-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

Reliability & Performance Analysis of Multi-State Systems
Based on Analytical Load Flow Considerations

Hindolo George-Williams
Institute for Risk & Uncertainty Engineering
University of Liverpool, UK

Institute of Nuclear Engineering & Science
National Tsing Hua University, Taiwan

Edoardo Patelli

Institute for Risk & Uncertainty Engineering
University of Liverpool, UK

Min Lee

Institute of Nuclear Engineering & Science
National Tsing Hua University, Taiwan

ABSTRACT: The last three decades have been marked by the advent of various analytical and simulation
algorithms, enhanced for the reliability evaluation of multi-state systems. Though the latter are widely believed
to be the most applicable to realistic systems, they impose a greater degree of computational burden. Conse-
quently, they have been outshone, especially in structural optimization, redundancy allocation and maintenance
optimization problems. On the flip side, analytical techniques are constrained by their various unique limita-
tions. Prominent amongst these being, inapplicability to multiple output systems with competing demand and
reliance on the enumeration of system path or cut sets prior to analysis. The development, therefore, of a single
approach that addresses these limitations is desirable. In this paper, the fact that most engineering systems sat-
isfy the flow conservation principle and can be regarded as multi-state flow networks is exploited. An analytical
algorithm that efficiently derives all the possible system performance levels and uses basic probability algebra
to estimate their probabilities of occurrence is developed. The algorithm is enhanced to support systems with
flow losses, Common-Cause Failures (CCF), and minimal system reconfigurations. These attributes, as applied
to two case studies, ensure the limitations of existing techniques are overcome.

1 INTRODUCTION tion of binary-state techniques (Zang, Wang, Sun,

& Trivedi 2003, Yeh 2015, Yeh 2008, Lin 2002),

A multi-state system (MSS) is one in which the com-
ponents, as well as, the system, can exist in more
than two output levels. It occurs in various practi-
cal applications like power systems, transportation
networks, communication systems, water distribution
networks; to name but a few (Yeh 2015). For such
a system, reliability and performance evaluation is
effort intensive. Traditional binary-state system reli-
ability evaluation techniques are often inapplicable
without careful modification. In spite of these, nu-
merous techniques have been devised for their reli-
ability modelling. These, according to (Levitin 2004)
belong to one of four categories; Monte Carlo sim-
ulation (George-Williams & Patelli 2016), modifica-

stochastic process (Lisnianski, Frenkel, & Ding 2010)
and the Universal Generating Function (UGF) (Lev-
itin 2005). All four categories and by extension their
derivatives, possess specific strengths and limitations,
some unique only to them. A detailed review on these
and the recent advances in MSS reliability are con-
tained in (George-Williams & Patelli 2016, Lisnian-
ski, Frenkel, & Ding 2010). In a broader sense, ev-
ery MSS technique can be classed as either analyti-
cal or simulation-based. Graph-based algorithms and
the UGF technique are arguably the most widely used
analytical approaches to MSS reliability evaluation.
They have, therefore, been singled out as the ref-

https://core.ac.uk/display/80778451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

erence against which the approach proposed in this
work is compared.

Graph-based algorithms are mainly based on the
concepts of minimal paths or minimal cuts and nor-
mally use the sum-of-disjoint-products to obtain the
reliability of an MSS (Yeh 2015, Yeh 2008, Lin 2002).
However, all but very few (for example (Yeh 2008))
require derivation of the system’s path or cut sets prior
to analysis, which can be difficult for complex sys-
tems. They, cannot model systems with flow losses,
impose that component capacities and system demand
be integer valued and are yet to be applied to multi-
ple output systems with competing demand (George-
Williams & Patelli 2016). System performance is de-
fined with respect to only one state at a time, obtain-
ing the overall MSS performance, therefore, would
require calling an algorithm for all system states. This
may be time consuming for some systems.

The UGF, on the other hand, is able to alge-
braically obtain the overall MSS performance from
the performance of its components. It’s applicable
even to systems with dependent components and sys-
tems prone to common-cause failures (Levitin 2005,
Levitin 2004). However, like graph-based algorithms,
it is inapplicable to systems with flow losses, as well
as, systems with multiple competing demand. Also,
though easily applicable to series-parallel systems,
it’s not intuitive for systems of complex architecture.

Most practical systems have complex architecture,
and they, with their components, may have non-
integer valued capacities. They may have multiple
sources and outputs with competing demand and un-
der some failure conditions, all or a fraction of system
flow may be lost. For these systems, the approaches
under review are inadequate, and a credible alterna-
tive is therefore required. This work proposes an al-
ternative that possesses all the desirable attributes of
these approaches but lacks their limitations.

The remaining sections are organised as follows;
Section 2 gives an overview of the proposed approach.
In Section 3, are details on how the system and its
components are modelled. The algorithms and proce-
dure to determine the most common reliability indices
are presented in Section 4. Section 5 contains a series
of case studies demonstrating the applicability of the
approach. It’s concluded with a sub section dedicated
to general comments on the approach, its challenges
and future. The conclusion is presented in Section 6.

2 PROPOSED APPROACH

The approach combines load flow principles and net-
work theory to derive system performance levels. The
system is represented by a graph in which compo-
nents and demand points are nodes connected by
edges. Its structure is defined by a square matrix, A,
known as an adjacency matrix. This matrix can be
manipulated to provide the incidence matrix, I', from
which, two other matrices defining the flow across the

system are derived. Given the capacity vector (vector
containing capacities of nodes) of the system, the ac-
tual flow across every edge and node can be derived
using the interior point algorithm (Mehrotra 1992,
Kojima, Mizuno, & Yoshise 1989).

The overall performance analysis of the system
proceeds by collating all the possible combinations of
component states and their associated probabilities of
occurrence. For each combination, the performance
levels of output nodes are determined and recorded.
From these, the set of unique performance levels for
every output node is derived. Since each combination
of component states (state vector) results in only one
possible performance level, probabilities correspond-
ing to each unique performance level are summed to
obtain its probability of occurrence.

The flow equations are such that the effects of
losses across nodes and edges and demand at out-
put nodes are incorporated. As a result, the approach
can model systems with flow losses and multiple de-
mand quite easily. If every state vector is assigned an
index, the set of indices corresponding to each sys-
tem performance level can be deduced. These indices
represent the indices of probabilities summed to ob-
tain the probability of occurrence of the performance
level in question. With the structure of the system and
performance levels of nodes fixed, these indices, to-
gether with the sets of output performance levels, de-
fine the performance signature of the system. This
performance signature enhances the study of system
response to changes in the state probabilities of its
nodes, without the need for repeated system analysis.

2.1 Assumptions

The following are the underlying assumptions of the
proposed approach and its associated algorithms.

1. Flow through a node or an edge cannot exceed
its capacity and all edges are perfectly reliable.
Unreliable edges are treated as nodes.

2. Inflow to an intermediate node or an edge is
equal to outflow plus any losses.

3. The system is free of nested CCFs. That is,
Common-Cause Groups (CCG) are independent.

4. On arrival of a CCF event, the probability of fail-
ure of all nodes belonging to the particular CCG
is 1.

3 MODELLING THE SYSTEM AND ITS
COMPONENTS

Let F; represent the properties of node ¢ of the sys-
tem, such that E; = (C,S,P,D,A). C = {c,}" | 0 <
¢z < Cmaz 1S the node’s capacity vector and specifies
its performance (c,) in each state (x), ¢4, 1S its max-
imum performance level and 7 its total number of

states. P = {p, }", is a vector defining the probabil-
ity of each performance level in C.

In some failure modes, outflow from the node may
be less than inflow. The difference is dissipated in the
node and it’s lost. Examples of these are lossy power
lines and a broken pipeline. If ¢, | 0 < e, < 1, is the
fraction of inflow dissipated in the node when in state
x, then S = {£,}", defines the loss for all its node.

Another phenomenon applicable to components of
some systems is minimum load restrictions. Sources
and intermediate nodes are sometimes restricted from
operating below a certain load level. When their ef-
fective load drops below this threshold, they are shut
down, sometimes for reliability and/or cost consider-
ations. To account for this, A; | 0 < A; < ¢ 18 in-
troduced to define the threshold load level of node .

CCF, the failure of a component or a group of com-
ponents due to the same event may exist in the system.
The Common-Cause Initiator (CCI) may be another
component or may reside outside the system bound-
ary. Examples of the latter are extreme environmental
events, terrorist threats, human error and other similar
events that may affect the operation of the system. A
CCG arises if a group of components is linked to some
CClI either by virtue of similarity in design, proximity,
dependence on shared resources e.t.c (Levitin 2005).
Appreciating that in the most general case, a CCI may
induce in its CCG any state transition and not nec-
essarily complete failures, matrix D, as presented by
Equation 1 is introduced to define the CCF events ini-
tiated by node i. Where (d;1,dj2,d;3,djs) € ZT

D= {djl,de,djg,dj4}u><4 |] = 1727

and d;; the state of ¢ triggering the CCF, d;»; the af-
fected node, d;3; the state the component has to be
in to be affected (vulnerable state) and d,4; its target
state on occurrence of the CCF event. Each row of
D therefore defines the behaviour of an affected node
and u is the sum of affected nodes over all CCF events
initiated by 4. Therefore, D = () if node ¢ is not a CCIL.

u—1u (1)

3.1 The System Model

Let the components of the system, including demand
points be numbered consecutively from 1 to M with
the efficiency and capacity of the link between nodes
iand j givenby a;; |0 < ay; <landl;; |0 <l;; < oo
respectively. The system can be defined by A and the
link capacity matrix; L = {l;; }srxa such that each
non-zero entry in L. corresponds to a non-zero entry in
A. The properties of the latter are defined in Equation
2.

Qi If lowisi — j

A =A{aihara [0 = {O Otherwise

(2)

The edges of the graph are defined by a k by 2 matrix;
e, where, k; the number of edges is equal to the total
number of non-zero elements in A. Edge e;; depicts
the edge originating from node 7 and terminating on
node j. e is obtained by traversing A from the upper
left to the lower right element, exploring each column
from top to bottom and extracting the ¢ and j for each
non-zero entry. Its properties are outlined in Equation
3, where V= {1,2,..., M } is the set of nodes.

M M

e={i,jbixa | k=D (a;>0) Y(i,j)eV (3)

j=1 i=1

All three properties of the graph can be defined by a
single parameter G | G = (V,A,L). If E is the set con-
taining the properties, F; of each node of the system,
then the system structure and property can be defined
by the set S as in Equation 4.

S=(G,E) |E={E}" VieV 4

The incidence matrix; I' defines the relationship be-
tween nodes and edges and it’s related to A by Equa-
tion 5. The variable, ¢ = 1,2, ..., k (the edge number)
is the index of edge e;; ineand p = 1,2,..., M.

L, p=t
= {vpgtrrxr | g = { —aij, p=17
0, otherwise)

V(i,j) €e

I' is obtained by looping over the rows of e and updat-
ing the former according to Equation 5. Algorithms
for obtaining I' and e are given in (George-Williams
& Patelli 2016).

3.2 System Flow Equations

Let X;; be the magnitude of flow in edge ¢;;, U;; the

set of nodes connected to the inlet of node i, U; ; the
set of nodes connected to its outlet, c;{f}; its current
capacity and z; its current state. The total inflow for
source nodes (s) is zero and for sink nodes (%), the
total outflow is zero which means i € s if U] = &
and 7 € t if U; = @. Determining the performance
level of output nodes (%), requires deriving the values
of X;;V(i,7) € e for a given system state vector.

Assumption 1 of Section 2.1 is mathematically ex-
pressed by Equations 6, 7 and 8.

Y Xjau<di|(ij)ee UFcV (6)
jeutics!

Y Xy<dl(ij)ee, U CV (7)
JEU; i€s

Since there can’t be negative flow in an edge, X;; is
such that 0 < X;; <)5, where €);; is the maximum

flow through the edge. If 1b holds the lower bounds
and ub, the upper bounds of flow through edges, then,

Ib= {0}, ub={Q;}ra
(8)
Qz] = mln{cmam’ %gw ll]} V(Z%]) ce

where ¢\, and c2), are respectively the maximum
capacities of nodes ¢ and j. Applying Equations 6 and

7 across the system produces Equation 9,
O{Xi; i1 < {c! Y arn | (i,7) € e,

where ¢! is the current capacity of node 7 and © is
related to I' of the system as follows,

VieV (9

Yig, 1ES
®= {giq}MXk | eiq - —Yig» Yigq <0 (10)
0, otherwise

The second assumption in Section 2.1 is expressed by
Equation 11 and across the entire system by Equation
12. Where 0 is the number of intermediate nodes and

ZXZ‘]'— 5{} Z

JEv; JEBT

D{X;jtex1 ={0}ox1 V(i,j) €e (12)

jioy; =01 (i,7) €e (11)

1- xp}) <0
¢ = {¢)\q}8><k ’ ¢Aq = {(€)’qu Ypq

Vpqs Otherwise

A=1,2,..,0|0<M f:X—p Vpe(sUt)

(13)

ell }, the proportion of flow dissipated by node ¢ in
state x. ® and I' are related by Equation 13, which
suggests every row in ® corresponds to a row in I as-
sociated with an intermediate node. Equations 9 and
12 are the flow equations of the system and should
be solved to determine {X;;}xx;. Given ®, I' and

{c;{f}} Mx1, @ linear programming algorithm can be
employed to solve these equations.

The objective of the optimization is to maximise
flow from sources. Therefore, the objective function,
W is given by the negative sum of flow through all
edges emanating from sources as expressed by Equa-
tion 14.

-2 2N

jeU; €8

= (Wb {Xi ot [g =D i (14

€S

q=1,2,....k

3.2.1 Accounting for Bidirectional Flows

The equations derived so far are with the assumption
that process flow through an edge is unidirectional.
For systems like power transmission or water supply
networks, process flow through an edge may be possi-
ble in both directions. Under these conditions, the de-
rived flow equations still remain valid but require that
the range of acceptable flows across an edge be rede-
fined. Normally, a bidirectional or undirected edge is
represented by reciprocal edges. Two edges are said
to be reciprocal if they originate and terminate on the
same pair of nodes but allow process flow in oppo-
site directions. For instance, edges e;; and e;; are re-
ciprocal and together represent a single edge. Though
flow is possible in both directions, at a given instance
process flows in only one direction. Using this fact,
one of the edges, say e;; is arbitrarily chosen as ref-
erence. The lower bound of its flow is extended to
—€2;;; in other words, —€2;; < X;; < €);; and the up-
per bound for edge, ¢j; set to 0 (i.e., {2;; = 0 implying
Xji = 0). If the index of e, in e is y and that of ej;; ¥/,
then, Ib(y) = —€;; and ub(y’) = 0 (see Equation 8).
Following flow calculation, a negative X;; signifies
flow is in the direction specified by edge e;;, hence,
ng = |Xm‘ and Xij =0.

3.3 Deriving System Output

Ib, ub, ©, &, —{Vy} 1k, {e7 Y arer and {cf}ar
are the parameters required by the interior-point al-
gorithm to determine the set {X;;},x1. Let B | B =
{w;}? € R**M be the matrix of all possible combi-
nations of node states such that each row, w; | j =
1,2, ...,z represents a system state vector. If Am B
denotes the matrix of all possible combinations of
members of sets A and B, then, 3 = {1,2,....,.n1} M
{1,2,..,n} m ... m {1,2,...,np}, where n; is the
number of states of node i, 2 = Hij\ill n; and M,
the total number of nodes including external CCI. To
determine system flow corresponding to a given w;,

the values of {cii}}Mxl, {55{;}}]\4“ and ®, such that
x € w;, are first deduced. If none of the system nodes

is prone to flow losses, then, only {cil}} Mx1 needs to
be calculated, the rest remain static Vi € {1,2,.., M }.
When {X;;}ix1 is obtained, the set, n | n € RM*!
of flow through the nodes of the system is given by

@Mxk{Xij}kxl-

4 THE ALGORITHMS

4.1 Incorporating Component Reconfiguration

It was established in Section 3 that some system com-
ponents may be subjected to minimum load require-
ments, below which they are shut down. This affects
the affective value of system output and should there-
fore be taken into consideration during its analysis.

Owing to flow redistribution, shutting down a compo-
nent/branch may augment flow in other branches and
nodes which were originally qualified for shut down
may no longer be. For this reason, a recursive pro-
cedure is employed in determining the output of the
system.

Let A, | A; = {A;}mx1 be the vector containing
the minimum threshold, A; | i = 1,2, ..., M of all sys-

tem components, f, = {cil}}Mxl, fo= {5;{51}}MX1
and 7, the set containing all other parameters required
for system flow calculation as listed in Section 3.3. If
7, is the vector of effective flow through system nodes
corresponding to state vector w;, then, Algorithm 1
presents the recursive procedure for determining sys-
tem flow. In this algorithm, the symbol ® denotes
element-wise multiplication of two vectors. Nodes are
shut down in descending order of their degree of inad-
equacy (i.e., absolute difference between current and
threshold flows) and only operating nodes with non-
zero thresholds are considered. Shutting down zero-
threshold nodes does not make any difference on the
current system flow.

Algorithm 1 Recursive procedure for system flow
calculation given non-zero minimum load condition
on at least one system component

Require: 1, f1, o, Ay | AJA, >0, 7

1: function RECONFIGURE(7);;, fi.fo A, T)

2 [a,b) = min ({f, >0} ® {n,; — A})

3 if a > 0 then

4: Exit

5: end if

6: f1(0) <0, f5(b) <0 > Update vectors
7 flag <0 > Set recursive indicator
8 while flag < 0 do

9: 1 < Ourr{Xijlex1 > Calculate flow
10: Call lines 2 to 6

11: end while

12: return 7,

13: end function

4.2 CCF Modelling

When a CCI is also a component of the system, the
modelling procedure does not deviate from what has
already been established in earlier sections. For CCI
residing outside the system boundary, a little manip-
ulation is desirable to keep the computational time
low. If o is the probability of CCF, then, the event is
represented by a binary-state node for which state 1;
with probability 1 — o is arbitrarily chosen as the state
when CCF does not occur and state 2; with probabil-
ity o, as the CCF triggering state. CCIs do not directly
influence system flow, for which reason they are not
included in its network model. To ensure this does not
pose a hitch to the flow equations derived and their

implementation, node numbering starts with nodes
that directly influence flow and continue with exter-
nal CCI. This implies, external CCI numbering starts
from M 4+ 1 and for systems with no external CCI,
M’ = M. Quantifying the effect of CCF on the system

Algorithm 2 Procedure for CCF evaluation
Require: Xout, Xout', Xpath, D; # ()

1: function EvAL(:,3,X out, X out’,X path)

2 tstates <—Vector of affected nodes

3 counter < 1 > pre-set counter
4: while counter < |tstates| do

5: index <— D;(:,1) == tstates(counter)
6: g1 < D;(index,2), go < D;(index, 3)
7 93 < D;(index,4)

8

: T «— {O}zx|g1|

9: for j < 1to |g1| do

10: v 4 B(:,01(7)) == g2(7)

11: ve <+ B(:,1) == g1(4)

12 Y (v Ny, j) 1

13: end for

14: index?2 <—rows of Y with at least a 1
15: for | < index2 do

16: index3 < Y (l,:) >0

17: W, <—get state vector [

18: w; (g1 (index3)) < g3(g1(index3))
19: " +—new index of w; in 3
20: Xout' (end +1,:) + Xout(l',:)
21: end for
22: Xpath(end+ 1 : end + 1) + index2
23: counter <— counter + 1 > advance
24: end while

25: return X out’, X path
26: end function

entails looping over all CCGs in the system. For each
CCQG, all state vectors in 3 containing the triggering
state of the CCI with at least one CCG member in its
vulnerable state are identified. The designated node
performance level changes are made and the corre-
sponding system flow calculated. This procedure, for
one CCG is described by Algorithm 2. Where, i is the
CCI’s node ID, X out € R**I!l: the matrix of perfor-
mance levels of output nodes, such that each row is
matched to a row in 3 and each column to an element
in t, X path; the indices of state vectors suscepti-
ble to CCF and X out’; matrix of performance levels
of output nodes corresponding to these indices after
CCFE.

4.3 Overall System Analysis

The key system analysis tasks are determining X out
and X prob; the vector of probabilities correspond-
ing to X out. Each element of X prob is the product
of the combination of probabilities corresponding to
the state vector, w; | i = 1,2, ..., z. Owing to the pos-
sibility of external CCI, only the first M elements of

w; are considered in deriving f, and f,. If W, is the
resultant state vector, the output flow obtained is as-
signed to all rows, 4, of 3 for which w, C w;. Let Trj

Algorithm 3 Procedure for overall system analysis
Require: Node and system data, 3

1: function ANALYSE(S, 3)

2 initialise all data storage arrays
3 U+ {1,2,...,z}

4: index <—set of CCI node IDs
5: while U # () do

6: i+ U(1)

7 getw,, f, and f,
8

> get state vector index

: 7, <—get node flows
9: 1; <~ RECONFIGURE(");, f1, f9, Ay, T)

10: I «alliof B| W, Cw;

11: Xout(I,:) < n,(t) > store output flows
12: update X probVw; |i e[

13: O(I)«0 > delete indices from set
14: end while

15: for j « index do

16: (Xout', Xpath)«EVAL(j,..., X path)
17: end for

18: X out(Xpath,:) + Xout'

19: for r < 1 to |t| do

20: get 1, Mp2,e., Tr N

21: for) < 1to N do

22: h,; <—rows where X out(:,r) = m,;
23: trj < > Xprob(h,;)

24: end for

25: end for

26: return I1, k, A
27: end function

be the j** performance level of output node r; 7 be-
ing its position in ¢, y,; the probability of this perfor-
mance level and h,; the set of state vector indices giv-
ing rise to m,;. If II, k and H are arrays respectively
holding sets of 7,;, u,; and h,; for all output nodes,
then the overall system analysis entails their determi-
nation, as illustrated by Algorithm 3. They, together
with 3 and ¢, make up the performance signature of
the system.

4.3.1 Reliability and Performance Indices

From the output of Algorithm 3, the system’s relia-
bility and performance indices can be deduced. Only
two of these (availability and expected performance)
are considered here, readers are referred to (Lisnian-
ski, Frenkel, & Ding 2010) for a list of indices per-
tinent to MSS performance evaluation. The availabil-
ity (A;ET}) of an MSS output node r is the probability
that its performance level is at least v units while its
expected performance (¢{"}) refers to its mean per-
formance within a specified period. These are defined

thus;

A = 3y

.jVTrrjz'U

g =" (15)
J

5 CASE STUDIES

5.1 Example 1: A multi-state bridge system

(a) Network model

(b) Modified network

Figure 1: A multi-state bridge system with unreliable edges

Shown in Figure 1a is the network model of a 4-node,
6-edge bridge system. It’s taken from (Yeh 2015),
where the aim is to determine the probability that
at least 3 units of flow are transmitted from node 1
to 4 using an improved sum-of-disjoint-product tech-
nique.

5.1.1 Solution Procedure

Owing to assumption 1 of Section 2.1, the unreliable
edges e; to eg are respectively represented by nodes
5 to 10 in the modified network model shown in Fig-
ure 1b. Since there is no CCI, M’ = M = 10, z = 288
and D; = (Vi € {1,2,...,10}, the sets s and ¢ are re-
spectively {1} and {4}. Nodes 1 to 4 are assigned a
constant capacity of 4 units (since they are perfectly
reliable), determined by the cumulative maximum al-
lowable flow across e; and e;. State assignment of
each of the other nodes proceeds in ascending order
of capacity. The capacity of each edge of the modified
network is assumed to be infinite and since there are
no threshold flow restrictions on nodes, A, = {0}'°.

5.1.2 Analysis Outcome

The analysis took 6.922 seconds on a 1895.257MHz
AMD Opteron (tm) 6168 processor and yielded the
following outcome;

k = {0.0111,0.1058,0.2717,0.4073,0.2041}
AfY = 0.4073 4+ 0.2041 = 0.6114 (16)

I1=1{0,1,2,3,4}, ¢ =26875

Two additional scenarios were considered; the first as-
suming a 10% flow loss through e; and eg when they

respectively exist in states 3 and 2. The second as-
sumes in addition, a minimum threshold load condi-
tion of 2 imposed on node 2 (i.e., Ay = 2). The first

results in 19 different performance levels with Aél}
and g respectively obtained as 0.3515 and 2.6251.
It required the same computation time as the origi-
nal case and the lower availability signifies the sys-
tem exists more in the lower output levels, conse-
quent of the load losing attributes of e; and eg. The

second scenario yields Aél} = 0.3515, g{l} = 2.0884,
10 distinct performance levels and took 12.304 sec-
onds. The constant availability suggests the additional
condition filters off only the lower performance lev-
els. This is confirmed by the fewer performance lev-
els of the system and its lower expected output. The
overshoot in computation time is due to the need to
recursively calculate system flow as a result of the
minimum load condition imposed on node 2. In total,
540 calls were made to the flow calculation algorithm
compared to 288 in the other scenarios.

5.2 Example 2: Series-Parallel System with CCF

Figure 2: Series-parallel system with CCG

Table 1: Reliability and performance data of components

Component Availability Nominal Capacity
1 0.90 1.00
2 0.80 2.00
3 0.72 2.00
4 0.90 2.00
5 0.80 3.00

Figure 2 shows the block diagram of a simple series-
parallel system with flow from X, to X,,;. It consists
of two CCG; components 1 and 2 belong to CCG-1
with probability o; = 0.1 and components 4 and 5; to
CCG-2 with probability o, = 0.2. It was initially pre-
sented as Example 4.15 in (Levitin 2005), where the
UGEF technique was used to derive its performance
distribution and availability relative to a flow of 2
units. All components are binary-state and their prop-
erties are as given in Table 1.

5.2.1 Solution Procedure

Shown in Figure 3 is the network model for the sys-
tem in which s = {1,2,3} and ¢ = {6}. Node 6 is
assigned a constant capacity of 5 units, derived from
the sum of the maximum flows through nodes 1, 2
and 3. Node X;,, has been discarded since its removal
doesn’t affect flow across the system. For this system,

@ System Node

—>— Process Flow

- > - - - CCF Coupling @ External CCI

Figure 3: Network model for series-parallel system in Figure 2

M =6, M' =8, =128, A, = {0}° and the CCG
properties of nodes 7 and 8 are;

(17)

The links are assumed to have an infinite capacity.

5.2.2 Analysis Outcome

-

0.9

o
©

0.8

4
©

0.7

()

o

0.6

CCG-1
=3

0.5

o
3

0.4

probability of

[
N

CCF
S
w

0.3

0.2

o
N

0.1

o
-

pC)

0.2 0.4 0.6 0.8 1
CCF probability of CCG—Z(GZ)

(a) Availability (A{™)

CCF probability of CCG-1(ay)
P
&

i
0 0.1 0.2 03 04 05 06 07 08 0.9 1
CCF probability of CCG—Z(nZ)

(b) Mean Output (g{l})

Figure 4: Sensitivity of system performance indices to o and o2

k = {0.2419,0.0356,0.2,0.2239, 0.0299, 0.2687}
A = 0.2 4 0.2239 + 0.0299 + 0.2687 = 0.7225

I1=1{0,1,2,3,4,5}, ¢t =25705

(18)

The outcome presented in Equation 18 was obtained
in 0.919 seconds on the same computer used in Exam-
ple 1. Sensitivity of system performance to variations
in CCF probability (o; and o) was also investigated.
Using a probability interval of 0.01 for each of o4

and o, the procedure would require 0.919 (1;%? 1) ?
9374.719 seconds if a complete system analysis was
run for each probability combination. However, using
the performance signature of the system, only 96.205
seconds were required and the results are presented
in Figure 4. From the relative colour change along
the two axes, it’s clear system performance is more
sensitive to 0. This is not surprising, as the failure
of CCG-2 implies the complete failure of the system.
Therefore, o2 should be prioritized when reducing o,
and o, under economic constraints. To show the appli-

Figure 5: Network model for system with 2 output nodes

cability of the methodology to systems with multiple
competing demand, a second demand point is intro-
duced between the two parallel blocks of Figure 2.
The effective demand on the system is equally shared
between the two sinks such that each exerts a con-
stant demand of 2.5 units. The system’s new network
model is shown in Figure 5 and ¢ = {6, 7}. The perfor-
mance indices of the output nodes are respectively de-
rived as, ALY = 0.457, g1 = 1.5931, ALY = 0.6731
and g%} = 2.1206. One can clearly see that node 7
(output 2) sinks more flow than node 6 even though
they have equal demand. This can be attributed to its
location relative to the sources and CCG-2. Each time

CCG-2 fails, the entire system flow is redirected to
node 7.

5.3 Comments

The case studies were analysed in short times and
they yielded outcomes that agree with previous re-
sults. However, Algorithm 3 suggests the computa-
tion time is influenced by z. Therefore, large systems
require a huge computational effort. Work is under

way to derive an expression for the time complex-
ity of the approach and investigate its efficiency rel-
ative to the UGF technique. It will also be extended to
partial CCF, nested CCG and its application to time-
dependent systems illustrated.

6 CONCLUSIONS

The case studies presented have illustrated the ap-
plicability of the approach to systems of complex
structure and those susceptible to operational dynam-
ics like CCF, minimum load restrictions, partial flow
losses, and competing demand. The last three at-
tributes are also limitations of the well-known UGF
and sum-of-disjoint-product techniques. The perfor-
mance signature concept introduced has been proven
to bring tremendous gains in computation time. It
comes in handy in non-structural optimization prob-
lems, epistemic uncertainty propagation, sensitivity
analysis and other problems where only state prob-
abilities of nodes are varied. Finally, the use of matri-
ces to define the structure and flow across the system
makes the approach intuitive enough for any system
architecture and easily programmable on a computer.
It, therefore, is an efficient and dependable computa-
tional tool, applicable to realistic multi-state systems.

ACKNOWLEDGMENTS

The authors would like to acknowledge the gracious
support of this work through the EPSRC and ESRC
Centre for Doctoral Training on Quantification and
Management of Risk & Uncertainty in Complex Sys-
tems & Environments.

REFERENCES

George-Williams, H. & E. Patelli (2016). A hybrid load flow
and event driven simulation approach to multi-state sys-
tem reliability evaluation. Reliability Engineering & System
Safety 152,351 — 367.

Kojima, M., S. Mizuno, & A. Yoshise (1989). A primal-dual in-
terior point algorithm for linear programming. In N. Megiddo
(Ed.), Progress in Mathematical Programming, pp. 29-47.
Springer New York.

Levitin, G. (2004). A universal generating function approach for
the analysis of multi-state systems with dependent elements.
Reliability Engineering & System Safety 84(3), 285 — 292.

Levitin, G. (2005). The Universal Generating Function in Re-
liability Analysis and Optimization. Springer-Verlag London
Limited.

Lin, Y.-K. (2002). Using minimal cuts to evaluate the system
reliability of a stochastic-flow network with failures at nodes
and arcs. Reliability Engineering & System Safety 75(1), 41
—46.

Lisnianski, A., I. Frenkel, & Y. Ding (2010). Multi-State Sys-
tem Reliability Analysis and Optimization for Engineers and
Industrial Managers. Springer-Verlag London Limited.

Mehrotra, S. (1992). On the implementation of a primal-dual
interior point method. SIAM Journal on Optimization 2(4),
575-601.

Yeh, W.-C. (2008). A simple minimal path method for es-
timating the weighted multi-commodity multistate unreli-
able networks reliability. Reliability Engineering & System
Safety 93(1), 125 — 136.

Yeh, W.-C. (2015, Dec). An improved sum-of-disjoint-products
technique for symbolic multi-state flow network reliability.
Reliability, IEEE Transactions on 64(4), 1185-1193.

Zang, X., D. Wang, H. Sun, & K. Trivedi (2003, Dec).
A bdd-based algorithm for analysis of multistate systems
with multistate components. Computers, IEEE Transactions
on 52(12), 1608-1618.

