibility threshold of all buyers is set to 70.

The last column shows that B2 and B3 choose to join the auction while B1 refused

to. Table 5.7 shows that, even if each buyer gets the same justification from the same

auctioneer and they have the same admissibility threshold, the weights of questions can

influence the result of the decision making.

Table 5.7: Decision making for the same auction service with different weight

Q1(w = 0.20) Q2(w = 0.50) Q5(w = 0.30) Total Score Decision (ε = 70)

B1 100 50 80 69 N

Q1(w = 0.30) Q2(w = 0.50) Q5(w = 0.20) Total Score Decision (ε = 70)

B2 100 50 80 71 Y

Q1(w = 0.40) Q2(w = 0.35) Q5(w = 0.25) Total Score Decision (ε = 70)

B3 100 50 80 77.5 Y

The protocol proposed in this chapter satisfied a set of desiderata [74].

• Stated dialogue purpose: The purpose of the dialogue is to enable buyer agents

to make decision by querying the auctioneer. All participants are aware of this

purpose before they enter in the dialogue.

• Diversity of individual purposes: The dialogue model lets agents achieve their

own purposes in terms of inquiry with peers.

• Inclusiveness: There is no elimination of agents.

• Transparency : The protocol syntax and semantics are public and available to all

participants, along with the combination rules of locutions.

• Fairness: The locutions and protocol are the same for all participants, which

means that no agents have any privileges in the society.

• Rule-consistency : All protocol rules are consistent with the syntax and semantics.
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• Separation of Syntax and semantics: The syntax and semantic of the proposed

locutions are separately defined.

• Encouragement of resolution: The dialogue will terminate based on the dialogue

driven algorithm and termination rules.

• Discouragement of disruption: The commitment rules preclude disruptive be-

haviours. For example, the buyer agent cannot ask the same question more than

once.

• System simplicity : There are seven locutions in this model. Only a set of locutions

are permitted to utter in each stage of the dialogue. Agents take turns to make

locutions in bipartite dialogues.

• Computational Simplicity : In our dialogue system, we use the Coq proof checker

to check a proof, which reduces the complexity compared to generate a proof.

The length of the dialogue resulting from the protocol is: 1 + 4|H|+ 3, where |H|
is the number of questions in the knowledge base of a buyer.

5.6 Related Work

The formal study of human argument and dialogue has been proposed for modeling

agent interactions for more than a decade [73]. In the seminal work of [112], a typology

of primary dialogue types has been provided to model human dialogues. Dialogues are

categorized as six primary types: Information-seeking Dialogues (where participants

aim to exchange knowledge); Inquiry Dialogues (where participants aim to find or

destroy a proof of hypothesis); Persuasion Dialogues (where participants aim to resolve

conflicts of opinions); Negotiation Dialogues (where participants aim to make a deal on

the conflicts of interests); Deliberation Dialogues (where participants aim to decide best

available course of action) and Eristic Dialogues (where participants quarrel verbally

that aim to vent grievances). Most of the dialogues among humans or agents may

involve mixtures of these dialogue types, which are called embedded.

In formal dialogue games, players interact with each other by making utterances

according to previously defined rules. In the work of McBurrney and Parsons [71], five

dialogue game rules have been identified. These rules include: Commencement Rules

which define the circumstance under which the dialogue commences; Locutions, which

define the rules that indicate what are permitted; Combination Rules, which define

the contexts under which particular locutions are permitted or not; Commitments,

which define the rules that indicate the circumstances under which participants express

commitment to a proposition; and Termination Rules, which define the circumstances

under which the dialogue ends. FIPA ACL [38] is a standard language for agents

to communicate in. FIPA ACL contains 22 locutions (e.g. inform, request, refuse
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and agree) which make agents share knowledge and negotiate contracts. However,

FIPA ACL does not support argumentation statements. A protocol named Fatio with

five locutions (assert, question, challenge, justify and retract) has been proposed for

argumentation by [72]. In our work, we have presented a dialogue model, which is

in accordance with the rules for a dialogue game. The difference between our work

and the protocol of Fatio is that we focus on the type of inquiry dialogue. In [18], a

formal inquiry dialogue system based on Defeasible Logic Programming [40] has been

presented. In this inquiry dialogue system, three locutions open, assert and close are

defined for generating dialogues. Besides, they also define an exhaustive strategy to

decide which move to make. We defined our inquiry dialogue by adding more locutions

to the model and we also introduced the idea of attack to enable agents to reject

unsatisfied justifications. In the work of [85], an inquiry dialogue has been proposed to

enable agents to negotiate over ontological correspondences. In this dialogue, agents

can not only make assert moves to assert beliefs, they also can object to a belief by

providing an attack and accept or reject beliefs. In the ArguGRID [108] project, Web

service, agents and argumentation technique have been combined to support decision

making and negotiations inside Virtual Organizations. ArgSCIFF [109] is a project

that aims to make Web service reasoning more visible to potential users by using

dialogues for service interaction. It extends the kind of request-response interaction

among Web services and makes agents justify the interaction outputs. The difference

between their work and our approach is that we utilize the PCC paradigm to the

dialogue to enable agents to automatically check formal proofs that provided by the

service provider. An automate negotiation approach has been presented among agents

in an open environment in [102]. In this work, protocols are expressed in terms of

a shared ontology. Based on the shared ontology, agents can learn to tune strategies

based on existing algorithms. We extend their work by introducing dialogue games into

the scenario.

In our previous work, we have represented some properties (e.g. truthful bidding

is a dominant strategy in a Vickrey auction) in the theorem prover Coq [9]. We have

implemented the Proof-Carrying Code (PCC) [80] paradigm to certify the desirable

properties of online auction services, which are written in OWL-S. PCC is a paradigm

that enables a computer system to automatically ensure that a computer code provided

by a foreign agent is safe for installation and execution. We use the interactive theorem

prover Coq because it has been developed for more than twenty years [34] and is

widely used for formal proof development in a variety of contexts related to software

and hardware correctness and safety. Coq has been used to develop and certify a

compiler [61], and a fully computer-checked proof of the Four Colour Theorem has

been created by [41]. In the work of [8], we have formalized an auction service using

OWL-S, then we translate this representation into a program that is written in Coq.
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The semantics of these expressions is preserved in this transaction. Then, we use proof

tactics to prove desirable properties of these expressions within the theorem prover

Coq.

5.7 Summary

In this chapter, we have proposed a dialogue game to enable buyer agents to automati-

cally query an auctioneer before deciding whether or not to join an online auction. We

have formally described this inquiry dialogue model by defining the rules of locutions

and commitments. The auctioneer and the buyer share a common knowledge enabling

them to communicate and make sense of each other’s arguments. But they also have

private knowledge. For example, the questions related to properties of interest to the

buyer are not known to the auctioneer until they have been revealed through the dia-

logue. The buyer has a ranking function over the questions in the form of a preference

level, which is used to drive the dialogue forward. A scoring function over possible

answers in line with predefined expectations is used to decide whether to join or not

an auction.

A noticeable feature of our dialogue game is that it uses formal proofs as arguments.

Thus, it combines formal evidence with informal evidence in an interaction. We have

implemented our dialogue framework from within JADE wherein we have integrated the

Coq theorem prover in the Proof-Carrying Code paradigm enabling an agent to check

whether a proof of a given auction desirable property is correct or not. Experimental

results have demonstrated the feasibility as well as the validity of our approach.

In this chapter, we have presented a dialogue game to enable buyer agents to check

some desirable properties of a service specification. To extends the model of dialogue

games, we will consider the communication during a service and the composition of

different services in a transaction. We will simulate virtual markets that are composed

of various services using dialogue games in the next chapter.
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Chapter 6

Dialogue Driven Semantic Web
Service Composition

6.1 Introduction

Future agent-mediated e-commerce systems will deal with software agents involved in

financial transactions and in legally-binding contracts on behalf of humans in the In-

ternet. To provide a good foundation for automating the use of web services, Semantic

Web Services are proposed to automate service discovery, interoperation, and compo-

sition. OWL-S [69] is an ontology language to describe the semantics of Web services,

which can be used to define the capabilities, requirements and internal structures of

Web services. The OWL-S provides a good approach to describe the process of an

online auction service. Nevertheless, using OWL-S alone to implement online auction

services is not sufficient for us, although we can provide a specification for auction

services. In a sequential auction system, such as the English auction, the auctioneer

should report current highest bid to every bidder at the beginning of each round and

then bidders can make bids based on the current highest bid and their own strategy.

The bidding process of an English auction requires frequent information exchange. The

OWL-S model provides a way to describe what is carried out in a service and OWL-S

WSDL grounding provides methods to implement an atomic process that is described in

the service’s process model. This grounding is not sufficient to implement the request-

response communication approach in an English auction for example. Thus, we have

introduced the idea of information-seeking dialogues to our implementation of online

auction systems.

After introducing a dialogue into an inner service, we take another step forward to

expand the dialogue to dynamically compose Semantic Web Services. In the example of

the Semantic Web online book store service Congo.com1, a fictitious B2C site is written

in OWL-S. In this example, the process of selecting books, collecting buyer information,

collecting payment and delivering books are clearly described. Although this service

1http://www.ai.sri.com/daml/services/owl-s/1.2/examples.html
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can be successfully implemented as a good example of a semantic web service, it can be

improved to achieve more complex functionality. For example, we can enable the book

seller to persuade a buyer to enter another book selling service or to buy additional

books related to an already purchased book. These kinds of communications need some

form of dialogues, which are beyond the exchange of static data.

The specification of e-commerce systems is a crucial research issue in the devel-

opment of distributed applications on the Internet [39]. In this chapter, we present a

machine understandable description of an online trading system which includes the ser-

vices of auction, payment and delivery. Then, we introduce dialogues to Semantic Web

Services so that the interactivity among participants of an agent mediated e-commerce

system can be improved and the dynamic composition of Semantic Web Services can

happen. To achieve this aim, we formalize Semantic Web Services and dialogues as au-

tomata that describing the interactions among participant agents. To realize the goal

of service composition, we have defined Composite Dialogue Service Automata (CDSA)

to synthesize services into a global automaton. Finally, we compose an auction service

with online payment and delivery services to validate our approach.

This chapter is structured as follows. In Section 6.2, we set up an online trading sce-

nario and give a general discussion on how Semantic Web Services and dialogue games

can support it. Then, we briefly describe the Semantic Web Service and agent dialogue

framework. Formal dialogue model is introduced in Section 6.3. In Section 6.4, we will

describe the proposed automata approach, which combines the techniques described

in Section 6.2. Examples that implement our automata are described in Section 6.5.

Related work is presented in Section 6.6 and summary is given in Section 6.7.

6.2 Background

6.2.1 The scenario: Auction, Payment, and Delivery

In our scenario, Brad is a student who wants to buy some books which are related to his

major through online auction site. One traditional solution for this situation is that he

can visit the online auction web site eBay and search for the books that he preferred.

After one book is found, he joins in an auction to bid for it. If Brad succeeds in one

auction, he can discuss with the seller about the delivery issue and decide the terms of

payment. Brad should repeat all of the above steps for each of the remaining books.

Another solution is that Brad delegates this task to his agent, and then this agent

completes this task automatically. To realize the second solution, the online auction

system should be published in a way to be understood by the agent. This requires

a semantically rich language to support the understanding. The buyer agent should

be able to reason on the rules of an auction and make sure that he will not lose

unnecessarily money by participating into the auction. Another issue to this solution
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is that the system should enable communication among buyer agents and seller agents.

For example, the buyer agent can tell the seller agent which delivery company he wants

to choose or the seller agent can recommend and persuade the buyer agent to buy

related books, and then invoke another auction process.

The second solution combines the advantages of Semantic Web Services and dia-

logue games. A Semantic Web service provides a way to express machine understand-

able services and dialogue games enable service consumer to communicate with service

provider so that the buyer agents can make decisions based on the result of communi-

cation. The dialogue communication is a collaborative business activity rather than a

formatted client-server interaction.

6.2.2 Service Description

OWL-S has been designed as an ontology language to make Web service descriptions

computer-interpretable. Thus, we rely on OWL-S to implement the Web service and

service automata in this chapter. To describe a Semantic Web Service, the domain

ontology of a service should be developed in the first stage. The domain ontology de-

scribes the semantics of terms representing an area of knowledge and give explicit mean-

ing to the information. For example, we have defined classes Agent, PaymentMethod,

DeliveryCompany as the following declaration.

<owl:Class rdf:ID="Agent"/>

<owl:Class rdf:ID="DeliveryCompany">

<owl:oneOf rdf:parseType="Collection">

<DeliveryCompany rdf:ID="EMS"/>

<DeliveryCompany rdf:ID="FedEx"/>

</owl:oneOf>

</owl:Class>

<owl:Class rdf:ID="PaymentMethod">

<owl:oneOf rdf:parseType="Collection">

<PaymentMethod rdf:ID="Alipay">

<PaymentMethod rdf:ID="CreditCard">

</owl:oneOf>

</owl:Class>

Then OWL-S ontology will be used to describe the trading mechanism. As the

trading mechanism has been treated as Web service, the IOPEs (i.e., inputs, outputs,

preconditions and results) should be defined explicitly. In the service of Payment, the

inputs are Account and PaymentMethod while the output is Gift. We define Gift

as benefits for a specific payment type. In the service of Delivery, the inputs are an

account of an agent, products, delivery company and address, and the output is an

announcement. The following declarations display a segment of the inputs and outputs

of the service Payment.

<process:hasInput>

<process:Input rdf:ID="PayMethod">

<process:parameterType rdf:datatype="&xsd;anyURI"

>http://www.owl-ontologies.com/PaymentOntology.owl#PaymentMethod</process:parameterType>

</process:Input>
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</process:hasInput>

<process:hasOutput>

<process:Output rdf:ID="PaymentGift">

<process:parameterType rdf:datatype="&xsd;anyURI"

>http://www.owl-ontologies.com/PaymentOntology.owl#Gift</process:parameterType>

</process:Output>

</process:hasOutput>

In OWL-S, the term inCondition is used to express the binding between inputs

variables and the particular result variables. In the service of Payment, we would like

to express that if an agent chooses to use Alipay as the payment method, then this

agent will get a gift. This result can be expressed by SWRL as following.

<process:inCondition>

<expr:SWRL-Condition rdf:ID="PaymentAli">

<expr:expressionObject>

<rdf:List>

<rdf:first>

<rdf:Description>

<rdf:type rdf:resource="&swrl;ClassAtom"/>

<swrl:argument1 rdf:resource="#Alipay"/>

<swrl:classPredicate rdf:resource="#PaymentMethod"/>

</rdf:Description>

</rdf:first>

<rdf:rest rdf:resource="&rdf;nil"/>

</rdf:List>

</expr:expressionObject>

</expr:SWRL-Condition>

</process:inCondition>

<process:hasEffect>

<expr:SWRL-Expression rdf:ID="effect">

<expr:expressionObject>

<rdf:List>

<rdf:first>

<rdf:Description>

<rdf:type rdf:resource="&swrl;SameIndividualAtom"/>

<swrl:argument2 rdf:resource="#gift"/>

<swrl:argument1 rdf:resource="#PaymentGift"/>

</rdf:Description>

</rdf:first>

<rdf:rest rdf:resource="&rdf;nil"/>

</rdf:List>

</expr:expressionObject>

</expr:SWRL-Expression>

<process:hasEffect>

Two sorts of process can be invoked in an OWL-S process model. One is atomic

process, which corresponds to a one-step request-response message exchange. Both

of the services Payment and Delivery are described as atomic process. The other

is composite process, which corresponds to multi-step actions that linked together by

control flows and data flows. The control flows are described using constructs such

as sequence, split, if-then-else and iterate etc. Data flow describes how information is

transferred from one step of a process to another. The example of a composite process

can be found in Section 5.2.1.
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6.2.3 Agent Dialogue Framework

Formal dialogue games have been applied in multi-agent systems to enable software

agents to interact with each other. Walton and Krabbe [112] propose a typology of pri-

mary dialogue types to model dialogues. In their typology, six primary dialogue types

are categorized: information-seeking dialogues, inquiry dialogues, persuasion dialogues,

negotiation dialogues, deliberation dialogues and eristic dialogues. McBurrney and Par-

sons [71] identify five dialogue game rules in formal dialogue games. These rules include

Commencement Rules, Locutions, Combination Rules, Commitments and Termination

Rules.

Three-level hierarchical formalism is presented in [71] for agent dialogues. The low-

est level is the topic layer which displays the subject of a dialogue. The middle level is

the dialogue layer which is the combination of six primary types of dialogues. The top

level is the control layer which represents the selection and transition of specific dia-

logue types. The control layer is composed of two components: Atomic Dialogue-Types,

which include five dialogue types except eristic dialogue in the taxonomy of Walton and

Krabbe; and Control Dialogues that have their discussion subjects of other dialogues.

Then five dialogue combinations are defined to represent the combination of atomic

or control dialogues. The five dialogue combinations are: iteration, sequencing, paral-

lelization, embedding and testing. Given the above definitions, McBurrney and Parsons

define an Agent Dialogue Framework (ADF) as a five-tuple (A,L,
∏

Atom,
∏

Control,
∏

),

where:

• A is a set of agents.

• L is a logical language for representation of discussion topics.

•
∏

Atom is a set of atomic dialogue-types.

•
∏

Control is a set of Control dialogues.

•
∏

is the closure of
∏

Atom ∪
∏

Control under the combination rules.

6.3 Formal Dialogue Model

In our scenario, two types of dialogue are considered: information-seeking dialogue and

persuasion dialogue. In an information-seeking dialogue, we assume that there are one

information requester and at least one information responder. While in a persuasion

dialogue, we assume that there are two participants.

6.3.1 Locutions in the Dialogue Framework

We define ∆ as the representation of atomic dialogue types, and t as the topic of a

dialogue. Seven locutions are defined to control the dialogue, assuming δ ∈ ∆ :

79



• begin(δ, t). It makes possible to start a dialogue with type δ on the topic of t.

• agree(δ, t). It is used to accept the request to start a dialogue whose type is δ

and topic is t.

• disagree(δ, t). It is used to reject the request to start a dialogue whose type is

δ and topic is t.

• return control(). It is used to propose a request to jump from one basic type

dialogue to a control dialogue.

• agree return control(). This accepts to return a control dialogue.

• disagree return control(). This rejects to return a control dialogue.

• close(). It is used to close a dialogue.

Let Φ be the set of variables used to express the statements uttered by agents. Assume

that φ ∈ Φ. Three additional locutions are used in the information-seeking dialogue.

• propose(φ). It proposes a statement φ.

• offer(φ). It gives a response φ to a proposition.

• pass(). It gives an empty statement as a response.

Four extra locutions are defined in the persuasion dialogue.

• assert(φ). It gives an assertion of statement φ.

• accept(φ). It is used to accept an assertion.

• argue(φ). It gives an explanation of φ.

• reject(φ). Reject a statement φ.

6.3.2 Commitment Rules

The dialogue assumes that the commitments uttered by all participants are recorded

in a commitment store (CS). The following table 6.1 shows the changes of the CS for

each locution, where p represents the speaker in a move. Note that other locutions that

are not contained in the table will not lead to the updating of the commitment store.
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Table 6.1: Commitment rules

begin(δ, t) CS(p) = CS(p) ∪ {t}
agree(δ, t) CS(p) = CS(p) ∪ {t}
propose(φ) CS(p) = CS(p) ∪ {φ}

offer(φ) CS(p) = CS(p) ∪ {φ}
assert(φ) CS(p) = CS(p) ∪ {φ}
accept(φ) CS(p) = CS(p) ∪ {φ}
argue(φ) CS(p) = CS(p) ∪ {φ}

6.3.3 Dialogue Rules

The protocol for an information seeking dialogue is described in Figure 6.1. Each node

in this graph is a locution, and the outgoing arcs from one node describe the possible

following moves. The nodes with gray background represent a requester while the nodes

with white background represent a responder. We also assume that all the responders

should give responses to the requester in one round of the dialogue so that the requester

can make another iteration.

Figure 6.1: Rules for an information seeking dialogue (grey nodes are for the auctioneer,
white nodes for the buyer)

Figure 6.2 shows the protocol for a persuasion dialogue in our model. In this graph,

one participant represented by nodes with gray background tries to persuade the other

participant to accept his assertions. When a dialogue is not in the control layer, the lo-

cutions return control(), agree return control() and disagree return control()

can be uttered in anytime. Another two moves agree return control() and dis-

agree return control() must follow by the locution return control() control. Note

that our dialogue model supports for embedded dialogues, which means that we can in-

sert one dialogue into another. We will not discuss embedded dialogues in this chapter,

because the topic of this chapter focuses on service generation.
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Figure 6.2: Rules for a persuasion dialogue (grey nodes are for the auctioneer, white
nodes for the buyer)

6.4 Dialogue Service Automata

Service automata are used to solve services discovery and composition in a context-

aware system [118], to perform planning for Web services composition [83] and to

describe global behavior of services composition [35]. To improve the interactivity of

Semantic Web Services, we define a Semantic Web Service as an automaton by applying

the following agent dialogue framework (ADF).

Definition 14. Given an agent dialogue framework (ADF), an Dialogue Service Au-

tomata is defined by a tuple: 〈A,
∑
, Q, δ, I, F 〉 , where:

• A is an Agent Dialogue Framework (ADF).

•
∑

=
∏
∪P is the union of dialogues and inner operations of one service.

∏
represents the closure of

∏
Atom ∪

∏
Control under the combination rules defined

in the ADF, P represents the inner operations of the service.

• Q is the finite set of states of the automata (Q 6= ∅).

• δ is the transition function, that is, Q× Σ→ Q.

• I is the initial state of a service and I ∈ Q.

• F is a finite set of final states and F ⊆ Q.

In an ADF,
∑

is composed of two components. One is the dialogue among service

providers and service consumers. For example, an auctioneer asks for new bids in a

round of an English Auction. The other is the inner operation in one service. For

example, after finding the winner of an auction, the service provider updates the value

of last payment. The transition function δ associates current state q ∈ Q with current
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action a ∈
∑

and set δ(q, a) ⊆ Q to next state. There may exist multiple initial states

and final states in this automaton. The initial state I represents the precondition of

a service, while the final state F represents the postcondition of a service. The imple-

mentation of a DSA is shown in Algorithm 2.

Algorithm 2 Implementation of DSA

Require: An Agent Dialogue Framework ADF.
Ensure: The postcondition of one service is satisfied.

1: The DSA starts when the precondition of one service is satisfied.
2: while The final state of one service is not reached do
3: while Need information exchange among consumers and providers do
4: Start a dialogue d until the termination of this dialogue.
5: Perform the transition δ(qi, d) to translate the system from current state qi to

next state qi+1.
6: end while
7: if An inner action a is operated then
8: Perform the transition δ(qi, a) to reach next state qi+1.
9: end if

10: end while

Composite services provide higher value than individual services and can be pre-

dominant in the business world [70]. In order to synthesize two Semantic Web Ser-

vices, we propose Composite Dialogue Service Automata (CDSA). We use the compos-

ite operator ⊗ to represent the composition of two Semantic Web Services. Given

automata 〈AS1,
∑S1, QS1, δS1, IS1, FS1〉 corresponding to Service S1 and automata

〈AS2,
∑S2, QS2, δS2, IS2, FS2〉 corresponding to Service S2. S1 and S2 can be com-

posite if

• FS1 ∩ IS2 6= ∅

• ∀a ∈ FS1∩IS2, a ∈ K(IS2), where K(IS2) represents the Initial State of S2 which

is denoted by K predicates.

Definition 15. Given a specific Agent Dialogue Framework (ADF), a composition

Service S of S1⊗ S2 is defined as tuple 〈AS ,
∑S , QS , δS , IS , FS〉, where:

• AS is an Agent Dialogue Framework (ADF).

•
∑S =

∏S1 ∪
∏S2 ∪ PS1 ∪ PS2.

• QS = QS1 ⊗QS2 = {< u, v > |u ∈ QS1 ∧ v ∈ QS2}.

• δS : QS ×
∑S → QS.

• IS = {< u, v > | u ∈ IS1 ∧ v ∈ IS2}.

• FS = {< u, v > | u ∈ FS1 ∧ v ∈ FS2}.
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6.5 Example of Dialogue Service Automata

We illustrate our model with dialogue occurrence among one auctioneer and two bid-

ders in an English auction house. The auctioneer persuades the winner to choose a

recommended payment approach and delivery company. In this example, the infor-

mation seeking dialogue is used in the process of the English auction service. Two

persuasion dialogues are used to compose the services: combine the English auction

with a payment service, and combine the payment service with a delivery service. The

dialogue model is implemented in the agent platform JADE [12]. The auctioneer is

represented as A, while the two bidders are represented as B1 and B2.

(1) A: begin(information seeking,English Auction)
(2) B1: agree(information seeking,English Auction)
(3) B2: agree(information seeking,English Auction)
(4) A: propose(hasPrice(Book,15))
(5) B1: offer(18)
(6) B2: offer(20)
(7) A: propose(hasPrice(Book,20))
(8) B1: offer(22)
(9) B2: pass()
(10) A: propose(Winner(B1), Payment(22))
(11) A: close()
The information seeking dialogue for an English auction is closed. Then the auctioneer persuades the
winner to use the recommend payment approach.
(12) A: begin(persuasion, Payment Method)
(13) B1: agree(persuasion, Payment Method)
(14) A: assert(PaymentMethod(Alipay))
The auctioneer suggests the buyer to use Alipay to pay for the item.
(15) B1: argue(PaymentMethod(DebitCard))
The buyer would like to pay by a debit card.
(16) A: argue(inCondition(PaymentMethod(Alipay)),hasEffect(PaymentGift(gift)))
The auctioneer argues that if the buyer pays use Alipay, then this buyer will get a gift.
(17) B1: accept(PaymentMethod(Alipay))
B1 submits his payment information to the service.
(18) A: close()
The auctioneer closes the persuasion dialogue.
(19) A: begin(persuasion, Delivery Company)
(20) B1: agree(persuasion, Delivery Company)
(21) A: assert(DeliveryCompany(EMS))
(22) B1: accept(DeliveryCompany(EMS))
A invokes the EMS delivery service.
(23) A: close()
A closes the second persuasion dialogue.

6.6 Related Work

In [119], a framework called TAGA has been used to simulate an automated trading

in dynamic markets. TAGA uses Semantic Web languages (RDF and OWL) to specify

and publish underlying common ontologies and as a content language within the FIPA

ACL messages. This framework extends the FIPA protocols to support open market

auction services. However, the specification of auction services in this chapter does

not describe the explicit process and rules of different auctions. For example, the rule
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that a bidder cannot bid a lower price than the current bid in an English auction is

not described. In [103], a common shared negotiation ontology has been used to help

agents negotiate with each other. They provide a possible application of this approach

to simulate online auction competition. The simulation is not a real implementation

but they just illustrate the approach using negotiation ontology. In [96], they have in-

tegrated Semantic Web technologies into agent architecture to represent the knowledge

and behavior of agents in a semantic manner. Although, their work is mainly about

distributed knowledge management, the proposed approach can help us build an agent

mediated and to automatically process online auction services. In [39], the authors

have proposed a hybrid solution that uses OWL, SWRL rules, and a Java program to

dynamically monitor and simulate a temporal evolution of social commitments. The

shortage of this approach is that the action and time slice is fixed binding. In our work,

we aim to build a system that is dynamically changing over time. The work of [85]

has presented an inquiry dialogue and illustrated how agents negotiate in a scenario

of ontological correspondences. The dialogue model provided in this paper inspired us

to design the dialogue game that used in this chapter. In the work of [59], an agent

architecture that integrates Semantic Web technologies and multi-agent systems has

been proposed for developers to build knowledge management systems using software

agents. They have implemented their system in JADE and utilized ACL to enable

the communication. We extend their work by introducing difference types of dialogue

games to achieve interaction among agents. A policy and contract extended agent

model has been specified in [65]. In this model both systems and agents can be defined

dynamically by means of policies. In [117], a policy driven model has been proposed

to control the behaviours of agents according to high-level business requirements. In

this model, ontology language is used to describe the business requirements, policies

and the negotiation protocol. The difference is that our work focuses on the problem

of Semantic Web Services composition.

6.7 Summary

The main advantage of a dialogue driven Semantic Web Service is that the message

passing between the service provider (the auctioneer) and the consumer (the buyer) is

dynamic. This means the consumer can challenge the provider while the provider can

persuade the consumer to enter another service and consumers can ask questions or

seek information from the service provider. The dialogue service automata approach

can be used not only to describe the inner status of a specific service but also to

describe services composition. The approach to deal with data flow within a process

is not clearly defined in OWL-S, while arguments can contain data information for the

next process. For example, a new bid can be passed to the auctioneer by an argument

in the process of an English auction.

85



In this chapter, we have defined the dialogue service automata approach to extend

the interactivity of the current Semantic Web Service framework. We have presented

a semantic representation of the auction domain using OWL and a service-oriented

approach for the semantic description of auction processes using OWL-S, which pro-

vides a formal and unified representation for online auction systems. By introducing

semantics in the auction domain and combining the ontology with the Semantic Web

Service technique, we have provided an approach for different software agents to au-

tomatically discover and invoke an online auction. We have presented our dialogue

models that can generate information-seeking and persuasion dialogues. By combining

the Semantic Web Service and dialogue games, dialogue service automata has been

proposed. Finally, we have implemented an online auction service, which are written

in OWL-S, by using JADE according to the dialogue service automata. In future work,

we will illustrate our model by implementation embedded dialogues and introduce more

locutions and rules to support negotiation dialogues.
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Chapter 7

Verification of Combinatorial
Auctions

7.1 Background

Imagine an open society of software agents owned by human beings and engaging into

financial transactions through online auctions. Assuming that such software agents

can understand auction protocols, we are interested in ensuring trust in the auction by

enabling agents to formally verify desirable properties. More specifically, we consider

combinatorial auctions and aim to establish well-known properties such as incentive

compatibility by using the Coq [34] theorem prover, which can be used to generate

machine-verifiable proofs. An auction is incentive compatible iff bidding its true valua-

tion is the optimal strategy for every agent. Our motivation for this work is three-fold:

1. This can be used as a decision support system by enabling a participating agent

to check properties of interest before deciding to join a given auction house or

not.

2. The ability to build up machine-verifiable proofs of well-established properties

of auction mechanisms will increase our confidence in proving previously unseen

protocols.

3. This kind of capability is important in mechanism design wherein one aim to

tailor a protocol with specific properties given the preferences or constraints of

the participants.

There is by now a small but increasing body of literature on verifying or certi-

fying auctions properties [101, 61, 9]. Most of this work is focused on single item

auctions except the recent work reported in [24], which investigates the use of the Is-

abelle/HOL [82] theorem prover for the verification of combinatorial auctions. Com-

binatorial auctions involve combination of items making complex not only the bidding

language but also the allocation and payment procedures. Moreover, for us to formally
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verify a property of a given protocol, we need to specify both the protocol and the prop-

erty. It turns out that Coq uses higher order logic, a logic language that is expressive

enough to specify combinatorial auctions such as the VCG (Vickrey Clarke Groves)

mechanism. Thus, we have specified the VCG protocol within Coq. In our previous

work [7] OWL-S is used as the specification language but was limited to single item

auctions. Note that the VCG protocol cannot be formalized within OWL-S since it

involves quantification over valuation or bidding functions. Our formal specification

of the VCG differs from that of [24] not only on the fact we have used different theo-

rem provers but mainly on the fact we have relied upon set theory to explicitly define

bidding pairs, allocation and payment functions, see Section 7.2 for more details.

We have then developed formal proofs for some incentive properties for the VCG

mechanism. These incentive properties are:

• The payment of each agent is non-negative;

• The utility derived by a truthful agent is non-negative;

• The VCG mechanism is incentive compatible.

Observe that for the Vickrey auction, we have an allocation algorithm, which we have

implemented and certified from within Coq in Chapter 1. In contrast, there is no

known allocation algorithm for the general VCG mechanism since the optimal allocation

problem for combinatorial auctions is NP-hard [104]. Instead, the allocation relies on a

non-constructive existence of an optimal solution argmax. As a consequence, we have

developed 1200 lines of Coq proof for the VCG against 200 lines for the Vickrey.

To sum up, the contributions of this work can be stated as follows:

1. We have fully specified VCG auctions by using set theory to represent bids, allo-

cations, and payments.

2. We have developed machine-verifiable proofs of the fact that the VCG mechanism

is incentive compatible.

3. We have also developed simple and elegant proofs for some basic properties proven

before, see for example [7].

7.1.1 Game Theoretic Properties

Generally speaking a combinatorial auction [29] is composed of a set I of m items to

be sold to n potential buyers. A bid is formulated as a pair (B(x), b(x)) in which

B(x) ⊆ I is a bundle of items and b(x) ∈ Z+ is the price offer for the items in

B. The combinatorial auction problem (CAP) is to find a set X0 ⊆ X such that,

for a given a set of k bids, X = {(B(x1), b(x1)), (B(x2), b(x2)), . . . , (B(xk), b(xk))},
the quantity

∑
x∈X0

b(x) is maximal subject to the constraints expressed as for all
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xi, xj ∈ X0 : B(xi) ∩ B(xj) = ∅ meaning an item can be found in only one accepted

bid. We assume free disposal meaning that items may remain unallocated at the end

of the auction.

As shown in [87], the CAP is NP-hard implying that approximation algorithms

are used to find near-optimal solutions or restrictions are imposed in order to find

tractable instances of the CAP [104] wherein polynomial time algorithms can be found

for a restricted class of combinatorial auctions. A combinatorial auction can be sub-

additive (for all bundles Bi, Bj ⊆ I such that Bi ∩ Bj = ∅, the price offer for Bi ∪ Bj

is less than or equals to the sum of the price offers for Bi and Bj) or super-additive

(for all Bi, Bj ⊆ I such that Bi ∩Bj = ∅, the price offer for Bi ∪Bj is greater than or

equals to the sum of the price offers for Bi and Bj).

Game theory mechanism, see for example [29], is usually used to describe auctions,

thus providing decision procedures that determine the set of winners for the auction

according to some desired objective. An objective may be that the mechanism should

maximize the social welfare, which can be for example the sum of all agents’ utilities

in the auction. Such a mechanism is termed efficient. For open multi-agent systems,

another desirable property for the mechanism designer can be strategyproofness (truth

telling is a dominant strategy for all agents). A mechanism that is strategyproof has a

dominant strategy equilibrium.

A wellknown class of mechanisms that is efficient and strategyproof is the Vickrey-

Clarke-Groves (VCG), see for example [29]. The VCG mechanism is performed by

finding (i) the allocation that maximizes the social welfare and (ii) a pricing rule allow-

ing each winner to benefit from a discount according to his contribution to the overall

value for the auction. To formalise the VCG mechanism, let us introduce the following

notations:

• X is the set possible allocations

• vi(x) is the true valuation of x ∈ X for bidder i

• bi(x) is the bidding value of x ∈ X for bidder i

• x∗ ∈ argmaxx∈X
∑n

i=1 bi(x) is the optimal allocation for the submitted bids.

• x∗−i ∈ argmaxx∈X
∑n

j 6=i bj(x) is the optimal allocation if agent i were not to bid.

• ui is the utility function for bidder i.

The VCG payment pi for bidder i is defined as

pi = bi(x
∗)−

(∑n
j=1 bj(x

∗)−
∑n

j=1, j 6=i bj(x
∗
−i)
)

=
∑n

j=1, j 6=i bj(x
∗
−i)−

∑n
j=1, j 6=i bj(x

∗),
(7.1)
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and then, the utility ui for agent i is a quasi-linear function of its valuation vi for the

received bundle and payment pi.

ui(vi, pi) = vi − pi. (7.2)

We illustrate a VCG auction as an example.

Example 7.1.1 (A Combinatorial VCG Auction). Let an auctioneer sells two items

A and B in the Internet. Let three agents (b1, b2 and b3) submit the bids as shown in

Table 7.1, where we assume that all agents are bidding truthfully.

Table 7.1: Bids from the agents for different bundles
A B AB

b1 5 6 8
b2 6 4 9
b3 4 7 10

This yields one value-maximizing allocation x∗, i.e. b2 wins item A with bid 6 and

b3 wins item B with bid 7. Then, the payment of b2 is:

p2(A) = (b1(A) + b3(B))− b3(B) = (5 + 7)− 7 = 5

and the payment of b3:

p3(B) = (b2(A) + b1(B))− b2(A) = (6 + 6)− 6 = 6

Finally, the utilities of b2 and b3 are:

u2 = v2(A)− p2(A) = 6− 5 = 1

and

u3 = v3(B)− p3(B) = 7− 6 = 1.

Let p∗i and pi be the payments for agent i when it bids its true valuation vi and any

number bi respectively. Note pi, p
∗
i are functions of b−i. The strategyproofness of the

mechanism amounts to the following verification:

∀i, ∀vi, ∀bi ui(vi, p∗i (b−i)) ≥ ui(vi, pi(b−i)). (7.3)

In the equation (7.1), the quantity
∑n

j=1, j 6=i bj(x
∗
−i) is called the Clark tax. Another

interesting property of this VCG mechanism is that it is weakly budget balanced [27]

meaning the sum of all payments is greater than or equal to zero. For the VCG prop-

erties (e.g. strategyproof) to hold, the auctioneer must solve n+1 hard combinatorial

optimization problems (the optimal allocation in the presence of all bidders followed

by n optimal allocations with each bidder removed) exactly.
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Single item auctions are a particular case of combinatorial auctions wherein one

item is sold at a time. Common single item auctions are the English, Dutch or Vickrey

auctions, see for example [29]. For the Vickrey auction, the payment for agent i is

defined as:
pi = bi(x

∗)−
(∑n

j=1 bj(x
∗)−

∑n
j=1, j 6=i bj(x

∗
−i)
)

=
∑n

j=1, j 6=i bj(x
∗
−i) = the second highest bid.

(7.4)

7.2 Formalization of VCG

Agent-mediated online auctions are applications wherein data can be processed by

automated reasoning tools. Logic-based languages are useful tools to model and reason

about systems. They allow us to specify behavioral requirements of components of a

system and formulate desirable properties for an individual component or the entire

system.

In general, logic-based languages are chosen to balance their expressivity, complete-

ness and decidability of their underlying logic. For example, the expressivity of first-

order logic includes quantifiers, predicates and functions to objects, which is higher than

the complete and decidable propositional logic. In addition to this, quantification over

functions and predicates included in higher-order logic is more expressive than first-

order logic. First-order logic is complete but undecidable, whereas higher-order logic is

neither complete nor decidable. In our work, we advocate using the Coq language for

the following reasons:

• It is expressive enough so that we can specify combinatorial auctions within it.

• It provides us with a higher order logic therefore not decidable but enabling us

to specify mechanisms such as the VCG involving quantification over functions.

• Formal proofs of desirable properties can be developed from within Coq.

We have formalized the VCG mechanism within Coq and we will describe the formal-

ization of the VCG mechanism in the remaining section.

In the formalization, we use a Coq library List to define the operation of Set.

For example, we have defined functions to implement the operations of union and

intersection, the relation of include. Bidders and items are represented as typed set of

natural numbers Bidder and Item respectively. Prices of items are coded as Price and

are restricted to nonnegative integers in order to facilitate proof development. A bid is

then coded as a couple formed by a set of items and a price for that set of items. To

associate a bid with the corresponding bidder, we have defined a record BiddingRecord

to represent a well-formed bidding data as follows.

(*define a bid record as a triple*)
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Record BiddingRecord :=

mk_bidding_record {

record_bidder : Bidder;

bid_items : ItemSet;

bid_price : Price}.

(*define bidding data as a list of bid records*)

Definition BiddingData : Set :=

(list BiddingRecord).

We can check the legality of a set of bids as follows:

(*define the well-formedness property of the bidding data*)

Definition NoDupItemSetEachBidder

(data : BiddingData) :=

forall (n1 n2 : nat) (r1 r2 : BiddingRecord),

n1 <> n2 ->

nth_error data n1 = Some r1 ->

nth_error data n2 = Some r2 ->

record_bidder r1 = record_bidder r2 ->

~ ItemSetEq (bid_items r1) (bid_items r2).

In addition to legality checks, we can create record of legal bidding data. This is useful

for the allocation, which is defined as a set of legal bid records. We ensure this by

checking the well-formedness of an allocation. More importantly, an allocation should

form a partition of the set of the items in the bidding data. This is a much more

involved procedure wherein we must check that the allocated bundles of items cover

the set of items in the bidding data and that every two allocated bundles are disjoint.

Definition GoodAllocation (alloc : Allocation)

(data : LegalBiddingData) : Prop :=

(forall is,

get_item_set (bidding_data data) = is ->

Cover alloc is) /\

Contain (bidding_data data) alloc.

wherein Cover and Contain are both Fixpoint Coq definitions, which respectively

check whether the bundles in alloc is a cover of the set of items is and that the bundles

in alloc are legal elements of bidding data that are relatively disjoint. Likewise, we

can check and create legal allocation.

Another important definition is that of the maximum handled as follows.
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Parameter max_allocation :

forall (d : LegalBiddingData),

LegalAllocation (d:=d).

Hypothesis max_allocation_sound :

forall (d : LegalBiddingData)

(a : LegalAllocation (d:=d)),

(sum_price (alloc a)) <=

sum_price (alloc (max_allocation d)).

This enables us to state that the maximum allocation problem has a solution argmax

even though we do not have an explicit algorithm to calculate it. In fact, the assurance

for the existence of a solution is sufficient for the proofs we are interested in as can be

seen in Section 7.3 of this chapter.

Then, we have also written some handling functions to perform some useful arith-

metic operations such as sum price, which adds all the prices in a legal allocation or

sum price sub i that calculates the quantity in equation (7.1). The formalization of

equation (7.1) is as follows.

Definition payment (d : LegalBiddingData)

(i : Bidder) : Z :=

sum_price (alloc (max_sub_i d i))

- (sum_price_sub_i (alloc (max_allocation d)) i).

The subtractor of this function represents the maximum allocation without bidder i,

while the minuend is the original maximum allocation which subtracts the bidding

record given by bidder i.

Finally, the winner’s utility is defined as the function of utility, which formalizes

equation (7.2).

Definition utility (d : LegalBiddingData)

(b : Bidder) : Z :=

(sum_price_i (alloc (max_allocation d)) b)

- (payment d b).

7.3 Proof of Desirable Properties

The first property that is established for a VCG auction is non-negative payment.

Theorem 7. In a VCG auction, the payment of a bidder is greater or equal to 0.

The mathematical proof can be represented as:

pi =
n∑

j=1, j 6=i

bj(x
∗
−i)−

n∑
j=1, j 6=i

bj(x
∗) ≥ 0
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The related Coq formalization is as:

Theorem payment_greater_than_or_equal_to_zero :

forall (d : LegalBiddingData) (b : Bidder),

payment d b >= 0.

This theorem states that by given a legal bidding data, the payment of a bidder from

a legal allocation is greater or equal to 0. The proof of this theorem is generated by

unfolding the definition of payment.

Proof. According to the definition of payment, winner’s payment equals to sum price

(alloc (max sub i d b)) - (sum price sub i (alloc (max allocation d)) b), where func-

tion alloc returns legal allocations from different bidding records. By having the

premise that alloc (max sub i d b) is an efficient allocation without Bidder b, which

means (sum price sub i (alloc (max allocation d)) b) <= sum price (alloc (max sub i

d b)), the conclusion can be deduced.

The second property that we will establish is that winner’s utility is non-negative.

Theorem 8. In a VCG auction, the utility derived by a truthful agent is non-negative.

The mathematical proof of is as:

ui(vi, pi) = vi − pi =
n∑

j=1

vj(x
∗)−

n∑
j=1, j 6=i

vj(x
∗
−i) ≥ 0

The related Coq formalization is as:

Theorem utility_ge_zero :

forall (d : LegalBiddingData) (b : Bidder),

utility d b >= 0.

This theorem states that given a legal bidding data, the utility of any truthful bidder

is greater or equal to 0.

Proof. The first step in the proof is to unfold the definition of utility. Then, we
perform some algebraic manipulations on this inequality, by which we get:

sum_price_i (alloc (max_allocation d)) b +

sum_price_sub_i (alloc (max_allocation d)) b

- sum_price (alloc (max_sub_i d b))

>= 0

The above inequality can be expressed as the following inequality:

vi(x
∗) +

n∑
j=1, j 6=i

vj(x
∗)−

n∑
j=1, j 6=i

vj(x
∗
−i) >= 0

Then we combine the first two terms at the left of the inequality using a lemma
sum price combine. By this combination we get the following inequality:
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sum_price (alloc (max_allocation d))

- sum_price (alloc (max_sub_i d b))

>= 0

This inequality is the same as the following:

n∑
i=1

vi(x
∗)−

n∑
j=1, j 6=i

vj(x
∗
−i) >= 0

By applying the hypothesis max allocation sound which states x∗ is the efficient

allocation, the above inequality can be proved directly.

The last property that has been established is incentive compatible, i.e. declaring

their true valuation function vi is a weakly dominant strategy for all players.

Theorem 9. The VCG mechanism is strategy-proof, i.e. incentive compatible.

The mathematical proof of this theorem is as follows. Suppose bidders declare bids

b′1, ..., b
′
n, and the true valuation of bidder i is vi. Let x∗ = f(vi, b

′
−i) and x′′ = f(b′i, b

′
−i).

As x∗ ∈ argmaxx∈X vi(x) +
∑n

j=1;j 6=i b
′
j(x). Thus, for all x ∈ X ,

vi(x
∗) +

n∑
j=1;j 6=i

b′j(x
∗) ≥ vi(x) +

n∑
j=1;j 6=i

b′j(x).

Therefore,

ui(x
∗) = vi(x

∗)− pi(x∗) ≥ vi(x′′)− pi(x′′) = ui(x
′′).

The related Coq definition of this theorem is as the following formalization.

Theorem strategy_proof :

forall d1 d2 b,

HonestBidding d1 b

-> DiffByBidderPrice b (bidding_data d1)

(bidding_data d2)

-> utility d1 b >=

utility d2 b.

In this theorem, d1 represents the bidding data which are composed of truthful bidding,

while d2 includes the untruthful bidding of agent b. The bidding data of other agents

are the same in both d1 and d2. This theorem states that the utility of truthful bidding

is greater or equal to the utility of untruthful bidding strategy for bidder b.

Proof. The first step is to unfold the definition of utility and payment, which yields
the inequality as below:
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sum_price_i (alloc (max_allocation d1)) b -

(sum_price (alloc (max_sub_i d1 b)) -

sum_price_sub_i (alloc (max_allocation d1)) b)

>=

sum_price_i (alloc (max_allocation d2)) b -

(sum_price (alloc (max_sub_i d2 b)) -

sum_price_sub_i (alloc (max_allocation d2)) b)

The above inequality is the same as the following mathematical notation:

vi(x
∗)− (

n∑
j=1, j 6=i

bj(x
∗
−i)−

n∑
j=1, j 6=i

bj(x
∗)) >= vi(x

′′)− (
n∑

j=1, j 6=i

bj(x
′′
−i)−

n∑
j=1, j 6=i

bj(x
′′))

Then we perform some algebraic manipulations followed to simplify the above in-

equality as:

vi(x
∗) +

n∑
j=1, j 6=i

bj(x
∗)−

n∑
j=1, j 6=i

bj(x
∗
−i) >= vi(x

′′) +
n∑

j=1, j 6=i

bj(x
′′)−

n∑
j=1, j 6=i

bj(x
′′
−i)

The corresponding Coq representation is:

sum_price_i (alloc (max_allocation d1)) b +

sum_price_sub_i (alloc (max_allocation d1)) b -

sum_price (alloc (max_sub_i d1 b))

>=

sum_price_i (alloc (max_allocation d2)) b +

sum_price_sub_i (alloc (max_allocation d2)) b -

sum_price (alloc (max_sub_i d2 b))

By applying the lemma sum price combine on the above inequality, we get the

following inequality:

sum_price (alloc (max_allocation d1)) -

sum_price (alloc (max_sub_i d1 b))

>=

sum_price (alloc (max_allocation d2)) -

sum_price (alloc (max_sub_i d2 b))

The corresponding mathematical notation is:

n∑
i=1

vi(x
∗)−

n∑
j=1, j 6=i

bi(x
∗
−i) >=

n∑
i=1

vi(x
′′)−

n∑
j=1, j 6=i

bj(x
′′
−i)

On one hand, the assumed function max sub i returns a legal allocation on a bidding
data, which has the maximum summed prices without bidder b. On the other hand, by
removing agent b from d1 and d2, the remaining agents’ reports are the same in both
d1 and d2. Hence, we get the equation:

sum_price (alloc (max_sub_i d1 b)) = sum_price (alloc (max_sub_i d2 b))
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which means:
n∑

j=1, j 6=i

bi(x
∗
−i) =

n∑
j=1, j 6=i

bj(x
′′
−i)

Hence, we can deduce the following inequality:

sum_price (alloc (max_allocation d1)) -

sum_price (alloc (max_sub_i d1 b))

>=

sum_price (alloc (max_allocation d2)) -

sum_price (alloc (max_sub_i d1 b))

The last step is to prove:
n∑

i=1

vi(x
∗) >=

n∑
i=1

vi(x
′′)

The inequality follows because we assume x∗ is an efficient allocation with respect

to the true profile of valuations in the hypothesis max allocation sound.

7.4 Related Work

Interactive theorem proving is one approach to verify the correctness of an algorithm or

a network protocol meets its specification. It can also be used to verify that a mathe-

matical statement is true. In a theorem prover, such as Coq and Isabelle/HOL [82],

the mathematical content is represented as a machine understandable manner. Users

use tactics to create proof in a man-machine collaborated way and the proof can be

automatically checked by a proof checker. Interactive theorem proving is applied to

prove and verify some pure mathematics theorems. The prime number theorem, which

described the asymptotic distribution of the prime numbers among the positive inte-

gers, was formally proved and verified by using Isabelle/HOL in the work of Avigad

et al. [5]. In [46], John Harrison has formalized a complex-analytic proof of the prime

number theorem in the HOL Light theorem prover by developing necessary analytic ma-

chinery including Cauchy’s integral formula. The first major theorem that was proved

using a computer is the four color theorem [3]. The four color theorem states that any

map in a plane can be colored using four colors in such a way that regions sharing a

common boundary do not share the same color. In [42], a computer-checked proof of

the four color theorem has been constructed in Coq. In the work of [47], HOL Light

theorem prover has been used to formalize the Dirichlet’s theorem, which asserts that

for all pairs of positive integers a and b that are coprime, there are infinitely many

primes of the form a+nd, where n is a non-negative integer. More theorems that have

been formalized using different theorem provers can be found in [113].

Formal reasoning has been applied to theoretical economics, especially in the area

of social choice theory [81] and game theory [24]. In the work of [81], Arrow’s impos-

sibility theorem has been formalized in higher-order logic which provides a valid proof
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of the theorem, while the original standard and textbook proofs of Arrow’s general

impossibility theorem are invalid [88]. In the work of [24], by formalizing and prov-

ing several desirable properties (e.g.,VCG auctions are pairwise disjoint and prices are

non-negative) of a VCG auction in Isabelle, they provides a sound specification of the

mechanism. Both of the above formalizations are represented in higher order logic and

set theory which indicates that mechanical theorem proving is suitable for social choice

theory and game theory.

Formal verification has been used to verify an operating system kernel using Is-

abelle/HOL in [54]. In this work, they not only provide a full specification of the ker-

nel, but also proof for the kernel’s precise behavior. By proving a formal and machine-

checked verification of an operating-system kernel, the behavior of the kernel in every

possible situation can be precisely predicted. In the project of CompCert [61], Coq

has been used to program and prove the correctness of a compiler from Clight (a large

subset of the C programming language) to PowerPC assembly code. This approach

guarantees that the safety properties proved in Clight hold in PowerPC assembly code.

A machine-verified software-defined networking controller has been designed and for-

malized in Coq, which provides a robust guarantee of desirable behaviors [44]. This

prototype is implemented by extracting Coq code into OCaml.

7.5 Summary

In this chapter, we have formalized a VCG auction, and proved some of its incentive

properties by using the interactive theorem prover Coq. Coq is a proof assistant that

is based on higher-order logic and type systems. It has been used to verify famous

pure mathematical theorems, economic theorems and software verification. Our work

provides a machine-verifiable for a mathematical theorem on the VCG combinatorial

auction. Such a formal verification can be used in automated mechanism design for

online auction or Web services.
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Chapter 8

Concluding Remarks

In agent-mediated e-commerce systems, software agents are responsible for selling or

purchasing commodities and services on behalf of their owners. Software agents with

limited computational resources and bounded rationalities must make decisions to opti-

mize their payoffs in a given transaction. In our work, we focus on online auctions since

they have been established as an efficient protocol to do business. Auction mechanisms

are designed to have some desirable properties such as incentive compatibility. The

following requirements must be implemented in agent-mediated e-commerce systems to

enable automated decision-making and services composition.

• Trading protocol such as auction mechanisms should be published in a standard

language which is machine-readable.

• The desirable properties of specific auction mechanisms and formal proofs of these

properties should be described.

• The proofs of desirable properties should be automatically checked by software

agents.

• The interaction protocol implemented in the system should support automated

communication among software agents.

• An online trading may require the composition of different services to achieve its

objective. Thus, an automated communication approach should be provided to

realize service composition.

In order to meet the requirements, we have proposed a certification framework in

Chapter 3, and to enable software agents to automatically check desirable properties

of a specific auction through a formally designed communication protocol, and then

make decisions according to the result of the communication. Furthermore, we extend

the communication mechanism to the area of Semantic Web Service composition and

explore the verification of combinatorial auction mechanisms. In the following, we
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highlight the distinguishable contributions of this thesis by analyzing related work in

existing literature.

Firstly, Chapter 4 exploits that an online trading protocol, such as single item

auctions, can be expressed as web services using Semantic Web Service description

languages (i.e., OWL-S). The specification of an auction provides a machine under-

standable presentation of trading mechanisms. Because of the expressive limitation

of Semantic Web Service languages, we therefore rely on the technique of interactive

theorem proving to construct proofs of properties for a trading mechanism. By trans-

lating the auction specification from OWL-S to an imperative program which is defined

within an interactive theorem prover named Coq, we then apply Hoare Logic to prove

the desirable properties of the original specification. There is some work related to the

translation of service descriptions. Brogi et al. [22] present a translator that translating

OWL-S process description in to Petri nets, so that the tools available for Petri nets

can be used to analyze OWL-S services. Ankolekar et al. [1] describe a mapping from

OWL-S process model into equivalent PROMELA statements that can be evaluated

by a model checker SPIN. Then numerous properties (e.g. safety and liveness proper-

ties) of the OWL-S process model can be verified using SPIN. Feng and Kirchberg [37]

propose an approach which translates an OWL-S process model into process algebra,

and then use a model checker to check the properties of the process. In this thesis, we

have defined the semantics of a subset of OWL-S ontology within the theorem prover

Coq and then provided the proofs of desirable properties.

Secondly, it shows that the Proof-Carrying Code (PCC) paradigm can be imple-

mented to make an auctioneer publish an auction specification and proofs of desirable

properties of the auction, and then enable buyer agents to automatically check the

correctness of these proofs using a proof checker in Section 3.2. PCC paradigm has

been used by Leroy [62] to certify a compiler so that the safety properties proved on the

source code also hold for the compiled code. Love et al. [68] present a framework based

on PCC paradigm to enable consumer to verify security-related properties of hardware

intellectual property. In this thesis, the PCC paradigm has been implemented using

Coq, and then we have integrated PCC paradigm within an inquiry dialogue game

that supports automatically communication between buyer agents and auctioneers in

Chapter 5. Dialogue games have been used in multi-agent systems to support effective

interaction among agents. Black and Hunter [17, 18] propose an inquiry dialogue sys-

tem that not only provides protocols but also a strategy to generate dialogues. Our

inquiry dialogue game is designed to follow the design of Black and Hunter [17, 18]. The

difference is that both formal proofs and informal evidence can be used as arguments

in our inquiry dialogue game. By using dialogue games, buyer agents can make their

decisions about whether or not to participate in an auction, and even determine their

bidding strategies according to the results of the communication.
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Thirdly, dialogue games are extended to support the composition of Semantic Web

Service in Chapter 6. On the one hand, dialogue games have been utilized to resolve

conflicts and manage internal and external influences in multi-agent systems [52]. Dif-

ferent kinds of dialogues are proposed to achieve variety objectives. For instance, in

a persuasion dialogue, participants aim to resolve a difference of opinion. Persuasion

dialogues have been applied in various areas, such as artificial intelligence and law [13]

and human-robot interaction [94]. On the other hand, automated composition of Web

services at the process level is a difficult challenge as the nondeterministic and partially

observable behaviors of component services. Bertoli et al. [16] formalize the automated

process-level composition of services as a planning problem wherein services are repre-

sented as finite state automata. In this thesis, we have introduced dialogue games into

Semantic Web Services and proposed Composite Dialogue Service Automata to synthe-

size services. Dialogue games extend the original client-server communication paradigm

of Semantic Web Services to more complex manners. For example, the service provider

can not only persuade buyer agents to choose its service but also composite services

that fulfill the requirements of buyers by using dialogue games.

Finally, Chapter 7 shows the exploration of formalization and verification desirable

properties of combinatorial auctions. Combinatorial auctions allow bidders bid on

combinations of items in the presence of substitutes and complements. VCG mechanism

is a classical combinatorial auction that satisfies some desirable properties, such as

incentive compatibility. However, the VCG mechanism is computationally intractable.

Hence, we introduce hypothesis to state the property of efficient allocations in a VCG

mechanism. The VCG mechanism is specified within Coq directly, due to OWL-S has

limited expressiveness of service description, which corresponds to its underlying Web

Ontology Language (OWL). We present the proofs of three desirable properties of the

VCG mechanism: the payment is non-negative, the utility of truthful bidder is non-

negative, and incentive compatibility. There is some work related to our approach.

In the work of Tadjouddine and Guerin [100], model checking is used to formalize

and verify properties of a two player Vickrey auction and a quantity restricted multi-

unit auction using the VCG mechanism. Brânzei et al. [21] construct a verification

algorithm to verify a mechanism is strategy-proof. The focus of their work is that

the agents are able to efficiently verify the truthfulness of a mechanism. Caminati et

al. [24] use Isabelle to formally specify the combinatorial VCG auction and prove a set

of desirable properties (e.g. VCG allocations are pairwise disjoint). We extend their

work by verifying the incentive compatibility property of VCG mechanisms.

The work in this thesis can be extended in a number of promising directions for

future work.

• Formalization and verification of game theoretic properties. We consider formal-

izing and proving more game theoretic properties of different mechanisms. The
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well-known game theoretic properties include pareto efficiency [116] in which re-

sources are allocated in the most efficient manner, false-name-proof [106, 107]

where no agent has incentive to use fake accounts, Nash equilibrium [110] in

which no single player can gain higher payoff by changing his strategy unilater-

ally, and security properties [20] such as fairness which states that all agents are

treated equally.

• Sound specification and implementation of programs. The specification of ser-

vices in this thesis is expressed in the language of OWL-S. The grounding OWL-

S Services with WSDL or Java can be implemented using the OWL-S API [91].

However, we still face the problem that whether the specification is faithfully

implemented or not. In the work of [24], Isabelle/HOL is used to generate

verified executable code directly from its specification to a functional program-

ming language. This requires the specification written in a constructive logic

manner. Coq also has an extraction mechanism to generate certified programs

to functional programming languages, such as Ocaml, Haskell or Scheme, out of

Coq programs [63]. The faithful implementation of a specification can be studied

to ensure that a program is consistent with its design.

• Consistency checking of specifications. One of the desiderata for specifications is

that a specification should be consistent and should not contradict itself. Specifi-

cations are usually written in different languages. In the work of [92], a tableaux

reasoner is designed to check the consistency of an OWL-DL ontology which is

based on description logic. The consistency checking task of first-order formula is

defined as a satisfiability checking task [19]. However, the satisfiability problem

for first-order logic is undecidable [43], which makes it a hard problem to check

the consistency of a specification. We would like to explore the method to check

the consistency of specifications.

• Interoperable multi-agent systems. In our work, all of the agents are developed

within JADE and a common ontology is shared among them. However, software

agents can be developed using different platforms or languages in an open sys-

tem. Therefore, we should design mechanism to handle the interoperable problem

between heterogeneous software agents.

• Argumentation-based dialogue games. Argumentation can be used in dialogues

to represent the reasonable conclusions by constructing pro and con arguments.

In the original of Dung [36], an abstract argumentation framework has been pro-

posed to formalize relations between arguments, different semantics are defined

to solve the inherent conflicts between statements. Examples to compute argu-

mentation semantics can be found in the work of Liao [64]. In the work of [67], a
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division-based approach has been proposed to cope with the problem of changing

arguments and their attack relations in dynamic argumentation systems. In [66],

the authors have proposed methods to efficiently compute the partial semantics

of argumentation using answer-set programming. We plan to integrate argumen-

tation into dialogue games to support conversations among agents.
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